

Math for the Digital Factory Combinatorial Optimization Aspects of Robot Tour Planning

Chantal Landry Martin Skutella Wolfgang Welz

DFG Research Center MATHEON Mathematics for key technologies

May 8, 2014

DFG Research Center MATHEON Project: Automatic reconfiguration of robotic welding cells

DFG Research Center MATHEON Project: Automatic reconfiguration of robotic welding cells

Problem:

- Robots perform spot welding tasks on single component
- Some points can only be processed by specific robots
- Robots must not collide
- Given cycle time

Discrete Part

- ▷ task assignment
- sequencing of weld points

Continuous Part

- path planning
- collision detection and avoidance

Requires

- distances between weld points
- collision information

Requires

weld point sequence

Discrete Part

- ▷ task assignment
- sequencing of weld points

Continuous Part

- path planning
- collision detection and avoidance

Given

- distances between weld points
- collision information

Requires

weld point sequence

Routing & Scheduling

Vehicle Routing Problem with collision constraints

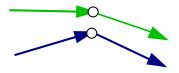
- Representation as a graph for each robot:
 - ▶ nodes ⇔ weld points that can be visited
 - ► arcs ⇔ paths between two weld points
- Each arc has a travel time

Collisions: Certain moves of two robots must not be made at the same time

- ▷ A tour with integer start and end times for each arc:
 - end_a start_a = traversal time of a
 - If end_a < start_b we wait in node v

Collisions between robots at the same time:

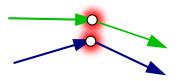
- Both robots waiting: node-node collision
- One robot moving and one waiting: node-arc collision
- Both robots moving:



- ▷ A tour with integer start and end times for each arc:
 - end_a start_a = traversal time of a
 - If end_a < start_b we wait in node v

Collisions between robots at the same time:

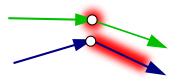
- Both robots waiting: node-node collision
- One robot moving and one waiting: node-arc collision
- Both robots moving:



- ▷ A tour with integer start and end times for each arc:
 - end_a start_a = traversal time of a
 - If end_a < start_b we wait in node v

Collisions between robots at the same time:

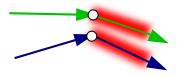
- Both robots waiting: node-node collision
- One robot moving and one waiting: node-arc collision
- Both robots moving:



- ▷ A tour with integer start and end times for each arc:
 - end_a start_a = traversal time of a
 - If end_a < start_b we wait in node v

Collisions between robots at the same time:

- Both robots waiting: node-node collision
- One robot moving and one waiting: node-arc collision
- Both robots moving:



the distance depends on the orientation of the robot

collisions are too restrictive

slight changes of trajectories to avoid collisions

Differences

the distance depends on the orientation of the robot

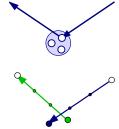
collisions are too restrictive

slight changes of trajectories to avoid collisions

the distance depends on the orientation of the robot

collisions are too restrictive

 slight changes of trajectories to avoid collisions

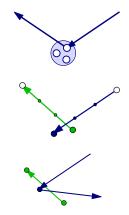


Differences

b the distance depends on the orientation of the robot

collisions are too restrictive

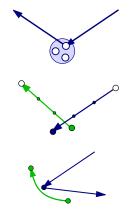
slight changes of trajectories to avoid collisions



- b the distance depends on the orientation of the robot

collisions are too restrictive

 slight changes of trajectories to avoid collisions



For each feasible scheduled tour $t \in \mathcal{T}$ there is a 0/1–variable x_t

$$\begin{array}{ll} \min \sum_{t \in \mathcal{T}} c_t x_t & (\text{WCP}) \\ \text{s.t.} & \sum_{t \in \mathcal{T}} \delta_{vt} x_t = 1 & \forall v \in V \\ & \mathsf{x} \text{ is collision free} & (1) \\ & x_t \in \{0,1\} & \forall t \in \mathcal{T} & (2) \end{array}$$

For each feasible scheduled tour $t \in \mathcal{T}$ there is a 0/1–variable x_t

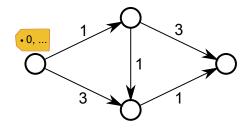
$$\begin{array}{ll} \min \sum_{t \in \mathcal{T}} c_t x_t & (\text{WCP}) \\ \text{s.t.} & \sum_{t \in \mathcal{T}} \delta_{vt} x_t = 1 & \forall v \in V \\ & \mathsf{x} \text{ is collision free} & (1) \\ & x_t \in \{0, 1\} & \forall t \in \mathcal{T} & (2) \end{array}$$

