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Abstract1

This guide describes how to use the programs FEM CHECK, GFEM CHECK, FEM,
GFEM, FEM PLOT, GFEM PLOT, FEM FULLINFO, GFEM FULLINFO, and OPTIMIZE of
the package DIPOG-2.1. The package is a collection of finite element (Fem)
programs to determine the efficiencies of the diffraction of light by a periodic
grating structure. It is based on the software package PDELIB and solves the
classical case of Te and Tm polarization and the case of conical diffraction. The
code provides a conventional Fem and a generalized Fem (called Gfem). The
latter is the variational approach of the conventional Fem combined with a new
trial space. Other routines of DIPOG-2.1 determine optimal gratings of certain
grating classes minimizing objective functionals depending on the efficiencies.

We note that the DIPOG-2.1 programs require the installation of the previ-
ous version DIPOG-1.3 or DIPOG-1.5, of the grid generator TRIANGLE-1.4, of the
graphical user interface package FLTK, and of the equations solver PARDISO2.
Additionally, some of them need the graphical package openGL (or the MESA

emulation of openGL) together with GLTOOLS-2.4 or, alternatively, the package
GNUPLOT. Examples of data and output files are enclosed.

1Don’t read the complete user guide. Don’t you have anything better to do? If you have to compute the
efficiencies, phase sifts, and energies of the waves diffracted by gratings, then go to the directory DIPOG-
2.1/GUI and start the program DIPOG-2.1-GUI which is self explanatory. Alternatively, for gratings with
more complex input data, you should change to the directory DIPOG-2.1/CLASSICAL or DIPOG-2.1/CONICAL.
Read the data file “example.dat”. Change it according to your requirements. Run one of the executables
with “example.dat” as argument. Read the results. Plots with efficiency curves can be produced via the
executables in the directory DIPOG-2.1/RESULTS. If you still have a question, come back to this user guide
and read the corresponding part, only. Good luck!

In case you have to optimize a grating, read the Sections 10.1.1, 10.1.2, 10.2, 10.3.1, and 10.3.2 of this
user guide. Then go to the directory DIPOG-2.1/OPTIM and read the data file “example.dat”. Change it
according to your requirements. Run the executable OPTIMIZE with “example.dat” as argument. Read the
results. If you still have a question, come back to this user guide and read the corresponding part, only.
Good luck!

2PARDISO itself requires some routines from LAPACK and some BLAS routines.
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1 Introductory Remarks and the Structure of the

Package

1.1 What is DIPOG-2.1 and Dipog-1.5?

DIPOG-2.1 is a finite element (Fem) program to determine the efficiencies of the diffraction
of light by a periodic grating structure. The unbounded domain is treated by coupling
with boundary element methods. DIPOG-2.1 solves the classical Te and Tm cases, i.e. the
cases of incident light in the plane perpendicular to the grooves of the periodic grating, and
the case of conical diffraction, i.e. of oblique incidence of light. The code is based on the
package PDELIB which is a collection of software components to create simulators based on
partial differential equations:

http://www.wias-berlin.de/software/pdelib

DIPOG-2.1 provides a conventional Fem approach as well as a generalized Fem version
called Gfem. The latter is nothing else than the variational approach of the conventional
Fem combined with a new trial space for the approximation of the unknown solution. To
compute follow the subsequent instructions.

The earlier version Dipog-1.5 does the same for the special case of binary (lamellar)
gratings3, i.e. if the different grating material pieces are of rectangular shape with sides
parallel to the axes. Whenever the user is confronted with binary grating geometries, he
can use Dipog-1.5 or DIPOG-2.1. However, he should prefer the more efficient Dipog-1.5. The
fast generalized Fem used in Dipog-1.5 cannot be applied to general polygonal geometries.

Beside the simulation of the diffraction by gratings, DIPOG-2.1 can optimize a few classes
of grating structures. Local gradient based optimization methods and the global simulated
annealing method is used, to determine optimal geometry parameters and optimal refrac-
tive indices, respectively. The algorithms work for classical and conical diffraction. The
geometry classes admissible for our optimization are:

- gratings with a polygonal profile separating the cover and substrate material
- special classes of multilayered trapezoidal gratings
- fixed grating structures, where a part of a polygonal interface is to be optimized

Note that, for the classical case, Dipog-1.5 computes optimal binary gratings for given
efficiency sequences or for prescribed energy restrictions. For Dipog-1.5, we refer to the
German Benutzer-Handbuch:

http://www.wias-berlin.de/software/DIPOG

1.2 Programming language and used packages

All programs are written in fortran, c or c++ language and based on the UNIX system. The
programs require the previous version DIPOG-1.3 or DIPOG-1.5, the grid generator TRIANGLE-
1.4, the graphical user package FLTK, and the linear equations solver PARDISO together with
some LAPACK and BLAS routines. For good visualization the package openGL (or at least

3Contrary to the original meaning of binary, several layers are admitted.
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the MESA emulation of openGL) is needed together with the auxiliary package GLTOOLS. A
minor visualization is possible with the program package GNUPLOT. In emergency case, the
computations run also without any visualization, i.e. without openGL and GNUPLOT.

For non-comercial use, the Levenberg-Marquardt algorithm levmar-2.2 by Manolis
Lourakis can be applied for optimization. The package DIPOG-2.1 can use the refractive
indices from the tables of the program package IMD (cf. Section 4). To this end all the
files from the IMD directory “imd/imd/nk.dir” must be copied to the DIPOG-2.1 directory
“refr ind data”. Of course, the user must observe the copyrights of the package IMD.

To get informations on the above mentioned necessary packages, we refer to:

DIPOG: http://www.wias-berlin.de/software/DIPOG
TRIANGLE: http://www.cs.cmu.edu/∼ quake/triangle.html
GLTOOLS: http://www.wias-berlin.de/software/gltools
GNUPLOT: http://www.gnuplot.info
FLTK: http://www.fltk.org
IMD: http://cletus.phys.columbia.edu/∼windt/idl
levmar: http://www.imm.dtu.dk/pubdb/views/edoc download.php/3215/pdf/imm3215.pdf
PARDISO: http://www.computational.unibas.ch/cs/scicomp/software/pardiso

Note that the compilation of the graphical user interface (GUI) “GEOMETRIES/TGUI”
fails with newer versions of “fltk”. The version “fltk-1.4.4” is O.K. Moreover, this GUI
requires the pachackes “doxygen”, “glu-devel”, the library “libpng-compat-devel”, and the
include files “png.h”,“pngconf.h”.

1.3 Get executables, comment lines in input files

Firstly, install triangle. Go to the directory of triangle, e.g., to directory triangle inside of
the DIPOG-2.1 home directory. Remove the old files “triangle”, “showme”, and “triangle.o”.
Generate source files from “triangle.shar” by calling

sh triangle.shar

and actualize the files makefile and Makefile DIPOG-2.1. In particular set the correct
environments variables CC and CSWITCHES. Then call

make
make ./triangle.o

Finally set the correct path TRIANGLE HOME pointing to the directory hosting the new
files “triangle”, “showme”, and “triangle.o” in the file DIPOG-2.1/MAKES/MHEAD. Note that
triangle will be generated if it does not exist and if the subsequent command make is
replaced by make all plus triangle. However, the licence of triangle requires that this is
done by the user! The package triangle is linked to DIPOG-2.1 and not included. In other
words, the use of make all plus triangle is legal only for the developers.

Next install the gl tools. Remove the old directory gltools-2-4 or at leat the old
library libgltools.a. To get a new gltools-2-4 in the DIPOG-2.1 home directory call

tar xfvz gltools tar/gltools-2-4.tar.gz

and change to this directory. Actualize Makefile. In particular set the correct environ-
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ments variables CC. Then call

make

and a new library libgltools.a is generated. Note that gltools-2-4 and libgltools.a

will be automatically generated if they do not exist. Similarly to package libgltools.a

in gltools-2-4, we can install liblevmar.a in optim/levmar-2-2, where the source
levmar-2-2.tar.gz is in optim/levmar-2-2.

If the executable programs do not exist, then generate them by using the file “makefile”
located in the DIPOG-2.1 home directory. To do so, produce a header file MHEAD in the
subdirectory MAKES of the DIPOG-2.1 home directory. Just copy one of the example files
MHEAD SGI, MHEAD LINUX, or MHEAD DEC to MHEAD and change the operating system, the
paths, and the flags according to your computer system.4 Then go to the home directory

cd DIPOG-2.1

and add the commands:

make clean
make

If the package is installed, then the programs can be used by different users simultaneously.
To this end, each user should have a private DIPOG-2.1 home directory containing the first
six subdirectories. These subdirectories together with all data and example files and with
the correct links to the executables can be created automatically in the chosen new private
home directory by calling the executable MAKEHOME. Note that MAKEHOME has just been
created by “make” in the subdirectory MAKES of the installed package. Before a user runs the
executables, he has to set the environment variable LD LIBRARY PATH such that the directory
containing PARDISO is included. Setting the environment variable OMP NUM THREADS to a
non-negative integer, he limits the number of used CPUs. The solver routine PARDISO runs
parallel.

Most of the subsequent executables can be called without argument. Then one gets
information on the necessary arguments. Usually, all input files contain a lot of explanations
and informations. Indeed, each line beginning with the sign “#” is a comment. Such lines
can be added or deleted without any problem.

1.4 Structure of the package

The directory containing the README.txt file is the home directory of DIPOG-2.1. We sup-
pose in this user guide that it is named DIPOG-2.1. There exist the following important
subdirectories:

GEOMETRIES → input files “name.inp”
(geometrical data of the gratings),
executable SHOW

(to visualize the input data “name.inp”, exists only with

4The temporary directory is defined in MHEAD before the installation. Its name will be stored in the first
line of the file MAKES/make info and can be changed in this file at any time. Alternatively, the temporary
working directory can be chosen by setting the environment variable TMPDIR.
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openGL, argument: “name.inp”)
executable TGUI

(graphical user interface to create input files “name.inp”)
executable GEN INPUT

(to generate a general input file, no argument)
executable GEN ECHELLEA

(to generate an input file for an echelle grating of type A,
first argument: name without tag “inp” of file to be created,
second argument: letter A,L,R,
third argument: depth/angle,
fourth argument: width of first part of layer,
fifth argument: width of second part of layer)
executable GEN ECHELLEB

(to generate an input file for an echelle grating of type B,
first argument: name without tag “inp” of file to be created,
second argument: angle, third argument: width of layer)
executable GEN ECHELLE

(to generate an input file for a general echelle grating,
first argument: name without tag “inp” of file to be created,
second argument: letter “A” for apex angle, “R” for right
blaze angle, “L” for left blaze angle or “D” for depth,
third argument: angle/depth,
fourth argument: letter “A” for apex angle, “R” for right
blaze angle, “L” for left blaze angle or “D” for depth,
fifth argument: angle/depth,
sixth argument: width of layer over left blaze side,
seventh argument: width of layer over right blaze side)
executable GEN TRAPEZOID

(to generate an input file for a trapezoidal grating, first
argument: name without tag “inp” of file to be created,
second argument: angle, third argument: length of basis,
fourth argument: number of material layers in trapezoid,
next arguments: heights of material layers, last argument:
height of coating layer)
executable GEN MTRAPEZOID

(to generate an input file for a grating with several trapezoids,
one beside the other, first argument: name without tag
“inp” of file to be created, second argument: name of input
file “mtrapezoid.INP” containing data of grating)
executable GEN LAMELLAR

(to generate an input file for a lamellar grating, first
argument: name without tag “inp” of file to be created,
second argument: name of input file “lamellar.INP”
containing location and widths of layers)
file lamellar.INP
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(to define location and widths of layers in grating
generated by GEN LAMELLAR)
executable GEN POLYGON

(to generate an input file for a grating with polygonal profile
curve, first argument: name without tag “inp” of file to be
created, second argument: name “file1” of file with
nodes of polygon)
executable GEN POLYGON2

(to generate an input file for a grating with polygonal
profile curve and with coating, first argument: name without
tag “inp” of file to be created, second argument: name
“file1” of file with nodes of polygon, third argument:
name “file2” of file with nodes of boundary
of coated layer)
file file1
(to define profile line for a polygonal grating generated by
GEN POLYGON or GEN POLYGON2)
file file2
(to define polygonal boundary line for the coated layer
of polygonal grating generated by GEN POLYGON2)
executable GEN PROFILE

(to generate an input file for a profile grating given
by c-code, first argument: name without tag “inp” of file
to be created, second argument: stepsize of polygonal
approximation)
c-code file profile.c
(to define profile line for a profile grating of GEN PROFILE)
executable GEN PROFILES

(to generate an input file for a grating given by many
profile lines defined by c-code, first argument: name without
tag “inp” of file to be created, second argument: stepsize of
polygonal approximation)
c-code file profiles.c
(to define profile lines for a profile grating of GEN PROFILES)
executable GEN PIN

(to generate an input file for a pin grating given by a
profile line defined by c-code, first argument:
name of input file to be created, second argument: stepsize of
polygonal approximation)
c-code file pin.c
(to define the profile line for a pin grating of GEN PIN)
executable GEN CPIN

(to generate an input file for a coated pin grating given by
profile lines defined by c-code, first argument:
name of input file to be created, second argument:
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stepsize of polygonal approximation)
c-code file cpin.c
(to define profile lines for a coated pin grating of GEN CPIN)
executable POINT CLOUD INP

(to generate an input file for an advanced grating with point
clouds to enforce a mesh grading at the corner points, first
argument: name without tag “inp” of file to be improved,
second argument: number of cloud points at circular layer,
third argument: number of layers, fourth argument:
threshold angle for corners with point clouds, output:
geometry input file with a “+” added to the name before
the tag “.inp”)
executable GEN CPIN2

(to generate an input file for a coated
pin grating of type 2 given by
profile lines defined by c-code, first argument:
name of input file to be created, second argument:
stepsize of polygonal approximation)
c-code file cpin2.c
(to define profile lines for a coated pin grating of GEN CPIN2)

CLASSICAL → input files “name.dat”
(non-geometrical data of the gratings),
data file “generalized.Dat”
(data for the GFEM),
executables FEM and GFEM

(for simple calculation, case of classical diffraction,
argument “name.dat”),
executables FEM CHECK, GFEM CHECK

(for check of input, exists only with openGL,
argument “name.dat” ),
executables FEM PLOT and GFEM PLOT

(for calculation with plots of resulting fields, case of classical
diffraction, exists only with openGL or GNUPLOT,
argument “name.dat”),
executable GFEM MATLAB

(for calculation with plots of resulting fields, case of classical
diffraction, plots in form of Matlab file,
argument “name.dat”),
executables FEM FULLINFO and GFEM FULLINFO

(for calculation with additional information, case of classical
diffraction, argument “name.dat”)
executable GFEM MOVIE

(creates movie of z-coordinate of fields depending on time,
case of classical diffraction, movie in form of Matlab file,
argument “name.dat”),
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CONICAL → input files “name.dat”
(non-geometrical data of the gratings),
data file “conical.Dat”
(data for the GFEM),
executables FEM and GFEM

(for simple calculation, case of conical diffraction,
argument “name.dat”),
executables FEM CHECK, GFEM CHECK

(for check of input, case of conical diffraction,
exists only with openGL, argument “name.dat” ),
executables FEM PLOT and GFEM PLOT

(for calculation with plots of resulting fields, case of conical
diffraction, exists only with openGL or GNUPLOT,
argument “name.dat”),
executables FEM FULLINFO and GFEM FULLINFO

(for calculation with additional information, case of conical
diffraction, argument “name.dat”)

OPTIM → input files “name.dat”
(data of the gratings and optimization),
data file “conical.Dat”
(data for the generalized finite elements),
executable OPTIMIZE

(using various flags, this does all the work: check data, check
gradients, plot gradients, optimize grating, plot solution of
optimization)
executable CONVTEST

(runs a convergence tests with initial solution set to corners
of box domain defining the constraints, input file is the same
as for OPTIMIZE, but the initial solution of input file must
be the exact solution)
executable OPTIM2OPTIM

(extracts new data input file for OPTIMIZE from old input file
with reduced number of data in objective functional)
executable SHOWMEAS

(creates plots of data used in objective functional, input is
data input file for OPTIMIZE)
executable CLASSIC2OPTIM

(extracts test data input file for OPTIMIZE from input and
result file of GFEM in CLASSICAL)
executable SENSITIVITY

(extracts optimal sets of data for quadratic objective
functional in OPTIMIZE, input files are the data file for
OPTIMIZE and files with Jacobians generated by OPTIMIZE)
executable OPTIM2JACOBIAN

(alternative executable to produce files with Jacobians
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for SENSITIVITY)
executable NOISETEST

(executable to test the dependency of the optimization
result on noisy data)

GUI → input files “name.dat”
(non-geometrical data of the gratings, like in CLASSICAL

and CONICAL) ,
data files “generlized.Dat” and “conical.Dat”
(data for the generalized finite elements, like in CLASSICAL

and CONICAL),
executable DIPOG-2.1-GUI
(graphical user interface to replace the executables of
CLASSICAL and CONICAL)

RESULTS → result files “name.res” and “name.erg”
(produced by executables in CLASSICAL and CONICAL)
executable PLOT DISPLAY

(produces two-dimensional graph of data on the screen,
argument “name.res” and indices of modes the efficiencies
of which are to be plotted)
executable PLOT PS

(produces ps file of two-dimensional graph of data,
argument “name.res” and indices of modes the efficiencies
of which are to be plotted)
executable PLOT MATLAB

(produces Matlab file of three-dimensional graph of data,
works only for classical illumination, argument
“name.res” and indices of modes the efficiencies
of which are to be plotted)
executable PLOT GNUPLOT

(produces gnuplot ps file of three-dimensional graph of data,
works only for classical illumination, argument
“name.res” and indices of modes the efficiencies
of which are to be plotted)

MAKES → header MHEAD
(note that MHEAD is to be adapted to your computer
system before installation),
executable MAKEHOME

(for another user: produces new version of six subdirectories
GEOMETRIES, CLASSICAL, CONICAL, and RESULTS together
with all data and example files and links to executables)
body of makefile “makefile all” and more

There exist subdirectories with technical files:

grid tri → programs and input files for grating and grid data
dpogtr → programs and input file for the Fem computation in the
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classical case
gdpogtr → programs and input file for the Gfem computation in the

classical case
conical → programs and input file for the Fem computation in the

conical case
conical2 → programs and input files for the Gfem computation in the

conical case
optim → programs and input files for the optimization with OPTIMIZATION

in the directory OPTIM

dipog-2.1-gui → programs, object files, and input files for the graphical user
interface program DIPOG-2.1-GUI in the directory GUI

refr ind data → data files for the refractive indices
results → plot programs

Possibly, there exist subdirectories to install necessary packages5:

dipog-1.3 → necessary source files from previous version of DIPOG-1.3,
in dipog-1.3/gsl/src: files to install libhur.a

tgui → necessary sources to create TGUI in the directory GEOMETRIES

gltools tar → necessary source files for Fuhrmann’s package GLTOOLS-2.4,
this produces subdirectory gltools-2-4 during installation

triangle6 → necessary source files for Shewchuk’s package TRIANGLE-1.4

In case of a simultaneous use of the package, each user has its own home directory contain-
ing the six subdirectories GEOMETRIES, CLASSICAL, CONICAL, OPTIM, GUI, and RESULTS. The
subdirectories contain the same example and data files as described above for the directories
of the package. However, the executables are replaced by symbolic links to the executables
of the package.

1.5 Environment variables

The following environment variables are mandatory:

LD LIBRARY PATH: This search path for loading program libraries must contain the
address of the solver PARDISO (cf. Section 1.3).

OMP NUM THREADS: This is to be set to the number of CPUs which should be used
for solving linear systems of equations by PARDISO (cf. Section 1.3).

Additionally, the following environment variables can be set:

ADD STRIPS: If this is set to “yes” and if an optimization in the class of “bridges
composed of trapezoids under light in the EUV range”, is performed, then, auto-
matically, a strip beneath the bridge is included into the Fem domain (cf. Sec-
tion 10.2.7).

BND MESH SIZE: If this is set to a positive number and if an optimization is per-

5If needed, change to the subdirectories and follow the instructions of the corresponding files README.txt.
If not needed, delete the subdirectories.

6This subdirectory exists only during internal installation.
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formed, then the bound for the mesh size of the Fem partition at level one is
set to this number (cf. Section 10.2.1).

BND n LFEM: If this is set to a positive integer, then, for the non-local boundary
value condition, the number of discretization points in each interval of the uni-
form partition of the upper and lower boundary line is set to this value (cf. Sec-
tion 6).

CHOOSE PMETHOD: If this is set to “yes”, then, like in the p-method of the Fem algo-
rithm with p = nDOF + 1 and with elimination of interior degrees of freedom,
the local trial functions are the solution of a [3 p] × [3 p] system of equations
(cf. Section 6).

COND NMB IT: If this is set to a positive integer, if the environment variable
GET COND NUMB is set, and if one of the executables GFEM, GFEM FULLINFO, or
GFEM PLOT from the directory DIPOG-2.1/CLASSICAL is used, then this integer
will be chosen as the number of iterations to improve the minimal eigenvalue in,
the estimate of the condition number of the linear system of equations. The
standard value is 10.

EFF PLO: If this is set to “yes”, then the efficiencies for grating corresponding to the
approximate solution are plotted and compared to the values prescribed in the
objective functional.

EFFRES: If this is set, then the efficiencies for the grating corresponding to the optimal
solution are added to the result file “name.res”.

EPS OUT VAL: On screen and in result files only those numbers (efficiencies, energies,
Rayleigh coefficients, phase shifts) are printed which are greater than 5 · 10−9%.
However, this threshold 5 · 10−9 can be changed to any positive number setting
the environment variable EPS OUT VAL. Moreover, any value independent of its
size is printed if EPS OUT VAL equals minus one.

EUV SWA 90: Performing an optimization in the class of EUV bridges (i.e. integer
parameter i geom param[1]=6), the user can restrict the search to bridges with
sidewall angle less or equal to 90◦ by setting EUV SWA 90 to “yes”. This changes
the meaning of the parameters (cf. Section 10.2.7).

GET COND NUMB: If this is set, then the executables GFEM, GFEM FULLINFO, and
GFEM PLOT in the directory DIPOG-2.1/CLASSICAL will print estimates for the
condition numbers instead of the memory requirements for the solver.

H PROFILE: If this is set, then the mesh size of the initial partition (level one) is set
to this value.

MESH SIZE FACT: If this is set to a positive number and if geometry is generated by
the code word “polygon”, then the lower bound 0.1 for the mesh size of the
triangles is set to the product of 0.1 and this factor.

MIN ANG TRI: If this is set to a positive number and if no geometry input file
“name.inp” is used, then the lower bound for the minimal angle of the triangles
of the Fem partition is set to this number.

NMB OF DATA: Performing an optimization, the objective functional is allowed to de-
pend on 999 values of efficiencies/phase shifts/energies. If this number is not
sufficient, then the user can enlarge it setting the environment variable to the
required number (cf. Section 10.1.3).
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POLYGON STRETCH FACT: If this is set to a positive number and if the geometry is given
by the code word “polygon”, then the vertical components of the knots of the
polygon are stretched by multiplying with the number of this environmental
variable.

POLYGON SPEC MS: If this is set to a positive number and if the geometry is given
by the code word “polygon”, then this will be the mesh size of the initial mesh
at level one.

POLYGON SPEC AW: If this is set to a positive number and if the geometry is given
by the code word “polygon”, then the width of the additional layers above
and below will be set to this value.

STE DIF FOR: If this is set to a positive number, then the standard step size 2 · 10−7

in the difference formula for derivatives w.r.t. the parameters of the multi-layer
system is changed to this value (cf. Section 10.2.7).

TMPDIR: If this is set to the name of an existing directory, then the temporary di-
rectory, used for auxiliary files in the programs, is changed from the directory
prescribed during installation to the new one with the given name.

WI GRA LAY: Suppose an optimization of an EUV bridge without the sidewall angle
restriction (i.e. with EUV SWA 90=“no”) is required, where the bridge is located
strictly in the middle of a period and where no additional layer is generated
beside the bridge. If the electro-magnetic field changes fastly in the vicinity of
the interface between cover material and grating, then a grading of the FEM
grid towards this interface can improve the approximation essentially. This
grading can be enforced by introducing a small “layer” beside the interface filled
with cover material. The diameters of the triangles of the FEM grid will change
smoothly from the maximal value to the width of this small layer. The width of
this small layer is the number defined by the environment variable WI GRA LAY.

2 Diffraction Problems for Gratings

2.1 The classical TE problem

Consider an ideal optical grating (cf. the cross section in Figure 1). We choose the co-
ordinate system such that the z-axis shows in the direction of the grooves and that the
y-axis is orthogonal to the plane of the grooves. The width of the grooves in x direction is
the periodicity d of the grating. The refractive index of the cover material is n+, that of
the substrate under the grating surface structure n−. The grating part consists of several
materials with indices ni. Above and below the grating structure there may exist some
coated layers with different refractive index (cf. the indices nuc and nlc for one upper and
one lower coating layer in Figure 1). We suppose that a plane wave is incident from above
with a direction located in the x− y plane (i.e. in the plane perpendicular to the grooves)
and under the incident angle θ. The wave length of the light in air is λ and we consider
the case of Te polarization where the electric field vector is parallel to the grooves, i.e. it
shows in the z direction. Hence, if µ0 is the magnetic permeability of vacuum and c the
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speed of light, then the transverse z coordinate of the electric field is given as

E incidentz (x, y, z, t) = Eincident
z (x, y, z) exp(−iωt) , ω =

2πc

λ
, (2.1)

Eincident
z (x, y, z) =

1√
n+

exp
(
ik+ sinθ x− ik+ cosθ y

)
, k+ = ω

√
µ0ε0 n+.

The light is diffracted by the grating structure. Beside some evanescent part the diffracted
light splits into a finite number of reflected and transmitted Te polarized plane wave modes,
the propagation directions of which are independent of the grating geometry and the grating
materials. The problem is to determine the amplitude and the phase of the reflected and
transmitted modes. Note that the normalization factor 1/

√
n+ in the second line of (2.1) has

been introduced to obtain an incident light wave with a fixed intensity (length of Poynting
vector) independent of the cover material. If the cover material is air, then n+ = 1 and
the wave is normalized such that the amplitude of the electric field vector is of unit length.
Of course the values of the efficiencies and phase shifts of the reflected and transmitted
plane wave modes are independent of this normalization factor. The subsequent Rayleigh
coefficients, however, depend on this scaling.

Using Maxwell’s equations, it can be shown that the transverse component Ez satisfies
the scalar Helmholtz equation {4 + k2I}Ez = 0 in any domain of the cross section plane
with constant material as well as some transmission conditions on the interfaces between
materials of different refractive indices. The wave number k is equal to ω/c times the refrac-
tive index of the material. Thus we can determine Ez by the standard method for elliptic
differential equations by the Fem. Using the periodicity of the problem and standard cou-
pling techniques with the boundary element method, the domain of numerical computation
can be reduced to a rectangle Ω (cf. Figure 1). This covers one period of the grating and
is bounded by the horizontal lines Γ± located inside the last upper and first lower coating
layer (counted from above to below) resp. in the cover material and substrate material for
gratings without coatings.7

Above resp. beneath the grating structure (including all the layers) the component Ez
admits an expansion into the Rayleigh series of the form

Ez(x, y) =
∞∑

n=−∞

A+
n exp

(
+iβ+

n y
)

exp (iαnx) + Ainc0 exp
(
−iβ+

0 y
)

exp (iαx) , (2.2)

Ez(x, y) =
∞∑

n=−∞

A−n exp
(
−iβ−n y

)
exp (iαnx) , (2.3)

β±n =

√
[k±]2 − [αn]2 , k± =

ωn±

c
, Ainc0 =

1√
n+

α = k+ sinθ, αn = k+ sinθ +
2π

d
n .

Here d is the period of the grating and the complex constants A±n are the so-called Rayleigh

7For technical reasons in the Fem code, it is important to have the same material on both sides of the
boundary lines Γ±.
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Figure 1: Cross section of grating.

coefficients. The interesting Rayleigh coefficients are those with n ∈ U±,

U± =

{ {
n ∈ Z : |αn| ≤ k±

}
if =m k± = 0

∅ if =m k± > 0
.

Indeed, these coefficients A±n describe magnitude and phase shift of the propagating plane
waves. More precisely, the modulus |A±n | is the amplitude of the nth reflected resp. trans-
mitted wave mode and arg[A±n /|A±n |] the phase shift. The terms with n 6∈ U± lead to
evanescent waves, only. The optical efficiencies of the grating are defined by

e±n =
β±n
β+
0

|A±n |2

|Ainc0 |2
, (n,±) ∈

{
(n,+) : n ∈ U+

}
∪
{

(n,−) : n ∈ U−
}
, (2.4)

which is the ratio of energy of the incident wave entailed to the nth propagating mode.
Note that these efficiencies of propagating modes exist for non-absorbing materials, i.e. for
=m k± = 0. If the transverse component Ez has been computed approximately, then the
Rayleigh coefficients can be obtained by a discretized Fourier series expansion applied to
the Fem solution restricted to Γ± (cf. (2.2) and (2.3)). Formula (2.4) yields the efficiencies.

2.2 The classical TM problem

The case of Tm polarization is quite similar to Te. Indeed, this time the vector of the
magnetic field H shows in the direction of the grooves, i.e. in the direction of the z axis.
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Analogously to formula (2.1) given in the last subsection for the incident electric field, we
get

Hincident
z (x, y, z, t) = H incident

z (x, y, z) exp(−iωt) , (2.5)

H incident
z (x, y, z) =

√
ε0
√

n+

√
µ0

exp
(
ik+ sinθ x− ik+ cosθ y

)
, k+ = ω

√
µ0ε0 n+,

for the z component of the incident magnetic field Hincident
z . Note that the additional factor√

ε0
√

n+/
√
µ0 in the definition of H incident

z guarantees that the incident light wave has a
fixed intensity (length of Poynting vector) independent of the cover material. If the cover
material is air, then the wave is normalized such that the amplitude of the electric field
vector is of unit length. Like in the Te case, the values of the efficiencies and phase shifts
of the reflected and transmitted plane wave modes are independent of this normalization
factor. Only the subsequent Rayleigh coefficients depend on this scaling.

