

Automatic reconfiguration of robotic workcells

Chantal Landry

Joint work with: M. Gerdts*, R. Henrion, D. Hömberg, M. Skutella** and W. Welz**

Industrial partner: Rücker EKS GmbH

* University of the Federal Armed Forces Munich, Germany.

** Technical University of Berlin, Germany.

- 1 Workcell Problem
 - Motivation
 - Definition
 - Workcell algorithm
 - Numerical result
- 2 Time-optimal kinodynamic motion planning
 - Model
 - Numerical method
 - Initialization
 - Numerical results
- 3 Conclusions

- 1 Workcell Problem
 - Motivation
 - Definition
 - Workcell algorithm
 - Numerical result
- 2 Time-optimal kinodynamic motion planning
- 3 Conclusions

Manufacturing companies

Facts:

- High degree of automation
- Production line consists of workcells
- A workcell:
 - 1 workpiece
 - several robots
 - tasks

Challenges

- optimal configuration of the workcells
- automatic reconfiguration

Image courtesy of Rücker EKS GmbH

To be determined:

- Which robot does perform which tasks?
 - ightarrow Task assignment
- In which order?
 - ightarrow Sequencing
 - How does a robot move between 2 task locations?
 - ightarrow Motion planning

Such that:

the total time taken to complete all the tasks is **minimal**

2 robots: R1 and R2 / 5 tasks: A to E / R2 moves twice faster than R1

discrete optimization: vehicle routing problem total time: max(4+3.5+7.5+6.5+4.5, 7+7)=26 s

Calculating all the fastest collision-free trajectories is expensive
⇒ at first use approximated trajectories

1. Compute the approximated trajectories

- 1. Compute the approximated trajectories
- 2. Find the optimal sequences

Robot R1: Start \rightarrow E \rightarrow B \rightarrow Start

Robot R2: Start \rightarrow A \rightarrow C \rightarrow D \rightarrow Start

- 1. Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet

Robot R1: Start \rightarrow E \rightarrow B \rightarrow Start

Robot R2: Start \rightarrow A \rightarrow C \rightarrow D \rightarrow Start

- 1. Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously

Robot R1: Start \rightarrow E \rightarrow B \rightarrow Start

Robot R2: Start \rightarrow A \rightarrow C \rightarrow D \rightarrow Start

- 1. Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously
 - (ii) go to 2

- 1. Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously
 - (ii) go to 2

Robot R1: Start \rightarrow C \rightarrow B \rightarrow D \rightarrow Start

- 1. Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously
 - (ii) go to 2

Robot R1: Start \rightarrow C \rightarrow B \rightarrow D \rightarrow Start

- Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously
 - (ii) go to 2

Else

(iii) Compute the optimal sequences with the exact trajectories

Robot R1: Start \rightarrow C \rightarrow B \rightarrow D \rightarrow Start

- Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously
 - (ii) go to 2

Else

- (iii) Compute the optimal sequences with the exact trajectories
- (iv) If same output, then RETURN
 Else go to 3
 End if

End if

Robot R1: Start \rightarrow C \rightarrow B \rightarrow D \rightarrow Start

Workcell Algorithm - mathematical problems

- Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously
 - (ii) go to 2

Else

- (iii) Compute the optimal sequences with the exact trajectories
- (iv) If same output, then RETURN Else go to 3 End if

End if

Steps 2 and 4-(iii):
 Discrete optimization - vehicle routing problem
 M. Skutella and W. Welz
 Next talk

Workcell Algorithm - mathematical problems

- Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously
 - (ii) go to 2

Else

- (iii) Compute the optimal sequences with the exact trajectories
- (iv) If same output, then RETURN Else go to 3 End if

End if

- Steps 2 and 4-(iii):
 Discrete optimization vehicle routing problem
 M. Skutella and W. Welz
 Next talk
- Step 3: Optimal control problem
 C. Landry, M. Gerdts, D. Hömberg and R.
 Henrion
 Next part of the talk

Workcell Algorithm - mathematical problems

- Compute the approximated trajectories
- 2. Find the optimal sequences
- Compute the exact trajectories that have not been computed yet
- 4. If there is a collision, then
 - (i) New constraint: these two trajectories cannot be used simultaneously
 - (ii) go to 2

Else

- (iii) Compute the optimal sequences with the exact trajectories
- (iv) If same output, then RETURN Else go to 3 End if

End if

- Steps 2 and 4-(iii):
 Discrete optimization vehicle routing problem
 M. Skutella and W. Welz
 Next talk
- Step 3: Optimal control problem
 C. Landry, M. Gerdts, D. Hömberg and R.
 Henrion
 Next part of the talk
- Step 4: Dynamic collision detection
 C. Landry and N. Feyeux
 based on F. Schwarzer, M. Saha and J.
 Latombe (2005)

Solution

R2 moves twice faster than R1 and R1 cannot reach the upper right point

- 1 Workcell Problem
- 2 Time-optimal kinodynamic motion planning
 - Model
 - Numerical method
 - Initialization
 - Numerical results
- 3 Conclusions

Input data

Input:

