

Modeling of Material Flow Problems

Simone Göttlich

Department of Mathematics University of Mannheim

Workshop on "Math for the Digital Factory", WIAS Berlin

May 7-9, 2014

Overview

1 Manufacturing Systems

2 Workforce Determination

3 Material Flow Simulations

Overview

1 Manufacturing Systems

2 Workforce Determination

3 Material Flow Simulations

UNIVERSITY OF MANNHEIM

Introduction

- University of Mannheim: Dept. of Mathematics
- Strong focus on Business Mathematics
- Industrial Partners: BASF, Daimler AG
 - \Rightarrow Research interests:
 - Modeling and simulation of transportation networks (PDE and ODE)
 - Interaction of discrete and continuous optimization problems
 - Operations Research
- **Applications:** Manufacturing Systems, Traffic Flow, Pedestrian and Evacuation Dynamics, Power Grids

UNIVERSITY OF MANNHEIM

Motivation

Siemens-Pressebild, ©Siemens AG

Pressebild DP, ©Deutsche Post AG

- Industrial manufacturing mostly consists of several production steps carried out by different processors
- Describe full dynamics of production processes (not only the steady state)

<u>UNIVERSITY of</u> Mannheim

Modeling of Manufacturing Systems

- Assumptions: Mass production, several production steps, consideration of inventory and processing
- **Goal:** Simulation of production dynamics, optimization studies with regard to costs and/or output

UNIVERSITY OF Mannheim

Production Network Model

• Basic setup:

- Production network \Rightarrow directed, connected graph G = (V, E)
- Machine / processor ⇒ arc e parameters: length L_e, production speed a_e, max. capacity μ_e
- Distribution knot \Rightarrow vertex v with distribution rates $A^{v,e}$ into succeeding processors
- Products \Rightarrow continuous product density ρ_e (no discrete event simulation, DES) (dynamic model, no queueing theory)

UNIVERSITY OF MANNHEIM

Production Network Model*

• Queues:

• In front of any processor e: local storage queue q_e (bounded or unbounded). Queue has no spatial extension.

• Model equations:

• Conservation law on processors (PDE):

 $\partial_t \rho_e(x,t) + \partial_x f_e(\rho_e(x,t)) = 0, \quad \forall x \in [0, L_e]$

• Balance equation for queue (ODE):

$$\partial_t q_e(t) = A^{v,e}(t) \sum_{\bar{e} \in \delta_v^{in}} f_{\bar{e}}^{in}(\rho_{\bar{e}}(x_{\bar{e}}^v,t)) - f_e^{out}(\rho_e(x_e^v,t))$$

• Control-dependent distribution $A^{v,e}(t)$ of product flow

* with C. D'Apice, M. Herty, B. Piccoli (SIAM Math. Modeling and Computation, 2010)

UNIVERSITY OF Mannheim

Clearing Functions*

... are the key idea of suitable production models. They can be obtained by fitting Discrete Event Simulation (DES) data.

©TU Eindhoven, χ -DES Simulator by J.E. Rooda

$$f(\rho, x) = H(\rho_{max} - \rho) \frac{\nu \rho}{1 + \rho + k\rho(1 - x)}$$

* with D. Armbruster, M. Herty (SIAM J. Appl. Math., 2011)

UNIVERSITY OF MANNHEIM

Optimization Issues

- The presented models lead to a PDE/ODE restricted optimization problems, e.g. the optimal routing problem* or the buffer allocation problem**
- **Classical approach:** Solve the first order optimality system via steepest descent methods
- Alternative approach: Interpretation as a (time-dependent) mixedinteger problem (MIP)

* with A. Fügenschuh et al. (SIAM J. Sci. Comput., 2008), 2014)

** with O. Kolb (submitted to European J. Oper. Res.,

<u>UNIVERSITY of</u> Mannheim

Further Applications (Stochastics)

 Continuous production networks with random breakdown*: Modeling and simulation of exponentially distributed failures

* with S. Martin, T. Sickenberger (Netw. Heterog. Media, 2011)

• Approximations of time-dependent unreliable flow lines: Derivation and validation of a continuous model from a stochastic MIP**

** with S. Kühn, J. Schwarz, R. Stolletz (submitted to European J. Oper. Res., 2013)

Further Applications (Optimization/PDE)

MANNHEIM

 Optimal Design of Capacitated Production Networks*: Discrete decision problem with focus on minimal costs (setup, inventory, production). Initially, several configurations per arc are possible.