The z component of the complete field Hz satisfies the scalar Helmholtz equation
{4+k2I}Hz=0 in any domain of the cross section plane with constant materials. However,
the transmission conditions on the interfaces are different. We can solve the transmission
problem of the Helmholtz equation by Fem. Again we have a finite number of transmit-
ted and reflected modes and the Rayleigh expansions hold for Ez replaced by Hz. More
precisely, the Rayleigh coefficients are the B±n of the expansions

√
µ0√
ε0
Hz(x, y) =

∞∑
n=−∞

B+
n exp

(
+iβ+

n y
)

exp (iαnx) +Binc
0 exp

(
−iβ+

0 y
)

exp (iαx) , (2.6)

√
µ0√
ε0
Hz(x, y) =

∞∑
n=−∞

B−n exp
(
−iβ−n y

)
exp (iαnx) , (2.7)

Binc
0 =

√
n+ .

The objective is to compute the Rayleigh coefficients. They result from the Fem solution of
the new transmission problems and from the discretization of the Fourier series expansion
(2.6) and (2.7). The efficiencies (cf. (2.4)) are computed by

e±n =
β±n
β+
0

[k+]2

[k±]2
|B±n |2

|Binc
0 |2

, (n,±) ∈
{

(n,+) : n ∈ U+
}
∪
{

(n,−) : n ∈ U−
}
.(2.8)

Finally, we note that the case of an incident wave propagating in a direction of the
x − y plane together with an arbitrary polarization is the superposition of Te and Tm
polarization.

2.3 Conical problems

The essential difference between the classical diffraction of the last two subsections and
the conical one is that the direction of the incident light wave is oblique, i.e. it is not
restricted to the x − y plane. Whereas in the classical case the directions of the finitely
many reflected and transmitted plane wave modes remain located in the x− y plane, now
they are located on a cone in the x− y − z space. The Fem approach is analogous to the
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classical case. However, instead of a transmission problem for a scalar Helmholtz equation,
Maxwell’s system reduces to a coupled system of two scalar Helmholtz equations for the
two transverse components Ez and Hz of the electric and magnetic field. Consequently, we
have two Rayleigh expansions and two sequences of Rayleigh coefficients.

More precisely, skipping the time harmonic factor, we have an incident wave of the form

Eincident(x, y, z) = Einc exp
(
i[αx− βy + γz]

)
,

H incident(x, y, z) = H inc exp
(
i[αx− βy + γz]

)
.

with constant vectors Einc and H inc and a wave vector ~k = (α,−β, γ) such that the wave

number k+ is the modulus of ~k and the direction of the incoming plane wave is ~k/k+. Here

k+ is the same wave number as in the classical Te and Tm case. The direction ~k/k+ must be
prescribed by the user of DIPOG-2.1. This can be characterized by two parameters, namely
by the angles θi and φi which are the spherical coordinates of (α, β, γ). We emphasize
that θi and φi are the spherical coordinates of (α, β, γ) and not those of the normalized

wave vector ~k/k+ = (α,−β, γ).8 Contrary to this, the angles θ and φ of the reflected and
transmitted plane wave modes are exactly the spherical coordinates of the normalized wave
vectors. Unfortunately, this traditional notation is a little bit confusing.

Either we use the spherical coordinate system with the x − y plane as basis plane (xy
system) or the spherical coordinates based on the x−z plane (xz system). In the xy system
we define the direction Dxy = (α, β, γ) as (cf. Figure 2):

Dxy =
(

sinθxy cosφxy , cosθxy cosφxy , sinφxy

)
Here θxy ∈ (−90◦, 90◦) is the angle of inclination of the plane, containing the direction Dxy

and the z axis, from the y − z plane. Angle φxy ∈ (−90◦, 90◦) is the angle of direction Dxy

inside this inclined plane, i.e. the angle between Dxy and the orthogonal projection of Dxy

to the x− y plane.
For the xz system the direction Dxz = (α, β, γ) is given by (cf. Figure 3):

Dxz =
(

sinθxz cosφxz , cosθxz , sinθxz sinφxz

)
Here φxz is the angle of inclination of the plane, containing the direction Dxz and the y
axis, from the x − y plane. Angle θxz ∈ [0, 90◦) is the angle of direction Dxz inside this
inclined plane, i.e. the angle between Dxz and the y-axis. To change between the xy system
and the xz system the following formulae are useful

φxy = arcsin
(

sinθxz sinφxz

)
, θxy = arcsin

(
sinθxz cosφxz√

1− sin2θxz sin2φxz

)
,

θxz = arccos
(

cosθxy cosφxy

)
,

8In other words π− θi and φi are the spherical coordinates of ~k/k+, and θi is not the angle enclosed by
~k/k+ and the positive y axis but the angle enclosed by ~k/k+ and the negative y axis.
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φxz =


arcsin

(
sinφxy√

1− cos2θxy cos2φxy

)
if θxy > 0

±π − arcsin

(
sinφxy√

1− cos2θxy cos2φxy

)
else .

Though the user can choose his favourite spherical coordinate system for the input of the
direction of incidence, the output of the directions for the reflected and transmitted modes
are presented in the xz system.

Clearly, the fields Einc and H inc must be orthogonal. Moreover, the two vectors are
uniquely determined by the normalization condition, by Maxwell’s equation, and by the
polarization type prescribing the polarization direction. Here the normalization condition

n+[Einc
z ]2 +

1

n+
[Binc

z ]2 =
[k+]2 − γ2

[k+]2
, Binc

z =

√
µ0√
ε0
H inc
z

means that the incident light wave has a fixed intensity (length of Poynting vector) inde-
pendent of the cover material. If the cover material is air, then the wave is normalized such
that the amplitude of the electric field vector is of unit length. The values of the efficiencies
and phase shifts of the reflected and transmitted plane wave modes are not effected by the
normalization factor. Only the subsequent Rayleigh coefficients depend on this scaling.

The polarization type must be prescribed by the user of DIPOG-2.1. There are three
possibilities. The first is to choose Te polarization with the electric field vector Einc

pointing in the direction perpendicular to the wave vector (incidence direction) and to
the y axis. The second is Tm polarization with the magnetic field vector H inc pointing in
the direction perpendicular to the wave vector (incidence direction) and to the y axis. Note
that the direction perpendicular to the wave vector and to the y axis is, by definition, the z
axis if wave vector and y axis should be collinear. The third choice is to prescribe the angle
ψ (cf. Figure 4) enclosed by the x axis and by the projection of the electric field vector Einc

to the x− z plane.
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Fixing the incident field, the resulting total field is determined and can be computed by
Fem. It remains to describe the output data of DIPOG-2.1. The Rayleigh expansions above
resp. below the grating take the form

E(x, y, z) = Einc exp
(
i[αx− βy + γz]

)
+
∑
n∈Z

~A+
n exp

(
i[αnx+ β+

n y + γz]
)
,

H(x, y, z) = H inc exp
(
i[αx− βy + γz]

)
+
∑
n∈Z

~C+
n exp

(
i[αnx+ β+

n y + γz]
)
,

αn = α +
2π

d
n, β±n =

√
[k±]2 − [αn]2 − γ2 , <e β±n > 0 , =m β±n ≥ 0

resp.

E(x, y, z) =
∑
n∈Z

~A−n exp
(
i[αnx− β−n y + γz]

)
,

H(x, y, z) =
∑
n∈Z

~C−n exp
(
i[αnx− β−n y + γz]

)
.

Now there are three variants of output data. The first computes the third components,
i.e. the z components of the Rayleigh coefficients

p±n = [ ~A±n ]z , q±n = [ ~B±n ]z , ~B±n =

√
µ0√
ε0
~C±n

and the efficiencies

e+n =
β+
n

β

[k+]2

[k+]2 − γ2

[
n+|p+n |2 +

1

n+
|q+n |2

]
, (2.9)

e−n =
β−n
β

1

[k−]2 − γ2

[
n+[k−]2|p−n |2 +

1

n+
[k+]2|q−n |2

]
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of the nth reflected resp. transmitted wave mode. The second output variant computes the
Te and Tm part of the total wave, i.e. if s±n stands for the direction perpendicular to the y
axis and to the direction of propagation of the nth reflected resp. transmitted plane wave
mode (s±n = (αn,±β±n , γ) × (0, 1, 0)/|(αn,±β±n , γ) × (0, 1, 0)|), then the output coefficients
are the scalar products〈

~A±n , s
±
n

〉
=

ap±n + bc q±n /n
±

(1− c2)
√
a2 + c2

,〈
~B±n , s

±
n

〉
=

aq±n − bc p±nn±

(1− c2)
√
a2 + c2

, (a, b, c) =
(αn,±β±n , γ)√
α2
n + [β±n ]2 + γ2

The efficiencies of the second output are the total efficiencies e±n of (2.9) and the efficiencies
corresponding to the Te and Tm parts

β±n
β

∣∣∣〈 ~A±n , s±n〉∣∣∣2 n+ ,
β±n
β

n+

[n±]2

∣∣∣〈 ~B±n , s±n〉∣∣∣2 ,
i.e. the efficiencies of the projection of the nth reflected resp. transmitted wave mode to
the component with electric resp. magnetic field polarized in s±n direction. Finally, the
third variant computes the S- and P-parts of the electric field, i.e. the components of
the Jones vector. If s±n is defined as above and if p±n is the direction orthogonal to s±n
and the direction of propagation of the nth reflected resp. transmitted plane wave mode
(p±n = (αn,±β±n , γ) × s±n /|(αn,±β±n , γ) × s±n |), then the S- and P-parts of the Rayleigh
coefficients are〈

~A±n , s
±
n

〉
=

ap±n + bc q±n /n
±

(1− c2)
√
a2 + c2

,
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〈
~A±n ,p

±
n

〉
= − 1

n±

〈
~B±n , s

±
n

〉
=

bc p±n − a q±n /n±

(1− c2)
√
a2 + c2

.

The efficiencies of the third output are the total efficiencies e±n of (2.9) and the efficiencies
corresponding to the S- and P-parts, i.e. the efficiencies of the projection of the nth reflected
resp. transmitted wave mode to the component with electric field polarized in s±n resp. p±n
direction

β±n
β

∣∣∣〈 ~A±n , s±n〉∣∣∣2 n+ ,
β±n
β

∣∣∣〈 ~A±n ,p±n〉∣∣∣2 n+ .
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3 Geometry Input

3.1 Geometrical data in input file “name.dat”

Computation starts with the change of the working directory to directory CLASSICAL (for
classical diffraction) or to CONICAL (conical diffraction) and by calling an executable (e.g.
FEM or GFEM) followed by the data file “name.dat” as argument of the executable. Here
“name.dat” contains all information on the grating and the light.

cd DIPOG-2.1/CLASSICAL
FEM name.dat

or

cd DIPOG-2.1/CONICAL
GFEM name.dat

On the screen there will appear the output data of the computation and the name of an
additional output file, where the output data is stored.

Mainly, the geometrical information of the input data in “name.dat” is fixed by the
lines:

# Length factor of additional shift of grating geometry.
# This is shift into the x-direction.
# This is length of shift relative to period.

0.

# Stretching factor for grating in y-direction:
1.

# Length of additional shift of grating in micro meter.
# This is shift in y-direction.

0.

# Period of grating in micro meter:
1.

# Grating data:
name1

Here “name1” refers either to a file “name1.inp” with geometrical data located in the
subdirectory GEOMETRIES or to some special code words to fix the geometry of the grating.
We describe how to get the file “name1.inp” in point 3.2 and the alternative code words in
the subsequent point 3.5 of this section.
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As mentioned above, the computation starts in the directory “CLASSICAL” and is based
upon a geometry input file “GEOMETRIES/name1.inp” indicated in “name.dat”. However,
if the code is started from a directory different from “CLASSICAL” or if the geometry data
file is located in a different directory with the path “path1”, then the file is to be specified
by adding its path in “name.dat” as:

# Grating data.
path1/name1

In particular, for a geometry input file in the current working directory use:

# Grating data.
./name1

Note that the geometry data in “name1.inp” should be given relative to the period
which is specified in the data file “name.dat” of directory CLASSICAL resp. CONICAL. All
data of “name1.inp” will later be multiplied by the given length of period (e.g. by 1 µm).

Additional geometrical information, fixed in file “name.dat”, concerns the coated layers.
In principle, the grating part is a rectangular domain (cf. Ω in figure 1). Above and below
this part we can add a few number of coated layers in form of strips parallel to the upper and
lower side of the rectangle. The numbers of these layers together with the corresponding
thickness is given in special lines of “name.dat”. Explanations of the lines in “name.dat”
can be found directly in the neighbouring comment lines starting with symbol “#”.

3.2 How to get an input file “name1.inp”?

The elementary way to create “name1.inp” is the following. Change to subdirectory
GEOMETRIES. Copy an existing file like e.g. “example.inp” (cf. the enclosed file in 12.1),
and change its name into e.g. “name1.inp”.

cd DIPOG-2.1/GEOMETRIES
cp example.inp name1.inp

Change “name1.inp” in your editor (emacs,vi?) according to your requirements. You will
find the necessary information as comments in the file “name1.inp”. Indeed, each line be-
ginning with “#” is a comment. For example, the number nmat of different materials is
fixed in “name1.inp” by the input lines:

# Number of materials:
nmat

We emphasize that this number must include the two materials located immediately over
and under the grating area since two rectangular layers from these adjacent regions are
added to the area of FEM computation. Consequently, nmat ≥ 2, and nmat = 2 holds if the
grating structure is manufactured from the same two materials filling the regions adjacent
to the grating structure. In the case of the grating in Figure 1, we have two materials with
the refractive indices n1 and n2 inside the grating structure and two adjacent materials
with indices nlc and nuc, i.e. nmat = 4. Generally, the materials inside the grating structure
are to be indicated in “name1.inp” by an index between 1 and nmat. In particular, index 1
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Figure 5: Pictures of grid produced by SHOW.

stands for the material immediately over the grating and nmat for that immediately under it.
Of course, the corresponding nmat refractive indices are listed in the input file “name.dat”
and not in “name1.inp”. Finally, we remark that the file “name1.inp” contains its name
“name1” without the tag “.inp”. This name must include the complete path if the file is
not located in the directory GEOMETRIES.

To check the geometry described by “name1.inp”, enter the command:

SHOW name1.inp

You will see a first picture (cf. left picture in Figure 5) with the chosen points of a polygonal
structure. After pressing Escape or Bar/Space you see a second picture (cf. right picture in
Figure 5) with a coarse triangulation and with the different regions (later distinguished by
different optical indices) in different colours. Press Escape or Bar/Space to end the check.
If you enter

SHOW v name1.inp

then, additionally, an eps-file of the picture is produced.
Alternatively, to create “name1.inp”, one can call the executable GEN INPUT from the

subdirectory GEOMETRIES and work interactively. Just enter the command:

GEN INPUT

This program prompts you for everything needed. Nevertheless, we recommend the first
way of copying and modifying an existing file.
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The programs of DIPOG-2.1 are based on a coupling of finite elements and boundary
elements over the upper and lower boundary lines of the Fem domain. This coupling
requires that the refractive indices of the materials on both sides of the boundary lines
coincide. Therefore the Fem domain is extended by additional rectangular strips adjacent
to the upper and lower boundary lines. The positive width (relative to the period) of these
two strips is fixed in the “name1.inp” file, e.g. by the lines:

# Width of additional strip above and below:
0.5

The material of the upper strip is the grating material of index one, that of the lower
has index nmat. In order to have the same material on both sides of the upper and lower
boundary lines, the refractive index of the lowest upper coated layer resp. the cover material
must be the same as that of the grating material with index one, and the refractive index
of the highest lower coating layer resp. the substrate material must be the same as that of
the grating material with index nmat. Adding the widths of the upper and lower coated
layers, the user must not forget about the rectangular strips included already in the grating
structure.

The width of the additional rectangular strips adjacent to the upper and lower boundary
lines can be chosen automatically by adding the width input zero in the “name1.inp” file.
More precisely, adding a zero for the width, the width is set to

min{0.05 , upper bound of meshsize} × period (3.10)

which approximates zero for the meshsize tending to zero. The new rectangular strips are
borrowed from the adjacent coated layer resp. from the substrate or cover material, i.e. the
widths of the adjacent coated layers are reduced by the width of the strip. In other words,
the automatic choice of the widths of the additional strips requires that the expression in
(3.10) is less than the widths of the adjacent coated layers.

Now suppose that the width of the additional strips is chosen automatically and that
there exist upper coated layers above the grating geometry fixed by the “name1.inp” file.
The natural starting point of the additional upper strip is the point of the grating geometry
with the highest y-coordinate which belongs to an area occupied by a material different from
that of the adjacent upper coated layer. For technical reasons, the grating geometry without
the additionally added layers must not contain a strip of the upper coating material above
the natural starting point of the strip to be added automatically. Similarly, suppose that
the width of the additional strips is chosen automatically and that there exist lower coated
layers below the grating geometry. The natural starting point of the additional lower strip
is the point of the grating geometry with the lowest y-coordinate which belongs to an area
occupied by a material different from that of the adjacent lower coated layer. Again, for
technical reasons, the grating geometry without the additionally added layers must not
contain a strip of the lower coating material below the natural starting point.

If the coated layer adjacent to the boundary line is very thin, then the automatically
added additional layer in the Fem domain is thin, and a huge number of small triangles
appear in the triangulation. The resulting large number of degrees of freedom can be
avoided in the case of classical Te polarization, where the coupling of finite elements and
boundary elements does not require the same material on both sides of the boundary lines.
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Avoiding an additional strip below resp. above the Fem domain requires two assumptions:

- The upper resp. lower polygonal boundary line of the Fem domain should form
a horizontal straight line segment.9

- All corners with maximal resp. minimal y coordinate must have an x coordinate
which is the product of period times a rational number k/l with l < 1000. 10

To switch off the automatic generation of additional strips in the Fem domain, the user
must work with a geometry input file “name1.inp” containing the lines:

# Width of additional strip above and below:
no

Sometimes the additional strip is required below the grating structure, but it should be
switched off above it. This can be indicated by

# Width of additional strip above and below:
no up 0.

Here the number following the no up is the thickness of the additional layer beneath the
grating. Similarly, an additional strip above and no strip below can be indicated by

# Width of additional strip above and below:
no lo 0.

If the automatic generation of additional strips is switched off, then the input counter of
the materials nmat as well as the list of refractive indices of the grating must not include
the materials of the omitted additional strips.

As mentioned above, special gratings like echelle gratings, lamellar, trapezoidal, and
simple profile gratings need not to be generated by an input file “name1.inp”. Special code
words will generate automatically hidden files of this type. However, in some situations the
user might wish to change the automatically generated “name1.inp” files. He might wish
to add small modifications to the geometry, or he wants to change the meshsize. To do
this the user can create the otherwise hidden “name1.inp” files explicitly by the following
executables.

If an input file for an echelle grating of type A is needed (right-angled triangle with
hypotenuse parallel to the direction of the periodicity, cf. Figure 6), then this can be
accomplished by calling the executable GEN ECHELLEA from the subdirectory GEOMETRIES.
More precisely, the command

GEN ECHELLEA name R 0.3 0.03 0.04

creates the file “name.inp” of the desired echelle profile grating, with right blaze angle
greater than 45◦, with a depth (triangle height) of 0.3 times period of the grating and with
coated layers of height 0.03 resp. 0.04 times period over the first resp. second part of the
grating (measured in direction perpendicular to the echelle profile, height greater or equal
to zero). If the input letter R is replaced by an L, then the left blaze angle is greater than

9If this formal assumption is not fulfilled, then a rectangular upper resp. lower coating strip does not
make sense and, without coated layers, a thicker artificial strip can be added without problem

10Indeed, the corner points at the upper resp. lower boundary lines of the Fem domain must be part of
a uniform grid. This is required by the fast boundary element discretization.
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45 degrees. Moreover, if the input letter R is replaced by an A and the following input
number 0.3 by 60., then the left blaze angle is 60◦.

If an input file for an echelle grating of type B is needed (right-angled triangle with
one of the legs parallel to the direction of the periodicity, cf. Figure 7), then this can be
accomplished by calling the executable GEN ECHELLEB from the subdirectory GEOMETRIES.
More precisely, the command

GEN ECHELLEB name 60. 0.05

creates the file “name.inp” of the desired echelle profile grating, with angle 60◦ (angle
enclosed by hypotenuse and by the leg parallel to the period) and with a coated layer
of height 0.05 times period of the grating (measured in direction perpendicular to echelle
profile, height greater or equal to zero).

If an input file for a general echelle grating is needed, then this can be accomplished by
calling the executable GEN ECHELLE from the subdirectory GEOMETRIES. More precisely, the
command

GEN ECHELLE name A 120. L 30. 0.05 0.1

creates the file “name.inp” of the desired echelle profile grating, with an apex angle of 120◦,
with a left blaze angle of 30◦, with a coated layer over the left blaze side of height 0.05
times length of period of the grating (measured in direction perpendicular to echelle profile,
height greater or equal to zero), and with a coated layer over the right blaze side of height
0.1 times length of period of the grating (measured in direction perpendicular to echelle
profile, height greater or equal to zero, must be zero if previous height is zero). Instead
of the two inputs “A 120.” and “L 30.” one can choose also the inputs “R 110.” for a
right blaze angle of 110◦ or “D 0.4” for a depth of the grating equal to 0.4 times length of
period of the grating. Any combination of two inputs of the types “A 120.”, “L 30.”, “R
110.”, and “D 0.4” is accepted. However, the choice “A 120.” and “D 0.2” is ambiguous.
By definition it fixes an echelle grating with right blaze angle larger than the left. To get
the flipped grating with left blaze angle larger than the right, the input should be “A 120.”
and “D -0.2”. Figure 6 corresponds to a call of GEN ECHELLE with the parameter arguments
“A 90. D 0.3 0.03 0.04”.

If an input file for a trapezoidal grating is needed (isosceles trapezoid with the basis
parallel to the direction of the periodicity, cf. Figure 8), then this can be accomplished by
calling the executable GEN TRAPEZOID from the subdirectory GEOMETRIES. More precisely,
the command

GEN TRAPEZOID name 60. 0.6 3 0.2 0.1 0.1 0.05

creates the file “name.inp” of the desired trapezoidal profile grating, with angle 60◦ (angle
enclosed by basis and the sides) with a basis of length 0.6 times period of the grating
consisting of 3 material layers of heights 0.2 times period, 0.1 times period, and 0.1 times
period, respectively, and with a coated layer of height 0.05 times period (greater or equal
to zero).

If an input file for a grating with several trapezoids one beside the other is needed (sym-
metric trapezoids with the basis parallel to the direction of the periodicity), then this can be
accomplished by calling the executable GEN MTRAPEZOID from the subdirectory GEOMETRIES.
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More precisely, the command

GEN MTRAPEZOID name1 name2

creates the file “name1.inp” of the desired multitrapezoidal profile grating, with data taken
from the input file “name2.INP”. In particular, this contains lines with (all lengths relative
to period, all angles in degrees)

– number m of layers in one bridge
– m heights of the layers (from above to below)
– m sidewall angles (from above to below)
– height at which lateral width is given
– number n of bridges
– n lateral widths of bridges
– n x-coordinates of midpoints of bridges.

If an input file for a lamellar grating is needed (rectangular grating consisting of several
materials placed in rectangular subdomains, cf. Figure 10), then this can be accomplished
by calling the executable GEN LAMELLAR from the subdirectory GEOMETRIES. More precisely,
if the file “GEOMETRIES/lamellar.INP” contains the numbers (each number in a separate
line) 3, 4, 0.2, 0.6, -0.2, 1.0, 0., 0.5, 0.70, .0, 0.50, 0.900, .00, 0.500, and 0.900, then the
command

GEN LAMELLAR name lamellar.INP

creates the file “name.inp” of the desired lamellar profile grating, with 3 columns each
divided into 4 rectangular layers, first column with x coordinate in 0 < x < 0.2 , second
column with 0.2 < x < 0.6 , third column with 0.6 < x < 1 (all coordinates are normalized
with respect to the period: period corresponds to x=1), whole grating with y coordinate
s.t. −0.2 < y < 1.0, first column: first layer with −0.2 < y < 0., second with 0. < y < 0.5,
third with 0.5 < y < 0.7 and fourth with 0.7 < y < 1., second column: first layer with
−0.2 < y < 0.0, second with 0.0 < y < 0.50, third with 0.50 < y < 0.90 and fourth with
0.90 < y < 1., third column: first layer with−0.2 < y < 0.00, second with 0.00 < y < 0.500,
third with 0.500 < y < 0.900 and fourth with 0.900 < y < 1..

If an input file for a simple layer grating is needed, then this can be accomplished by
calling the executable GEN LAMELLAR from the subdirectory GEOMETRIES. More precisely, if
the file “GEOMETRIES/lamellar.INP” contains the numbers (each number in a separate line)
1, 1, 0.2, and 0.8, then the command

GEN LAMELLAR name lamellar.INP

creates the file “name.inp” of the desired layer grating, with layer material s.t. the y
coordinate satisfies 0.2 < y < 0.8 (all coordinates are normalized with respect to the
period: period corresponds to x=1).

If an input file for a grating with a polygonal profile line is needed (cf. Figure 11), then
this can be accomplished by calling the executable GEN POLYGON from the subdirectory
GEOMETRIES. More precisely, if the file “GEOMETRIES/file1” contains the corner points of
a polygonal profile line (in “GEOMETRIES/file1”: in each line beginning without ‘#’ there
should be the x- and y-coordinate of one of the consecutive corner points, first point with
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x-coordinate 0, last point with x-coordinate 1, same y-coordinate for first and last point,
all x-coordinates between 0 and 1, at least two different y-coordinates, last line should be
“End”), then the command

GEN POLYGON name file1

creates the file “name.inp” of the desired polygonal grating.
If an input file for a grating determined by two polygonal profile lines is needed (cf. Fig-

ure 12), then this can be accomplished by calling the executable GEN POLYGON2 from the
subdirectory GEOMETRIES. More precisely, if the file “GEOMETRIES/file1” contains the corner
points of a polygonal profile line (in “GEOMETRIES/file1”: in each line beginning without
‘#’ there should be the x- and y-coordinate of one of the consecutive corner points, first
point with x-coordinate 0, last point with x-coordinate 1, same y-coordinate for first and
last point, all x-coordinates between 0 and 1, at least two different y-coordinates, last line
should be “End”) and if the file “GEOMETRIES/file2” contains the corner points of a sec-
ond polygonal profile line (in “GEOMETRIES/file2”: in each line beginning without ‘#’ there
should be the x- and y-coordinate of one of the consecutive corner points, first and last
point must be corner of first polygon, second polygon must be on left-hand side of first,
one to one correspondence of the corners on the two polygons between first and last point
of second polygon11, quadrilateral domain between corresponding segments on the left of
first polygon, these quadrilaterals must be disjoint, last line should be “End”), then the
command

GEN POLYGON2 name file1 file2

creates the file “name.inp” of the desired polygonal grating.
If an input file for a grating determined by profile line given as {(fx(t), fy(t)) : 0 ≤ t ≤

1} is needed, then this can be accomplished by calling the executable GEN PROFILE from
the subdirectory GEOMETRIES. More precisely, suppose the profile line {(fx(t), fy(t)) : 0 ≤
t ≤ 1} is given by the functions t 7→ fx(t) and t 7→ fy(t) defined by the c-code in the file
“GEOMETRIES/profile.c”. Then

GEN PROFILE name 0.06

creates the file “name.inp” of the desired profile grating, where the profile curve is approxi-
mated by a polygonal line with a stepsize equal to 0.06 times the length of period (cf. Figure
13 where fx(t) = t and fy(t) = {1.5 + 0.2 exp(sin(6πt)) + 0.3 exp(sin(8πt))}/{2π}).

If an input file for a grating determined by more than one non-intersecting and peri-
odic profile lines given as {(fx(j, t), fy(j, t)) : 0 ≤ t ≤ 1}, j,= 1, . . . , n is needed, then
this can be accomplished by calling the executable GEN PROFILES from the subdirectory
GEOMETRIES. More precisely, suppose n and the profile lines {(fx(j, t), fy(j, t)) : 0 ≤ t ≤ 1}
are given by the c-code in the file “GEOMETRIES/profiles.c”. Then

GEN PROFILES name 0.06

11To make it precise, suppose P and Q are the common corner points of the two polygonal curves and
that R1

1, R1
2, . . . , R1

m are the consecutive corner points between P and Q on the first polygonal line and
R2

1, R2
2, . . . , R2

n those on the second polygonal. Then the code requires m = n and that the coating area
between the two polygonal lines is the disjoint union of the triangle PR1

1R
2
1, the quadrilaterals R1

1R
1
2R

2
2R

2
1,

. . . , R1
(m−1)R

1
mR

2
mR

2
(m−1), and the triangle R1

mQR
2
m.
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creates the file “name.inp” of the desired profile grating, where the profile curves are ap-
proximated by a polygonal line with a stepsize equal to 0.06 times the length of period
(cf. Figure 16 where n = 3, fx(j, t) = t, fy(1, t) = sin(2πt), fy(2, t) = sin(2πt) − 0.5, and
fy(3, t) = sin(2πt)− 1).

If an input file for a pin grating determined by a simple non-intersecting profile line
given as {(fx(t), fy(t)) : 0 ≤ t ≤ 1} is needed12, then this can be accomplished by call-
ing the executable GEN PIN from the subdirectory GEOMETRIES. More precisely, suppose
xmin and the profile line {(fx(t), fy(t)) : 0 ≤ t ≤ 1} are given by the c-code in the file
“GEOMETRIES/pin.c”. Then

GEN PIN name 0.06

creates the file “name.inp” of the desired profile grating, where the profile curves are ap-
proximated by a polygonal line with a stepsize equal to 0.06 times the length of period
(cf. Figure 17 where xmin = 0.2, fx(t) = xmin + (1− 2xmin) t, and fy(t) = 0.5 sin(πt)).

If an input file for a coated pin grating determined by the simple non-intersecting pro-
file lines given as {(fx(j, t), fy(j, t)) : 0 ≤ t ≤ 1}, j = 1, 2 is needed13, then this can be
accomplished by calling the executable GEN CPIN from the subdirectory GEOMETRIES. More
precisely, suppose xmin, a1, a2 and the profile lines {(fx(j, t), fy(j, t)) : 0 ≤ t ≤ 1} j=1,2 are
given by the c-code in the file “GEOMETRIES/cpin.c”. Then

GEN CPIN name 0.06

creates the file “name.inp” of the desired profile grating, where the profile curves are ap-
proximated by a polygonal line with a stepsize equal to 0.06 times the length of period
(cf. Figure 18 where xmin = 0.2, a1 = 0.2, a1 = 0.8, fx(1, t) = xmin + (1 − 2xmin) t,
fy(1, t) = 0.5 sin(πt), and {(fx(2, t), fy(2, t)) : 0 ≤ t ≤ 1} is the polygonal curve connect-
ing the four points (fx(1, a1), fy(1, a1)), (fx(1, a1), fy(1, 0.5)+0.1), (fx(1, a2), fy(1, 0.5)+0.1),
and (fx(1, a2), fy(1, a2))).