- \blacksquare P_0 : original position
- \blacksquare P_F : goal position
- characteristics of the robot
- obstacles

Goal:

Find the fastest and collision-free $\mbox{\tiny 3}$ trajectory that goes from P_0 to P_f

Notation:

- r: position
- v: velocity
- a: acceleration

- \blacksquare θ : rotation angle
- lacksquare μ : velocity of the rotation angle
- \blacksquare t_f : travel time

Body frame

World frame

$$R_0 \in \mathbb{R}^{n \times 2}$$

$$R(t) = R(r(t), \theta(t))$$

$$= R_0 \begin{pmatrix} \cos(\theta(t)) & \sin(\theta(t)) \\ -\sin(\theta(t)) & \cos(\theta(t)) \end{pmatrix} + e_n \cdot r(t)^T,$$

with n = number of vertices and $e_n^T = (1, \dots, 1) \in \mathbb{R}^n$

(*OCP*):

Find $r,v,a:[0,t_f]\to\mathbb{R}^2,$ $\theta,\mu:[0,t_f]\to\mathbb{R}$ and t_f such that: $\min\ t_f \quad \text{subject to}$

equations of motion:

$$\begin{aligned} r'(t) &= v(t) \\ v'(t) &= a(t) \\ \theta'(t) &= \mu(t), \text{a.e. in } [0, t_f] \end{aligned}$$

collision avoidance (at safety level ε):

$$\min_{\ell=1,\ldots,4} \operatorname{dist}(R(r(t),\theta(t)),H_{\ell}) \geq \varepsilon$$
, a.e. in $[0,t_f]$

boundary conditions:

$$r(0) = P_0, v(0) = 0, \theta(0) = 0, r(t_f) = P_f, v(t_f) = 0, \theta(t_f) = 0$$

box constraints:

$$\underline{a} \le a(t) \le \bar{a}, \underline{\mu} \le \mu(t) \le \bar{\mu}$$
, a.e. in $[0, t_f]$

(OCP):

Find $r,v,a:[0,t_f]\to\mathbb{R}^2, \theta,\mu:[0,t_f]\to\mathbb{R}$ and t_f such that: $\min\ t_f \quad \text{subject to}$

Optimal Control Problem with:

- state variables: r, v, θ
- \bullet control variables: a,μ

equations of motion:

$$r'(t) = v(t)$$

 $v'(t) = a(t)$
 $\theta'(t) = \mu(t)$, a.e. in $[0, t_f]$

collision avoidance (at safety level ε):

$$\min_{\ell=1,\ldots,4} \operatorname{dist}(R(r(t),\theta(t)),H_{\ell}) \, \geq \, \varepsilon, \text{ a.e. in } [0,t_f]$$

boundary conditions:

$$r(0) = P_0, v(0) = 0, \theta(0) = 0, r(t_f) = P_f, v(t_f) = 0, \theta(t_f) = 0$$

box constraints:

$$\underline{a} \le a(t) \le \bar{a}, \underline{\mu} \le \mu(t) \le \bar{\mu}$$
, a.e. in $[0, t_f]$

First Discretize ...

- Grid: $\mathbb{G}_N := \{t_k = kh | k = 0, \dots, N\}$ with $h = t_f/N$.
- Approximation of the controls by B-splines of order i:

$$a_h(t) = \sum_{i=0}^{N+j-2} a_i \, B_{ij}(t) \text{ and } \mu_h(t) = \sum_{i=0}^{N+j-2} \mu_i \, B_{ij}(t),$$

where $a_i \in \mathbb{R}^2$ and $\mu_i \in \mathbb{R}$.

- Fig.: B-spline of order 2
- Define the vector of unknowns: $z = (a_0, \mu_0, \dots, a_{N+j-2}, \mu_{N+j-2}, t_f)^T$
- Solve ODEs by a 1-step explicit method (e.g. explicit Runge-Kutta method)

$$\begin{pmatrix} r_{k+1} \\ v_{k+1} \\ \theta_{k+1} \end{pmatrix} (z) = \begin{pmatrix} r_k \\ v_k \\ \theta_k \end{pmatrix} (z) + h \phi(t_k, r_k(z), v_k(z), \theta_k(z), a_h(t_k), \mu_h(t_k), t_f, h),$$

where ϕ is the increment function

Eliminate ODEs from the optimal control problem (OCP)

Nonlinear Optimization Problem

$$\min_{z} t_f \quad \text{subject to}$$

$$\min_{\ell=1,\dots,4} \operatorname{dist}(R(r_k(z),\theta_k(z)),H_\ell) \geq \varepsilon, \qquad k=0,\dots,N,$$

$$r_0 = P_0, \, v_0 = 0, \, \theta_0 = 0,$$

$$r_N(z) = P_f, \, v_N(z) = 0, \, \theta_N(z) = 0,$$

$$\underline{z} \leq z \leq \overline{z},$$

where
$$z=(a_0,\mu_0,\ldots,a_{N+j-2},\mu_{N+j-2},t_f)^T$$
 and $\underline{z}=(\underline{a},\underline{\mu},\ldots,\underline{a},\underline{\mu},\underline{t})^T$ $\bar{z}=(\bar{a},\bar{\mu},\ldots,\bar{a},\bar{\mu},\bar{t})^T$.

