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ABB Company Overview
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A global leader in power and automation technologies
Leading market positions in main businesses

February 13, 2014

~150,000
employees

Present

in

countries
+100

Formed

in

1988
merger of Swiss (BBC, 1891)

and Swedish (ASEA, 1883)

engineering companies

In revenue

(2013)

billion
42$
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Power and productivity for a better world
ABB’s vision

February 13, 2014

As one of the world’s leading engineering companies, we 

help our customers to use electrical power efficiently, to 

increase industrial productivity and to lower environmental 

impact in a sustainable way.
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Power and automation are all around us
You will find ABB technology…

February 13, 2014

crossing oceans and on the sea bed,

orbiting the earth and working beneath it,

on the trains we ride and in the facilities 

that process our water,

in the fields that grow our crops and 

packing the food we eat,

in the plants that generate our power and 

in our homes, offices and factories
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How ABB is organized
Five global divisions 

February 13, 2014
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Low Voltage Products
Business Units

 MNS 

Conventional

Switchgear

 MNS Intelligent 

Switchgear

 MNS Integrated 

Switchgear

 Circuit Breakers

 Switches

 Fusegear and 

Cable 

Distribution 

Cabinets

 Modular DIN-Rail 

Products

 Intelligent 

Building Control 

KNX

 Enclosures and 

Cable Systems

 Control and 

Protection

 Electronic 

Products and 

Relays

 Connection

 Wiring 

Accessories

 Industrial Plugs 

and Sockets

 Door Entry 

Systems

Breakers 

and Switches
LV Systems

Enclosures and 

DIN-Rail Products

Control 

Products

Wiring 

Accessories

 Wire and cable 

management

 Cable protection 

systems

 Critical process 

protection

 People protection

Thomas & 

Betts
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Low Voltage Products
Channels and Markets served

Distributors Panel Builders OEMs End-users and 

Utilities

Industry Buildings and 

infrastructures
Renewable energy E-mobility

System Integrators and 

Contractors

Building Automation and 

Energy Efficiency
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Applications to Products



Computational Magnetohydrodynamics (MHD)
Numerical simulation of electric arcs
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Navier-Stokes PDE’s

Maxwell PDE’s

Radiation PDE’s

Network DAE’s

Nonconstant media

Plasma-solid interface

Short circuits in 

low voltage circuit breakers



numerical

One experiment

Experiment envelope

Short circuit prediction vs. measured

Computational Magnetohydrodynamics (MHD)
Numerical simulation of electric arcs

© ABB Group 
09 May, 2014 | Slide 18

Navier-Stokes PDE’s

Maxwell PDE’s

Radiation PDE’s

Network DAE’s

Nonconstant media

Plasma-solid interface
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Applications to Processes



Stock sizing
Overview
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Time

Stock

level

Safety

stock

(re-order

point)

Re-order

issued

Supply

lead time

𝐿

𝐷

1

Demand

(average)

Re-order

lot

supplied

R
e
-o

rd
e

r 
lo

t

𝑆 = 𝐷𝐿 + 𝑟𝑄

𝑆

Deterministic model

Ordered quantity

(average)
𝑄𝑟𝑄



Deterministic approach

 Everything sharp

 System may be mathematical, or black box, or else
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System

𝑆 = 𝐿𝐷 + 𝑟𝑄

𝑟

𝑆

𝐷

𝐿

𝑄



Stock sizing
Stochastic problem
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Time

Stock

level

𝐿

𝑆 = 𝐷𝐿 + 𝑟𝑄

𝑆

𝐷 as a Stochastic variable

𝑄
𝑟𝑄

𝐷

1

Stock-out!



Stock sizing
Stochastic problem
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Time

Stock

level

𝐿

𝑆 = 𝐷𝐿 + 𝑟𝑄

𝑆

𝐿 as a Stochastic variable

𝑄
𝑟𝑄

𝐷

1

Stock-out!



Stock sizing
Stochastic problem
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Time

Stock

level

𝐿

𝑆 = 𝐷𝐿 + 𝑟𝑄

𝑆

𝑟 as a Stochastic variable

𝑄
𝑟𝑄

𝐷

1

Stock-out!



Stock sizing
Stochastic problem
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Time

Stock

level

𝐿

𝑆 = 𝐷𝐿 + 𝑟𝑄

𝑆

𝑄 as a Stochastic variable

𝑄
𝑟𝑄

𝐷

1

Stock-out!