If an input file for a coated pin grating of type 2 determined by the simple non-
intersecting profile lines given as {(fx(j, t), fy(j, t)) : 0 ≤ t ≤ 1}, j = 1, 2 is needed14,

12I.e., over a flat grating with surface {(x, 0) : 0 ≤ x ≤ 1} a material part is attached which is located
between {(x, 0) : 0 ≤ x ≤ 1} and {(fx(t), fy(t)) : 0 ≤ t ≤ 1}. Here {(fx(t), fy(t)) : 0 ≤ t ≤ 1} is a simple
open arc connecting (fx(0), fy(0)) = (xmin, 0) with (fx(1), fy(1)) = (1− xmin, 0) such that 0 < xmin < 0.5
is a fixed number, such that 0 < fx(t) < 1, 0 < t < 1, and such that 0 < fy(t), 0 < t < 1.

13I.e., over a flat grating with surface {(x, 0) : 0 ≤ x ≤ 1} a material part is attached which is located
between {(x, 0) : 0 ≤ x ≤ 1} and {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1}. Here {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1} is a
simple open arc connecting (fx(1, 0), fy(1, 0)) = (xmin, 0) with (fx(1, 1), fy(1, 1)) = (1− xmin, 0) such that
0 < xmin < 0.5 is a fixed number, such that 0 < fx(1, t) < 1, 0 < t < 1, and such that 0 < fy(1, t), 0 < t < 1.
Additionally, a coating layer is attached located between the first curve {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1}
and a second curve {(fx(2, t), fy(2, t)) : 0 ≤ t ≤ 1}. The last connects the point (fx(1, a1), fy(1, a1)) =
(fx(2, 0), fy(2, 0)) with (fx(1, a2), fy(1, a2)) = (fx(2, 1), fy(2, 1)). Moreover, {(fx(2, t), fy(2, t)) : 0 ≤ t ≤ 1}
is a simple open arc above {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1} such that 0 < fx(2, t) < 1, 0 < t < 1.

14I.e., over a flat grating with surface {(x, 0) : 0 ≤ x ≤ 1} a material part is attached which is located
between the line {(x, 0) : 0 ≤ x ≤ 1} and {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1}. Here {(fx(1, t), fy(1, t)) :
0 ≤ t ≤ 1} is a simple open arc connecting (fx(1, 0), fy(1, 0)) = (xmin, 0) with (fx(1, 1), fy(1, 1)) =
(1 − xmin, 0) such that 0 < xmin < 0.5 is a fixed number, such that 0 < fx(1, t) < 1, 0 < t < 1, and
such that 0 < fy(1, t), 0 < t < 1. Additionally, a coating layer is attached located between the first curve
{(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1} united with the the two straight line segments {(x, 0) : x1 ≤ x ≤ xmin}
and {(x, 0) : 1 − xmin ≤ x ≤ x2} and a second curve {(fx(2, t), fy(2, t)) : 0 ≤ t ≤ 1}. The last connects
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then this can be accomplished by calling the executable GEN CPIN2 from the subdirectory
GEOMETRIES. More precisely, suppose xmin and the profile lines {(fx(j, t), fy(j, t)) : 0 ≤ t ≤
1} j=1,2 are given by the c-code in the file “GEOMETRIES/cpin2.c”. Then

GEN CPIN2 name 0.05

creates the file “name.inp” of the desired profile grating, where the profile curves are ap-
proximated by a polygonal line with a stepsize equal to 0.05 times the length of period
(cf. Figure 19 where xmin = 0.2, fx(1, t) = xmin + (1 − 2xmin) t, fy(1, t) = 0.5 sin(πt), and
fx(2, t) = 0.5xmin + (1− xmin) t, fy(2, t) = 0.8 sin(πt)).

In some applications the user might think that meshes graded towards the corner points
of the polygonal interfaces should improve the convergence behaviour of the FEM solution.
Such graded meshes can be generated by adding clouds of points to the neighbourhood of
the corners. If a geometry is given by the input file “name.inp”, then an advanced input
file “name+.inp” including point clouds at the corners can be generated by the command

POINT CLOUD INP name 30 5 100.

Here the last argument 100 is the angle in degrees such that “name+.inp” contains point
clouds at all interface corners of “name.inp” with angles less than 100◦. The third argument
5 is the number of layers in the point clouds, i.e. the cloud points are located at circular
curves around the corner with radii % ∗ 0.5, % ∗ 0.52, . . . , % ∗ 0.55. The positive real % is
chosen as large as possible such that the point clouds do not intersect other point clouds
or corner points. Finally, the second argument 30 is the number of points at each circular
curve. In other words, the cloud points are the intersections of the circular curves with
rays through the corner points such that the angle between two neighbour rays is about
360◦/30.

3.3 Graded FEM-mesh generated through geometry input file

The geometry is read from the input file “name1.inp” and the mesh generator will create a
finite element partition with given refinement level. The generator tries to compute regular
(almost uniform) triangles. Over the generated finite element mesh the trial functions and
approximate solutions are determined.

Sometimes the field solution of the problem is difficult to approximate by the trial func-
tions defined over regular meshes. For instance, the field solutions may have singular points
at corners and surface layers close to the interfaces. If the corresponding field components
by the executables GFEM PLOT resp. FEM PLOT are visualised and if the the isoline mode is
switched on (cf. Subsection 5.3), then a huge number of isoline curves surrounding a point
indicate a singularity point. Many isolines located close and parallel to the interface lines
indicate surface layers. For these cases, graded meshes can enhance the approximation of
the FEM and GFEM.

A mesh grading towards a corner point can be enforced if additional points close to

the first point (x1, 0) = (fx(2, 0), fy(2, 0)) with the last point (x2, 0) = (fx(2, 1), fy(2, 1)). Moreover,
{(fx(2, t), fy(2, t)) : 0 ≤ t ≤ 1} is a simple open arc above {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1} such that
0 < fx(2, t) < 1, 0 < t < 1. The functions fx(1, .), fx(2, .), fy(1, .), and fy(2, .) and the parameter xmin are
defined by the code of the file “../GEOMETRIES/cpin2.c”.
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the corners are introduced in the input file “name1.inp”. We recommend to approach the
corner by these additional points from one, two or three directions at distances of size
0.1 ∗ 2l, l = 1, 2, . . . . These points need not to be included into the list of triangle corners.
The mesh generator, however, will include the points into the finite element mesh such that
a grading towards the corner is achieved. Note that mesh gradings toward points does not
increase the overall number of mesh points, essentially.

A mesh grading towards an interface line can be enforced if a tiny additional layer on
one side of the interface is introduced by the geometry input file “name1.inp”. This layer
must have a different index of material. Of course, the refractive index chosen for this
material index in the data file “name.dat” must be the same as for the material from which
the layer is artificially separated. The mesh generator resolves the tiny layer structure by
small regular triangles and the size of the triangles close to the layer grows slowly with the
distance to the layer. Unfortunately, the overall number of mesh points notably increases if
the width of the additional layer decreases. Nevertheless, the approximation using a graded
mesh is often better than that of a comparable refined uniform mesh.

Finally, we should mention the different level refinement strategies for regular and graded
meshes. The standard way of mesh refinement is to increase the level in the input file
“name.dat” (cf. Subsection 5.2). If the level l is large such that the maximal meshsize
h0 21−l is less than the minimal distance of the additional points to the singular point
and less than the width of the additional layer, then the generated mesh is regular again.
In other words, the degree of grading of the meshes is reduced by increasing the level of
discretization. Alternatively to increasing the level by one, the parameter nUPA of the
control files “generalised.Dat” and “conical.Dat” (cf. Sections 6 and 7) can be doubled. In
this case the degree of grading of the meshes is maintained.

3.4 Input file “name1.inp” by TGUI

The easiest way to create a geometry input file “name1.inp” is to use the graphical user
interface program TGUI in the subdirectory GEOMETRIES. Just call TGUI and draw one period
of the cross section of the grating. Note that TGUI is equipped with a complete help system.
For the special DIPOG-2.1 format, we mention the following.

The dimensions of the cross section details including the period (horizontal dimension)
of the grating are measured in nano meters. Typically, the vertical and horizontal diameters
are about 1 000 nano meters. Note, however, that the geometry will be scaled to period 1
for the input format and the actual period is fixed in the data file “name.dat” (cf. Sects. 3.1
and 5.1).

The cross section domain is bounded by two lateral sides as well as an upper and lower
boundary curve connecting the upper resp. lower points of the lateral sides. Possibly, this
domain is split into several material parts by polygonal interfaces. If the upper or the lower
curve is a horizontal straight line segment, then DIPOG can add additional upper and lower
rectangular strips to the geometry. However, these strips are described in the data file
“name.dat” (cf. Sect. 5.1) and not by the geometry input format “name1.inp”.

The lateral sides of the cross section domain must form straight line segments in exactly
vertical direction. The segment indicator of the segments of these sides must be 3, whereas
the segments forming the upper and lower boundaries get indicator 2 and 1, respectively.
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The indices of the material parts can be fixed to any positive integer. Suppose that nmat
is the maximal index. Then the materials will be determined in a list of nmat refractive
indices (optical indices) given in the data file “name.dat” of DIPOG (cf. Sect. 5.1). Note
that index 1 is reserved for the refractive index of the material adjacent to the cross section
domain from the upper side (either cover material or lowest upper additional strip) and
index nmat for the refractive index of the material adjacent to the cross section domain from
the lower side (either substrate material or highest lower additional strip).

The domain for the Fem computation is a rectangle which is a slight extension of the
just mentioned cross section domain into the upper and lower direction. The additional
strips are possibly not contained in the Fem domain since they are treated via boundary
operators. Even if the cross section domain is rectangular, small strips are added in order
to enable a fast treatment of the boundary operators.

However, in case of classical Te polarization and if the upper resp.lower boundary curves
are horizontal straight lines of the cross section domain, the extension to the Fem domain
by small upper resp. lower strips can be suppressed (cf. Sect. 3.2). To this end the indicators
of the boundary segments must be changed from 2 resp. 1 to 5 resp. 4. Moreover, since the
fast treatment of the boundary operators requires uniform partitions, the node points on
the upper resp. lower boundary lines must be rational. More precisely, for left and right
end points A and B, the node points must be of the form A + (B − A) ∗ r with r = p/q
and 0 < p < q < 1 000.

3.5 Code words to indicate special geometries

One can indicate special grating geometries in the input file “name.dat” by special code
words. We explain these here.

# Grating data:
echellea R 0.3 0.03 0.04

indicates an Echelle Grating Type A (right-angled triangle with hypotenuse parallel
to the direction of the periodicity, right interior angle greater than 45◦, cf. Figure 6) with
depth of 0.3 µm (i.e., triangle height = 0.3 µm) and with coated layers of height 0.03 µm
resp. 0.04 µm over the first resp. second part of the grating (measured in direction perpen-
dicular to the echelle profile, height greater or equal to zero).

# Grating data:
echellea L 0.3 0.03 0.04

indicates an Echelle Grating Type A (right-angled triangle with hypotenuse parallel
to the direction of the periodicity, left interior angle greater than 45◦) with parameters like
above.

# Grating data:
echellea A 60. 0.03 0.04

indicates an Echelle Grating Type A (right-angled triangle with hypotenuse parallel
to the direction of the periodicity) with left interior angle α = 60◦ (i.e. the depth is equal
to the period multiplied by sin(α) cos(α)) and other parameters like above.
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Figure 6: Echelle grating of type A.

# Grating data:
echelleb 60. 0.05

indicates an Echelle Grating Type B (right-angled triangle with one of the legs par-
allel to the direction of the periodicity, cf. Figure 7) with angle 60◦ (angle enclosed by
hypotenuse and by the leg parallel to the period) and with a coated layer of height 0.05 µm
(measured in direction perpendicular to echelle profile, height greater or equal to zero).

# Grating data:
echelle L 100. R 30. 0.05 0.1

indicates a General Echelle Grating with a left blaze angle of 100◦, with a right blaze
angle of 30◦, with a coated layer over the left blaze side of height 0.05 µm (measured in
direction perpendicular to the echelle profile, height greater or equal to zero) and with a
coated layer over the right blaze side of height 0.1 µm (measured in direction perpendicular
to the echelle profile, height greater or equal to zero, must be zero if the previous height
is zero). Instead of the two inputs “L 100.” and “R 30.” one can choose also the inputs
“A 90.” for an apex angle of 90◦ or “D 0.2” for a depth of the grating equal to 0.2 µm.
Moreover, any combination of two inputs of the types “A 90.”, “L 110.”, “R 90.”, and
“D 0.2” is accepted. However, the choice “A 90.” and “D 0.2” might be ambiguous. By
definition it fixes an echelle grating with right blaze angle larger than the left. To get the
flipped grating with left blaze angle larger than the right, the input should be “A 90.” and
“D -0.2”. Figure 6 corresponds to a period of 1 µm and to the code words “echelle A 90.
D 0.3 0.03 0.04”.

# Grating data:
trapezoid 60. 0.6 3 0.2 0.1 0.1 0.05
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Figure 7: Echelle grating of type B.

indicates a Trapezoidal Grating (isosceles trapezoid with the basis parallel to the di-
rection of the periodicity, cf. Figure 8) with angle of 60◦ (angle enclosed by basis and the
sides) with a basis of length 0.6 µm consisting of 3 material layers of heights 0.2 µm, 0.1
µm, and 0.1 µm, respectively, and with a coated layer of height 0.05 µm (greater or equal
to zero)

# Grating data:
mtrapezoid
2
0.02 0.06
90. 80.
0.04
3
0.16 0.21 0.18
0.25 0.50 0.75

indicates a Multi Trapezoidal Grating (trapezoids with bases parallel to the direction
of the periodicity, cf. Figure 9) each trapezoid consists of 2 layers with height 0.02µm and
0.06µm, respectively; side-wall angle of these trapezoidal layers are 90◦ and 80◦; the number
of trapezoids is 3 and the lateral width of the trapezoids measured at a height of 0.04µm
is 0.16µm, 0.21µm, and 0.18µm, respectively; finally the midpoints of the trapezoids have
the lateral distances 0.25µm, 0.50µm, and 0.75µm to the starting point of a period.

# Grating data:
lAmellar 3 4
0.2 0.6
-0.2 1.0
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Figure 8: Trapezoidal grating.

0. 0.5 0.7
0.0 0.50 0.90
0.00 0.500 0.900

indicates a Lamellar Grating (rectangular grating consisting of several materials placed
in rectangular subdomains, cf. Figure 10) with 3 columns each divided into 4 rectangular lay-
ers, first column with x-coordinate in 0 µm<x<0.2 µm, second column with 0.2 µm<x<0.6
µm, third column with 0.6 µm<x<period (period given above), whole grating with y-
coordinate s.t. -0.2 µm<y<1.0 µm, first column: first layer with -0.2 µm<y<0. µm, second
with 0. µm<y<0.5 µm, third with 0.5 µm<y<0.7 µm and fourth with 0.7 µm<y<1. µm,
second column: first layer with -0.2 µm<y<0.0 µm, second with 0.0 µm<y<0.50 µm, third
with 0.50 µm<y<0.90 µm and fourth with 0.90 µm<y<1. µm, third column: first layer with
-0.2 µm<y<0.00 µm, second with 0.00 µm<y<0.500 µm, third with 0.500 µm<y<0.900
µm and fourth with 0.900 µm<y<1. µm .

# Grating data:
lAmellar 1 1
0.2 0.8

indicates a Simple Layer (special case of lamellar grating) with layer material s.t. y-
coordinate satisfies 0.2 µm<y<0.8 µm.

# Grating data:

2.0 +i .0


1.9 +i .0


1.7 +i .0


1.0 +i .0 


Figure 9: Multi-trapezoidal grating.
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Figure 10: Lamellar grating.

polygon file1

indicates a Grating Determined by a Polygonal Line (cf. Figure 11) defined by
the data in the file with name “GEOMETRIES/file1”. The x- and y-coordinates of the
points in “GEOMETRIES/file1” are supposed to be scaled such that the period is one (in
“GEOMETRIES/file1”: in each line beginning without ‘#’ there should be the x- and y-
coordinate of one of the consecutive corner points, first point with x-coordinate 0, last
point with x-coordinate 1, same y-coordinate for first and last point, all x-coordinates
between 0 and 1, at least two different y-coordinates, last line should be “End”). If the
program does not find the file “GEOMETRIES/file1”, then it takes the file “file1” of the cur-
rent working directory.

# Grating data:
polygon2 file1 file2

indicates a Coated Grating Determined by Polygonal Lines (cf. Figure 12), i.e. the
grating profile line is defined by the data in the file with name “GEOMETRIES/file1” (in
“GEOMETRIES/file1”: in each line beginning without ‘#’ there should be the x- and y-
coordinate of one of the consecutive corner points, first point with x-coordinate 0, last
point with x-coordinate 1, same y-coordinate for first and last point, all x-coordinates be-
tween 0 and 1, at least two different y-coordinates, last line should be “End”) and the coated
layer is enclosed between the polygonal line of “GEOMETRIES/file1” and the polygonal line
of the file with name “GEOMETRIES/file2” (in “GEOMETRIES/file2”: in each line beginning
without ‘#’ there should be the x- and y-coordinate of one of the consecutive corner points,
first and last point must be corner of first polygon, second polygon must be on left-hand
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Figure 11: Grating determined by a polygonal line.

side of first, one to one correspondence of the corners on the two polygons between first and
last point of second polygon15, quadrilateral domain between corresponding segments on
the left of first polygon, these quadrilaterals must be disjoint, last line should be “End”).
The x- and y-coordinates of the points in “GEOMETRIES/file1” and “GEOMETRIES/file2” are
supposed to be scaled such that the period is one. If the program does not find the files
“GEOMETRIES/file1” and “GEOMETRIES/file2”, then it takes the files “file1” and “file2” of
the current working directory.

# Grating data:
profile

indicates a Grating Determined by a Smooth Parametric Curve, i.e. grating de-
termined by profile line given as {period · (fx(t), fy(t)) : 0 ≤ t ≤ 1}, where the functions
t 7→ fx(t) and t 7→ fy(t) are defined by the c-code of the file “GEOMETRIES/profile.c” (cf. Fig-
ure 13 where fx(t) = t and fy(t) = {1.5 + 0.2 exp(sin(6πt)) + 0.3 exp(sin(8πt))}/{2π}). If
the program does not find the file “GEOMETRIES/profile.c”, then it takes the file “profile.c”
of the current working directory.

# Grating data:
profile par 2 3

15To make it precise, suppose P and Q are the common corner points of the two polygonal curves and
that R1

1, R1
2, . . . , R1

m are the consecutive corner points between P and Q on the first polygonal line and
R2

1, R2
2, . . . , R2

n those on the second polygonal. Then the code requires m = n and that the coating area
between the two polygonal lines is the disjoint union of the triangle PR1

1R
2
1, the quadrilaterals R1

1R
1
2R

2
2R

2
1,

. . . , R1
(m−1)R

1
mR

2
mR

2
(m−1), and the triangle R1

mQR
2
m.
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Figure 12: Grating determined by polygonal lines.

1
0
1.5
0.2
0.3

indicates a Grating Determined by a Smooth Parametric Curve, With Pa-
rameters, i.e. grating determined by profile line given as {period · (fx(t), fy(t)) : 0 ≤
t ≤ 1}, where the functions t 7→ fx(t) and t 7→ fy(t) are defined by the c-code of the file
“GEOMETRIES/profile par.c”. The last code uses 2 integer parameters and 3 real parameters
named IPARaM1, IPARaM2, RPARaM1, RPARaM2, and RPARaM3. The integer param-
eters take the values 1 and 0 following the first line of the calling sequence and the real
parameters take the values 0.15, 1., and 0. following the integer parameter values (cf. Fig-
ure 13 where fx(t) = t and fy(t) = {1.5 + 0.2 exp(sin(6πt)) + 0.3 exp(sin(8πt))}/{2π},
parameter 1 is the index of the curve chosen from “GEOMETRIES/profile par.c”, parameter
0 is the number of corners of the curve, parameters 1.5, 0.2, and 0.3 are scaling param-
eters in the y-coordinate of the curve). Note that any number of parameters is possible
for a corresponding file “GEOMETRIES/profile par.c”. If the program does not find the file
“GEOMETRIES/profile par.c”, then it takes the file “profile par.c” of the current working di-
rectory.

# Grating data:
profile 0.125 ∗ sin(2. ∗M PI ∗ t)

41



Figure 13: Grating determined by a smooth parametric curve.

indicates a Grating Determined by a Simple Smooth Function (cf. Figure 14),
i.e. grating determined by a profile line given as {period · (t, fy(t)) : 0 ≤ t ≤ 1}, where
the function t 7→ fy(t) is defined by the c-code fy(t) = 0.125 sin(2πt), (do not use any
blank/space in the c-code).

# Grating data:
profile 0.5 + 0.5 ∗ cos(M PI ∗ (1.− t)) 0.25 ∗ sin(M PI ∗ t)

indicates a Grating Determined by a Simple Smooth Parametric Curve (cf. Fig-
ure 15), i.e., grating determined by ellipsoidal profile line given as {period · (fx(t), fy(t)) :
0 ≤ t ≤ 1}, where the functions t 7→ fx(t) and t 7→ fy(t) are defined by the c-codes
fx(t) = 0.5 + 0.5 cos(π(1 − t)) and fy(t) = 0.25 sin(πt), respectively (no blank/space in
c-code!).

# Grating data:
profiles

indicates a Grating Determined by Smooth Parametric Curves, i.e. grating de-
termined by n non-intersecting and periodic profile lines given from above to below as
{period · (fx(j, t), fy(j, t)) : 0 ≤ t ≤ 1}, j = 1, . . . , n, where n and the functions
t 7→ fx(j, t) and t 7→ fy(j, t) are defined by the c-code of the file “GEOMETRIES/profiles.c”
(cf. Figure 16 where n = 3, fx(j, t) = t, fy(1, t) = sin(2πt), fy(2, t) = sin(2πt) − 0.5, and
fy(3, t) = sin(2πt)− 1). If the program does not find the file “GEOMETRIES/profiles.c”, then
it takes the file “profiles.c” of the current working directory.

# Grating data:
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Figure 14: Grating determined by a simple smooth function.

profiles par 1 2
3
0.5
0.50

indicates a Grating Determined by Smooth Parametric Curves, With Param-
eters, i.e. grating determined by n non-intersecting and periodic profile lines given from
above to below as {period · (fx(j, t), fy(j, t)) : 0 ≤ t ≤ 1}, j = 1, . . . , n, where n and
the functions t 7→ fx(j, t) and t 7→ fy(j, t) are defined by the c-code included in the file
“GEOMETRIES/profiles par.c”. The last code uses 1 integer parameter and 2 real parameters
named IPARaM1, RPARaM1, and RPARaM2. The integer parameter takes the value 3
following the first line of the calling sequence and the real parameters take the values 0.5
and 1. following the integer parameter values (cf. Figure 16 where n = 3, fx(j, t) = t,
fy(1, t) = sin(2πt), fy(2, t) = sin(2πt)− 0.5, and fy(3, t) = sin(2πt)− (0.5 + 0.50), parame-
ter 3 is the number n of boundary and interface curves, parameter 0.5 is the width of the
first layer and parameter 0.50 that of the second). Note that any number of parameters is
possible for a corresponding file “GEOMETRIES/profiles par.c”. If the program does not find
the file “GEOMETRIES/profiles par.c”, then it takes the file “profiles par.c” of the current
working directory.

# Grating data:
pin

indicates a Pin Grating Determined By Parametric Curve (cf. Figure 17 where
xmin = 0.2, fx(t) = xmin + (1 − 2xmin) t, and fy(t) = 0.5 sin(πt)), i.e. over a flat grating
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Figure 15: Grating determined by a simple smooth parametric curve.

with surface {period · (x, 0) : 0 ≤ x ≤ 1} a material part is attached which is located
between {period · (x, 0) : 0 ≤ x ≤ 1} and {period · (fx(t), fy(t)) : 0 ≤ t ≤ 1}. Here
{(fx(t), fy(t)) : 0 ≤ t ≤ 1} is a simple open arc connecting (fx(0), fy(0)) = (xmin, 0)
with (fx(1), fy(1)) = (1 − xmin, 0) such that 0 < xmin < 0.5 is a fixed number, such that
0 < fx(t) < 1, 0 < t < 1, and such that 0 < fy(t), 0 < t < 1. The functions fx, fy and
the parameter xmin are defined by the code in “../GEOMETRIES/pin.c”. If the program does
not find the file “GEOMETRIES/pin.c”, then it takes the file “pin.c” of the current working
directory.

# Grating data:
cpin

indicates a Coated Pin Grating Determined By Two Parametric Curves (cf. Fig-
ure 18 where xmin = 0.2, a1 = 0.2, a1 = 0.8, fx(1, t) = xmin + (1 − 2xmin) t, fy(1, t) =
0.5 sin(πt), and {(fx(2, t), fy(2, t)) : 0 ≤ t ≤ 1} is the polygonal curve connecting the
four points (fx(1, a1), fy(1, a1)), (fx(1, a1), fy(1, 0.5) + 0.1), (fx(1, a2), fy(1, 0.5) + 0.1), and
(fx(1, a2), fy(1, a2))), i.e. over a flat grating with surface {period · (x, 0) : 0 ≤ x ≤ 1}
a material part is attached which is located between {period · (x, 0) : 0 ≤ x ≤ 1}
and {period · (fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1}. Here {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1}
is a simple open arc connecting (fx(1, 0), fy(1, 0)) = (xmin, 0) with (fx(1, 1), fy(1, 1)) =
(1 − xmin, 0) such that 0 < xmin < 0.5 is a fixed number, such that 0 < fx(1, t) < 1,
0 < t < 1, and such that 0 < fy(1, t), 0 < t < 1. Additionally, a coating layer
is attached located between the first curve {period · (fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1}
and a second curve {period · (fx(2, t), fy(2, t)) : 0 ≤ t ≤ 1}. The last connects the
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Figure 16: Grating determined by smooth parametric curves.

first point period · (fx(1, a1), fy(1, a1)) = period · (fx(2, 0), fy(2, 0)) with the last point
period·(fx(1, a2), fy(1, a2)) = period·(fx(2, 1), fy(2, 1)). Moreover, {(fx(2, t), fy(2, t)) : 0 ≤
t ≤ 1} is a simple open arc above {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1} such that 0 < fx(2, t) < 1,
0 < t < 1. The functions fx(1, .), fx(2, .), fy(1, .), and fy(2, .) and the parameters a1, a2,
and xmin are defined by the code of the file “../GEOMETRIES/cpin.c”. If the program does
not find the file “GEOMETRIES/cpin.c”, then it takes the file “cpin.c” of the current working
directory.

# Grating data:
cpin2

indicates a Coated Pin Grating Determined By Two Parametric Curves, Type
2 (cf. Figure 19 where xmin = 0.2, fx(1, t) = xmin + (1 − 2xmin) t, fy(1, t) = 0.5 sin(πt),
and fx(2, t) = 0.5xmin + (1 − xmin) t, fy(2, t) = 0.8 sin(πt)), i.e. over a flat grating with
surface {period · (x, 0) : 0 ≤ x ≤ 1} a material part is attached which is located between
the line {period · (x, 0) : 0 ≤ x ≤ 1} and {period · (fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1}.
Here {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1} is a simple open arc connecting (fx(1, 0), fy(1, 0)) =
(xmin, 0) with (fx(1, 1), fy(1, 1)) = (1−xmin, 0) such that 0 < xmin < 0.5 is a fixed number,
such that 0 < fx(1, t) < 1, 0 < t < 1, and such that 0 < fy(1, t), 0 < t < 1. Additionally,
a coating layer is attached located between the first curve {period · (fx(1, t), fy(1, t)) : 0 ≤
t ≤ 1} united with the the two straight line segments {period · (x, 0) : x1 ≤ x ≤ xmin} and
{period ·(x, 0) : 1−xmin ≤ x ≤ x2} and a second curve {period ·(fx(2, t), fy(2, t)) : 0 ≤ t ≤
1}. The last connects the first point period ·(x1, 0) = period ·(fx(2, 0), fy(2, 0)) with the last
point period ·(x2, 0) = period ·(fx(2, 1), fy(2, 1)). Moreover, {(fx(2, t), fy(2, t)) : 0 ≤ t ≤ 1}
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Figure 17: Pin grating determined by parametric curve.

is a simple open arc above {(fx(1, t), fy(1, t)) : 0 ≤ t ≤ 1} such that 0 < fx(2, t) < 1,
0 < t < 1. The functions fx(1, .), fx(2, .), fy(1, .), and fy(2, .) and the parameter xmin are
defined by the code of the file “../GEOMETRIES/cpin2.c”. If the program does not find the
file “GEOMETRIES/cpin2.c”, then it takes the file “cpin2.c” of the current working directory.

# Period of grating in micro meter:
2.

# Grating data:
bOX 0.1
-1. 1.
2 3
{ 2.*t }
{ -0.6 }
{ 1.+0.4*cos(2.*M PI*t)}
{ 0.4*sin(2.*M PI*t) }
1. 0.8
1. 0.
1.-0.8

indicates a Box Grating (cf. Figure 20) where the box is [0., period = 2.]× [−1., 1.] given
in µm. The number 0.1 behind the code word BOX is a factor for the mesh size of the FEM
discretization of the box. The box is divided by 2 curves into 3 different material parts.
The curves are given by the c-code in the following 2 times two lines. The first code line is
the x-component of the first curve, the second the y-component of the first curve, the third
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Figure 18: Coated pin grating determined by two parametric curves.

the x-component of the second curve, etc.. The last three input lines define material points.
Material with index one is located in that part of the box which is separated by the above
curves and contains the point (1.,0.8). Material with index two is located in that part of
the box which is separated by the above curves and contains the point (1.,0.), etc.. Note
that the curves must be simple not self intersecting, and they must be contained in the
box. The only allowed intersection points of two different curves are the end points of the
curves. Finally, the material areas separated by the curves in the box must be such that the
area with the first index contains a whole strip under the upper boundary side of the box
and that the area with the last index contains a whole strip over the lower boundary side.
If these conditions are violated, then the computational result will be complete nonsense.