* with A. Dittel, U. Ziegler (Optim. Eng., 2011)

• Production networks with finite buffers: Limited buffer capacities ρ_{max} , extension to networks^{**} and suitable numerics^{***}

$$\partial_t \rho + \partial_x f(\rho, x) = 0, \quad f(\rho, x) = \tilde{f}(\rho, x) H(\rho_{\max} - \rho),$$

where $\tilde{f}(\rho, x)$ is smooth and concave

** with A. Klar, P. Schindler (SIAM J. Appl. Math., 2013),

*** with P. Schindler (submitted to Discrete Contin. Dyn. Syst. Ser. B, 2014)

Overview

1 Manufacturing Systems

2 Workforce Determination

3 Material Flow Simulations

UNIVERSITY of Mannheim

Motivation*

• Goal: Workforce scheduling during the production process

* joint work with M. Herty (RWTH Aachen), U. Ziegler (University of Mannheim), Marcus Ziegler (Daimler AG)

Workforce Determination in Production Networks*

- Given a directed graph G = (V, E). Due to machine failures capacity drops can occur.
- **Goal:** Allocate service operators to still maximize the production output.
- Workforce planning highly relevant for maintenance and cost optimization ⇒ Model should include:
 - service operation determination
 - machine-individual default parameters
 - evolution of capacity,

MANNHEIM

• reliable optimization procedures

* with M. Herty, C. Ringhofer, U. Ziegler (Optimization, 2012)

Model Equations

Each production unit is described by a set of functions:

- $w_e(t)$: number of workers at production unit
- q_e(t): buffer level in front of machine e, coupled ODE depends on inflow and outflow of buffer
- c_e(t): current processing capacity of machine e,
 ODE depends on properties of production unit and number of workers
- *f*_e(*t*): flow through machine *e* ⇒ coupled ODE depends on capacity and buffer level

$$\partial_t q_e = Bf + f_{in} - f_e, \quad f_e = \min\{c_e, q_e/\tau_e\}$$
$$\partial_t c_e = -\min\{\frac{c_e}{\epsilon}, \alpha_e\} + \min\{\frac{\mu_e - c_e}{\epsilon}, w_e\}$$

UNIVERSITY of Mannheim

Service Operator Assignment

- Given a service operator schedule $w_e(t)$ and an inflow function $f_{in}(t)$ into the system.
- All service operators are distributed among the machines:

$$\sum_{e} w_{e}(t) = W, \quad w_{e}(t) \geq 0$$

- Highly fluctuating worker schedules are not applicable $\rightarrow w_e(t)$ should be either constant or piecewise constant. (i.e. service operators can shift within the time horizon.)
- Restrict to integer workers:

$$w_e \in \mathbb{N}_0$$

Mixed Integer Approach

• The objective is to maximize the outflow of the network:

$$\max \sum_e \int f_e(t) dt$$

- Full discretization and linearization of the problem
- ullet ightarrow Transformation into a linear MIP
 - Solvers with integrated Branch and Bound Algorithms applicable (e.g. CPLEX)
 - **Benefit:** easy expansion by further constraints, e.g. buffer limits, service operator shifts,...
 - **Drawback:** worst case computational time is exponentially to the problem size

Challenges and improvements in solving complex linear MIPs*

- Complexity of the MIP depends on number of gridpoints.
- Extremely long computation times.
- Fine timegrids ⇒ accumulation of rounding errors ⇒ CPLEX unable to find feasible solutions.
- Idea: Exploiting knowledge of dynamics to easily compute feasible solutions
- Utilization of Start-Heuristics
- Further strategies in using heuristics during branch and bound process.
- * with U. Ziegler (in preparation, 2014)