Using branch-and-price approach:

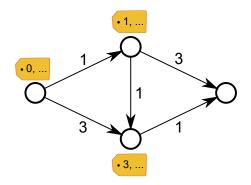
- Constraints (1) and (2) are enforced by branching in a branch and bound framework.
- For (1), conflicting arcs are forced/forbidden in certain time windows
- Pricing: Elementary shortest path with negative costs and time windows

- Sub-problem for many VRP branch-and-price approaches
- State of the art: Bidirectional labeling algorithms

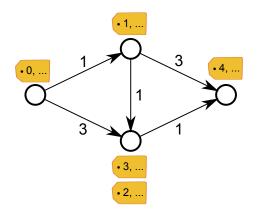
- ▷ Sub-problem for many VRP branch-and-price approaches
- State of the art: Bidirectional labeling algorithms



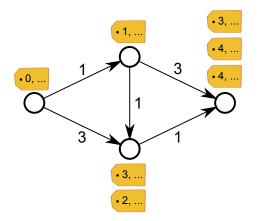
- ▷ Sub-problem for many VRP branch-and-price approaches
- State of the art: Bidirectional labeling algorithms



- ▷ Sub-problem for many VRP branch-and-price approaches
- State of the art: Bidirectional labeling algorithms

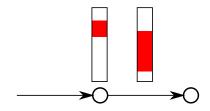


- ▷ Sub-problem for many VRP branch-and-price approaches
- State of the art: Bidirectional labeling algorithms

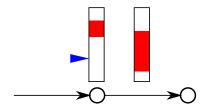


- Elementary shortest path is expensive
- Algorithms do note scale very well

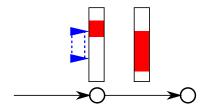
- Elementary shortest path is expensive
- Algorithms do note scale very well



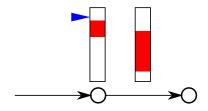
- Elementary shortest path is expensive
- Algorithms do note scale very well



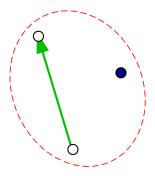
- Elementary shortest path is expensive
- Algorithms do note scale very well



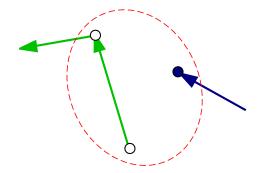
- Elementary shortest path is expensive
- Algorithms do note scale very well



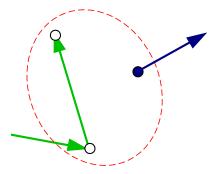
- > Take the collision informaiton into account
- ▷ Find conflicting edge-node pairs



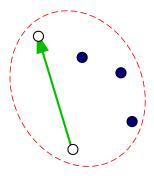
- > Take the collision informaiton into account
- ▷ Find conflicting edge-node pairs



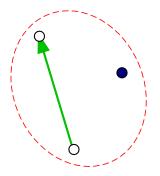
- > Take the collision informaiton into account
- Find conflicting edge-node pairs



- > Take the collision informaiton into account
- Find conflicting edge-node pairs



- > Take the collision informaiton into account
- Find conflicting edge-node pairs



▷ If this leads to an infeasible node for all robots \Rightarrow delete the edge ▷ This is a cut for every infeasible robot

Greedy-partitioning heuristic:

- Assign every node to the closest robot
- ▷ Solve the TSP-Problem (approximately) for all robots
- ▷ If the cycle time is violated reassign some nodes

LP-rounding heuristic:

- ▷ Remove nodes from tours with smaller LP-values
- Concatenate all tours for one robot
- ▷ Solve additional sub-MIP to find feasible waiting times:
 - Leads to one binary variable for every conflicting
 - Even for larger instances (> 35 nodes) solving takes less than 1 second

- Penalizing high collision edges
- Efficient data structures for forbidden periods
- Solve the elementary Shortest Path Problem: Using 2-cycle elimination Using decremental state-space relaxation
- Use Robust Tours instead of Scheduled Tours: Reducing the number of variables
 Detecting collisions is more complicated
- $\triangleright\,$ Solve the pricing problems in parallel on shared memory systems
- Reverse tours in heuristics

Math for the Digital Factory Combinatorial Optimization Aspects of Robot Tour Planning

Chantal Landry Martin Skutella Wolfgang Welz

DFG Research Center MATHEON Mathematics for key technologies

May 8, 2014