# Grating data:
rough mls name

indicates a Multilayer System With Rough Interfaces (cf. (21)), i.e., nla layers
followed by nmld times nld layers and followed by nlb lowest layers. This system is described
by the file “name”, which is contained in the directory “../GEOMETRIES” (alternatively,
“name” must contain the path of the file). This input file “name” contains the following
ordered data each in a separate line (comment lines begin with ’#’):

– dummy, file name
– width of additional layer above and below the structure (must be positive or could be

’no’ for no additional layer)
– period of grating
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Figure 19: Coated pin grating determined by two parametric curves, Type 2.

– number nla of layers above multilayer system
– number nlb of layers below multilayer system
– number nmld of multilayers inbetween
– number nld of layers in each multilayer
– number ncorn of corner points in each polygonal approximation (interfaces=randomly

generated polygon)
– number nrand of standard Gaussian distributed random numbers needed to generate

interfaces (automatically created if nrand=0, otherwise nrand = ncorn(nla+nldnmld+nlb))
– (optional) standard Gaussian distributed random numbers
– nla widths of layers above multilayer system
– nld widths of layers in each multilayer
– nlb widths of layers below multilayer system
– standard deviation σ[i] of each layer interface for i = 0, . . . , (nla + nldnmld + nlb − 1)
– correlation length corl[i] of each layer interface, for i = 0, . . . , (nla + nldnmld + nlb − 1)

Note that the first of the subsequent refractive indices of the grating must be that of the
superstrate resp. that of the adjacent upper layer. If the width of the additional layers is
positive, then the last of the subsequent refractive indices of the grating must be that of
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Figure 20: Box grating with two curves.

the substrate resp. that of the adjacent lower layer.

# Grating data:
rough mls k name

indicates a Multilayer System With Rough Interfaces k Times. This is just like
above. However, k random realizations are computed and the output values are replaced
by the mean values over the k computations. Standard deviations are added, too.
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Figure 21: Rough multi-layer grating.
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3.6 Stack grating by code words

For the stack grating, there appear the following code words in the geometry input of the
name.dat file:

# Grating data:
stack k
line1
line2

. . .
line2k

Here k is the number of profile curves in the stack. These profile curves are defined by the
following 2k code word lines. Each profile curve is represented by two of the lines. They
are listed from above to below. No intersection points of these curves are allowed. With
the exception of pin curves the j-th curve (j = 1, . . . , k) takes the form {(fx(j, t), fy(j, t)) :
0 ≤ t ≤ 1} with the first end point such that fx(j, 0) = 0, with the second end point such
that fx(j, 1) = 1, and with 0 < fx(j, t) < 1 for 0 < t < 1.

If the defining two lines are

line2j−1 echellea R d1
line2j = h1

then we get an Echelle Type A grating profile with right blaze angle greater than 45◦,
with depth d1 and without coated layer (cf. Section 3.5). The profile is vertically shifted
by h1 µm. Note that 0 < d1 and d1 is less than half the period d. If the input letter R
is replaced by L, then the left interior angle is greater than 45◦. Moreover, if the input
letter R is replaced by A and the following number d1 by α, then the left interior angle is
α degrees.

If the defining two lines are

line2j−1 echelleb α
line2j = h1

then we get an Echelle Type B grating profile with angle α and without coated layer
(cf. Section 3.5). The profile is vertically shifted by h1 µm. Note that 0 < α < 90.

If the defining two lines are

line2j−1 echelle L α R β
line2j = h1

then we get a General Echelle grating profile with a left blaze angle α (in degrees) and
with a right blaze angle β (in degrees). Instead of the two inputs “L α” and “R β” one can
choose also the inputs “A γ” for an apex angle γ (in degrees) or “D d0” for a depth of the
grating equal to d0 (in µm). Moreover, any combination of two inputs of the types “A γ”,
“L α”, “R β”, and “D d0” is accepted. However, the choice “A γ” and “D d0” might be
ambiguous. By definition it fixes an echelle grating with right blaze angle larger than the
left. To get the flipped grating with left blaze angle larger than the right, the input should
be “A γ D -d0” (cf. the last section). The profile is vertically shifted by h1 (in µm). Note
that, for technical reasons, the blaze angles α and β must be less than 90◦.
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If the defining two lines are

line2j−1 binary i d0 d1 d2 . . . d2i
line2j = h1

then we get a Binary Grating Profile with i teeth, with height d0, with transition
points d1, d2, . . . , d2i, and without coating layer. In other words, before the shift, the
grating function is zero between 0 and d1, between d2 and d3, . . . , between d2i−2 and d2i−1,
and between d2i and the period d. The grating function is d0 between d1 and d2, between d3
and d4, . . . , between d2i−3 and d2i−2, and between d2i−1 and d2i−1. The profile is vertically
shifted by h1 µm. Note that i ≤ 6, 0 < d0, 0 < d1 < d2 < . . . < d2i < d with d the period.
For i equal to 1 or 2, either d1 = 0 or d2i = d is allowed.

If the defining two lines are

line2j−1 trapezoid d1 d2 d3 α
line2j = h1

then we get a symmetric Trapezoidal Grating profile (cf. Section 3.5) with the trapezoid
starting at x = d1, ending at x = d2, and with the angle α and the height d3. The profile is
vertically shifted by h1 µm. Note that we require d3 > 0, 0 ≤ d1 < d2 ≤ d, and 0 < α < 90
with d the period. The height must be sufficiently small such that the trapezoid does not
degenerate.

If the defining two lines are

line2j−1 profile ccode
line2j = h1

then we get a profile curve Determined By A Smooth Simple Curve defined by
fx(j, t) = t and fy(j, t) = ccode. The profile is vertically shifted by h1 µm. Note that ccode
is an expression of the parameter argument t, 0 ≤ t ≤ 1, written in the c programming
language. This expression will appear in the code as “fct = ccode;”. Even an if case
is possible. E.g. substituting the code “0; if(t < 0.3)fct = t; else if(t < 0.6)fct =
0.6− t; else fct = 0.” into “fct = ccode;” leads to the meaningful code:

fct=0;
if (t<0.3) fct=t;
else if (t<0.6) fct=0.6-t;
else fct=0.;

The code must be simple since the program can read no more than 399 symbols per input
line.

If the defining two lines are

line2j−1 profile ccode1 /##/ ccode2
line2j = h1

then we get a profile curve Determined By A Smooth Simple Parametric Curve
defined by fx(j, t) = ccode1 and fy(j, t) = ccode2. The profile is vertically shifted by h1 µm.
The same remarks as in the previous mode apply.

If the defining two lines are
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line2j−1 profilei ccode
line2j = h1 d1 d2 . . . di

then we get a profile curve Determined By A Non-smooth Simple Curve defined by
fx(j, t) = t and fy(j, t) = ccode. The curve has i (1 ≤ i ≤ 9) corners with the parameter
arguments d1, d2, . . ., di such that 0 < d1 < d2 < . . . < di. The profile is vertically shifted
by h1 µm. The same remarks as in the previous mode apply.

If the defining two lines are

line2j−1 profilei ccode1 /##/ ccode2
line2j = h1 d1 d2 . . . di

then we get a profile curve Determined By A Non-smooth Simple Parametric
Curve defined by fx(j, t) = ccode1 and fy(j, t) = ccode2. The curve has i (1 ≤ i ≤ 9)
corners with the parameter arguments d1, d2, . . . ,di such that 0 < d1 < d2 < . . . < di. The
profile is vertically shifted by h1 µm. The same remarks as in the previous mode apply.

Beside the above profile curves, pin curves are possible. Then the meaning of fx and
fy is changed. The curve t 7→ (fx(j, t), fy(j, t)) with 0 ≤ t ≤ 1 connects the points
(fx(j, 0), fy(j, 0)) = (0, 0) and (fx(j, 1), fy(j, 1)) = (1, 0). The corresponding pin curve
is just the affine image of the last curve connecting the two points (fx(j2, p1), fy(j2, p1)) and
(fx(j2, p2), fy(j2, p2)) of the profile curve with index j2. I.e.:

t 7→
(
fx(j2, p1)

+fx(j, t) ∗ [fx(j2, p2)− fx(j2, p1)]
−fy(j, t) ∗ [fy(j2, p2)− fy(j2, p1)],
fy(j2, p1)

+fx(j, t) ∗ [fy(j2, p2)− fy(j2, p1)]

+fy(j, t) ∗ [fx(j2, p2)− fx(j2, p1)]
)

Thus, for each of the above profile curves, we can define several areas with new material
attached to it and bounded by the just mentioned pin curves. These areas are listed
immediately before the profile curve and in correspondence with their attachment from the
right to the left. In other words, the index j2 of the profile curve to which the j-th pin
curve is attached to is the smallest integer l larger than j such that l is an ordinary profile
curve, and, in case of two and more pins, the j-th pin curve is located to the right of the
(j + 1)-th pin curve. No intersections of pin and profile curves are allowed.

If the defining two lines are

line2j−1 pin ccode
line2j = p1 p2

then we get a Simple Smooth Pin Curve defined by fx(j, t) = t and fy(j, t) = ccode.
The parameter arguments p1 and p2 of the connection points to the ordinary profile curve
are fixed by the second line. The remarks on the profile curves apply also here.

If the defining two lines are
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line2j−1 pin ccode1 /##/ ccode2
line2j = p1 p2

then we get a Simple Smooth Parametric Pin Curve defined by fx(j, t) = ccode1
and fy(j, t) = ccode2. The parameter arguments p1 and p2 of the connection points to the
ordinary profile curve are fixed by the second line. The remarks on the profile curves apply
also here.

If the defining two lines are

line2j−1 pini ccode
line2j = p1 p2 d1 d2 . . . di

then we get a Simple Non-smooth Pin Curve defined by fx(j, t) = t and fy(j, t) = ccode.
The curve has i (1 ≤ i ≤ 9) corners with the parameter arguments d1, d2, . . . , di such that
0 < d1 < d2 < . . . < di. The remarks on the profile curves apply also here.

If the defining two lines are

line2j−1 pini ccode1 /##/ ccode2
line2j = p1 p2 d1 d2 . . . di

then we get a Simple Non-smooth Parametric Pin Curve defined by fx(j, t) = ccode1
and fy(j, t) = ccode2. The curve has i (1 ≤ i ≤ 9) corners with the parameter arguments
d1, d2, . . . , di such that 0 < d1 < d2 < . . . < di. The remarks on the profile curves apply
also here.

For example, Figure 22 presents the stack grating generated by

# Grating data:
stack 5
echellea R 0.3
1.2
profile 0.3 ∗ sin(2. ∗M PI ∗ t)
0.8
pin 0.5− 0.5 ∗ cos(M PI ∗ t) /##/ sin(M PI ∗ t)
0.6 0.9
pin1 0; if (t < 0.5) fct = t; else fct = 1.− t
0.1 0.4 0.5
profile t /##/ 0.
0.
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Figure 22: Stack grating.
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4 Input of Refractive Indices

The optical properties of the materials involved in the grating are characterized by the
refractive indices. Hence, for each material piece, the corresponding index must be added
through the input file “name.dat”. This is done in lines like the following:

# Optical index (refractive index) of cover material.
Air

# Optical indices of the materials of the upper coatings.
1.1
1.2

# Optical indices of the materials of the lower coatings.
2.3 +i .0
2.2 +i .5
2.1 +i .0

# Optical index of substrate material.
Al

. . .

# Wave length in micro m (lambda).
.635

. . .

# Temperature:
20.

. . .

# Optical indices of grating materials.
1.2
user
1.7 +i .0
2.3 +i .0

As seen in this example, the indices can be added as real or complex numbers (e.g. “1.1”
resp. “2.2 +i .5”) or as code words of known materials (e.g. “Al” for aluminum). In
the last case there is a program which interpolates the refractive index from a table in
dependence on the temperature and on the wave length. The temperature enters only
through such materials given by code words. If the indices are all numbers, then the
temperature is not used. The code words for materials can be “Air”, “Ag”, “Al”, “Au”,
“CsBr”, “Cu”, “InP”, “MgF2”, “NaCl”, “PMMA”, “PSKL”, “SF5”, “Si”, “TlBr”, “TlCl”,
“Cr”, “ZnS”, “Ge”, “TiO2r”, “Quarz”, “AddOn”, and “Si1.0” - “Si2.0”. Here “Sia.b” with
the real number “x=a.b” indicates a blending of “SiO” and “SiO2” with the refractive index
n = (2 − x) · nSiO + (x − 1) · nSiO2 . For example, “Air” corresponds to an index n = 1.
Additionally, if the user has linked the right sources, the refractive indices of the program
package IMD can be used as well. These are:
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a-Al2O3 hagemann a-Al2O3 llnl cxro a-Al2O3
a-Al2O3 palik a-C hagemann a-C llnl cxro
Ac llnl cxro a-C Ac
a-C palik a-C windt88 a-C windt91
a-C windt Ag2O llnl cxro Ag2O
Ag hagemann Ag leveque Ag llnl cxro
IMD-Ag Ag palik Ag windt
Al2O3-e Al2O3-e palik Al2O3
Al2O3 palik Al.3Ga.7As Al.3Ga.7As palik
AlAs AlAs palik Al llnl cxro
IMD-Al AlN llnl cxro AlN
Al palik AlSb AlSb palik
Al shiles Al windt a-SiC kortright
a-SiC llnl cxro a-SiC a-SiH
a-SiH palik a-Si llnl cxro a-Si
a-SiO2 llnl cxro a-SiO2 a-SiO2 palik
a-Si palik a-Si windt88 a-Si windt91
a-Si windt92 Au canfield Au hagemann
Au llnl cxro Au nilsson IMD-Au
Au palik Au weaver Au windt
B2O3 llnl cxro B2O3 B4C llnl cxro
B4C BaTiO3-e BaTiO3-e palik
BaTiO3 BaTiO3 palik Be llnl cxro
Be BeO llnl cxro BeO
BeO palik Be palik B llnl cxro
B BN llnl cxro BN
C10H8O4 llnl cxro C10H8O4 C5H8O2 llnl cxro
C5H8O2 CaF2 llnl cxro CaF2
CaF2 palik CH2CCl2 llnl cxro CH2CCl2
CH2 llnl cxro CH2 Co2O3 llnl cxro
Co2O3 Co3O4 llnl cxro Co3O4
Co llnl cxro Co CoO llnl cxro
CoO Co palik CoSi2 llnl cxro
CoSi2 Cr2O3 llnl cxro Cr2O3
Cr3C2 llnl cxro Cr3C2 Cr3C2 windt
Cr llnl cxro IMD-Cr CrO llnl cxro
Cr palik CsI llnl cxro CsI
CsI palik Cu2O llnl cxro Cu2O
Cu2O palik Cu4Si llnl cxro Cu4Si
Cu llnl cxro IMD-Cu CuO llnl cxro
CuO CuO palik Cu palik
c-ZnSe c-ZnSe palik c-ZnS
c-ZnS palik d-C llnl cxro d-C
d-C palik d-C windt Fe2O3 llnl cxro
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Fe2O3 Fe3O4 llnl cxro Fe3O4
Fe llnl cxro Fe FeO llnl cxro
FeO Fe palik GaAs llnl cxro
GaAs GaAs palik GaAs windt
GaP llnl cxro GaP GaP palik
GaSb llnl cxro GaSb GaSb palik
g-C llnl cxro g-C Ge llnl cxro
Ge Ge palik H2O llnl cxro
H2O H2O palik Hf llnl cxro
Hf HfO2 llnl cxro HfO2
Hf-te lynch Hf-tm lynch Hf windt
Hg llnl cxro Hg Hg palik
HgTe HgTe palik h-ZnS-e
h-ZnS-e palik h-ZnS h-ZnS palik
InAs InAs palik IMD-InP
InP palik InSb InSb palik
Ir llnl cxro Ir Ir palik
Ir windt ir-ZnSe ir-ZnSe palik
ir-ZnS ir-ZnS palik KBr
KBr palik KCl KCl palik
K K palik LiF
LiF palik LiNbO3-e LiNbO3-e palik
LiNbO3 LiNbO3 palik Li
Li palik MgF2-e MgF2-e palik
IMD-MgF2 MgF2 palik Mg llnl cxro
Mg MgO llnl cxro MgO
MgO palik Mn3O4 llnl cxro Mn3O4
Mn llnl cxro Mn MnO2 llnl cxro
MnO2 Mo2C llnl cxro Mo2C
MoC llnl cxro MoC Mo llnl cxro
Mo MoO2 llnl cxro MoO2
MoO3 llnl cxro MoO3 Mo palik
MoS2 llnl cxro MoS2 MoSi2 llnl cxro
MoSi2 MoSi2 windt Mo windt88
Mo windt91 Mo windt92 IMD-NaCl
NaCl palik NaF NaF palik
Na Na palik Nb2O5 llnl cxro
Nb2O5 Nb llnl cxro Nb
NbO2 llnl cxro NbO2 NbO llnl cxro
NbO Nb palik Nb weaver
Nb windt Ni.8Cr.2 llnl cxro Ni.8Cr.2
Ni.93V.07 llnl cxro Ni.93V.07 Ni llnl cxro
Ni NiO llnl cxro NiO
Ni palik Os llnl cxro Os lynch
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Os OsO2 llnl cxro OsO2
Os palik Os windt PbSe
PbSe palik PbS PbS palik
PbTe PbTe palik Pd llnl cxro
Pd PdO llnl cxro PdO
Pd palik Pd weaver Pd windt
Pt llnl cxro Pt PtO2 llnl cxro
PtO2 PtO llnl cxro PtO
Pt palik Pt weaver Pt windt
Re2O7 llnl cxro Re2O7 Re llnl cxro
Re ReO2 llnl cxro ReO2
ReO3 llnl cxro ReO3 Re-te lynch
Re-tm lynch Re windt Rh2O3 llnl cxro
Rh2O3 Rh llnl cxro Rh
Rh palik Rh weaver Rh windt
Ru cox Ru llnl cxro Ru
RuO2 llnl cxro RuO2 RuO4 llnl cxro
RuO4 RuSi llnl cxro RuSi
Ru-te weaver Ru-tm weaver Ru weaver
Ru windt88 Ru windt92 Sc2O3 llnl cxro
Sc2O3 Sc llnl cxro Sc
ScN llnl cxro ScN Se-e
Se-e palik Se Se palik
Si.25Ge.75 Si.25Ge.75 palik1 Si.25Ge.75 palik2
Si3N4 llnl cxro Si3N4 Si3N4 palik
Si3N4 windt Si.5Ge.5 Si.5Ge.5 palik1
Si.5Ge.5 palik2 Si.8Ge.2 Si.8Ge.2 palik1
Si.8Ge.2 palik2 SiC llnl cxro SiC
SiC osantowski SiC palik SiC windt
SiC yanagihara Si llnl cxro IMD-Si
SiO2-e SiO2-e palik SiO2 llnl cxro
SiO2 SiO2 palik SiO llnl cxro
SiO SiO palik Si palik
Si windt Sn llnl cxro Sn
SnO2 llnl cxro SnO2 SnO llnl cxro
SnO SnTe SnTe palik
SrTiO3 SrTiO3 palik Ta2O5 llnl cxro
Ta2O5 TaC llnl cxro TaC
Ta llnl cxro Ta TaN llnl cxro
TaN Ta palik Ta weaver
Ta windt Te-e Te-e palik
Te Te palik ThF4
ThF4 palik TiC llnl cxro TiC
TiC palik Ti kihara Ti llnl cxro
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Ti TiN llnl cxro TiN
TiN palik TiO2-e TiO2-e palik
TiO2 llnl cxro TiO2 TiO2 palik
Ti weaver Ti windt V2O3 llnl cxro
V2O3 V2O5 llnl cxro V2O5
VC llnl cxro VC VC palik
V kihara V llnl cxro V
VN llnl cxro VN VN palik
VO2 llnl cxro VO2 VO llnl cxro
VO V palik V weaver
W llnl cxro W WO2 llnl cxro
WO2 WO3 llnl cxro WO3
W palik WSi2 llnl cxro WSi2
W weaver W windt88 W windt91
Y2O3 llnl cxro Y2O3 Y2O3 palik
Y llnl cxro Y Y windt
Zn llnl cxro Zn ZnO llnl cxro
ZnO ZnTe ZnTe palik
Zr llnl cxro Zr lynch Zr
ZrN llnl cxro ZrN ZrO2 llnl cxro
ZrO2 Zr-te lynch Zr windt

On the other hand, the value of the refractive index can be interpolated from a user
defined table, indicated by the name of the file. This file is to be located in the current
directory of the computation (CLASSICAL/CONICAL/OPTIM). Its name must begin with the
letter “u”, must not have a “∼” as a second letter, and may consist of no more than five
letters like e.g. “user”. The file consists of at most 1000 lines each with three real numbers,
the first is the wave length in micro meter, the second the real part of the corresponding
optical index, and the third the imaginary part of the index. At the end of each line a
comment beginning with the sign # can be added. Also the lines beginning with # are
comments. Optical indices with negative real or imaginary parts are not admitted.

If the refractive index is given by a number, then its value is independent for all com-
putations invoked by the input file. However, if the wavelength is varying in accordance
with the input file, then a refractive index independent of the wavelength is not realistic.
Hence, for varying wavelength, the input of refractive indices through user defined tables
resp. through the above mentioned code words is mandatory. In this case an input by
numbers is not accepted.

As seen in the example presented at the beginning of this section, first the index of the
cover material is given. Then the indices of the materials of upper coated layers follow.
These are rectangular layers over the whole period, and their number and widths are given
in extra lines before the indices not presented in the example lines from above. If the
number of coated layers is zero, then no lines with optical indices are needed. Next the
indices of the materials of lower coated layers and that of the substrate follow. The indices
of the materials in the area between upper and lower coatings (resp. between cover and
substrate material if no rectangular coatings exist) are the last refractive indices of the
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input files. These indices are listed from above to below if possible. In some cases the
ordering is indicated in the description of the geometrical part, or the indices have to be in
accordance with the numbering of the material parts in the file “name.inp”. In any case,
the first index of the “grating materials” is to be the same as that of the adjacent last upper
coating layer (resp. of the cover if there does not exist any rectangular upper coating) and
the last index of the “grating materials” is to be the same as that of the adjacent first lower
coating layer (resp. of the substrate if there does not exist any rectangular lower coating).

The input of refractive indices can be checked using the executables FEM CHECK resp.
GFEM CHECK (cf. Sect. 5.3).

5 Computation of Efficiencies Using FEM in CLAS-

SICAL

5.1 How to get an input file “name2.dat”?

First an input file “name2.dat” (cf. the enclosed data file in 12.2) in the subdirectory
CLASSICAL is needed. To get this, change the directory to CLASSICAL, copy one of the
existing files with tag “.dat”, e.g. the file “example.dat” and call it “name2.dat”.

cd DIPOG-2.1/CLASSICAL
cp example.dat name2.dat

Change “name2.dat” in the editor according to your requirements. You will find the nec-
essary information as comments in the file “name2.dat”. Indeed, each line beginning with
“#” is a comment. Comment lines can be added and deleted without any trouble.

5.2 Simple calculation with minimal output

Now enter the command:

FEM name2

The program is running and produces an output on the screen. Additionally, a result file is
produced (compare the similar file enclosed in point 12.6) the name of which is announced
on the screen. You will find all Rayleigh coefficients, the efficiencies, and energies on both
the screen and in this file. Note that the result file has the tag “.res” and is located in the
subdirectory RESULTS. If a lot of data is produced, then computer programs should have an
easy access to the data. To enhance readability by computer, a second output file can be
produced setting a switch in “name2.dat” to yes. The name of this second file is the same
as that of the first but with tag “.erg” instead of tag “.res”. The file is normally located in
the subdirectory RESULTS. The name “name3” of the result files “../RESULTS/name3.res”
resp. “../RESULTS/name3.erg” is indicated by the “name2.dat” lines:

# Name of output file.
name3

However, if the code is started from a directory different from CLASSICAL or if the output
file should be written into a different directory, then the file is to be specified by adding its
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path as:

# Name of output file.
path/name3

Again the tag “.res” resp. “.erg” will be added. In particular, for an output file in the
current working directory use:

# Name of output file.
./name3

The computation proceeds over several levels, where the mesh size is halved at each new
level. The maximal number of levels is indicated at the end of “name2.dat” e.g. by:

# Number of levels.
3

However, if efficiencies are computed for more than one angle of incidence or for several
wave lengths (or if a single value of angle/wave length is given by incremental or vector
mode, i.e. beginning with the letter I or V), then the computation is performed for the
highest level, only.

The ideal choice for the level would be the minimal positive integer such that the
solution falls under a certain error bound. We have implemented the following choice. If
“name2.dat” contains

# Number of levels.
e ε

with the lower case letter “e” and with ε a number greater than zero, then the code computes
the efficiency for the levels 1, 2, . . . (but no more than 15) until the maximum of the
differences of efficiencies corresponding to two consecutive levels is less than ε. Thus,
assuming a monotonic convergence, the smallest level for the given error bound ε is the
smaller one of the last two consecutive levels. The efficiencies will be presented on the
screen and in the output files for this level. (In other words, a computation for a level
higher by one than that of the output is necessary for this variant.) If a computation over
several angles, wave lengths or polarizations is required, then the “optimal” level will be
determined for the first angle, for the first wave length resp. for the Tm polarization, only.
All other calculations are performed with this level. Clearly, there is no warranty that the
efficiencies really deviate by a number less than ε from the true values.

5.3 Check before computation, more infos, and plots?

Instead, if openGL is available and if you wish to check your input data, then use the
command:

FEM CHECK name2

All the input information without output data will appear on the screen and in the result
file. Moreover, there will appear a picture of the grating geometry with indicated refractive
indices on the screen. The picture looks like that on the right-hand side in Figure 5. If
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Figure 23: Real part of transverse component of magnetic field. Output of FEM PLOT

via openGL in CLASSICAL.

indicated in the data file “name.dat”, then an eps.file of the cross-section is produced.
Instead, if you use the command

FEM FULLINFO name2

then the same is done as in point 5.2. Additionally, there appears more information (in-
cluding the full input data and the convergence history, cf. the enclosed file in point 12.5)
on the screen and in the result file.

Instead, if openGL or GNUPLOT is available and if you use the command

FEM PLOT name2

then you have the same results as in point 5.2. Additionally, you will see pictures of the
real part, the imaginary part (cf. Figure 23 for an openGL picture and Figure 24 for a
GNUPLOT picture), and the square modulus of the solution (z-component of electric field for
Te polarization, z-component of magnetic field for Tm polarization). Note that the square
modulus is proportional to the energy intensity distribution of the wave. Moreover, similar
pictures for the fields above and below the coated grating area will be plot. Program stops
at each picture.

To control the graphical facilities of GLTOOLS in FEM PLOT, use:

Backspace: Enter user control mode.
tab: toggle state change mode.
Return: Quit user control mode.
Space: Mode control.
+: Increase mouse sensitivity.
,: decrease control parameter.
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Figure 24: Imaginary part of transverse component of magnetic field. Output of executable
GFEM PLOT in CLASSICAL via GNUPLOT.

-: Decrease mouse sensitivity.
.: increase control parameter.
¡: Zoom out.
¿: Zoom in.
?: This help.
B: Toggle background color (black/white).
d: Dump actual picture to ppm file (look for *-*.ppm).
F: Toggle rendering volume frame (bounding box) drawing.
I: Change number of isolines.
.: increase control parameter by a factor.
O: Toggle Ortho.
D: Print actual picture using ppm dump.
R: Reset to internal default.
S: Save actual state (look for .*-rndstate).
V: Start/Stop video recording.
a: Switch to GUI.
c: Toggle remembered lists.
g: Toggle Gouraud/flat shading.
h: This help.
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i: Toggle isoline mode.
,: decrease control parameter by a factor.
l: Toggle level surface mode.
m: Toggle model display when moving.
p: Dump actual picture to eps file (look for *-*.eps).
q: Mode control (Quit).
r: Restore last saved state.
v: Toggle vscale for plane sections.
w: toggle wireframe mode.
x: Show x orthogonal plane section.
y: Show y orthogonal plane section.
z: Show z orthogonal plane section.
prev: toggle state change mode.
next: toggle state change mode.
left: move left.
up: move up.
right: move right.
down: move down.
Backspace: Enter user control mode.

To continue the computation of the main program press Bar/Space.
After the installation with the package GNUPLOT, the pictures are created interactively

with the program on the main terminal window. To continue the computation of the main
program, click the main terminal window and press Enter/Return.

Further, if you use the command

GFEM MATLAB name2

then you have the same computational results as in point 5.2. Additionally, you will obtain
data files prepared for a Matlab call. More precisely, using GFEM MATLAB requires a data
file “name2.dat” for a calculation over a single wavelength, a single angle of incidence, and
a single level of discretization. Note that if the last should be larger than one, then a single
level computation can be enforced by defining the angle of incidence with an incremental
input (e.g., the input “I 45 46 20” for the angle results in a single computation with an
angle of 45◦). Depending on the input polarization state, the program produces the files:

“fct RP TE.m”: real part of z−component of electric field vector
for Te polarization

“fct IP TE.m”: imaginary part of z−component of electric field
vector for Te polarization

“fct IN TE.m”: intensity of electric field vector for Te polarization
“fct RP TM.m”: real part of z−component of magnetic field vector

for Tm polarization
“fct IP TM.m”: imaginary part of z−component of magnetic field

vector for Tm polarization
“fct IN TM.m”: intensity of electric field vector for Tm polarization

Here the intensity I is defined as I := <en · |E|2, where n is the refractive index and where
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Figure 25: Trial basis function over a single grid triangle.

E is the electric field vector. If the package Matlab is installed at your computer, you can
call these files from Matlab to see the plots.