INIVERSITY OF

MANNHEIM

Acceleration of Branch and Bound Algorithm

- Branching Heuristic: Choose only worker parameters w_e(t) for branching.
- Bounding Heuristic: Find "good" feasible worker distribution:
 - Consider the index set whose control variables are not fixed yet
 - Sort arcs according to buffer level at last time step of shift q_e^t
 - Add one by one all remaining workers in this order to the arcs

INIVERSITY OF

MANNHEIM

UNIVERSITY of Mannheim

Evolution of Primal and Dual Bounds

• Small network instance \approx 5000 variables: Optimization time without bounding heuristic needs 51 minutes

Overview

1 Manufacturing Systems

2 Workforce Determination

3 Material Flow Simulations

Motivation*

• Goal: Detailed 2d simulation of parts on conveyor belts

* joint work with V. Schleper (University of Stuttgart), A. Verl (ISW Stuttgart)

Experimental Setup

Microscopic Model

• Newton type dynamics

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i, \quad m\frac{d\mathbf{v}_i}{dt} = \sum_{i \neq j} \mathbf{F}(\mathbf{x}_i - \mathbf{x}_j, \mathbf{v}_i - \mathbf{v}_j) + \mathbf{G}(\mathbf{v}_i)$$

Bottom friction

$$\mathbf{G}(\mathbf{v}) = -\mu_b mg rac{\mathbf{v} - \mathbf{v_T}}{\|\mathbf{v} - \mathbf{v_T}\|}$$

• Springer-damper system

$$\mathsf{F}(\mathsf{x},\mathsf{v}) = H(2R - \|\mathsf{x}\|) \left(\mathsf{f}^{\mathsf{n}}(\mathsf{x},\mathsf{v}) + \mathsf{f}^{\mathsf{t}}(\mathsf{x},\mathsf{v})
ight)$$

Goal: Try to find a macroscopic model with "same" physical properties

Macroscopic Model*

Goal: Numerical study and validation against real data

• Conservation of Mass

$$egin{aligned} &\partial_t
ho +
abla \cdot (
ho(\mathbf{v}^{dyn}(
ho) + \mathbf{v}^{stat}(\mathbf{x}))) = 0 \ &
ho(\mathbf{x}, 0) =
ho_0(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^2 \end{aligned}$$

• Static velocity field **v**^{stat}

* with V. Schleper, A. Verl et al. (to appear in Appl. Math. Modelling, 2014)

Macroscopic Model

• Dynamic velocity field **v**^{dyn}

$$\mathbf{v}^{dyn}(\rho) = H(\rho - \rho_{max}) \cdot \mathbf{I}(\rho), \quad \mathbf{I}(\rho) = -\epsilon \frac{\nabla(\eta * \rho)}{\sqrt{1 + \|\nabla(\eta * \rho)\|_2^2}},$$

where η is a mollifier and $\epsilon > 0$ a constant.

- Possible to deribve a multi-scale model hierarchy*
 - * with A. Klar, S. Tiwari (eingereicht bei J. Engrg. Math., 2013)

Experiment

• Experiment:

- 192 objects
- Angle of the singularizer $\alpha = 60^{\circ}$
- Speed of conveyor belt $v_T = 0.395 \frac{m}{c}$

Simulation Results

 Real data (left), micro model (middle) and macro model (right) at times t = 0, 1, 2, 3.

• Hierarchical modeling: from micro to macro

- Hierarchical modeling: from micro to macro √ no interaction between scales ⇒ hybrid models?
- Optimization/control: Solve control problems numerically

- Hierarchical modeling: from micro to macro √ no interaction between scales ⇒ hybrid models?
- Optimization/control: Solve control problems numerically √ but sometimes the problem is not generic (think of discrete decisions) ⇒ online control, feedback laws?
- Stochastics: How does stochastic effects influence the model?

- Hierarchical modeling: from micro to macro √ no interaction between scales ⇒ hybrid models?
- **Optimization/control:** Solve control problems numerically $\sqrt{}$ but sometimes the problem is not generic (think of discrete decisions) \Rightarrow online control, feedback laws?
- **Stochastics:** How does stochastic effects influence the model? unclear

Thank you for your kind attention! Financially supported by BMBF (Project KinOpt) and DFG (Project OptiFlow)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