Stochastic approach
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System

𝑆 = 𝐷𝐿 + 𝑟𝑄

Not necessarily Gaussian!

Uncorrelated

(for simplicity)



Stochastic approach
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System

𝑆 = 𝐿𝐷 + 𝑟𝑄
𝑆~𝜙𝑆(𝜉𝑆)

𝐷~𝜙𝐷 𝜉𝐷

𝐿~𝜙𝐿 𝜉𝐿

𝑟~𝜙𝑟 𝜉𝑟

𝑄~𝜙𝑄 𝜉𝑄



Stock sizing
Stochastic problem
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Time

Stock

level

𝐿

𝑆 = 𝐷𝐿 + 𝑟𝑄

𝑆

𝑆 as a Stochastic variable

𝑄
𝑟𝑄

𝐷

1



Stochastic approach
Traditional

 System linearization 𝑆:= 𝐸 𝐿 𝐸 𝐷 + 𝐸 𝑟 𝐸 𝑄

 Variance propagation 𝜎𝑆 = 𝐿2𝜎𝐷
2 + 𝐷2𝜎𝐿

2 + 𝑄2𝜎𝑟
2 +𝑟2 𝜎𝑄

2

 Output PDF assumed Gaussian, usually unproperly!
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System

𝑆 = 𝐿𝐷 + 𝑟𝑄

𝐸 𝑟 , 𝜎𝑟

𝐸 𝑆 , 𝜎𝑆

𝐸 𝐷 , 𝜎𝐷

𝐸 𝐿 , 𝜎𝐿

𝐸 𝑄 , 𝜎𝑄



Stochastic approach
Monte Carlo

 Simple

 Non-intrusive

 Parallel

 Large number of stochastic variables allowed

 Slow, very slow(!): 106 (or even more) runs can be required
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parameters

𝒑

System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛

Output PDF

𝒚~𝝓𝒚(𝝃𝒚)
Input PDF

𝒙~𝝓𝒙(𝝃𝒙)
System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛
System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛
System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛
System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛
System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛
System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛
System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛
System

𝑦𝑛 = 𝑓(𝑥𝑛)
Input

𝑥𝑛

Output

𝑦𝑛
System

𝝃𝒚
(𝑛)

= 𝒇(𝝃𝒙
(𝑛)

, 𝒑)

Input

𝝃𝒙
(𝑛)

Output

𝝃𝒚
(𝑛)



Orthogonal Polynomial Sequences (OPS)

 Probability density distribution ( metric)

𝑥~𝜙𝑥 𝜉

 Inner product in 𝐿2(ℝ)

𝑢 𝜉 , 𝑣 𝜉
𝑥
≔ 𝐸 𝑢𝑣 =  

ℝ

𝑢 𝜉 ⋅ 𝑣 𝜉 ⋅ 𝜙𝑘
𝑥 𝜉 𝑑𝜉

 Gram-Schmidt process applied to 1, 𝜉, 𝜉2, … , 𝜉𝑘 , …

 polynomials 𝜓𝑘
𝑥 𝜉 𝑘=0

+∞
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Orthogonal Polynomial Sequences (OPS)

 Polynomials are independent (degree argument)

 Polynomals are orthogonal (or orthonormal, if desired)

𝜓𝑗
𝑥, 𝜓𝑘

𝑥

𝑥
≔ 𝐸 𝜓𝑗

𝑥𝜓𝑘
𝑥 =  

ℝ

𝜓𝑗
𝑥 𝜉 ⋅ 𝜓𝑘

𝑥 𝜉 ⋅ 𝜙𝑘
𝑥 𝜉 𝑑𝜉 = 𝜓𝑗𝑘

𝑥

𝑥
𝜓𝑘𝑗

𝑥

𝑥

𝑗
𝛿𝑗𝑘

 Polynomials form a basis of 𝐿2 ℝ

𝑥(𝜉) =  

𝑘=1

+∞

𝑐𝑘 ⋅ 𝜓𝑘
𝑥(𝜉)

 Fourier series expansion

𝑐𝑘 =
𝑥 𝜉 , 𝜓𝑘

𝑥 𝜉
𝑥

𝜓𝑘
𝑥 𝜉 , 𝜓𝑘

𝑥 𝜉
𝑥

=
𝐸[𝑥𝜓𝑘

𝑥]