Finally, if you use the command

GFEM MOVIE name2

then the input file “name2.dat” is required to contain a single wave length and a single state
of polarization, only. The program produces a Matlab file “fct TE.m” for Te polarization
and “fct TM.m” for Tm polarization. If this is called from Matlab a movie of the time
dependent third component of the electric field for Te polarization and of the magnetic
field for Tm is shown. Moreover, a movie file “fct TE.avi” resp. “fct TM.avi” is created

6 Computation of Efficiencies Using GFEM in CLAS-

SICAL

The same computation from the last section can be performed by generalized Fem (cf. the
result file enclosed in point 12.6). The latter is nothing else than the variational approach
of the conventional Fem combined with a new trial space for the approximation of the
unknown solution. The trial space is defined over the triangular Fem partition and the trial
functions are piecewise approximate solutions of the Helmholtz equation. More precisely, for
integers nDOF and nLFEM with 0 < nDOF, with 1 < nLFEM, and with [nLFEM + 1] a multiple
of [nDOF + 1], the degrees of freedom of the trial space are the function values at the corner
points of the triangulations and at the nDOF points of a uniform partition of each triangle
side. The restrictions of the trial functions to the triangle sides are polynomial interpolants
of the degrees of freedom. The restrictions of the trial functions to the triangles are the
finite element solutions of the Dirichlet problem for the Helmholtz equation over a uniform
triangulation of the partition triangle into [nLFEM+1]×[nLFEM+1] equal subtriangles (cf. the
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trial functions over the grid triangle indicated in Figure 25 with nDOF = 3 and nLFEM = 7).
Hence, GFEM treats the same problems as FEM but is more convenient to treat higher wave
numbers and faster for simple geometries. In order to accelerate the computation, one can
use a Fem grid which is a uniform refinement of a coarse grid with each coarse triangle split
into [nUPA × nUPA] congruent subtriangles. In this case, the trial space over the congruent
grid triangles (approximate Dirichlet solutions) have to be computed only ones and can be
reused several times.

To use generalized Fem for Fem, the executables FEM, FEM CHECK, FEM FULLINFO,
and FEM PLOT are to be replaced by the codes GFEM, GFEM CHECK, GFEM FULLINFO, and
GFEM PLOT, respectively. These executable use the same input file “name2.dat” but require
the additional input file “generalized.Dat” (cf. the enclosed file in 12.3). Normally the lat-
ter is to be located in the current working directory. If there is no such file in the current
working directory and if the output is written into a directory indicated by a certain path,
then the code looks for the “generalized.Dat” file also in the directory determined by this
path. The file “generalized.Dat” fixes the parameters:

nDOF

Additional degrees of freedom on each triangle side. Indeed, the trial functions on
each subdivision triangle are approximate solutions of the Dirichlet problem for the
Helmholtz equation s.t. their restriction to the triangle sides coincides with the La-
grange interpolation polynomials on the triangle side. Here interpolation is taken over
a uniform grid with [nDOF + 2] interpolation knots including the two end-points.

nLFEM

Approximate solution determined by Fem over subdivision triangle, where an addi-
tional uniform Fem partition on each grid triangle is chosen such that the stepsize
is side length divided by [nLFEM + 1].

nUPA

This is for additional uniform partition of all primary grid triangles into nUPA×nUPA

equal subdomains, i.e. the original side of the grid triangle is split into nUPA sides of
uniform partition subtriangles. After this uniform refinement the degrees of freedom
and the trial space of approximate Helmholtz solutions are defined using nDOF and
nLFEM.

Change these parameters according to your diffraction problem, computer memory capacity,
and computing time requirements. How should they be chosen?

Suppose that nGP is the number of grid points. Roughly speaking: For the Fem, the
computation time as well as the necessary storage capacity is proportional to [nGP]2. The
time for GFEM is proportional to

[nGP]2 × [nLFEM + 1]2

[nUPA]2
+ [nGP]2 × [nDOF + 1]2 (6.1)

and the storage to [nGP]2 × [nDOF + 1]2. Hence, a doubling of [nLFEM + 1] leads to about
the same computing time as halving the mesh size of the grid. Taking into account (6.1),
we recommend to choose nUPA as high as possible since the accuracy is almost independent
of nUPA but the computing time reduces significantly. The only exceptional case, when a
larger nUPA is not efficient, occurs if the geometry forces the triangulation to have a few
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large triangles and a huge number of small triangles (e.g. geometries with thin layers).
In this case, the next level uniform partition increases the number of grid points and the
computation time significantly, whereas a standard triangulation with halved mesh size
leads to a small increase of grid points and to about the same numerical error.

If nDOF = 0 and nLFEM = 1, then the conventional Fem is computed. With nDOF =
0, a higher nLFEM is not recommended. For nDOF > 1 and not so restrictive accuracy
requirements, nLFEM = 2nDOF + 1 is a good choice. For nDOF > 1 and challenging accuracy
requirements, a larger nLFEM is useful. E.g. if nDOF = 3, then nLFEM = 31 is a good
choice. For nDOF = 7, one should take, e.g., nLFEM = 127 and, for nDOF = 15, the value
nLFEM = 511. However, large nLFEM will lead to long computation times at least if nUPA

is not large. In case of large wave numbers, long computation times cannot be avoided.
More hints on how to chose the right nDOF and nLFEM will be given in the numerical tests
in Section 9.

If there is a system of many layers above or below the grating structure, the computation
of the non-local boundary condition may become slow. On the other hand, a computation
based on piecewise linear approximation like for the FEM matrix might be unnecessary.
Note that each boundary segment is split into nLFEM + 1 equal parts, and the polynomial
basis function is approximated by a piecewise linear interpolation over this uniform grid. In
order to reduce computation time, the user can choose a smaller nLFEM for the discretization
of the boundary condition. To this end he has to set the environment variable BND n LFEM

to the desired value BND nLFEM. This value should be such that BND nLFEM +1 is a multiple
of the number nDOF + 1 and that nDOF ≤ BND nLFEM ≤ nLFEM.

For the computation of the approximate trial functions of the generalized finite element
method, a finite element system of dimension (nLFEM− 1) ∗ nLFEM/2 is to be solved. If the
user sets the environment variable CHOOSE PMETHOD to yes, then the solution of this sparse
finite element system is reduced to the solution of an (nDOF − 1) ∗ nDOF/2 dimensional
finite element system, where the trial functions are the piecewise linear interpolations of
the bubble functions for the p-version of the finite element method. The polynomial degree
is p = nDOF + 1. Thus the generalized finite element method turns into a p-method with
elimination of internal degrees of freedom and with finite element matrix approximated by
piecewise linear interpolation.

7 Computation of Efficiencies Using FEM/GFEM in

CONICAL

The computation in the case of conical diffraction is completely the same as for the classical
computation (cf. the result file enclosed in point 12.7). The same names of executables can
be used as in Section 2. The only differences are:

- All computations are to be done in CONICAL instead of CLASSICAL.
- Of course, the now used input file “name2.dat” (cf. the enclosed data file in 12.4) is

longer than that of the classical case. To create such a file copy the example file
“example.dat” in CONICAL not that in CLASSICAL.

- The input file for the generalized method “generalized.Dat” is the same but has a
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Figure 26: Efficiencies depending on wavelength. Output of PLOT PS.

new name. Now it is called “conical.Dat”.

8 Plot a Graph with the Efficiencies

If a result file “name3.res” is produced containing the values for several wave lengths or
incident angles, then one can have a look at the two-dimensional graph of the efficiencies
depending on the wave length or incident angle. Make sure to be in the subdirectory
RESULTS, where the result file, e.g. “name3.res” exists. Then enter the command:

PLOT DISPLAY name3 *1,*2,*3,*4

Here *1, *2, *3, and *3 stand for the efficiency/energy to be plot. E.g. setting *1 equal to
R-1 means efficiency of reflected mode of order -1, setting *2 equal to T+0 means efficiency
of transmitted mode of order 0, setting *3 equal to RE means total reflected energy, and
setting *4 equal to TE means total transmitted energy. The number of efficiency/energy
can vary between one and nine. Now a graph with the efficiencies/energies pops up on the
screen (cf. Figure 26). To interrupt the presentation of the picture, press Enter/Return.

Alternatively, one can enter the command:

PLOT PS name3 *1,*2,*3,*4

Everything is like in the previous case. However, instead of showing the graph on the
screen, a ps file (cf. Figure 26) is produced. The name of the ps file will be printed on the
screen.

In the case of classical diffraction and for result files with varying wave lengths or/and
varying angles of incidence, one can enter the command:

PLOT MATLAB name3 *1
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Everything is like in the previous case. However, instead of creating a two-dimensional
graph, a Matlab file is produced. This file with the tag “.m” can be called from Matlab and
shows a graph or an isoline picture of the efficiency, phase shift, resp. energy depending on
the wave length and the angles of incidence. The name of the Matlab file will be printed
on the screen. Similarly, in the case of classical diffraction and for result files with varying
wave lengths or/and varying angles of incidence, one can enter the command:

PLOT GNUPLOT name3 *1

Everything is like in the previous case. However, instead of creating the Matlab file a
gnuplot ps file is produced. The name of the ps file will be printed on the screen.

9 Parameter Test for GFEM

Here we present the results of test computations to give an orientation for the choice of the
parameters nDOF and nLFEM. Recall that nGP is the number of grid points. For simplicity,
we present results with nUPA = 1, only. We consider a trapezoidal grating with basis angle
of 60◦ and with one material which covers 60% of the period. The height of the trapezoid is
0.3 times length of period and the refractive index is 2.0. Moreover, we assume an additional
layer which covers the whole period and which has a refractive index of 1.3 and a height
of 0.05 times period. The substrate has a refractive index of 1.5 and the superstrate is air.
The grating is illuminated in a classical Te scenario by light of wave length 635nm under
an incidence angle of 65◦. The length of one period is 1µm, 2µm, 4µm, 8µm, and 16µm.
In other words, we have chosen the geometry generated by the code words

# Grating data:
trapezoid 60 a 1 b c

where a is 0.6 times the length of the period, b is 0.3 times period, and c is 0.05 times
period.

Now the accuracy and the best choice of parameters depend on the maximal relative
wave number which is period times refractive index over wave length. We have checked the
accuracy in percent. For instance, one percent accuracy means that: The absolute error
of the percentage of energy reflected by the grating is less than 1% (the value itself is less
than 100%). The absolute error of the percentage of light transmitted into the minus first
order is less than 1% (the efficiency itself is less than 100%). The absolute error of real or
imaginary part of the Rayleigh coefficient of the minus first reflected mode is less than 0.01
(the modulus of the coefficient itself is less than one).

The corresponding relative mesh size16 hr and the corresponding number of refinement
levels (starting from 1 for the coarsest) necessary to achieve an accuracy up to 1%, 0.1%,
and 0.01%, respectively, are presented in the Tables 1–3. Here we define the relative mesh

16Of course, the values presented in the Tables 1–3 are taken from a discrete set of test values, only.
Indeed, we have computed only those relative mesh sizes which result from the halving the mesh size
strategy realized in the code by switching to higher refinement levels.

70



size hr of the grid by17

hr =
2π

d

h

nDOF + 1

with h the absolute mesh size of the triangulation and with d the length of the period. By
the symbol kr in the tables we denote the maximal relative wave number (length of period
d times refractive index divided by wave length). The numerical methods are either Fem
or Gfem(nDOF,nLFEM), i.e. the Gfem with the parameters nDOF, nLFEM, and nUPA = 1.
Stars indicate that the accuracy is not reached due to the restricted main memory of the
computer. The number of grid points nGP is 67 for the first level, 75 for the second, 169 for
the third, 600 for the fourth, 2 430 for the fifth, 8 858 for the sixth, 39 698 for the seventh,
159 140 for the eighth, and 637 914 for the ninth (cf. the computation time in (6.1)).

It is impossible to derive a general recommendation from the numbers in the Tables
1–3. We have indicated the necessary relative mesh size for the fastest18 method with
parameter nUPA = 1 by bold letters. However, the methods with doubled [nDOF + 1] and
[nLFEM + 1] and doubled mesh size (one lower refinement level) require almost the same
computation time and lead to the same accuracy. If [nLFEM + 1] is large and the grid is
of a higher refinement level, then the computing time can be reduced by first generating a
preliminary grid with the doubled maximal mesh size and second applying an additional
uniform refinement step of each triangle into four equal subtriangles. Recall that the trial
functions for congruent triangles need to be computed only once. In other words, reducing
the level by one and changing nUPA from 1 to 2, turns Gfem into a competitive method
even if [nLFEM + 1] is large. Similarly, the level can be reduced by 2 or 3, and nUPA can be
set to 4 or 8. So Gfem with larger nDOF and nLFEM outperforms the Gfem indicated by
bold letters.

For Tm polarization and the same grating and light scenario, we get similar results. E.g.,
in the case of kr = 12.60 (i.e. d = 4) and Gfem(3,31), we get an error of 1%, 0.1%, and
0.01% choosing the refinement levels 4, 6, and 6, respectively. For kr = 25.20 (i.e. d = 8)
and Gfem(7,127), we get an error of 1%, 0.1%, and 0.01% choosing the refinement levels
4, 4, and 5, respectively.

17Note that the mesh size shown on the screen or in the result files “name.res” after calling the program
FEM FULLINFO and GFEM FULLINFO are just the hr.

18Fastest method means the one with the smallest complexity estimate (6.1).
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Method kr=3.15 kr=6.30 kr=12.60 kr=25.20 kr=50.39
(d=1) (d=2) (d=4) (d=8) (d=16)

FEM 0.401 (4) 0.089 (6) 0.024 (8) ? ? ? ? ? ?
Gfem(1,3) 0.401 (3) 0.201 (4) 0.044 (6) 0.012 (8) ? ? ?
Gfem(1,7) 0.401 (3) 0.201 (4) 0.044 (6) 0.023 (7) ? ? ?
Gfem(1,15) 0.401 (3) 0.201 (4) 0.044 (6) 0.023 (7) 0.012 (8)
Gfem(3,7) 0.524 (1) 0.201 (3) 0.044 (5) 0.012 (7) ? ? ?
Gfem(3,15) 0.524 (1) 0.324 (2) 0.100 (4) 0.022 (6) 0.012 (7)
Gfem(3,31) 0.524 (1) 0.324 (2) 0.100 (4) 0.044 (5) 0.012 (7)
Gfem(3,63) 0.524 (1) 0.324 (2) 0.100 (4) 0.044 (5) 0.044 (5)
Gfem(7,15) 0.262 (1) 0.262 (1) 0.050 (4) 0.011 (6) ? ? ?
Gfem(7,63) 0.262 (1) 0.262 (1) 0.100 (3) 0.050 (4) 0.022 (5)
Gfem(7,127) 0.262 (1) 0.262 (1) 0.100 (3) 0.050 (4) 0.022 (5)
Gfem(7,255) 0.262 (1) 0.100 (3) 0.100 (3) 0.022 (5)
Gfem(15,31) 0.131 (1) 0.131 (1) 0.011 (5) ? ? ?
Gfem(15,127) 0.131 (1) 0.131 (1) 0.050 (3) 0.011 (5)
Gfem(15,255) 0.131 (1) 0.050 (3) 0.025 (4)
Gfem(15,511) 0.081 (2) 0.025 (4)

Table 1: Relative mesh size hr (refinement levels) necessary to
reach 1% accuracy.

Method kr=3.15 kr=6.30 kr=12.60 kr=25.20 kr=50.39
(d=1) (d=2) (d=4) (d=8) (d=16)

Fem 0.047 (7) 0.024 (8) ? ? ? ? ? ? ? ? ?
Gfem(1,3) 0.088 (5) 0.044 (6) 0.012 (8) ? ? ? ? ? ?
Gfem(1,7) 0.201 (4) 0.088 (5) 0.023 (7) ? ? ? ? ? ?
Gfem(1,15) 0.201 (4) 0.088 (5) 0.023 (7) 0.012 (8) ? ? ?
Gfem(3,7) 0.100 (4) 0.044 (5) 0.012 (7) ? ? ? ? ? ?
Gfem(3,15) 0.201 (3) 0.100 (4) 0.022 (6) 0.012 (7) ? ? ?
Gfem(3,31) 0.524 (1) 0.201 (3) 0.044 (5) 0.022 (6) ? ? ?
Gfem(3,63) 0.524 (1) 0.201 (3) 0.044 (5) 0.022 (6) 0.012 (7)
Gfem(7,15) 0.100 (3) 0.100 (3) 0.011 (6) ? ? ? ? ? ?
Gfem(7,63) 0.100 (3) 0.262 (1) 0.050 (4) 0.011 (6) ? ? ?
Gfem(7,127) 0.262 (1) 0.262 (1) 0.100 (3) 0.050 (4) 0.011 (6)
Gfem(7,255) 0.262 (1) 0.100 (3) 0.050 (4) 0.022 (5)
Gfem(15,31) 0.050 (3) 0.011 (5) ? ? ? ? ? ?
Gfem(15,127) 0.131 (1) 0.050 (3) 0.025 (4) ? ? ?
Gfem(15,255) 0.081 (2) 0.050 (3) 0.011 (5)
Gfem(15,511) 0.050 (3) 0.025 (4)

Table 2: Relative mesh size hr (refinement levels) necessary to
reach 0.1% accuracy.
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Method kr=3.15 kr=6.30 kr=12.60 kr=25.20 kr=50.39
(d=1) (d=2) (d=4) (d=8) (d=16)

FEM 0.013 (9) 0.013 (9) ? ? ? ? ? ? ? ? ?
Gfem(1,3) 0.023 (7) 0.023 (7) ? ? ? ? ? ? ? ? ?
Gfem(1,7) 0.044 (6) 0.044 (6) ? ? ? ? ? ? ? ? ?
Gfem(1,15) 0.088 (5) 0.044 (6) 0.012 (8) ? ? ? ? ? ?
Gfem(3,7) 0.022 (6) 0.022 (6) ? ? ? ? ? ? ? ? ?
Gfem(3,15) 0.044 (5) 0.044 (5) ? ? ? ? ? ? ? ? ?
Gfem(3,31) 0.100 (4) 0.100 (4) 0.012 (7) ? ? ? ? ? ?
Gfem(3,63) 0.201 (3) 0.100 (4) 0.022 (6) 0.012 (7) ? ? ?
Gfem(7,15) 0.022 (5) 0.022 (5) ? ? ? ? ? ? ? ? ?
Gfem(7,63) 0.100 (3) 0.100 (3) 0.011 (6) ? ? ? ? ? ?
Gfem(7,127) 0.262 (1) 0.162 (2) 0.022 (5) 0.011 (6) ? ? ?
Gfem(7,255) 0.050 (4) 0.022 (5) 0.011 (6)
Gfem(15,31) 0.025 (4) ? ? ? ? ? ? ? ? ?
Gfem(15,127) 0.081 (2) 0.011 (5) ? ? ? ? ? ?
Gfem(15,255) 0.025 (4) 0.011 (5) ? ? ?
Gfem(15,511) 0.025 (4) 0.011 (5)

Table 3: Relative mesh size hr (refinement levels) necessary to
reach 0.01% accuracy.
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10 Optimization Tools

10.1 Optimizing using OPTIMIZE in OPTIM

10.1.1 The optimization problem

Optimizing an optical grating means the following. First the user has to fix:

- the period of the grating
- the refractive indices of the cover and substrate material
- one or more wave lengths of light λj, j = 1, . . . jλ
- one or more angles of incidence θk, k = 1, . . . , kθ and φl, l = 1, . . . , lφ
- one or two types of polarization tm ∈ {Te,Tm}, m = 1, . . . ,mt ≤ 2

Beside all these, he has to fix a class of gratings (cf. the subsequent Section 10.2). Such
a class is a certain grating geometry made of several materials. The gratings of the class
can be described by a small number of real parameters ri, i = 1, . . . , N , which are either
geometrical parameters like lengths, widths and heights or the real and/or imaginary parts
of the refractive indices. Together with the class of gratings, the user fixes the number
of parameters. He restricts the admissibility (feasibility) domain of real parameters by
adding upper bounds ui and lower bounds li. To each set of parameters r := {ri} with
li ≤ ri ≤ ui, i = 1, . . . , N there exists a unique grating. Searching for an optimal grating is
equivalent to finding the optimal set of parameters r. The optimality of a grating resp. set
of parameters, however, is measured by an objective functional f(r) which is an arithmetic
expression of the following data of the grating determined by the parameter set r:

- efficiencies e±n
- phase shifts19 p±n (in degrees)
- reflected energy e+ :=

∑
n e

+
n (in per cent)

- transmitted energy e− :=
∑

n e
−
n

- total energy e := e+ + e−

Here n runs through the indices of reflected resp. transmitted plane wave modes. Note
that all these efficiencies, phase shifts, and energies depend of course on λj, θk, φl, and tm.
Moreover, for the conical diffraction, there exist two different efficiencies (e1,±n and e2,±) and
phase shifts (p1,±n and p2,±) depending on the polarization splitting (cf. Section 2.3). The
optimization problem

f(r) −→ inf
r ∈ class :
li ≤ ri ≤ ui

(10.1)

19In the case of Te polarization, the phase shift is computed by p±n = arg[A±
n /|A±

n |]. For Tm polarization,
there holds p±n = arg[B±

n /|B±
n |]. Finally, in the case of conical diffraction, the phase shift pl,±n is that of

the corresponding field component presented in the efficiency el,±n in accordance with the chosen output
type (cf. Section 2.3). In particular, for output type “3.Com” (first type in Section 2.3) and incidence angle
φ = 0, the phase shifts of the classical case are computed. In the case of output type “TE/TM” (second
type) and incidence angle φ = 0, the phase shifts computed by the conical case are either equal to those
of the classical or they differ by an angle of ±180◦. Equality corresponds to a vector s±n equal to the unit
vector in the direction of the z coordinate and deviation by ±180◦ to s±n equal to the unit vector in the
direction opposite to the z coordinate.
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consists in finding a parameter set ropt for which the value f(ropt) is less or equal to f(r)
for all r in the set of the admissible parameter sets of the class.

The arithmetic expression for f(r) looks a little bit complicated and is defined as

f(r) :=

jλ∑
j=1

kθ∑
k=1

lφ∑
l=1

mt∑
m=1

Sj,k,l,m, (10.2)

Sj,k,l,m := w̄+e+ + w̄−e− + w̄ e+
∑
n

w̄+
n e

+
n +

∑
n

w̄−n e
−
n +

∑
n

w̄1,+
n e1,+n +∑

n

w̄1,−
n e1,−n +

∑
n

w̄2,+
n e2,+n +

∑
n

w̄2,−
n e2,−n +

∑
n

w+
n

[
e+n − c+n

]2
+∑

n

w1,+
n

[
e1,+n − c1,+n

]2
+
∑
n

w2,+
n

[
e2,+n − c2,+n

]2
+
∑
n

w−n
[
e−n − c−n

]2
+∑

n

w1,−
n

[
e1,−n − c1,−n

]2
+
∑
n

w2,−
n

[
e2,−n − c2,−n

]2
+ w+

[
e+ − c+

]2
+

w−
[
e− − c−

]2
+ w [e− c]2 +∑

n

w̃1,+
n

[
p1,+n − c̃1,+n

]2
∗ +

∑
n

w̃2,+
n

[
p2,+n − c̃2,+n

]2
∗ +∑

n

w̃1,−
n

[
p1,−n − c̃1,−n

]2
∗ +

∑
n

w̃2,−
n

[
p2,−n − c̃2,−n

]2
∗ ,

[
p±n − c̃±n

]2
∗ :=

[
sin

(
p±n − c̃±n

2

)]2
,

where the w̄±, w̄, w̄±n , w̄l,±n , w±n ≥ 0, wl,±n ≥ 0, w± ≥ 0, w ≥ 0 w̃±n , w̃l,±n , c±n , cl,±n , c±, c,
c̃±n , and c̃l,±n are constants fixed by the user. Moreover, these constants can be chosen in
dependence on λj, θk, φl, and tm. Note that the phase shift is an angle between −180◦

and 180◦. Since the angles −180◦ and 180◦ correspond to the same phase shift, we have
replaced the quadratic term [p+n − c̃+n ]

2
by its periodic variant [p+n − c̃+n ]

2
∗. Choosing w̃±n > 0,

i.e. including phase shift terms, can be dangerous. Namely, if the corresponding efficiency
is zero, then the phase shift is not defined. Even for small efficiencies, a very fine Fem grid
is needed to obtain acceptable approximate values for the phase shifts.

For example, if the user wants to design a beam splitter into four transmitted directions,
then he would choose, e.g., the objective functional

f(r) =
[
e−−1 − 25

]2
+
[
e−0 − 25

]2
+
[
e−1 − 25

]2
+
[
e−2 − 25

]2
. (10.3)

Choosing the functional f(r) = e+, would result in some kind of anti-reflection grating. If
the user is concerned with the synthesis problem (inverse problem), then the efficiencies
are determined by measurements and the grating realizing these values is sought. Knowing
that the sought grating is in a certain class of gratings described by the parameter sets r,
the inverse problem is equivalent to the minimization of f(r) =

∑
n,±[e±n − c±n ]2 with c±n

chosen as the corresponding measured efficiencies.
If the type of polarization and the coordinate system for the incoming wave vector is

“TE/TM”, then the phase shifts are computed first for the Te polarization and then for
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the Tm case. We denote this dependence by adding a (Te) and (Tm), respectively. Instead
of the terms∑

n

w̃1,+
n

[
p1,+n − c̃1,+n

]2
∗ +

∑
n

w̃2,+
n

[
p2,+n − c̃2,+n

]2
∗ + (10.4)∑

n

w̃1,−
n

[
p1,−n − c̃1,−n

]2
∗ +

∑
n

w̃2,−
n

[
p2,−n − c̃2,−n

]2
∗

in (10.2) one might wish to include∑
n

w̃1,+
n

[
p1,+n (Te)− p1,+n (Tm)− c̃1,+n

]2
∗ +

∑
n

w̃2,+
n

[
p2,+n (Te)− p2,+n (Tm)− c̃2,+n

]2
∗ +

(10.5)∑
n

w̃1,−
n

[
p1,−n (Te)− p1,−n (Tm)− c̃1,−n

]2
∗ +

∑
n

w̃2,−
n

[
p2,−n (Te)− p2,−n (Tm)− c̃2,−n

]2
∗ .

To indicate that terms of this type are to be included instead of the corresponding terms
depending on one polarization only, one easily adds a “TE/TM” before the input of the
number of terms (cf. Section 10.1.3).

Similarly, if the type of polarization is “TE/TM”, if the illumination is classical (angle
of incidence φ = 0), and if the output data is presented in the “TE/TM” form (cf. Section
2.3), then the objective functional might contain terms with the phase difference between
the classical Te and Tm case. In other words, one might need terms like∑

n

w̃1,+
n

[
p1,+n (Te)− p2,+n (Tm)− c̃1,+n

]2
∗ +

∑
n

w̃1,−
n

[
p1,−n (Te)− p2,−n (Tm)− c̃1,−n

]2
∗ . (10.6)

Such terms are indicated by adding a “CL:TE/TM” before the input of the number of
terms (cf. Section 10.1.3).

10.1.2 Optimization via OPTIMIZE

In order to solve the above optimization problem, the user changes to the subdirectory
OPTIM. Here he finds the executable OPTIMIZE, the input file “conical.Dat” with the control
parameters of the generalized Fem (cf. the description of the similar file “generalized.Dat”
in Section 6), as well as the example input file “example.dat” (cf. the enclosed data file in
Section 12.8). At first, the user creates his own input file, e.g. “name.dat”, containing all
the data of the grating geometry, of the illumination conditions, the initial values of the
parameters20 to be optimized, the data of the objective function, and that of the method

20If no good initial solution is known, then the user can try to find one by a deterministic search algorithm
over a tensor product grid of parameter points. In other words, the initial solution of parameter values is
the parameter point of the grid at which the objective functional takes its minimum over the finite grid.
Instead of a list of initial values the user writes a line like “ no nlev nnmb 0” into the input file. Here nlev is
the discretization level of the Fem method at which the search is to be accomplished. The second number
nnmb is the maximal number of grid points in one dimension. This is attained at least in the direction of
the longest side of the box domain defined by the upper and lower parameter bounds. If the user adds the
input line “ no nlev nnmb 1”, then the minimum search over the grid points is improved by replacing the
value of the objective functional at each grid point by the minimum of the linear Taylor approximation
taken over a small neighbourhood of the grid point.
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of optimization. The best way to do this is to copy “example.dat” to “name.dat” and to
change the data to meet the requirements of the user. Numerous comments contained in
this file will make it easy to get the right input (for some more details cf. the subsequent
Section 10.1.3). Then the user enters the command

OPTIMIZE name

and the optimization starts. All methods of optimization are iterative. The number of the
actual iteration step and the value of the objective function at the actual iterative solution
are printed on the screen. If the last iteration step is finished, there appears the minimal
value of the objective functional and the corresponding set of optimal parameters on the
screen. Finally, in the directory RESULTS a file “name2.res” (cf. the enclosed result file in
Section 12.9) is created which contains the input data of the optimization problem, some
data of the iteration process, and the optimal solution. The name “name2” is to be fixed
by the user in the input file “name.dat”.

Clearly, the optimization methods for (10.1) are based on the same finite element dis-
cretization which is implemented for the simulation of diffraction (cf. Sections 2 and 5-7).
Even the gradients of the objective functions can be computed using the same finite el-
ement matrices. If the efficiencies and phase shifts are determined with a discretization
error εdis, then the error of the objective functional evaluation is about εdis and the error
of the numerical approximation to the minimal value f(ropt) is expected to be about εdis.
Unfortunately, the numerical approximation of the optimal solution ropt is expected to have
an error about

√
εdis, only.

Alternatively to the simple call of OPTIMIZE, the user may enter one of the following
commands: If OPTIMIZE is called with the flag -f, then the optimization is performed like
in the case without flag, but further data on the several iteration steps will be printed
on the screen. With the flag -s, the optimization is performed like in the case without
flag and, afterwards, a plot of the resulting optimal grating is shown on the screen. The
call of OPTIMIZE with one of the flags -i, -g, and -p does not invoke any optimization
method. Such a call is designed to prepare the optimization. The flag -i results in an
input check which includes a plot of the initial grating (like those in Figures 29 and 31)
and the computation of the corresponding value of the objective functional. A call with -g

checks the local error of the gradient computation. An approximation for the absolute and
relative error of the gradient at the initial solution is determined. Since the true value of the
gradient is unknown, the true gradient is replaced by the approximate gradient computed
on a refined Fem mesh.