- Solver: Sequential Quadratic Programming method (SQP) Iterative method: $z^{(m+1)}=z^{(m)}+d_z$ where d_z is the solution of the m^{th} -QP
- Use Matthias Gerdts's package OCPID-DAE1

A sequence of trajectories

Initialization:
$$z^{(0)} \xrightarrow{\text{ODEs integration}} r_0(z^{(0)}), \dots, r_k(z^{(0)}), \dots, r_N(z^{(0)})$$

A sequence of trajectories

$$\begin{array}{c} \text{Initialization: } z^{(0)} \xrightarrow{\text{ODEs integration}} r_0(z^{(0)}), \dots, r_k(z^{(0)}), \dots, r_N(z^{(0)}) \\ \downarrow \text{ QP} \\ \text{Iteration 1: } z^{(1)} \xrightarrow{\text{ODEs integration}} r_0(z^{(1)}), \dots, r_k(z^{(1)}), \dots, r_N(z^{(1)}) \end{array}$$

A sequence of trajectories

How to initialize $z^{(0)}$?

- $\blacksquare \ \, \text{Reminder:} \, z^{(0)} = (a_0^{(0)}, \mu_0^{(0)}, \dots, a_{N+j-2}^{(0)}, \mu_{N+j-2}^{(0)}, t_f^{(0)})^T$
- \blacksquare Without a good initialization of $z^{(0)}$, SQP method might not converge
- \blacksquare 1st attempt: $z^{(0)}$ such that the initial trajectory describes the segment $[P_0,P_f]$

How to initialize $z^{(0)}$?

- $\blacksquare \ \, \text{Reminder:} \, z^{(0)} = (a_0^{(0)}, \mu_0^{(0)}, \dots, a_{N+j-2}^{(0)}, \mu_{N+j-2}^{(0)}, t_f^{(0)})^T$
- lacktriangle Without a good initialization of $z^{(0)}$, SQP method might not converge
- \blacksquare 1st attempt: $z^{(0)}$ such that the initial trajectory describes the segment $[P_0,P_f]$

■ New attempt: grid on the workspace and use of the shortest path algorithm

■ New attempt: grid on the workspace and use of the shortest path algorithm

- $ightarrow z^{(0)}$ s.t. the initial trajectory passes through the neighborhood of P_1 and P_2
- → computation of the approximated trajectories in Workcell Algorithm

Initial trajectory

Look for the **fastest** trajectory between P_0 and P_f that passes through the neighborhood of the **via points** P_i , $i=1,\ldots,n_I$

$$||P_i - r(\xi_i)||_2 \le \varepsilon_r, i = 1, \dots, n_I,$$

where ξ_i is chosen proportional to the travelled distance:

$$\xi_i := \left| \frac{\sum_{k=0}^i L_k}{L} N \right|$$

with $\varepsilon_r > 0$ small and

$$L := \sum_{i=0}^{n_I} L_i = \sum_{i=0}^{n_I} ||P_i P_{i+1}||_2$$

where $P_{n_I+1} = P_f$.

(OCP_I): Find $r, v, a: [0, t_f] \to \mathbb{R}^2$, $\theta, \mu: [0, t_f] \to \mathbb{R}$ and t_f such that:

$$\min t_f + \sum_{i=1}^{n_I} \max(\|P_i - r(\xi_i)\|_2 - \varepsilon_r, 0)^2$$

s.t.

ODEs:
$$r'(t) = v(t)$$

$$v'(t) = a(t)$$

$$\theta'(t) = \mu(t), \text{ a.e. in } [0, t_f]$$

boundary conditions:

$$r(0) = P_0, v(0) = 0, \theta(0) = 0, r(t_f) = P_f, v(t_f) = 0, \theta(t_f) = 0$$

box constraints: $\underline{a} \leq a(t) \leq \bar{a}, \underline{\mu} \leq \mu(t) \leq \bar{\mu}$, a.e. in $[0, t_f]$,

Remarks:

- Similar to (*OCP*), but without obstacle
- \blacksquare Use the same direct method as for (OCP)

Initial trajectory - Numerical examples

Initial trajectory - Numerical examples

■ Variable: $q \in \mathbb{R}^4$: joint angles

- Variable: $q \in \mathbb{R}^4$: joint angles
- Same strategy
 - Via points: shortest path algorithm
 - 2. Initial trajectory: solve (OCP_I)
 - **3.** Exact trajectory: solve (OCP)

- 1 Workcell Problem
- 2 Time-optimal kinodynamic motion planning
- 3 Conclusions

Conclusions

- Conclusions
 - Configuration of robotic workcells: efficient interplay between discrete and continuous optimization
 - lacksquare 2D model to compute the fastest and collision-free trajectory between P_0 and P_f
 - Computation of a good initialization is crucial
 - Combination of discrete optimization with 2 optimal control problems
- Current work
 - Adaptation to a 3D robotic workcell