𝜓𝑘
𝑥

𝑥

2
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Stochastic approach
Polynomial Chaos Expansion (PCE)
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System

𝑆 = 𝐿𝐷 + 𝑟𝑄
𝑆~𝜙𝑆(𝜉𝑆)

𝐷~𝜙𝐷 𝜉𝐷

𝐿~𝜙𝐿 𝜉𝐿

𝑟~𝜙𝑟 𝜉𝑟

𝑄~𝜙𝑄 𝜉𝑄

𝐷 =  

𝑘𝐷=0

+∞

𝑐𝑘𝐷 ⋅ 𝜓𝑘𝐷
𝐷 (𝜉𝐷)

𝐿 =  

𝑘𝐿=0

+∞

𝑐𝑘𝐿 ⋅ 𝜓𝑘𝐿
𝐿 (𝜉𝐿)

𝑟 =  

𝑘𝑟=0

+∞

𝑐𝑘𝑟 ⋅ 𝜓𝑘𝑟
𝑟 (𝜉𝑟)

𝑄 =  

𝑘𝑄=0

+∞

𝑐𝑘𝑄 ⋅ 𝜓𝑘𝑄

𝑄
(𝜉𝑄)



Stochastic approach
Polynomial Chaos Expansion (PCE)
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𝑆~𝜙𝑆 𝜉𝑆

𝑆 = 𝑆(𝝃) =  

𝒌 =0

+∞

𝑐𝒌 ⋅ 𝜓𝒌
𝑆(𝝃)

𝒌 = (𝑘𝐷, 𝑘𝐿 , 𝑘𝑟 , 𝑘𝑄)

𝝃 = (𝜉𝐷, 𝜉𝐿 , 𝜉𝑟 , 𝜉𝑄)

𝜓𝒌
𝑆 𝝃 ≔ 𝜓𝑘

𝑆 𝜉𝐷, 𝜉𝐿 , 𝜉𝑟 , 𝜉𝑄 = 𝜓𝑘𝐷
𝐷 𝜉𝐷 ⋅ 𝜓𝑘𝐿

𝐿 𝜉𝐿 ⋅ 𝜓𝑘𝑟
𝑟 𝜉𝑟 ⋅ 𝜓𝑘𝑄

𝑄
𝜉𝑄

𝒌 = 𝑘𝐷 + 𝑘𝐿 + 𝑘𝑟 + 𝑘𝑄

multi-index

to be truncated to 𝑃

𝐸 𝜓𝒋
𝑆𝜓𝒌

𝑆 = 𝜓𝒋𝑘
𝑆

𝒙
𝜓𝒌𝑗

𝑆

𝒙
𝛿𝒋𝒌 =  

1 (𝒋 = 𝒌)
0 (𝒋 ≠ 𝒌)

(comput. by, e.g., fast MC)

𝐸 𝑆 = 𝑐𝟎 𝜓𝟎
𝑆

𝒙

2

𝜎𝑆 =  

𝒌 =0

𝑃

𝑐𝒌
2 𝜓𝒌

𝑆
𝒙

2

Surrogate model

By tensor product

Orthogonality inheritance

(analytical, by 

orthogonality)



𝑐𝑘 =
𝑆 𝝃 ,𝜓𝒌

𝑆 𝝃
𝒙

𝜓𝒌
𝑆 𝝃 ,𝜓𝒌

𝑆 𝝃
𝒙

=
𝐸[𝑆(𝝃)𝜓𝒌

𝑆(𝝃)]

𝜓𝒌
𝑆

𝒙

2 =
 𝑗=1
𝑁 𝑤𝑗𝑆 𝝃𝑗 𝜓𝒌

𝑆(𝝃𝑗)

𝜓𝒌
𝑆

𝒙

2 =
 𝑗=1
𝑁 𝑤𝑗 𝐷 𝜉𝐷,𝑗 𝐿 𝜉𝐿,𝑗 + 𝑟 𝜉𝑟,𝑗 𝑄(𝜉𝑄,𝑗) 𝜓𝒌

𝑆(𝜉𝑗)

𝜓𝒌
𝑆

𝒙

2

Stochastic approach
Polynomial Chaos Expansion (PCE)
Non-intrusive approach (collocation)
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𝑆 = 𝑆(𝝃) =  

𝒌 =0

𝑃

𝑐𝒌 ⋅ 𝜓𝒌
𝑆(𝝃)

Inner products integrals Gaussian quadrature 𝑁 model evaluations

Must not be too large

(tensorization!)