If OPTIMIZE is called with the flag -f, then the value of the objective function and the
parameters of the actual iterate are shown on the screen. After a few iteration steps the
differences in the objective function and the parameters of consecutive iterates might be
very small such that the user wants to stop the iteration and to switch to the next higher
level determined by the incremental input for the level. This can be accomplished with the
kill command. The user opens another window and enters

ps -al | grep optim

in order to find out the process number PID of the process optimize, optimize m, resp.
optimize l. Then he enters
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Figure 27: Matlab plot of an objective functional and its gradient field.

kill -10 PID

with PID replaced by the PID number of the process. The flag -10 of the kill command
raises the signal SIGUSR1 (cf. e.g. the manual page signal(7) of the linux system). If the
optimization catches this signal, then the iteration is interrupted. However, the computa-
tion continues. If required by the input file, an iteration on a higher level starts. If not,
then the last iterative solution will be presented as the final solution.

For the gradient based numerical optimization schemes (cf. Sections 10.3.2-10.3.4), the
successful computation of the gradient is essential. Therefore, a visualization should help
to control the gradient approximation. In case of inaccurate gradients, the discretization
level must be refined. The call of OPTIMIZE together with the flag -p results in a Matlab

code file “MLplot.m” for a plot of the objective function and the gradient field over a two-
dimensional parameter set (cf. Figure 27). The code can be started calling “MLplot” from
Matlab. In the case of higher dimensional optimization problems, the user can choose any
pair of two parameters and fix the others in the input file “name.dat” by setting upper and
lower bounds to equal values. This way any two-dimensional section of the graph of the
objective function and the gradient field can be displayed.

10.1.3 The input file for the optimization

An input file “name.dat” (cf. the enclosed data file in Section 12.8) in the subdirectory
OPTIM is needed. To get this, change the directory to OPTIM, copy one of the existing files
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with tag “.dat”, e.g. the file “example.dat” and call it “name.dat”.

cd DIPOG-2.1/CLASSICAL
cp example.dat name2.dat

Change “name.dat” in the editor according to your requirements. You will find the nec-
essary information as comments in the file “name.dat”. Indeed, each line beginning with
“#” is a comment. Comment lines can be added and deleted without any trouble.

The first input of “name.dat” is the name “name2” of the result file “name2.res” with-
out the tag “.res” which will be written into the subdirectory RESULTS. This is done by the
lines:

# Name of output file.
name3

These lines are followed by several inputs concerning the grating data which are similar to
those in the input files for the conical diffraction (cf. the file of Section 12.3 and compare
Section 6). Of course, the geometry description is different since now the geometry of the
grating is to be optimized. The geometry is described e.g. by the lines:

# Number nd geom param of real parameters:
6

# Lower bounds dl geom param:
-0.5
-0.5
1.
0.
1.5
0.

# Upper bounds du geom param:
0.5
0.5
1.
0.
1.5
0.

# Number ni geom param of integer parameters:
3

# Integer parameters i geom param:
1
2
2

# Number ns geom param of name parameters:
0

# Parameter names s geom param:
########################################
# Parameters d geom param of initial grating:

0.07
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-0.04
1.
0.
1.5
0.

Thus the parameter set of the grating geometry contains nd geom param=6 real param-
eters, ni geom param=3 integers, and ns geom param=0 names (character strings). The
integer and name parameters are given in the lines following their number. The first integer
parameter i geom param[1] is the index of the grating class. The meaning of all the other
parameters depends on the class and will be explained in Section 10.2. In general, the
real parameters d geom param[i] are the parameters ri subject to the optimization. The
upper and lower bounds ui and li are the numbers du geom param[i] and dl geom param[i],
respectively. Clearly, the choice du geom param[i]=dl geom param[i] would fix the pa-
rameter and only those d geom param[i] with du geom param[i] greater than the value
dl geom param[i] are optimized. Note that the geometry description includes geometry pa-
rameters like heights, widths, and lengths as well as material parameters like the refractive
indices.

In the following input lines of “name.dat” the level of discretization is given. Level equal
to l means that the Fem grid for the computation of the objective function and its gradient
is created with a maximal stepsize of h02

−l, where h0 is the coarsest stepsize. For example,
the level is set to 3 by

# Number of levels:
3

If the computation of the objective functional is time consuming, then it might be better to
perform a few iteration on a coarser Fem level first, and to utilize the coarse level optimal
solution as the initial solution on the fine level. Therefore, an incremental input is possible.
For instance,

# Number of levels:
I 1 5 2

indicates that the level takes all values 1 + j ∗ 2 with j = 0, . . . such that 1 + j ∗ 2 ≤ 5.
Hence, using the initial values, the optimization starts with an iteration on level 1. The
optimal solution of level 1 is passed to the initial solution of the level 3 iteration. After
the level 3 iteration is finished, the level 3 solution will be the initial solution of level 5.
Hopefully, this is a better initial solution than that given by the user in “name.dat”, and,
after a smaller number of iterations, the optimal solution of level 5 is reached.

After the input of the level, the parameters w̄±, w̄, w̄±n , w̄l,±n , w±n , wl,±n , w±, w w̃±n , w̃l,±n ,
c±n , cl,±n , c±, c, c̃±n , and c̃l,±n of the objective functional f in (10.2) are given. For instance,
the lines

#QUADRATIC TERMS, TRANSMITTED EFFICIENCY
# n qua tr:

2
# w qua tr:
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2.
3.

# o qua tr:
-1
0

# c qua tr:
10.
20.

indicate that the number of quadratic efficiency terms with non-zero weight factor is two,
i.e. there are exactly two terms in the sum

∑
nw
−
n [e−n − c−n ]2 of (10.2). The corresponding

orders n of the transmitted plane wave mode are -1 and 0, the weight factors w−−1 = 2 and
w−0 = 3, and the prescribed efficiency values c−−1 = 10 and c−0 = 20. In other words, the
term

∑
nw
−
n [e−n − c−n ]2 in (10.2) turns into 2[e−−1 − 10]2 + 3[e−0 − 20]2. The lines

#QUADRATIC TERMS, FIRST (TE or S) TRANSMITTED EFFICIENCY
# n qua 1 tr:

1
# w qua 1 tr:

2.
# o qua 1 tr:

-1
# c qua 1 tr:

10.

indicate that the number of first type21 quadratic efficiency terms with non-zero weight
factor is one, and the sum

∑
nw

1,−
n [e1,−n − c1,−n ]2 turns into 2[e1,−−1 − 10]2. Moreover, the

values c±n , cl,±n , c̃±n , c̃l,±n , c, and c± may depend on the wave lengths λj, on the angles of
incidence θk and φl, and on the polarization type tm. If e.g. the wave length runs through
the values λj, j = 1, 2, 3 = jλ, then the jλ × n qua tr = 6 different values can be fixed, e.g.,
by

#QUADRATIC TERMS, TRANSMITTED EFFICIENCY
# n qua tr:

2
# w qua tr:

WAL
2.
3.
2.
3.
2.
3.

# o qua tr:

21First type efficiency means efficiency of the Te part of the mode if the type of the output is set to
Te/Tm (second variant of output) and the S-part of the mode if the type of the output is set to Jones
(third variant of output in Section 2.3).
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-1
0

# c qua tr:
WAL
10.
15.
20.
25.
30.
35.

In this case, the expression
∑

j

∑
nw
−
f,n[e−n (λj)− c−n (λj)]

2 turns into:

2
[
e−−1(λ1)− 10

]2
+ 3

[
e−0 (λ1)− 15

]2
+ 2

[
e−−1(λ2)− 20

]2
+ 3

[
e−0 (λ2)− 25

]2
+

2
[
e−−1(λ3)− 30

]2
+ 3

[
e−0 (λ3)− 35

]2
.

Note that in our example, though only the values c−n depend on the wave length, the input
of the corresponding weight numbers is done in the same mode. In general, the weights
w...... and the corresponding prescribed values c...... must always be given in the same mode.
In other words, if one of the two is constant and the other depends on an entity, then the
constant values must be repeated to get the same input form.

Replacing, WAL by ATH, APH or POL and the following jλ × n qua tr values for c−n
and w−n by kθ×n qua tr, lφ×n qua tr, and mt×n qua tr values, respectively, the user can
define the values c−n and w−n depending on the angles θ and φ, and on the polarization type,
respectively. If the user replaces WAL by W+T, W+P, T+P, WAL+POL, ATH+POL, and
APH+POL and the following jλ×n qua tr values by jλ× kθ×n qua tr, jλ× lφ×n qua tr,
kθ × lφ × n qua tr, jλ ×mt × n qua tr, kθ ×mt × n qua tr, and lφ ×mt × n qua tr values,
respectively, then the user can fix the dependence on wave length plus θ, on wave length
plus φ, on θ plus φ, on wave length plus polarization type, on θ plus polarization type,
and on φ plus polarization type, respectively. Choosing WTP, W+T+POL, W+P+POL,
and T+P+POL for WAL as well as jλ × kθ × lφ × n qua tr, jλ × kθ × mt × n qua tr,
jλ× lφ×mt×n qua tr, and kθ× lφ×mt×n qua tr, values, respectively, the dependence on
wave length plus θ plus φ, on wave length plus θ plus polarization type, on wave length plus
φ plus polarization type, and on θ plus φ plus polarization type, respectively, is managed.
Replacing WAL by WTP+POL and adding jλ × kθ × lφ ×mt × n qua tr input numbers,
the dependence on wave length plus θ plus φ plus polarization type is obtained22.

As mentioned in Section 10.1.1, adding a “TE/TM” before the input of n phs j re resp.
n phs j tr the terms (10.4) can be replaced by (10.5). E.g., for the second type reflected
phase shifts the corresponding input can look like:

# n phs 2 re:
TE/TM

22The values for c−n and w−
n , respectively, are given in a nested loop over the wave length, angle θ, angle

φ, polarization type, and the index of the mode. The innermost loop is over the n qua tr modes. The next
is over the mt polarization types, the next over the lφ angles φ, and the next over the kθ angles θ. Finally,
the outermost loop is over the jλ values of the wave length.
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2

In the case of the terms (10.5) an input of the weights w phs j re resp. w phs j tr and of
the prescribed values c phs j re resp. c phs j tr beginning with a sequence containing POL
is not possible since the phase shifts for different polarization are included into one term,
only. Finally, suppose that input and output are of type “TE/TM” and that the angle
of incidence φ is zero (cf. Section 2.3). Then, adding a “CL:TE/TM” before the input of
n phs 1 re resp. n phs 1 tr, the terms (10.4) are replaced by (10.6). This looks like

# n phs 1 tr:
CL:TE/TM
2

In general, the objective functional may depend on 999 different values of efficiencies/phase
shifts/energies. If more than 999 efficiencies/phase shifts/energies are needed the environ-
ment variable NMB OF DATA must be set to a number larger than the number of required
efficiencies/phase shifts/energies.

Finally, the file “name.dat” has to fix the scheme of numerical optimization together
with its control parameters. Generally, this looks like

# Maximal number of iterations:
10000

# Indicator for optimization method:
1

# ni opt:
1

# i opt:
3

# nd opt:
5

# d opt:
1.
0.001
1e-3
1e-2
1e-2

# Scaling parameters d geom scal:
1.
1.
1.

Here the indicator 1 is the index of the numerical method. The number and the meaning
of the other parameters depend on the indicator value. They will be explained in Section
10.3. In the example from above the numerical method of index 1 requires one integer
parameter i opt[1] and five real control parameters d opt[1], d opt[2], d opt[3], d opt[4],
and d opt[5]. Beside the control parameters, the successful run of the local optimization
routines depends on the scaling of the parameters d geom param[j] by the scaling factors
d geom scal[j], j = 1, . . . ,nd geom param (cf. Section 10.3.1).
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If an optimization over more than one level is performed, then the maximal number of
iterations can be chosen in dependence on the level. For instance, if the input of the level
is the incremental “I 1 5 2”, then there are three different levels 1, 3, and 5. The input

# Maximal number of iterations:
LEV
10
20
10000

would restrict the number of level 1 iteration to 10, that of level 3 to 20, and that of level
5 to 10000.

10.1.4 The locality of the solution. A warning

The parameter set ropt = {ri : i = 1, . . . , N} for which f(ropt) ≤ f(r) for all r in the fixed
class of admissible parameters is called the global optimal solution. Since the objective
functional is continuous and since the class of parameters is compact, the existence of ropt
is guaranteed. However, the optimal solution is, in the general case, not unique. Moreover,
the topography of the graph of the objective function is often quite complex. Usually, there
exist a lot of local minima. Note that a set of parameters rloc is called local minimum if,
for all r close to rloc, the value f(rloc) is less or equal to f(r). Sometimes, there exists even
a submanifold in the class of admissible parameter sets consisting of local minima.

Unfortunately, the final result of the numerical optimization schemes is often a local
minimum instead of global optimum. Indeed, the gradient based methods (cf. Sections
10.3.2-10.3.4 and 10.3.6) are so called local methods which are designed to determine a
local minimum. To find a global minimum, the user should start the local methods from
several sets if initial parameters and to take the local optimal solution with the minimal
value of the objective functional as a global solution. Of course, there is no warranty that
the true global minimum has been found. On the other hand, frequently, the local minimizer
corresponds to a value of the objective function quite close to the minimum. Such a local
minimum may be just as good as the global optimal solution.

Clearly, one can utilize optimization methods designed to find global minimizers. Usu-
ally, these global optimizers are much slower than local methods. Other global optimizers
use more information on the optimization problem which are not natural in our appli-
cations. The only global algorithm in the package DIPOG-2.1 is the simulated annealing
(cf. Section 10.3.5) which is a stochastic method. In other words, if the parameters are
chosen adequately, then the solution of simulating annealing is a global solution with prob-
ability one. Choosing the right parameters, however, is not easy. Either the number of
necessary iterations might be large and the computing time might be not acceptable or the
algorithm might stuck in a local minimizer. So there is no warranty even with the global
simulated annealing.

Finally, let us mention that the user is free to combine global and local methods. First
he should apply a certain number of simulated annealing steps. Using the final solution of
simulated annealing as the initial solution, he should apply a local method to end up with
an improved final solution.
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10.1.5 Maximum likelihood estimator

Suppose only efficiency data is measured and suppose that the measured values are sample
values of random variables. More precisely, suppose that the measured ci,±n is normally
distributed with expectation ei,±n (ropt) and variance

[σi,±n ]2 = a2[ei,±n (ropt)]
2 + b2,

where b is the back ground noise level and where a is a yet unknown constant factor. If the
measurements are independent, then the joint distribution of the measurement data takes
the form

%
(
{ci,±n }

)
= %
(
a, r; {ci,±n }

)
=
∏
i,±,n

1
√

2π
√
a2[ei,±n (ropt)]2 + b2

e
−

(ci,±n − ei,±n (ropt))
2

2[a2[ei,±n (ropt)]
2 + b2] .

Hence, given a fixed measurement data {ci,±n }, the maximum likelihood estimator deter-
mines those model parameters r and a for which the density %(a, r; {ci,±n }) is maximal. In
other words, the maximum likelihood approach determines r and a minimizing the func-
tional

f(r, a) :=
∑
i,±,n

log
(
a2[ei,±n (r)]2 + b2

)
+

(
ci,±n − ei,±n (r)

)2
a2[ei,±n (r)]2 + b2


over the domain defined by 0 ≤ a and li ≤ ri ≤ ui.

The optimization can be switched to this maximum likelihood method by changing the
input data file “name.dat” as follows. Firstly, all weights for energies and all numbers for
the involved linear efficiency resp. quadratic phase-shift terms must be set to zero. Secondly,
the weight inputs must be like

# QUADRATIC TERMS, FIRST (TE or S) REFLECTED EFFICIENCY
Max Like a b
0.
1.
. . .

Here the symbol a stands for the initial guess of the variance factor a and b for the fixed
back ground noise level b. The “weight” numbers following after the first line must be
listed like the weights of quadratic efficiency terms. Their values, however, must be zero or
one. A one indicates that the term with the corresponding efficiency is included into the
summation for the objective functional f and a zero that it is not.

10.2 Classes of gratings which can be optimized

10.2.1 General parameters

For the description of the geometry nd geom param real, ni geom param integer, and
ns geom param name parameters (character string with less than 250 characters) are needed.

85



These are stored in the vectors:

d geom param[j], j = 1, . . . , nd geom param
i geom param[j], j = 1, . . . , ni geom param
s geom param[j], j = 1, . . . , ns geom param

The integer and name parameters are fixed by the user. The vector of real parameters will be
optimized. Therefore, initial values of these d geom param[j], j = 1, . . . , nd geom param
are to be fixed by the user. Moreover, the real parameters are restricted to intervals. The
upper bounds du geom param[j] and lower bounds dl geom param[j] of the intervals are
given by the user. The user can even fix a real parameter to a constant value setting the
corresponding upper bound equal to the lower.

Some of the real parameters are the real or imaginary part of a refractive index (cf. the
following subsections of Section 10.2). Suppose now that this should be fixed to a constant
value, i.e. the real parameter is not included into the set of optimization parameters. Simi-
larly as for the simulation by DIPOG-2.1 (cf. Section 4), such parameters can be chosen from
predefined lists. For instance, if the refractive index in the simulation would be determined
by the name “AlAs”, then the parameter input d geom param[j] of the real part of the
refractive index can now be given as the string “Re AlAs”. Clearly, the parameter input
d geom param[k] of the corresponding imaginary part of the refractive index is to be given
as “Im AlAs”. In any case, if a real resp. imaginary part of a refractive index is determined
by such a string input, then the corresponding imaginary resp. real part must be defined
the same way. Moreover, the corresponding bounds dl geom param[j], du geom param[j],
dl geom param[k], and du geom param[k] must be determined with the same input strings.
Note that, for more than one wavelengths involved in the computation of the objective
functional, DIPOG-2.1 cannot optimize the refractive indices depending on the wavelengths.
Therefore, for multiple wavelengths, all real parameters must be fixed to a “constant” value
independent of the optimization process but, of course, depending on the wavelength. In
other words, for multiple wavelengths, the input by strings is mandatory.

In some applications with a large number of geometrical parameters, only a small num-
ber of parameters can be chosen freely and the other depend on these free parameter
through explicit formulas. If the jth real parameter d geom param[j] is a function of the
parameters d geom param[kl], l = 1, . . . , L, then the input of the bounds dl geom param[j]
and du geom param[j] and the initial value d geom param[j] is to be replaced by adding
the dependency function. More precisely, instead of the numbers for du geom param[j] and
d geom param[j] the word “Dep” indicates that the corresponding parameter depends on
other parameters. The number for dl geom param[j] must be replaced by the string “Dep:”
followed by the dependency function. This function is to be written as a c-code, where the
argument d geom param[kl] is denoted by “pkl”. For instance, the dependency

d geom param[3] =
d geom param[7] · d geom param[8]

d geom param[2]

together with the values d geom param[1]=0.5 bounded to the prescribed interval [0.1,0.9]
and d geom param[2]=0.3 from the interval [0.2,0.4] is indicated by the input lines

# Lower bounds dl geom param:
0.1
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0.2
Dep: p7*p8/p2
. . .

# Upper bounds du geom param:
0.9
0.4
Dep
. . .

# Number ni geom param of integer parameters:
. . .

# Integer parameters i geom param:
. . .

# Number ns geom param of name parameters:
0

# Parameter names s geom param:
########################################
# Parameters d geom param of initial grating:

0.5
0.3
Dep
. . .

To avoid contradictions, the arguments d geom param[kl] of a dependency function must
be free parameters.

If possible one should try to present rational dependency in the standard form

Dep: f1+(f2)/(f3)

where each fi stands for an expression including the variables pj, constants, and the op-
erations “+”, “-”, and “∗” but no blanks and no brackets. The code realizes that the
dependency is rational and generates code for the derivatives. If the dependency is not
rational or not in the standard form, then the derivatives are approximated by difference
formulas.

The number of integer parameters is larger or equal to two. The first i geom param[1]
is an index between one and six indicating that the grating belongs to one of the six grating
classes.

- i geom param[1]=1: Profile grating determined by a polygonal profile function
- i geom param[1]=2: Profile grating determined by general polygonal profile curve I
- i geom param[1]=3: Profile grating determined by general polygonal profile curve II
- i geom param[1]=4: Stack of trapezoids
- i geom param[1]=5: General grating with polygonal interface to be optimized
- i geom param[1]=6: Bridge composed of trapezoids under light in the EUV range

The second number i geom param[2] is the number of different materials contained in the
grating including the cover and substrate material.

In general, the code will generate geometry input files of the form described in Section
3. The upper bound for the mesh size is fixed by the input lines
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# Upper bound for mesh size:
0.5

contained in the generated input files. However, this automatically chosen value 0.5 can be
changed by the user setting the environment variable BND MESH SIZE to the desired value
before calling the optimization routines.

10.2.2 Profile grating determined by a polygonal profile function

The first class (i geom param[1]=1) is a profile grating without coatings defined by a profile
function which is the cross section of the interface between cover and substrate material.
Thus the number of materials is i geom param[2]=2. The profile is supposed to be the graph
of a piecewise linear function. The class has no name parameters (ns geom param=0) and
ni geom param=3 integer parameters. The integer value i geom param[3] is the number
N of knots of the profile curve in the interior of the period, i.e. with x-coordinate strictly
between zero and period d. Hence, the grating profile is the polygonal curve connecting the
points

(0,0), (h,y1), (2h,y2), . . . , (Nh,yN), (d,0)

where h = d/(N+1). The number of real input parameters nd geom param is equal to
i geom param[3]+4, and the first i geom param[3] parameters define the profile curve by
yj =d geom param[j], j = 1, . . . ,i geom param[3]. The last four parameters describe the
materials. More precisely, the refractive indices of the cover and substrate materials are:

d geom param[k+1]+i*d geom param[k + 2],
d geom param[k+3]+i*d geom param[k + 4],

where k=i geom param[3]. Clearly, the real parts of these indices must be positive and
the imaginary parts non-negative. The imaginary part of the cover material must vanish.
Moreover, the refractive indices must be fixed, i.e.

du geom param[k]=dl geom param[k],
k=i geom param[3]+1, . . . ,i geom param[3]+4.

10.2.3 Profile grating determined by general polygonal profile curve I

The second class (i geom param[1]=2) is a profile grating without coatings defined by a pro-
file curve which is the cross section of the interface between cover and substrate material.
Thus the number of materials is i geom param[2]=2. The profile is supposed to be a polyg-
onal curve. The class has no name parameters (ns geom param=0) and ni geom param=3
integer parameters. The value i geom param[3] is the number N of knots of the profile
curve in the interior of the period, i.e. with x-coordinate strictly between zero and period
d. In other words, the grating profile is the polygonal curve connecting the points

(0,0), (x1,y1), (x2,y2), . . . , (xN ,yN), (d,0)

with arbitrary real values xj and yj such that 0 < xj < d and such that the non-
adjacent polygonal sides do not intersect each other (no self-intersection). The number
of real parameters is nd geom param=2i geom param[3]+4 and the first 2i geom param[3]
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parameters define the profile curve by xj =d geom param[2j-1], yj=d geom param[2j],
j = 1, . . . ,i geom param[3]. The last four parameters describe the materials. More pre-
cisely, the refractive indices of the cover and substrate materials are:

d geom param[k+1]+i*d geom param[k + 2],
d geom param[k+3]+i*d geom param[k + 4],

where k=2i geom param[3]. Clearly, the real parts of these indices must be positive and
the imaginary parts non-negative. The imaginary part of the cover material must vanish.
Moreover, the refractive indices must be fixed, i.e.

du geom param[k]=dl geom param[k],
k=2i geom param[3]+1, . . . ,2i geom param[3]+4.

Given an arbitrary parameter set, the self-intersection of the polygonal curve is checked
in the program. For simplicity, however, the corresponding restriction functionals are not
included into the choice of search directions for the optimization algorithms (cf. Section
10.3). Hence, using this class and local optimization methods, only local minima away
from the boundary of the domain of admissibility can be detected. The next class provides
a proper treatment of the restriction functionals corresponding to self-intersection.

10.2.4 Profile grating determined by general polygonal profile curve II

The third class (i geom param[1]=3) is a profile grating without coatings defined by a pro-
file curve which is the cross section of the interface between cover and substrate material.
Thus the number of materials is i geom param[2]=2. The profile is supposed to be a polyg-
onal curve. The class has no name parameters (ns geom param=0) and ni geom param=3
integer parameters. The value i geom param[3] is the number N of knots of the profile
curve in the interior of the period, i.e. with x-coordinate strictly between zero and period
d. In other words, the grating profile is the polygonal curve connecting the points

(0,0), (x1,y1), (x2,y2), . . . , (xN ,yN), (d,0)

with arbitrary real values xj and yj such that 0 < xj < d and such that some additional re-
strictions are satisfied. These additional restrictions guarantee that non-adjacent polygonal
sides do not intersect each other. The number of real parameters nd geom param is equal
to 2i geom param[3]+5 and the first 2i geom param[3] parameters define the profile curve
by xj =d geom param[2j-1], yj=d geom param[2j], j = 1, . . . ,i geom param[3]. The next
four parameters describe the materials. More precisely, the refractive indices of the cover
and substrate materials are:

d geom param[k+1]+i*d geom param[k + 2],
d geom param[k+3]+i*d geom param[k + 4],

where k=2i geom param[3]. Clearly, the real parts of these indices must be positive and
the imaginary parts non-negative. The imaginary part of the cover material must vanish.
The last parameter d geom param[k] with the index k=2i geom param[3]+5 is a threshold
parameter for the additional restrictions. This threshold and the refractive indices must be
fixed, i.e.
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du geom param[k]=dl geom param[k],
k=2i geom param[3]+1, . . . ,2i geom param[3]+5.

In order to introduce the additional restrictions, the corner points are denoted by
P0 := (0, 0), Pj := (xj, yj), j = 1, . . . ,N, and PN+1 := (d, 0). Excluding self-intersection
means to guarantee:

- distance between neighbour corner points is positive
- each corner point is outside of an ellipsoidal neighbourhood of each polygonal

side not containing the corner
- no intersection of non-adjacent sides of polygonal curve

Using the threshold parameter ε :=d geom param[k], the above restrictions can be refor-
mulated as:

|Pi − Pi+1| ≥ εd, i = 0, . . . ,N (10.7)

|Pj − Pm|+ |Pj − Pm−1| − |Pm − Pm−1| ≥ ε |Pm − Pm−1| , m = 1, . . . ,N + 1,

j = 0, . . . ,N + 1, j 6= m− 1,m

Pm−1Pm ∩ Pi−1Pi = ∅, m, i = 1, . . . ,N + 1, |m− i| > 1.

Note that the first two types of restrictions are included in the choice of the new search
direction for the conjugate gradient algorithm (cf. Section 10.3.2). The last is automatically
fulfilled for a new iterative solution if this is close to the last iterate.

10.2.5 Stack of trapezoids

The fourth class (i geom param[1]=4) is a flat grating with a stack of trapezoids put on
the flat interface (cf. Figure 28 and the example in Figure 29). The trapezoids are located
with their parallel sides in the direction of the x-axis, and one trapezoid is placed over the
other such that the upper resp. lower sides of the two adjacent trapezoids coincide. All
these trapezoids do not exceed the period {(x, y) : 0 ≤ x ≤ d}. If necessary, additional
coating layers beneath the grating structure are allowed.23

The class has no name parameters (ns geom param=0) and ni geom param=2 integer
parameters. The value i geom param[2] is the number of different materials which is equal
to the number N of trapezoids plus two (two for substrate and cover material). The num-
ber of real parameters nd geom param is equal to 5·i geom param[2]-4=5N + 6. These
parameters include five reals for each trapezoid, two reals for the location of the stack of
trapezoids, and four reals for the refractive indices of the substrate and cover material. In
particular (cf. Figure 28), if k is a positive integer less or equal to N , then the parameter
d geom param[5k-4]=hk > 0 is the height of the kth trapezoid measured in µm. The pa-
rameter d geom param[5k-3]=bk/d ∈ (0, 1] is the ratio of the x coordinate of the right upper
corner of the kth trapezoid over the period d of the grating. The real d geom param[5k-2]=

23Unfortunately, the optimization is interrupted if the width of the first coating layer adjacent to the
stack of trapezoids is less than the width of the additional strip automatically added to the Fem domain
(cf. Section 3.2). The last width is the sum of two numbers. The first number is the minimum of the height
of the lowest trapezoid and of half of the width of the first coating layer. The second number is the period
multiplied by the minimum of the meshsize (0.5 to the power of the refinement level) and 0.05.
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Figure 28: Stack of trapezoids.

ak/bk ∈ [0, 1) is the ratio of the x coordinate of the left upper corner of the kth trapezoid
over the x coordinate of the right upper corner. The last parameters of the kth trapezoid
form the refractive index nk of the material, i.e. the refractive index is

nk=d geom param[5k-1]+ i*d geom param[5k].

The next parameter d geom param[5N+1] is the ratio b0/d ∈ (0, 1] of the x coordinate of
the right lower corner of the first trapezoid over the period d of the grating. The next real
parameter d geom param[5N+2]=a0/b0 ∈ [0, 1) is the ratio of the x coordinate of the left
lower corner of the first trapezoid over the x coordinate of the right lower corner. Finally,
the refractive indices of the cover and substrate material are given as

nco=d geom param[5N+3]+i*d geom param[5N+4],
nsu=d geom param[5N+5]+ i*d geom param[5N+6].

Setting upper bound equal to lower bound, the user must fix these two refractive indices,
i.e., the equality

du geom param[j]=dl geom param[j]

must be satisfied for j = 5N + 3, . . . , 5N + 6. Clearly, the real parts of all refractive indices
must be positive and the imaginary parts non-negative. The imaginary part of the cover
material must vanish.
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Note that the presented choice of real parameters has been adapted to the optimiza-
tion problem in order to avoid additional restrictions. Let us call it the internal type of
parameters. More convenient is, probably, the following variant of external real parame-
ters using the angles and side lengths of the trapezoids. The program recognizes that the
parameter set is of this second type if there is an angle greater than one degree on a place
where the input value of the internal variable must be a ratio less than one. If the input
is of the external type, then the data is transformed into the internal parameter type. The
optimization is performed, and the final result is transformed back to the external type.

Let us define the external type of parameter input. For a positive k ≤ N , the parameter
d geom param[5k-4]=hk > 0 is as before the height of the kth trapezoid measured in
µm. The parameter d geom param[5k-3]=bk − ak is the length of the upper side of the
kth trapezoid measured in µm. The real d geom param[5k-2] is the interior angle αk (in
degrees) at the right lower corner of the kth trapezoid. The last parameters of the kth
trapezoid form the refractive index nk of the material, i.e. the refractive index is

nk=d geom param[5k-1]+ i*d geom param[5k].

