Hot Wire Cuttings for the Building Industries

David Brander, Andreas Bærentzen, Anton Evgrafov, Jens Gravesen, <u>Steen Markvorsen</u>, Toke Nørbjerg^{*}, Peter Nørtoft, and Kasper Steenstrup^{*}

*Ph.D. students, i.e., doing the work.

Department of Applied Mathematics and Computer Science Technical University of Denmark

> MaDiFa Weierstrass Institute, Berlin, 2014

BladeRunner Project 2013–2016

Three year project 2013–2016 supported with 1.5 million EURO by *The Danish National Advanced Technology Foundation*

The Danish National Advanced Technology Foundation

Partners:

- Odico: Project manager
 HotWire and HotBlade technology
- ► CONFAC: CONFAC

Concrete elements

► 3XN: 3XN

Architectural design

- Danish Technological Institute: Robot technology
- The Technical University of Denmark:
 DTU Compute: Surfaces and rationalization (2 Ph.D. students)
 DTU Mechanical Engineering: Thermal and mechanical modeling (1 Ph.D. student)

Outline

BladeRunner Project

Outline

- Is the building industry an industry?
 - Architectural examples
 - The present procedure
 - Examples
- 4 Concepts and ideas
- 5 Odico I : Hot Wire Technology
- 6 Odico II : Hot Blade Technology
 - The mathematics
- 8 Conclusion

Is the building industry an industry?

- \blacktriangleright Labor takes ${\sim}50\%$ of the cost in the Danish building industry
- ► The corresponding number is 10–20% for other industries in Denmark
- Architecture with non-trivial geometry is even more labor intensive

The architecture of "standard" buildings is mostly very boring.

3XN architects

Lighthouse, Aarhus, Denmark.

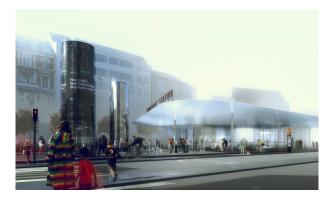
3XN architects

Blue Planet, Copenhagen, Denmark. Design for mixed-use high rise building.


Handmade construction of a mold (wooden formwork).

CONFAC: Handmade unique plywood-mold for a balcony

CONFAC: EPS-form work directly on casting-bed (table)



The price is reduced to the half.

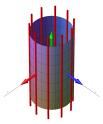
Snøhetta: San Fransisco Museum of Modern Art

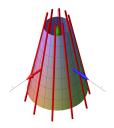
The EPS-mold for the facade requires one year of non stop NC milling. \rightarrow estimated 2–3 weeks of HotWire cutting

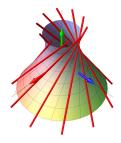
Steen Markvorsen (DTU Compute) Hot Wire Cuttings for the Building Industries

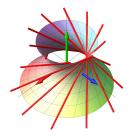
It is :

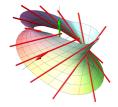
- 1. Ad hoc
- 2. Imprecise
- 3. Messy, dirty
- 4. Timeconsuming
- 5. and very Costly

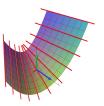

Odico I : Hot Wire Technology

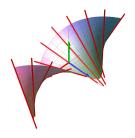

Robotic Hot Wire Cutting




It is :


- 1. Automatic
- 2. Precise
- 3. Clean (?)
- 4. Fast
- 5. and relatively Cheap





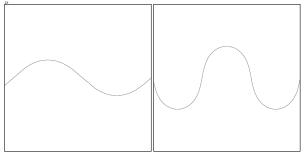


FIGURE 1. Wavelike elastica

$$\gamma(s) = (-2k\operatorname{cn}(s), \ s - 2\operatorname{E}(\operatorname{am}(s,k),k)) \tag{1}$$

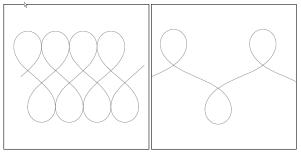
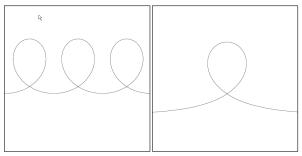
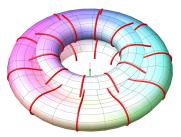
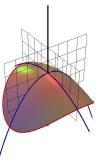
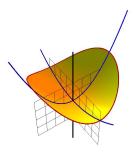
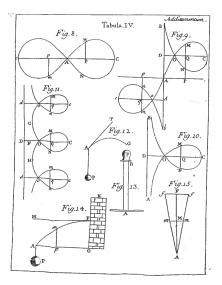


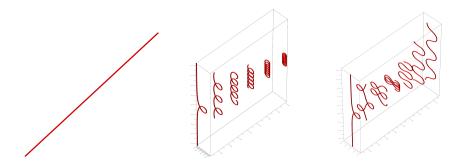
FIGURE 2. Wavelike elastica

$$\gamma(s) = (-2k\operatorname{cn}(s), \ s - 2\operatorname{E}(\operatorname{am}(s,k),k))$$
(2)


FIGURE 3. a) Orbitlike elastica b) Borderline elastica

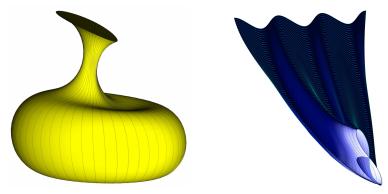

$$\gamma(s) = \left(-\frac{2}{k} \operatorname{dn}\left(\frac{s}{k}\right), \ s\left(\frac{2}{k^2} - 1\right) - \frac{2}{k} \operatorname{E}(\operatorname{am}\left(\frac{s}{k}, k\right), k\right)$$
(3)


Odico II : Hot Blade Technology

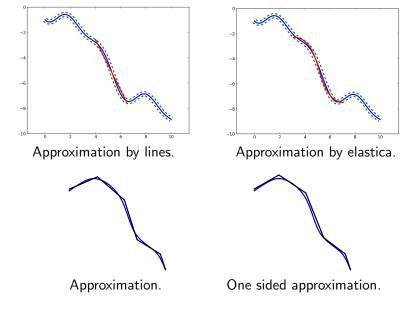
Robotic Flexible Blade Cutting a 'la Euler

The HotWire and HotBlade technology

- Cutting with a wire \rightarrow ruled surface (or is it?)
- ▶ Cutting with an elastic blade → surface swept by elastica (or is it?)


The "or is it" question will be answered by DTU Mechanical Engineering and by experiments.

The mathematical problem: Surface rationalization


- Given a CAD model of the architecture or more precisely a spline surface modeling some ("interesting/expensive") piece of the building.
- Approximate it by a collection of surfaces that can be produced by the HotWire or the HotBlade technology.
- That is, approximate it by a collection of ruled surface and surfaces swept by elastica.

Surfaces swept by elastica

- Not studied before (to our knowledge)
- Can produce surfaces with arbitrary curvature
- Can be pieced together with C^2 continuity
- ► An elasticum can be expressed in closed form using elliptic functions

The mathematics

The one sided approximation can be the starting point for NC-milling.

MaDiFa 40 / 42

Other problems

- Smoothness conditions/tolerances between patches
- Distance measures
- Segmentation adapted to the block structure
- Production constraints
- Elastic and thermal deformations

Conclusion

- There is a need for industrialization of the building industry
- The BladeRunner project is a contribution to this
- Mathematics, including differential geometry, has a key role to play in this endeavor

Thank you for your attention!