Contain stochastic variables!

System

𝑆 = 𝐿𝐷 + 𝑟𝑄



Stochastic approach
Polynomial Chaos Expansion (PCE)
Intrusive approach (Galerkin)
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𝑆 = 𝑆(𝝃) =  

𝒌 =0

𝑃

𝑐𝒌 ⋅ 𝜓𝒌
𝑆(𝝃)

Differential system

ℒ(𝑆) = 𝑓

ℒ 𝑆 ,𝜓𝒋
𝑆

𝒙
= 𝑓, 𝜓𝒋

𝑆

𝒙

ℒ  

𝒌 =0

𝑃

𝑐𝒌 ⋅ 𝜓𝒌
𝑆 , 𝜓𝒋

𝑆

𝒙

= 𝑓,𝜓𝒋
𝑆

𝒙

 

𝒌 =0

𝑃

𝑐𝒌 ⋅ ℒ 𝜓𝒌
𝑆 , 𝜓𝒋

𝑆

𝒙
= 𝑓, 𝜓𝒋

𝑆

𝒙

Strong form

Weak form

In case of inear differential operators

In case of…



Stock sizing
Stochastic problem
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Not Gaussian at all!
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Stock sizing
Pareto Front, per single item
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COST

P
E

R
F

O
R

M
A

N
C

E

Same performance

higher cost 

 inferiorSame cost

lower performance 

 inferior

Each point on the front is «optimal» in the sense…

Infeasible



Stock sizing
Pareto Front, per single item
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COST

P
E

R
F

O
R

M
A

N
C

E

Concave here
Operational

excellence

Where to locate

the optimal choice,

item by item?

?



Stock sizing
Constrained optimization problem
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𝑥𝑖

𝑦𝑖

COST

P
E

R
F

O
R

M
A

N
C

E

𝑖-th item

𝑎1𝑘𝑖𝑥𝑖 + 𝑎2𝑘𝑖𝑦𝑖 = 𝑏𝑖

𝑎1𝑘𝑖𝑥𝑖 + 𝑎2𝑘𝑖𝑦𝑖 > 𝑏𝑖

𝑎1𝑘𝑖𝑥𝑖 + 𝑎2𝑘𝑖𝑦𝑖 ≤ 𝑏𝑖



Stock sizing
Constrained optimization problem
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𝑨𝑖 ⋅ 𝑥𝑖 , 𝑦𝑖 ≤ 𝒃𝑖

𝑦𝑖𝑣𝑖

Same cost, lower performance  inferior

𝑥𝑖

𝑦𝑖

COST

P
E

R
F

O
R

M
A

N
C

E



Stock sizing
Constrained optimization problem
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𝑨𝑖 ⋅ 𝑥𝑖 , 𝑦𝑖 ≤ 𝒃𝑖

Same performance, higher cost  inferior

𝑥𝑖

𝑦𝑖

COST

P
E

R
F

O
R

M
A

N
C

E

𝑥𝑖𝑤𝑖



Stock sizing
Constrained optimization problem
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max 𝑓 =  

𝑖=1

𝑛

𝑦𝑖𝑣𝑖

 

𝑖=1

𝑛

𝑥𝑖𝑤𝑖 ≤ 𝑊,

subject to

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , ∀𝑖 ∈ {1,… , 𝑛}

𝑨𝑖 ⋅ 𝑥𝑖 , 𝑦𝑖 ≤ 𝒃𝑖 , ∀𝑖 ∈ {1,… , 𝑛}

 Nonlinear knapsack problem

 All variables real

 Many exact methods known 

(easy problem)

 Linear Programming (LP)

 Simplex method
Budget constraint

Other possible bounds

System laws constraint

Goal function:

performance



Stock sizing
Constrained combinatorial optimization problem

 Non-concave case

 Made piecewise concave

 Dinsjunctive choice variables

 Integer: 𝑧𝑖 ∈ ℤ2, 𝑖 ∈ {1,2,3}

 𝑧1 + 𝑧2 + 𝑧3 = 1

 Exactly one equals 1, others vanish

 Difficult problem
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𝑧1 𝑧2 𝑧3



Stock sizing
Constrained combinatorial optimization problem
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max 𝑓 =  