The next parameter d geom param[5N+1]=a0 is the x coordinate (in µm) of the left lower
corner of the first trapezoid. The next real parameter d geom param[5N+2]=b0 is the x
coordinate (in µm) of the right lower corner of the first trapezoid. Finally, the refractive
indices of the cover and substrate material are given as in the internal parameter setting.

In the case of a switch from external to internal parameters, the input of the upper
and lower bounds for the angles and upper side lengths of the trapezoids and for the x-
coordinates of the lower corner points of the stack are ignored. Instead, the upper and lower
bounds for the internal parameters d geom param[l] with l = 5k−3, l = 5i geom param[2]-
9 are set to 0.9 and 0.1, respectively. Similarly, the upper and lower bounds for the internal
parameters d geom param[l] with l = 5k − 2 and with l = 5i geom param[2]-8 are set to
0.9 and 0., respectively.

10.2.6 Optimization of a polygonal interface inside a general grating

The fifth class (i geom param[1]=5) is designed to optimize a small detail inside a fixed com-
plex grating geometry. The basis is a general grating defined by an input file “nameG.inp”.
This is to be extended by introducing a new polygonal interface curve dividing one of the
material areas of the given grating into two (cf. Figure 31 where the blue rectangle on the
left is split into a blue and yellow part on the right by a polygonal consisting of three seg-
ments). The task of optimization is to find the optimal interface among all the polygonal
interface curves with fixed end-points dividing the fixed area.

The divided area A is supposed to be convex. Moreover, A must not reach to the upper
and lower boundary lines of the grating cross section. The new interface connects two
prescribed boundary points P1 and P2 of the convex area A which must be in the list of
grid points in “nameG.inp”. Moreover, the new polygonal interface is sought in form of
a graph of a piecewise linear function defined over a uniform partition of the straight-line
segment [P1, P2]. In other words, there is a positive integer N such that the new interface is
the polygonal curve connecting the end-points P1 and P2 through the corner points Q1, Q2,
. . . ,QN located in the interior of the convex area A. The orthogonal projections of these
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Figure 29: Example grid for stack of trapezoids.

Qk onto the the straight-line segment [P1, P2] are supposed to form a uniform partition of
[P1, P2]. Hence, if ν is the unit normal perpendicular to [P2 − P1] and pointing to the left
of [P1, P2], then the interior corners are given as (cf. Figure 30)

Qk := P1 +
k

N + 1
[P2 − P1] + hkν, k = 1, . . . , N, (10.8)

where hk denotes the hight of Qk over [P1, P2].
The refractive indices of the grating materials (except those of the substrate and cover

material) are included into the set of optimization operators. A special case of this class
(switched on by choosing i geom param[3]=0) is the optimization of only the refractive
indices without any geometry parameter, namely the optimization of the refractive indices
in the fixed grating geometry “nameG.inp”.

The number ns geom param of name parameters is one and s geom param[1] contains
the name “nameG” of the file “nameG.inp” without tag “.inp”. Recall that this is the
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geometry input file of the grating which is to be extended (cf. Section 3.2 and the example
in Section 12.1).

The fifth class requires the following ni geom param=6 integer parameters:

i geom param[1]=index 5 of the grating class
i geom param[2]=number of materials which must be one plus the number of

different materials indicated in “nameG.inp” if
i geom param[3]> 0 and which is exactly the number of different
materials indicated in “nameG.inp” if i geom param[3]=0

i geom param[3]=number N of interior corners in the polygonal interface,
non-negative integer

i geom param[4]=index of end-point P1 as a grid point in “nameG.inp” resp.
dummy if i geom param[3]=0

i geom param[5]=index of end-point P2 as a grid point in “nameG.inp” resp.
dummy if i geom param[3]=0

i geom param[6]=index of convex domain A which is divided by the new poly-
gonal interface as a subdomain in “nameG.inp” resp. dummy
if i geom param[3]=0

After dividing the convex domain A by the new interface, the first subdomain on the right of
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the polygonal interface running from P1 to P2 inherits the material index i geom param[6],
and the index of the second subdomain is set to i geom param[2]-1. Before the subdivision,
i geom param[2]-1 was the material index of the domain adjacent to the lower boundary
line of the grating. Now the index of the domain adjacent to the lower boundary line is
changed to i geom param[2]24.

The number nd geom param of real input parameters is equal to 2i geom param[2]+
i geom param[3]+1. The first 2i geom param[2] of these real valued parameters define
the refractive indices nk of the grating materials occupying the domains with the indices
k = 1, ...,i geom param[2] by

nk=d geom param[2k-1]+i*d geom param[2k].

Clearly, the real parts of all refractive indices must be positive and the imaginary parts
non-negative. The imaginary part of the cover material must vanish. The parameter
d geom param[k] with k=2i geom param[2]+j, j=1,...,i geom param[3] is just the height
hj > 0 (cf. Equation (10.8)) in µm of the interior corner point Qj over the line through
P1 and P2. Finally, the last of the real input parameters d geom param[k] with the index
k=2i geom param[2]+i geom param[3]+1 is the threshold ε for the distance of the interior
interface corner points to the boundary of the convex domain A (cf. Figure 30 and the
subsequent Equation (10.9)). The distance is measured in µm in the direction of the
normal ν to [P1,P2]. Of course, if i geom param[3]=0, then the last real parameter is a
dummy.

Setting upper bound equal to lower bound, the user must fix the refractive indices of
the substrate and cover material and the last threshold parameter, i.e., the equality

du geom param[j]=dl geom param[j],
j = 1, 2, 2i geom param[2]-1,2i geom param[2],

i geom param[2]+i geom param[3]+1.

must be satisfied. For j = 2i geom param[2]+k with 1 ≤ k ≤i geom param[3], the
user defined upper and lower bounds du geom param[j] and dl geom param[j] will be
corrected in order to guarantee that the corresponding interior corner points Qk remain
inside the convex domain A. More precisely, if the numbers dl1=dl geom param[j] and
du1=du geom param[j] are the old user defined values, then the new internally corrected
values dl2=dl geom param[j] and du2=du geom param[j] are given by (cf. Figure 30)

du2 := min {du1, du0} , du0 := sup

{
h > 0 : P1 +

k

N + 1
[P2 − P1] + hν ∈ A

}
− ε,

dl2 := max {dl1, dl0} , dl0 := inf

{
h < 0 : P1 +

k

N + 1
[P2 − P1] + hν ∈ A

}
+ ε,

ε := d geom param
[
2i geom param[2]+i geom param[3]+1

]
. (10.9)
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Figure 31: General grating without and with additional interface.

10.2.7 Bridge composed of trapezoids under light in the EUV range

The sixth class (i geom param[1]=6) is a flat grating with a bridge in form of a stack of
trapezoids put on the flat interface (cf. Figure 32). The trapezoids are located with their
parallel sides in the direction of the x-axis, and one trapezoid is placed over the other
such that the upper resp. lower sides of the two adjacent trapezoids coincide. All these
trapezoids do not exceed the period {(x, y) : 0 ≤ x ≤ d}. If necessary, additional coating
layers beneath the grating structure are allowed. Beside the bridge an extra layer can be
added.

The class has no name parameters (ns geom param=0) and ni geom param=5 integer
parameters. The value i geom param[2] is the number of different materials which is equal to
the number N of trapezoids plus two (two for substrate and cover material) and, eventually,
plus one if an extra side layer is added. The number i geom param[3] is the number N
of trapezoids. The fourth integer parameter i geom param[4] is reserved for the number
M of lower layers, the refractive indices or widths of which are included into the set of
optimization parameters. Finally, i geom param[5] is the index of the trapezoid in the
bridge intersected by the upper boundary line of the extra layer beside the bridge. If there
is no extra layer beside the bridge, then i geom param[5]=1 and the height of the layer
(cf. the subsequent parameter d geom param[nd geom param-9]) is zero.

The number of real parameters nd geom param is equal to 5N + 3M + 12. These
parameters include five reals for each trapezoid, two reals for the location of the stack of
trapezoids, three reals for each layer beneath the bridge, and four reals for the refractive
indices of the substrate and cover material. In particular (cf. Figure 32), if k is a positive
integer less or equal to N , then the parameter d geom param[5k-4]=hk > 0 is the height of

24If the indexing should be confusing, then the resulting distribution of the materials can be checked
entering “OPTIMIZE -i name.dat”. With this result a picture like the right in the Figure 31 appears.
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Figure 32: Bridge composed of trapezoids under light in the EUV range .

the kth trapezoid measured in µm. The parameter d geom param[5k-3]=bk/d ∈ (0, 1] is the
ratio of the x coordinate of the right upper corner of the kth trapezoid over the period d of
the grating. The real d geom param[5k-2]= ak/bk ∈ [0, 1) is the ratio of the x coordinate of
the left upper corner of the kth trapezoid over the x coordinate of the right upper corner.
The last parameters of the kth trapezoid form the refractive index nk of the material, i.e.
the refractive index is

nk=d geom param[5k-1]+ i*d geom param[5k].

The next parameter d geom param[5N+1] is the ratio b0/d ∈ (0, 1] of the x coordinate of
the right lower corner of the first trapezoid over the period d of the grating. The next
real parameter d geom param[5N+2]=a0/b0 ∈ [0, 1) is the ratio of the x coordinate of the
left lower corner of the first trapezoid over the x coordinate of the right lower corner. If
M>0, then there follow three reals for each lower layer included into the optimization
part. In particular, if k is a positive integer less or equal to M , then the parameter
hl,k =d geom param[5*N+3+3k] is the height of the kth layer in µm. The refractive index
of the corresponding material is

nl,k =d geom param[5k-1]+ i*d geom param[5k].

The real parameter of index [nd geom param-9] is the relative height of the upper boundary
line of the extra layer beside the bridge inside the trapezoid of index i geom param[5], i.e.,
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it defines the height h0 of the extra layer beside the bridge by the formula

h0 =

i geom param[5]−1∑
k=1

hk + hrel ,

hrel = hi geom param[5] · d geom param[nd geom param− 9] .

The refractive index of the corresponding layer material is

n0=d geom param[nd geom param-8]+ i*d geom param[nd geom param-7].

The refractive indices of the cover and substrate material are given as

nco=d geom param[nd geom param-6]+i*d geom param[nd geom param-5],
nsu=d geom param[nd geom param-4]+i*d geom param[nd geom param-3].

The last three real parameters restrict the sidewall angles αk and βk for k = 1, . . . , N − 1
(cf. Figure 32). For these angles, the real numbers

ϕmin := d geom param[nd geom param− 2],

ϕmax := d geom param[nd geom param− 1]

are the lower and upper bound, respectively. However, instead of requiring the strict
fulfillment of ϕmin ≤ αk ≤ ϕmax and ϕmin ≤ βk ≤ ϕmax, k = 1, . . . , N − 1, we shall enforce
the bounds only weakly by adding the penalty term

ϕfac ·
N−1∑
k=1

{
max {0, αk − ϕmax}2 + max {0, ϕmin − αk}2 +

max {0, βk − ϕmax}2 + max {0, ϕmin − βk}2
}

(10.10)

to the objective functional (10.2). The calibration factor ϕfac is the last real parame-
ter d geom param[nd geom param] and controls the strength of the required boundedness
condition.

Setting upper bound equal to lower bound, the user must fix the refractive indices of
the substrate and the cover material, i.e., the equality du geom param[j]=dl geom param[j]
must be satisfied for all indices j =nd geom param-6, . . . ,nd geom param-3. Clearly, the
real parts of all refractive indices must be positive and the imaginary parts non-negative.
The imaginary part of the cover material must vanish. Like the refractive indices of sub-
strate and cover material the last three parameters must be fixed setting upper bound equal
to lower bound.

If the user wants to restrict the optimization to gratings with sidewall angles αk ≤ 90◦

and βk ≤ 90◦ (cf. Figure 32), then he must set the environment variable EUV SWA 90 to
“yes”. In order to obtain box constraints, this choice requires a change in the meaning of
the parameters d geom param[i] for i = 5(j−1)+2 and i = 5(j−1)+3 with j = 1, 2, . . . , N .
More precisely,

d geom param[5(j − 1) + 2] :=
bj
bj−1

d geom param[5(j − 1) + 3] :=
aj − aj−1
bj − aj−1

, j = 1, . . . , N = i geom param[3],
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where the numbers aj and bj are defined in Figure 32. Clearly, 0 < αk ≤ 90◦ and 0 < βk ≤
90◦ imply the estimate 0 <d geom param[i]≤ 1 for i = 5(j − 1) + 2 and i = 5(j − 1) + 3
with j = 1, 2, . . . , N . Therefore, the corresponding lower and upper bounds must satisfy
the relation 0 ≤ dl geom param[i]≤ du geom param[i] ≤ 1.

Finally, note that the automatic generation of an additional strip for the Fem domain
is switched off (compare Section 3.2) if the classical case of Te polarization is considered
(i.e. type of polarization is “TE”, angle of incidence φ is zero, and output data is presented
in the “TE/TM” form of Section 2.3) and if the x-coordinates of the lower corner points of
the stack of trapezoids are fixed to period times rational number:

du geom param[5 ·N + 1] = dl geom param[5 ·N + 1],

du geom param[5 ·N + 2] = dl geom param[5 ·N + 2],

du geom param[5 ·N + 1] =
k1
l1
, k1, l1 ∈ N, l1 < 1 000

du geom param[5 ·N + 2] · du geom param[5 ·N + 1] =
k2
l2
,

k2, l2 ∈ N, l2 < 1 000.

In the case that the generation of an additional strip is switched off, the material of this
strip, i.e., the material of the substrate resp. of the adjacent lower layer must not be
counted in the number of materials given in parameter i geom param[2]. In order to avoid
any restriction to rational values, the automatic generation of an additional strip can be
enabled by setting the environmental variable ADD STRIPS to yes.

10.3 Numerical methods of optimization

10.3.1 General parameters of optimization algorithm

All the optimization algorithms implemented for DIPOG-2.1 are iterative. So the first control
parameter is in common. Its the number niter max>0 of maximal iterations. The level
dependent input is described at the end of Section 10.1.3. If the iteration does not stop
earlier, then the number of iterations is exactly equal to this number. A reason to stop
earlier is, e.g., that an approximative local solution with a sufficient accuracy has been
found before. Another reason could be that the gradient computation is inaccurate and the
objective functional does not drop in the direction of the negative gradient.

The next parameter ind opt is the indicator of the numerical method of optimization
and must be a number between 1 and 5. In particular, the choice of ind opt switches to

- ind opt=1: Conjugate gradient method with projection
- ind opt=2: Interior point method
- ind opt=3: Method of augmented Lagrangian
- ind opt=4: Simulated annealing
- ind opt=5: Newton type method
- ind opt=6: Levenberg-Marquardt method

The first three and the last method are gradient based local optimizers. All of these four can
deal with the box constraints imposed by the upper and lower bounds of the real parameters.
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However, to additional constraints like that for the polygonal profile gratings (cf. Equation
(10.7) in Section 10.2.4), only the implementation of the conjugate gradient method has
been adapted. Moreover, the method of augmented Lagrangian requires the computation
of the objective functional f(r) at parameter sets r outside the class of admissible solutions.
Since this is meaningful only for the gratings with profiles defined by the graph of a linear
function, the method of augmented Lagrangian applies only to this grating class. The
fourth method is a stochastic global optimizer.

Depending on the value of ind opt, the general optimization procedure requires further
ni opt integer parameters and nd opt real valued parameters. The input is as indicated
in Section 10.1.3. Finally, the performance of the optimization depends on the last input
numbers, the scaling factors.

Indeed, without proper scaling the iteration might stop at a parameter set far from a
local minimum. For instance, suppose the partial derivative ∂f/∂r1 is much larger than the
other partial derivatives ∂f/∂rj with j = 2, . . . , N . Then the iterative solution moves in the
negative gradient direction, which is more or less the direction of the first component r1, and
the value ∂f/∂r1 reduces until it is in the order of the discretization error of the gradient
computation. This, however, means that the “gradient” at the actual iterative solution
has a first component ∂f/∂r1 dominated by the discretization error. Moreover, this first
component dominates the other components ∂f/∂rj due to the bad scaling. Moving into
such a “gradient” direction will sooner or later end up in a direction of no descent, and
the iteration stops. Though the components ∂f/∂rj with j = 2, . . . , N are quite accurate,
they are not used for a correction of the iterative solution towards the local minimum.

To improve the scaling, the parameters rj from [lj, uj] are internally replaced by the
scaled parameters r′j := sjrj from [sjlj, sjuj]. The partial derivative ∂f/∂rj turns into
∂f/∂r′j = 1/sj ∂f/∂rj. Choosing the right scaling factors sj, the partial derivatives ∂f/∂r′j
can be made to be almost of the same size, and the iteration converges well. The gradients
printed after calling OPTIMIZE with flag -f may be helpful to find the scalar factors sj.
For the notation from Section 10.1.2, recall that the variables rj are those parameters
d geom param[j] which are not fixed by setting dl geom param[j]=du geom param[j]. The
corresponding scaling factors sj are the values d geom scal[j]. In the case of fixed real
parameters d geom param[j] with dl geom param[j]=du geom param[j], the scaling factor
d geom scal[j] must be set to one.

10.3.2 Conjugate gradient method with projection

Suppose the optimization problem is to find a local minimum, i.e., to find an admissible
vector ropt in RN such that f(ropt) ≤ f(r) holds at least for any admissible r ∈ RN close to
ropt. Here a vector r ∈ RN is called admissible if the coordinates ri of r satisfy li ≤ ri ≤ ui
and if the constraint conditions25 gm(r) ≤ 0 are fulfilled for any m = 1, . . . ,M . The
functionals f and gm are supposed to be continuously differentiable and, possibly, non-
linear. The conjugate gradient methods consists of the following Steps (1)-(3):

25Obviously, for the classes in the Sections 10.2.2, 10.2.3, 10.2.5, 10.2.6, and 10.2.7, there are no additional
constraints, i.e., M = 0. In case of the class of Section 10.2.4, the M constraints gm(r) ≤ 0 are the
inequalities in Equation 10.7.
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(1) Initialization: Take the initial solution r0 from the input file provided by the user.
Compute f(r0) and the gradient ∇f(r0) of f at r0. In case that r0 is an interior point
of the set of admissible vectors, then choose the search direction sd0 := −∇f(r0). If
either a component [r0]i of r0 is equal to the bound ui resp. li or if gm(r0) = 0 holds
for some m, then set sd0 equal to the projection of −∇f(r0) to the tangent cone of
directions pointing from r0 toward admissible points. Note that, if the difference of
the component [r0]i to the bounds ui resp. li is less than the small prescribed threshold
εacc, then we set [r0]i equal to ui resp. li, and the search direction is chosen as for the
boundary point26. In any case we write sd0 := P [−∇f(r0)]. Set the iteration index j
to 0.

(2) Iteration step: If the number of iterations j is larger than the prescribed number
niter max, then stop the iteration and go to the next Step (3). Else compute the
norm of the reduced gradient ‖P [−∇f(rj)]‖. If this is less than the prescribed gradient
threshold εgra, then stop the iteration and go to the next Step (3). Also if the reduced
gradient is almost unchanged in the last nnorm (prescribed integer) iterations, stop
the iteration and go to the next Step (3). Almost unchanged means

‖P [−∇f(rj)]− P [−∇f(rj−l)]‖
‖P [−∇f(rj)]‖

≤ εnorm, l = 1, . . . , nnorm

with a prescribed small number εnorm. If the stopping conditions fail, then perform a
line search (2.1)-(2.2):

(2.1) Initialize α = αmax.

(2.2) Set rj+1 = rj+α sdj. If the difference between rj+1 and rj is less than the machine
accuracy, stop and jump to Step (3). Else compute f(rj+1) and ∇f(rj+1). If
rj+1 is admissible and if the Armijo criterion

f(rj+1)− f(rj) ≤ c1 α 〈∇f(rj), sdj〉 (10.11)

is fulfilled, then stop and leave the line search. Else compute a smaller α by halv-
ing the actual value or by a clever approximate minimization of the univariate
function α̃ 7→ f(rj + α̃ sdj). Repeat Step (2.2).

Determine a new search direction by the following non-linear conjugate gradient for-
mula

sdj+1 := −P [∇f(rj+1) + β sdj] , (10.12)

β := max

{
0,
〈∇f(rj+1),∇f(rj+1)−∇f(rj)〉

〈∇f(rj),∇f(rj)〉

}
.

Set j = j + 1 and repeat Step (2).

26This change of r0 and the corresponding change of the subsequent iterates rj before the application of
the projection of P [−∇f(r0)] avoids a lot of unnecessary time consuming tiny iteration steps toward the
boundary.

101



(3) Final output: Accept and print rj as the local solution. Print the corresponding
values of f(rj) and ‖P [∇f(rj)]‖.

The conjugate gradient method (ind opt=1) requires one integer input value (ni opt=1).
This i opt[1] is the threshold integer nnorm > 1 (choose, e.g., i opt[1]=3). Whenever the
gradient of the iterative solution remains unchanged over nnorm iterations, then the iteration
is stopped (cf. Step (2)). The number of real parameters is nd opt=5. These parameters
are:

- d opt[1]: Maximal stepsize factor αmax > 0 in line search (cf. Step (2.1) and
choose, e.g., αmax = 1)

- d opt[2]: Constant c1, 0 < c1 < 1 in Armijo stopping criterion (10.11) for line
search (e.g. c1 = 0.001)

- d opt[3]: Threshold εacc > 0, iterate is shifted to the boundary if the distance
to the boundary is less than εacc (cf. the projection P in Step (1) and
choose εacc about the expected accuracy of the final solution)

- d opt[4]: Threshold εgra > 0, stop if gradient is less than εgra
(should be about approximation error of gradient or less)

- d opt[5]: Threshold εnorm > 0, stop if relative change of the norm of
the gradient is less than εnorm for the last nnorm steps
(cf. Step (2) and choose, e.g., εnorm = 0.01)

The parameters i opt[1] and d opt[i], i = 1, 2, 3, 5 should be chosen as recommended. For
the error d opt[4]∼ εgra of the gradient computation, a first estimate can be obtained using
the command OPTIMIZE -g name.dat. On the other hand, the user can choose niter max
larger than necessary and the positive parameter d opt[4] smaller than recommended. In
the worst case, a large number of unnecessary iteration steps with very small changes in
the iterative solutions are performed at the end of the optimization procedure. Even these
redundant iteration steps can be interrupted. Indeed, the user can invoke the optimization
by the command OPTIMIZE -g name.dat. In this case the actual iterative solutions are
printed on the screen, and, adding the kill -10 PID with PID the number of the subpro-
cess (cf. the interruption of OPTIMIZE -f name.dat in Sect. 10.1.2), the user can stop the
iteration whenever he observes that the iterative solutions do not improve.

10.3.3 Interior point method

Suppose the optimization problem is to find a local minimum, i.e., to find an admissible
vector ropt in RN such that f(ropt) ≤ f(r) holds at least for any admissible r ∈ RN close to
ropt. Here a vector r ∈ RN is called admissible if the coordinates ri of r satisfy li ≤ ri ≤ ui.
The functional f is continuously differentiable and, possibly, non-linear.

To prepare the interior point method, some definitions are needed. The slack variables
sl and su as well the dual slack variables dl and du are given by

sl := (sli)
N
i=1, sli := ri − li ≥ 0, dl := (dli)

N
i=1, dli ≥ 0, (10.13)

su := (sui)
N
i=1, sui := ui − ri ≥ 0, du := (dui)

N
i=1, dui ≥ 0. (10.14)
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Introducing the operator F% : (r, sl, su, dl, du) 7→ F%(r, sl, su, dl, du) ∈ R5N by

F%(r, sl, su, dl, du) :=


du− dl +∇f(r)

r − l − sl
u− r − su

(sli dli − %1)Ni=1

(sui dui − %1)Ni=1

 ,

the necessary Karush-Kuhn-Tucker condition of a locally optimal solution imply that there
exist dual slack variables dl and du such that

F0(r, sl, su, dl, du) = 0, sl ≥ 0, su ≥ 0, dl ≥ 0, du ≥ 0.

Finally, the interior point method defines iterative solutions27 rj as the approximate solution
of the equations F%j(rj, slj, suj, dlj, duj) = 0, where %j = %0 q

j with 0 < q < 1 tends
exponentially to zero and where the approximate solution (rj, slj, suj, dlj, duj) is obtained
by one step of Newton’s method choosing (rj−1, slj−1, suj−1, dlj−1, duj−1) as initial solution.

More precisely, the interior point method consists of the following Steps (1)-(3):

(1) Initialization: Set the index j of the iteration to zero, choose r0 from the initial
values given by the user in the input file, and suppose the strict fulfillment of the
restrictions li < [r0]i < ui, i = 1, . . . ,N . Define sl0 and su0 using the Equations
(10.13) and (10.14). Read the initial value %0 from the input of the user and introduce
the dual slack variables dl0 and du0 by [dl0]i := %0/[sl0]i and [du0]i := %0/[su0]i.
Increase j by setting j = 1.

(2) Iteration step: If the number of iterations j is larger than the prescribed number
niter max, then stop the iteration and go to the next Step (3). Else compute f(rj)
and the gradient ∇f(rj). Determine the reduced gradient P(∇f(rj)) by setting to
zero all those components of ∇f(rj) for which [rj]i < li + εacc and [∇f(rj)]i > 0 and
for which [rj]i > ui−εacc and [∇f(rj)]i < 0. Here εacc is a small prescribed threshold.
If ‖P(∇f(rj))‖ is less than the prescribed small constant εgra, then stop the iteration
and go to the next Step (3). Also if the reduced gradient is almost unchanged in the
last nnorm (prescribed integer) iterations, then stop the iteration and go to the next
Step (3). Almost unchanged means

‖P(∇f(rj))− P(∇f(rj−l))‖
‖P(∇f(rj))‖

≤ εnorm, l = 1, . . . , nnorm (10.15)

with a prescribed small number εnorm. Now suppose none of the stopping conditions
is satisfied. For prescribed %0 > 0 and q with 0 < q < 1, introduce the parameter
%j = %0 q

j. Compute the search direction of the step (sdrj, sdslj, sdsuj, sddlj, sdduj)
by solving F%j(sdrj, sdslj, sdsuj, sddlj, sdduj) = 0 approximately by the Newton step

(sdrj, sdslj, sdsuj, sddlj, sdduj) =

−
[
∇F%j (rj, slj, suj, dlj, duj)

]−1
F%j (rj, slj, suj, dlj, duj) .

27Take heed that a symbol with lower index i denotes the ith component of a vector whereas the same
symbol with lower index j denotes the jth iterate of the vector in an iterative process.

103



Note that the computation of ∇F%j requires the computation of the Hessian ∇2f(rj).
This is approximated using the Broyden-Fletcher-Goldfarb-Shanno update which is
based on first order derivatives, only. Now, knowing the search direction, perform the
line search (2.1)-(2.2):

(2.1) Initialize α = αmax. Eventually, reduce α such that slj + α sdslj > 0, suj +
α sdsuj > 0, dlj + α sddlj > 0, and duj + α sdduj > 0 hold.

(2.2) Set rj+1 = rj +α sdrj, slj+1 = slj +α sdslj, suj+1 = suj +α sdsuj, dlj+1 = dlj +
α sddlj, and duj+1 = duj + α sdduj. If the difference ‖rj+1 − rj‖ is less than the
prescribed small positive εste, stop and jump to Step (3). Else compute f(rj+1),
F%j+1

(rj+1, slj+1, suj+1, dlj+1, duj+1) and ∇f(rj+1). If the Armijo criterion

f(rj+1)− f(rj) ≤ c1 α 〈∇f(rj), sdrj〉 (10.16)

is fulfilled, then stop and leave the line search. Else compute a smaller α by halv-
ing its value or by a clever approximate minimization of the univariate function
α̃ 7→ f(rj + α̃ sdrj). Repeat Step (2.2).

Finally set j = j + 1 and repeat the Step (2).

(3) Final output: Accept and print rj as the local solution. Print the corresponding
values of f(rj) and ‖P [∇f(rj)]‖.

The interior point method (ind opt=2) requires one integer input value (ni opt=1).
This i opt[1] is the threshold integer nnorm > 1 (choose, e.g., i opt[1]=3). Whenever the
gradient of the iterative solution remains unchanged over nnorm iterations, then the iteration
is stopped (cf. Equation (10.15)). The number of real parameters is nd opt=8. These
parameters are:

- d opt[1]: Initial value %0 > 0 for parameter of operator F% (cf. Step (2) and
choose, e.g., %0 = 0.1)

- d opt[2]: Reduction factor q, 0 < q < 1 to reduce parameter %j of operator F%
(cf. Step (2) and choose, e.g., q = 0.5)

- d opt[3]: Constant c1, 0 < c1 < 1 in Armijo stopping criterion (10.16) for line
search (choose, e.g., c1 = 0.001)

- d opt[4]: Maximal stepsize factor αmax (0 < αmax < 1) in line search (cf.
Step (2.1) and choose, e.g., αmax = 0.9)

- d opt[5]: Threshold εacc > 0, iterate is treated as a boundary point if its distance
to the boundary is less than εacc (cf. Step (2) and choose its value
about the expected accuracy of the final solution)

- d opt[6]: Threshold εste ≥ 0, stop if the change in the iterative solution is less
than εste (cf. Step (2.2) and choose, e.g., εste = 0.1 εacc)

- d opt[7]: Threshold εgra ≥ 0, stop if gradient is less than εgra (cf. Step (2)
and choose its value about the discretization error of gradient
calculation or less)

- d opt[8]: Threshold εnorm > 0, stop if relative change of the norm of the gradient
is less than εnorm for the last nnorm steps (cf. Equation (10.15) and
choose, e.g., εnorm = 0.01)
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The parameters i opt[1] and d opt[i], i = 1, 2, 3, 4, 5, 8 should be chosen as recommended.
For the error d opt[7]∼ εgra of the gradient computation, a first estimate can be obtained
using the command OPTIMIZE -g name.dat. On the other hand, the user can choose
niter max larger than necessary and the positive parameters d opt[i], i = 6, 7 smaller
than recommended. In the worst case, a large number of unnecessary iteration steps with
very small changes in the iterative solutions are performed at the end of the optimization
procedure. Even these redundant iteration steps can be interrupted. Indeed, the user
can invoke the optimization by the command OPTIMIZE -g name.dat. In this case the
actual iterative solutions are printed on the screen, and, adding the kill -10 PID with
PID the number of the the subprocess (cf. the interruption of OPTIMIZE -f name.dat

in Sect. 10.1.2), the user can stop the iteration whenever he observes that the iterative
solutions do not improve.