𝑖=1

𝑛

𝑦𝑖𝑣𝑖 + 𝑧𝑖𝑉𝑖 − 1 − 𝑧𝑖 𝑔𝑖(𝑙𝑖)𝑣𝑖

 

𝑖=1

𝑛

𝑥𝑖𝑤𝑖 + 𝑧𝑖𝑊𝑖 − 1 − 𝑧𝑖 𝑙𝑖𝑤𝑖 ≤ 𝑊,

subject to

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , ∀𝑖 ∈ {1,… , 𝑛}

𝑧𝑖 ∈ 0,1 , ∀𝑖 ∈ {1,… , 𝑛}

𝑨𝑖 ⋅ 𝑥𝑖 , 𝑦𝑖 ≤ 𝒃𝑖 , ∀𝑖 ∈ {1,… , 𝑛}

 

𝑗∈𝐾𝑖

𝑧𝑗 ≤ 1 ,

𝑚ℎ𝑖 ≤ 𝑧𝑖 , ∀𝑖 ∈ 1,… , 𝑛

𝑥𝑖 − 𝑢𝑖 − 𝑙𝑖 𝑧𝑖 ≤ 𝑙𝑖 , ∀𝑖 ∈ {1,… , 𝑛}

 

𝑗∈𝐾𝑖

𝑧𝑗 = 1 ,

Dependency chain of non «must-have» items

Dependency chain of «must-have» items
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Future Research Trends



Future research trends
Increasing size

 Industrial needs

 Large scale problems

 Multi-processor HW is very cheap

 Only marginal improvements to current 

transistor technology

 Mathematical challenges

 Efficient and robust preconditioners

 Parallel algorithms

 Hierarchy and multi-level attacks
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Future research trends
Increasing complexity

 Industrial needs

 Nonlinear problems

 Including strongly nonlinear!

 Mathematical challenges

 Robust formulations

 Necessary and/or sufficient conditions for 

convergence
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linear weakly nonlinear

strongly nonlinear



Future research trends
Increasing specificity

 Industrial needs

 From general purpose to specific technologies

 From general, «textbook» problems & solutions

 To specific, taylorized problems & solutions

 Mathematical challenges

 Exploit the mathematical structure of the operators

 E.g., Whitney forms & algebraic topology

 geometrically conformal comput. electromag.

 Find out closest standard problem

 Develop original approach to add specific features

 Standard ideas exist, a lot of work to do

 Innovative ideas welcome!
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Whitney 0-forms

Whitney 1-forms

Whitney 2-forms

Whitney 3-forms = FVM



Future research trends
Integration of systems

 Industrial needs

 Multi-phisical problems

 Multi-scale problems

 PDE’s + DAE’s

 Multi-disciplinary combinatorial optimization

 Mathematical challenges

 Robust formulations

 Necessary and/or sufficient conditions for convergence

 From weak coupling to strong coupling?

 Original attacks to nonstandard discrete problems
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CFD

MECH

EMAG Planning

Logistics

Production



Future research trends
Stochastics

 Industrial needs

 Stochastic differential equations (SDE)

 Non-deterministic problems and/or boundary conditions

 Either intrinsically (finance, markets, etc.)

 Or de facto (e.g., deterministic PDE with non 

completely known material properties or forcing terms)

 Mathematical challenges

 Beyond MonteCarlo & non-intrusive, black-box attacks

 «Stochastic dimensions» added to physical dimensions

 Preconditioners, robustness, convergence, etc.

 Pure mathematics as well!

 «Large» number (> 10) of stochastic variables
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Future research trends
Combinatorics

 Industrial needs

 Discrete, combinatorial optimization ( processes)

 Sub-optimal solutions frequently adequate

 A good solution to a realistic problem is better…

 …than the mathematically best solution to an 

oversimplistic problem

 Mathematical challenges

 Large scale

 From pure (meta-)heuristics

 To «ancillary» heuristics in exact methods

 As a fast albeit sharp bounding tool

 Branching + Bounding / Pricing / … 
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if z==1 then

x >= LB;

else

x = 0;

end

𝐿𝐵 ⋅ 𝑧 ≤ 𝑥 ≤ 𝑀 ⋅ 𝑧

(𝑀 ≫ 𝐿𝐵)
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