10.3.4 Method of augmented Lagrangian

Suppose the optimization problem is to find a local minimum, i.e., to find an admissible
vector ropt in RN such that f(ropt) ≤ f(r) holds at least for any admissible r ∈ RN close to
ropt. Here a vector r ∈ RN is called admissible if the coordinates ri of r satisfy li ≤ ri ≤ ui.
The functional f is continuously differentiable and, possibly, non-linear. Moreover, f(r) is
supposed to be defined for all r ∈ RN .

To prepare the method of augmented Lagrangian, some definitions are needed. The La-
grangian multipliers are denoted by ml ∈ RN and mu ∈ RN , and the augmented Lagrangian
is defined by

L%(r,ml,mu) := ccal f(r) +
1

2%

N∑
i=1

[
max {0,mui + %(ri − ui)}2 −mu2i

]
+

1

2%

N∑
i=1

[
max {0,mli + %(li − ri)}2 −ml2i

]
. (10.17)

Here % stands for a prescribed positive real parameter and ccal is a fixed calibration factor.
Using this notation, the method of augmented Lagrangian consists of the following Steps
(1)-(3):

(1) Initialization: Set the index j of the iteration to zero and choose r0 from the initial
values given by the user in the input file. Choose the initial multipliers mu0 = 0 and
ml0 = 0. Increase j by one.

(2) Step of iteration: If the number of iterations j is larger than the prescribed number
niter max, then stop the iteration and go to the next Step (3). Else determine the next
iterate rj+1 as the optimal vector in RN for which the Lagrangian r 7→ L(r,mlj,muj)
attains its minimum:

This optimization problem without any restriction is solved by the non-linear
conjugate gradient method (inner iteration) and by choosing rj as the initial
solution. In particular, in each inner iteration a new search direction is sought
(cf. (10.12) and replace the projection P by the identity), and a line search is
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performed in this direction (cf. Steps (2.1)-(2.2) in Section 10.3.2). For the line
search, a fixed parameter αmax for the maximal stepsize factor and a constant
c1 for the Armijo criterion are needed. Moreover, the maximal number of inner
conjugate gradient iteration is bounded by the prescribed number liter max. The
inner iteration stops even earlier if the norm of the gradient of the Lagrangian
is less than the prescribed threshold εgra times ccal or if the stepsize in the line
search is less than εacc.

After the conjugate gradient iteration is finished, define new multipliers mlj+1 =
([mlj+1]i)

N
i=1 and muj+1 = ([muj+1]i)

N
i=1 by

[mlj+1]i := max
{

0, [mlj]i + %(li − [rj+1]i)
}
,

[muj+1]i := max
{

0, [muj]i + %([rj+1]i − ui)
}
.

If the norm difference ‖mlj+1 −mlj‖+ ‖muj+1 −muj‖ of old and new multipliers is
less than the prescribed positive threshold εmul and if ‖∇rL(rj+1,mlj+1,muj+1)‖ is
less than the prescribed gradient threshold εgra, then stop and go to Step (3). Also
if the gradient is almost unchanged in the last nnorm (prescribed integer) iterations,
then stop the iteration and go to the next Step (3). Almost unchanged means that

‖∇rL(rj+1,mlj+1,muj+1)−∇rL(rj+1−l,mlj+1−l,muj+1−l)‖
‖∇rL(rj+1,mlj+1,muj+1)‖

≤ εnorm (10.18)

holds for l = 1, . . . , nnorm with a prescribed small number εnorm. If all the stopping
criteria fail, then increase j by one and repeat Step (2).

(3) Final output: Accept and print rj as the local solution. Determine the reduced
gradient P(∇f(rj)) by setting to zero all those components of ∇f(rj) for which
[rj]i < li + εacc and [∇f(rj)]i > 0 and for which [rj]i > ui − εacc and [∇f(rj)]i < 0.
Print the corresponding values of f(rj) and ‖P [∇f(rj)]‖.

The method of augmented Lagrangian (ind opt=3) requires ni opt=2 integer input val-
ues. The first integer parameter i opt[1] is the maximal number liter max>0 of conjugate
gradient steps in the inner iteration of Step (2). The second i opt[2] is the threshold in-
teger nnorm > 0 (choose, e.g., i opt[1]=3). Whenever the gradient of the iterative solution
remains unchanged over nnorm iterations, then the iteration is stopped (cf. Step (2)). The
number of real parameters is nd opt=8. These parameters are:

- d opt[1]: Parameter value % > 0 in augmented Lagrangian (cf. (10.17) and
choose, e.g., % = 0.5)

- d opt[2]: Calibration factor ccal > 0 of objective functional in modified
Lagrangian (cf. (10.17) and choose ccal such that ccal times the
objective functional is less than one)

- d opt[3]: Threshold εmul ≥ 10−13, iteration stops if deviation of iterative
multipliers is less than εmul (cf. Step (2) and choose its value
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about the maximum of i) the desired accuracy of the constraint
conditions and ii) the desired accuracy of the minimum value
of the objective functional multiplied by ccal)

- d opt[4]: Threshold εgra ≥ 10−10, inner iteration stops if norm of gradient of
Lagrangian is less than εgra × ccal (should be about discretization
error of gradient or less)

- d opt[5]: Threshold εacc ≥ 10−13, inner iteration stops if stepsize in line search
is less than εacc, iterative solution is considered to be at the boundary
if its distance to the boundary is less than εacc (cf. Step (3) and
choose, e.g., εacc = 10−14)

- d opt[6]: Constant c1, 0 < c1 < 1 in Armijo stopping criterion for line search
in inner conjugate gradient iteration (cf. Step (2) and choose,
e.g., c1 = 0.001)

- d opt[7]: Maximal stepsize factor αmax > 0 in line search (cf. Step (2) and
choose, e.g., αmax = 1)

- d opt[8]: Threshold εnorm, 0 < εnorm ≤ 1, stop if relative change in norm of
gradient is less than εnorm for the last nnorm steps (cf. Equation
(10.18) and choose, e.g., εnorm = 0.01)

The parameters i opt[2] and d opt[i], i = 1, 2, 6, 7, 8 should be chosen as recommended. For
the error d opt[4]∼ εgra of the gradient computation, a first estimate can be obtained using
the command OPTIMIZE -g name.dat. On the other hand, the user can choose niter max
and i opt[1] larger than necessary and the positive parameters d opt[i], i = 3, 4, 5 smaller
than recommended. In the worst case, a large number of unnecessary iteration steps with
very small changes in the iterative solutions are performed. The redundant iteration steps of
the outer iteration, however, can be interrupted. Indeed, the user can invoke the optimiza-
tion by the command OPTIMIZE -g name.dat. In this case the actual iterative solutions
are printed on the screen, and, adding the kill -10 PID with PID the number of the the
subprocess (cf. the interruption of OPTIMIZE -f name.dat in Sect. 10.1.2), the user can
stop the iteration whenever he observes that the iterative solutions do not improve.

10.3.5 Simulated annealing

Suppose the optimization problem is to find a minimum, i.e., to find an admissible vector
ropt in RN such that f(ropt) ≤ f(r) holds for any admissible r ∈ RN . Here a vector r ∈ RN

is called admissible if the coordinates ri of r satisfy li ≤ ri ≤ ui and if the constraint
conditions gm(r) ≤ 0 are fulfilled for any m = 1, . . . ,M . The functionals f and gm are
continuously differentiable and, possibly, non-linear. Simulated annealing consists of the
following Steps (1)-(5):

(1) Initialization of restarts: Set the actual number J of restarts to zero. Read the
user defined value of the initial temperature tini, that of the neighbourhood radius %ini,
and the user supplied initial solution rini ∈ RN from the data file. The temperature
must be positive. If tini = 0, then an automatic choice of temperature is provided.
Set the first iterate r0 to rini and set the first values of the optimal solution ropt to
rini.
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(2) Initialization of iteration: Set the index j of the iteration step to zero. Set the
temperature t to tini and the value of the neighbourhood radius % to %ini.

(3) Steps of iteration: If the index j of the iteration is larger than the prescribed
maximal number niter max, then stop the iteration and go to Step (4). Also if
0 < ‖rj − rj−1‖ ≤ εstop with a prescribed threshold εstop, stop the iteration and
go to Step (4). Else get a new admissible iterate rj+1 by a random search in the
neighbourhood of rj of radius % (interpreted as a transition of the state in a cooling
step). If f(rj+1) ≤ f(rj), then accept rj+1 and if f(rj+1) > f(rj) holds, then accept
rj+1 with a probability of exp(−[f(rj+1) − f(rj)]/t). In the case that rj+1 is not
accepted, set rj+1 = rj. If f(rj+1) < f(ropt), then mark the solution setting ropt =
rj+1. Cool the temperature by multiplying t with the prescribed cooling factor cfact.
Decrease the radius of the neighbourhood % by multiplying % with the prescribed
neighbourhood reduction factor %fact. Increase index j by one and repeat Step (3).

(4) Restarts: If J is greater than the prescribed integer nrest, then generate at random
a new starting solution r0 and go back to Step (2).

(5) Final output: Accept and print ropt as the final solution. Print the corresponding
value f(ropt). For comparison, print the last iterative solution rj and the correspond-
ing value f(rj).

The method of simulated annealing (ind opt=4) requires one integer input value (ni opt
=1). This i opt[1] is the number of restarts nrest ≥ 0. The number of real parameters is
nd opt=5. These parameters are:

- d opt[1]: Initial temperature tini > 0, (chose tini equal to the variation of
the objective functional or set tini = 0 to invoke an automatic
choice of tini)

- d opt[2]: Cooling factor cfact, 0.5 ≤ cfact < 1, in each iteration step the
temperature is multiplied by cfact, a slower logarithmic cooling
scheme is applied if cfact = −1 (choose, e.g., cfact = 0.95)

- d opt[3]: Stopping threshold εstop, 0 ≤ εstop < 1, algorithm stops if the
difference of the values of the objective function at actual and
previous step differ by a value greater than zero but less than
εstop (choose, e.g., εstop = 0)

- d opt[4]: Initial value %ini > 0 of radius % = %ini mini[ui − li] of neighbour-
hood where the random search for a new iterate is performed
(choose % = 1)

- d opt[5]: Reduction factor %fact, 0 < %fact ≤ 1 to reduce the radius of
neighbourhood in each step multiplying % by %fact (choose, e.g.,
%fact to be the square root of the cooling factor cfact)

The maximal number of iterations niter max should be chosen as large as possible. In other
words, the computing time the user is willing to spent determines the choice of niter max.
The parameters d opt[i], i = 1, 3, 4, 5 should be chosen as recommended. The cooling factor
d opt[2] should be chosen sufficiently large such that a lot of random choices (transitions)
are accepted at the beginning of the iterative process. However, d opt[2] should not be too
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large such that, at the end of the iterative process, the random choices for the new iterative
solutions are almost always rejected. Of course, this so called “freezing of the state” should
happen at the end, only. If the iterative solution remains unchanged for the last half of
the cooling steps, then the cooling factor should be increased. Finally, the number of
restarts i opt[1] should be as large as possible. Indeed, normally, the computation of the
objective function is time consuming. Consequently, the values of niter max and d opt[2]
are, usually, smaller than what the theoretical analysis requires. Using these fast cooling
schemes, simulated annealing computes rather a locally optimal solution than a global.
Therefore, the restarts will increase the probability that the final solution is the global
optimum. Again, i opt[1] is restricted by the admissible computing time.

The program of simulated annealing can be used for a pure random search. In this case,
the parameters should be, e.g.:

i opt[1] =0
d opt[1]=1020

d opt[2]=0.9999999999999
d opt[3]=0
d opt[4]=2
d opt[5]=1

With these parameters, the objective functional is computed at niter max randomly chosen
different parameter sets, and the minimum of these values is determined. Normally, such
a random search yields better results than a deterministic search at the points of a regular
mesh of the parameter domain.

10.3.6 Newton type method with projection

Suppose the optimization problem is to find a local minimum, i.e., to find an admissible
vector ropt in RN such that f(ropt) ≤ f(r) holds at least for any admissible r ∈ RN close to
ropt. Here a vector r ∈ RN is called admissible if the coordinates ri of r satisfy li ≤ ri ≤ ui.
Moreover suppose the functional f is supposed to be composed of quadratic terms, only
(cf. (10.2)). In this case f takes the form

f(r) = ‖ c− Φ(r) ‖2

where Φ maps the admissible parameter sets r into the space RM with M ≥ N , where
c ∈ RM , and where ‖ · ‖ is the Euclidean norm. Clearly, the components of Φ(r) are
just the scaled efficiencies, energies or phase shift values for the grating determined by the
parameter set r, and the c is the vector of the scaled prescribed values in (10.2). The scaling
factors are the square roots of the positive weights in (10.2).

Denoting the Fréchet derivative of Φ at r by ∇Φ(r), we observe

c = Φ (ropt) = Φ
(
r + [ropt − r]

)
∼ Φ (r) +∇Φ (r) · [ropt − r] ,

∇Φ (r) · [ropt − r] ∼ c− Φ (r) ,

[ropt − r] ∼
[
∇Φ (r)∗∇Φ (r)

]−1
∇Φ (r)∗ [c− Φ (r)] .
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This suggests to determine approximate solutions rj, j = 1, 2, 3, . . . by the following itera-
tion scheme of the Gauß-Newton method. Choose an initial solution r0 and, for any given
rj, define rj+1 by

rj+1 := rj + ∆rj, ∆rj :=
[
∇Φ (rj)

∗∇Φ (rj)
]−1
∇Φ (rj)

∗ [c− Φ (rj)] .

In the Newton type algorithm of DIPOG-2.1 the correction term ∆rj is slightly modified in
order to guarantee that the new iterate satisfies the constraints li ≤ ri ≤ ui. More precisely,
if the components of the new iterate rj+1 do not fall into the the interval [li, ui], i = 1, ... , N ,
the rj+1 is determined as the optimal solution of the following quadratic problem with box
constraints: ∥∥∥∇Φ (rj) · [rj+1 − rj] − [c− Φ (rj)]

∥∥∥2 −→ min

rj+1 : li ≤ [rj+1]i ≤ ui, i = 1, ... , N

Obviously, this is a modification of the Gauß-Newton method in the spirit of the Sqp
methods.

The Newton type method (ind opt=5) requires one integer input value (ni opt=2). The
i opt[1] is the threshold integer nnorm > 1 (choose, e.g., i opt[1]=3). Whenever the gradient
of the iterative solution remains unchanged over nnorm iterations, then the iteration is
stopped. The number i opt[2] is maximal number of iteration for which an increase of the
objective functional is accepted (choose, e.g., i opt[2]=5). The number of real parameters
is nd opt=3. These parameters are:

- d opt[1]: Threshold εacc > 0, iterate is shifted to the boundary if the distance
to the boundary is less than εacc (choose εacc about the expected
accuracy of the final solution)

- d opt[2]: Threshold εgra > 0, stop if gradient is less than εgra
(should be about approximation error of gradient or less)

- d opt[3]: Threshold εnorm > 0, stop if relative change of the norm of
the gradient is less than εnorm for the last nnorm steps
(choose, e.g., εnorm = 0.01)

The parameters i opt[1] and d opt[i], i = 1, 3 should be chosen as recommended. For the
error d opt[2]∼ εgra of the gradient computation, a first estimate can be obtained using the
command OPTIMIZE -g name.dat. On the other hand, the user can choose niter max larger
than necessary and the positive parameter d opt[2] smaller than recommended. In the worst
case, a large number of unnecessary iteration steps with very small changes in the iterative
solutions are performed at the end of the optimization procedure. Even these redundant
iteration steps can be interrupted. Indeed, the user can invoke the optimization by the
command OPTIMIZE -f name.dat. In this case the actual iterative solutions are printed on
the screen, and, adding the kill -10 PID with PID the number of the subprocess (cf. the
interruption of OPTIMIZE -f name.dat in Sect. 10.1.2), the user can stop the iteration
whenever he observes that the iterative solutions do not improve.

In some cases this method is the fasted local algorithm of DIPOG-2.1. For about the
same number of iteration steps, the number of function and gradient evaluations is less in
the Newton type iteration since multiple function evaluations in the line search are avoided.
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The price is that, even for accurate gradient computations using high discretization levels,
the algorithm may diverge. However, if the initial solution is sufficiently close to a local
minimum, then convergence is guaranteed.

10.3.7 Levenberg-Marquardt method

Suppose the objective functional is the least squares sum of deviation terms for efficiencies
and phase shifts (cf. (10.2)). Moreover, suppose the optimization problem is to find a local
minimum, i.e., to find an admissible vector ropt in RN such that f(ropt) ≤ f(r) holds at
least for any admissible r ∈ RN close to ropt. Here a vector r ∈ RN is called admissible if
the coordinates ri of r satisfy the box constraints li ≤ ri ≤ ui. The objective funvtional f
takes the form

f(r) = ‖e‖22, e := c− Φ(r),

where Φ maps the admissible parameter sets r into the space RM with M ≥ N , where
c ∈ RM , and where ‖ · ‖2 is the Euclidean norm. Clearly, the components of Φ(r) are just
the scaled efficiencies or phase shift values for the grating determined by the parameter set
r, and the c is the vector of the scaled prescribed values in (10.2). The scaling factors are
the square roots of the positive weights in (10.2).

The Levenberg-Marquardt method (ind opt=6) can easily be applied to find a numerical
solution. The method requires no integer input values (ni opt=0). The number of real
parameters is nd opt=4. These parameters are:

- d opt[1]: Factor µ > 0, for initial value of regularization parameter for
Gauß-Newton equation

- d opt[2]: Threshold ε1 > 0, iteration stops if gradient norm satisfies the
estimate ‖JT e‖∞ < ε1 with J the Jacobian of Φ

- d opt[3]: Threshold ε2 > 0, iteration stops if correction ∆p of
iterative solution p satisfies ‖∆p‖22 < ε2 ‖∆p′‖22
with ∆p′ the value of the previous step

- d opt[4]: Threshold ε3 > 0, iteration stops if least square deviation
satisfies ‖e‖22 < ε3

To work with default parameters, set d opt[1]=-1.

10.4 References
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11 The graphical user interface program DIPOG-2.1-

GUI

The graphical user interface program DIPOG-2.1-GUI can be called e.g. from the directory
GUI. Using this, all the executables of the directories CLASSICAL, CONICAL, and RESULTS

can be invoked. All necessary information is provided by the interface. We emphasize,
however, the following.

Via the interface program the user can read a data file “name.dat” (cf. Sects. 5.1 and 7)
and change its input data slightly. In any case, a new data file of the same type “name.dat”
but with different name will be produced storing the actual input data. Of course, the com-
putational results are written on the screen and into a result file “name.res” (cf. Sect. 5.2).

If the input data is long, then the original programs without graphical user interface are
to be preferred since lots of data are easier to handle with data files and editor. Therefore,
the input of DIPOG-2.1-GUI is restricted. No more than nine upper and lower additional
layers are admitted (cf. Sect. 3.2). The grating part without these layers must not contain
more than nine different materials. Finally, the input of the geometry by code words
(cf. Sect. 3.5) is confined to one line which excludes lamellar, stack, and box gratings as
well as profile gratings with parameters. Recall that the interface program TGUI allows to
construct complex geometries and to include them as “name1.inp” files (cf. Sect. 3.2).
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12 Enclosed Files

12.1 Geometry input file “example.inp”

#-*-makefile-*-
#################################################################
# #
# ################# #
# # example.inp # #
# ################# #
# #
# all lines beginning with # are comments #
# #
#################################################################
#
# - geometry input file for periodic grating
# - located in directory ‘‘GEOMETRIES’’
# - input file for ‘‘gen_polyx’’
#
#################################################################
# Name of the files without extensions ‘‘.inp’’.
# Output files will have the same name but with
# tags ‘‘.polyx’’ and ‘‘.sg’’.
# Name:
example

#################################################################
# Comments.
# Input must be ended by a ‘‘0’’ in an extra line.
# These comments will appear in several output and
# result files.
# Comments:
This is a fantasy grid
for the test of gen_polyx!
0

#################################################################
# Number of materials.
# Must include in its number the two materials of the
# regions immediately above and below the grating structure.
# Number of materials:
4

#################################################################
# Minimal angle of subdivision triangles:
20.000000

#################################################################
# Upper bound for mesh size:
0.500000

#################################################################
# Width of additional strip above and below.
# Automatic choice of small width
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# if this value is 0.
# For no additional strip add ‘‘no’’.
# For additional strip below but no
# additional strip above, add ‘‘no_up 0.2’’.
# For additional strip above but no
# additional strip below, add ‘‘no_lo 0.2’’.
# (If ‘‘no’’, ‘‘no_up’’ or ‘‘no_lo’’ is added,
# then the input for the Number of materials
# must not contain the materials of the
# excluded strips)
# Width:
0.200000

#################################################################
# Grid points.
# #########################################################
# points of triangulation which is part of the domain
# for the FEM:
#
# -> x-components between 0 and 1
# -> triangles should be disjoint
# -> union of triangles should be a simply connected domain
# -> union of triangles should connect the lines x=0,x=1
# -> union of triangles should be bounded by two vertical
# lines and by two piecewise linear functions in x
# -> diameter of each triangle in x-direction must
# be less than one half (period)
#
# first add the nodes of all the triangles
# later give the triangles by the indices of their nodes
# ########################################################
# Each point in a separate line.
# Scaled to period 1.
# Input ended by ‘‘-1. -1.’’.
# Grid points:
0.000000 0.800000
0.500000 0.800000
0.000000 0.400000
0.250000 0.400000
1.000000 0.400000
0.750000 0.200000
1.000000 0.200000
0.000000 0.000000
0.250000 -0.200000
1.000000 -0.200000
0.000000 -0.600000
1.000000 -0.800000
-1. -1.

#################################################################
# Triangles.
# Each given in a separate line by 5 parameters,
# namely by index of first point, by index of
# second point, by index of third point, by index
# of material, and by additional factor for maximal
# mesh size of partition inside the triangle.
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# Input ended by ‘‘-1 -1 -1 -1 -1.’’.
# Triangles:
1 3 4 2 1.000000
4 6 2 2 1.000000
6 7 5 2 1.000000
3 8 4 2 1.000000
8 9 4 2 0.300000
4 9 6 2 1.000000
6 10 7 3 1.000000
8 11 9 3 1.000000
9 12 6 3 1.000000
6 12 10 3 1.000000
-1 -1 -1 -1 -1.

#################################################################
# End
#################################################################

12.2 Data file “example.dat” for CLASSICAL

#-*-makefile-*-
###################################################################
# #
# ################# #
# # example.dat # #
# ################# #
# #
# all lines beginning with # are comments! #
# #
###################################################################
#
# - input file for ‘‘FEM/GFEM’’
# - located in directory ‘‘CLASSICAL’’
#
###################################################################
# Name of the output file.
# The tag ‘‘.res’’ will be added.
# File will be written into directory ‘‘RESULTS’’.
# (Alternatively, a path for the location of the file
# can be added before the name. This must contain at
# least one slash ’/’. E.g. for a file ‘‘name.res’’
# in the current working directory write ‘‘ ./name’’)
# Name:
example

###################################################################
# Should there be an additional output file in the old style of
# DIPOG-1.3 (resp. an eps-file for FEM_CHECK).
# Add ‘‘ no’’ if not needed.
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# Add ‘‘ yes’’ if needed. The name will be the same as
# the standard output file given above but with the tag
# ‘‘.erg’’ instead of ‘‘.res’’.
# Add ‘‘ phaseshifts’’ if no additional output is needed
# but if phase shifts are preferred instead of Rayleigh
# coefficients.
# yes or no or phaseshifts:
yes

###################################################################
# Number of coatings over the grating (N_co_ov).
# The grating cross section consists of
# a rectangular area parallel to the axes.
# This inhomogeneous part is determined
# by a triangular grid and can have already a few
# layers of coatings involved. Beneath and above
# this rectangular structure, there might be additional
# coated layers of rectangular shape. These kind of
# layers are called coatings over the grating and
# coatings beneath the grating, respectively.
# Alternatively a
# multilayer system input format is possible:
# E.g. the input ‘‘MLS n1 n2*n3 n4’’ with n1,n2,n3,n4
# replaced by non-negative integers means
# N_co_ov=n1+n2*n3+n4 layers with n1 layers above,
# n2 groups of n3 layers with same widths and materials
# in the middle, and with 7 layers below.
# Number of coatings:
2

###################################################################
# Widths of coatings in micro m.
# Needed only if N_co_ov >0.
# Else no number no line.
# For a multilayer system the widths of the
# n3 layers in the groups must be given only once.
# I.e. for a multilayer system n1+n3+n4 input numbers
# are needed.
# Widths:
0.5
0.2

###################################################################
# Number of coatings beneath the grating (N_co_be):
3

###################################################################
# Widths of coatings in micro m.
# Needed only if N_co_be >0.
# Else no number no line.
# Widths:
0.2
0.3
0.2

###################################################################
# Wave length in micro m (lambda).
# Either add a single value e.g. ‘‘.63’’.
# Either add more values by e.g.
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# ‘‘ V
# 5
# .63
# .64
# .65
# .69
# .70 ’’.
# The last means that computation is to be done for
# the wave lengths from the Vector of length 5:
# ‘‘.63’’, ‘‘.64’’,‘‘.65’’,‘‘.69’’, and ‘‘.70’’.
# Or add e.g. ‘‘ I .63 .73 .02’’.
# The last means that computation is to be done for
# the wave lengths ‘‘.63+i*.02’’ with i=0,1,2,... and with
# wave length ‘‘.63+i*.02’’ less or equal to ‘‘.73’’.
#
# Wave length:
.635

###################################################################
# Temperature in degrees Celsius.
# From 0 to 400.
# For room temperature set to 20.
# Will be ignored for explicitly
# given refractive indices.
# Temperature:
20.

###################################################################
# Optical index (refractive index) of cover material.
# This is c times square root of mu times epsilon.
# This could be complex like ‘‘4.298 +i 0.073’’ for
# Si with wave length 500nm.
# This could be also given by the name of a material
# like: Air Ag Al Au CsBr Cu InP MgF2 NaCl PMMA PSKL
# SF5 Si TlBr TlCl Cr ZnS Ge Si1.0 - Si2.0
# TiO2r Quarz AddOn ... (cf. Userguide)
# This could be a value interpolated from a user
# defined table, determined by the name of the file
# (file is to be located in the current directory,
# name of file must begin with letter ‘‘u’’ and may
# consist of no more than five letters like e.g. user,
# the file consists of lines each with three real
# numbers, first: wave length in micro meter, second:
# the real part of the corresponding optical index,
# third: the imaginary part of the corresponding index).
# Optical index:
1.0 +i .0

###################################################################
# Optical indices of the materials of the upper coatings.
# Needed only if N_co_ov >0.
# Else no number no line.
# For a multilayer system the indices of the
# n3 layers in the groups must be given only once.
# I.e. for a multilayer system n1+n3+n4 input lines
# are needed.
# Optical indices:
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1.1 +i .0
1.2 +i .0

###################################################################
# Optical indices of the materials of the lower coatings.
# Needed only if N_co_be >0.
# Else no number no line.
# Optical indices:
2.3 +i .0
2.2 +i .0
2.1 +i .0

###################################################################
# Optical index of substrate material.
2.0 +i .0

###################################################################
# Angle of incident wave in degrees (theta).
# Either add a single value e.g. ‘‘45.’’.
# Either add more values by e.g.
# ‘‘ V
# 5
# 63.
# 64.
# 65.
# 69.
# 70. ’’.
# The last means that computation is to be done for
# the angles from the Vector of length 5:
# ‘‘63.’’, ‘‘64.’’,‘‘65.’’,‘‘69.’’, and ‘‘70.’’.
# Or add e.g. ‘‘ I 45 56 2’’.
# The last means that computation is to be done for
# the angles ‘‘45+i*2’’ with i=0,1,2,... and with
# angle ‘‘45+i*2’’ less or equal to ‘‘56’’.
# Note that either the wave length or the angle of
# incident wave must be single valued.
# Angle of incident wave:
65

###################################################################
# Type of polarization.
# Either TE, TM or TE/TM.
# Type:
TM

###################################################################
# Length factor of additional shift of grating geometry.
# This is shift into the x-direction, i.e. the
# direction of the period to the right.
# This is length of shift relative to period, i.e.
# the grating structure given by subsequent input
# will be shifted by factor times the period given
# in subsequent input.
# However, only the Rayleigh numbers and efficiencies
# will be computed according to the shift. The field
# vectors in the plots are drawn without shift, and
# the graphics of the executable with tag ‘‘_CHECK’’
# is drawn without shift!
# Must be a real number between 0 and 1.
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# Length:
0.

###################################################################
# Stretching factor for grating in y-direction.
# Must be a positive real number.
# Length:
1.

###################################################################
# Length of additional shift of grating geometry in micro m.
# This is shift into the y-direction, i.e. the
# direction perpendicular to the grating surface
# pointing into the cover material.
# Must be a real number.
# Length:
0.

###################################################################
# Period of grating in micro m:
1.

###################################################################
# Grating data.
# Either this should be e.g. ‘‘name1’’ if ‘‘name1.inp’’
# is the input file with the geometry data in sub-
# directory ‘‘GEOMETRIES’’.
# (Alternatively, a path for the location of the file
# can be added before the name. This must contain at
# least one slash ’/’. E.g. for a file in the current
# working directory write ‘‘ ./name1’’)
# Or this could be a stack of profiles given by the
# code word stack and many more lines (cf. Userguide)
# Or this could be
# e.g. ‘‘ echellea R 0.3 0.03 0.04’’
# -> ECHELLE GRATING TYPE A (right-angled triangle
# with hypotenuse parallel to the direction of the
# periodicity, right interior angle > 45 degrees)
# with depth of 0.3 micro meter and with coated
# layers of height 0.03 micro meter resp. 0.04 micro
# meter over the first resp. second part of the
# grating (measured in direction perpendicular to
# echelle profile, height greater or equal to zero)
# e.g. ‘‘ echellea L 0.3 0.03 0.04’’
# -> ECHELLE GRATING TYPE A (right-angled triangle
# with hypotenuse parallel to the direction of the
# periodicity, left interior angle > 45 degrees)
# with parameters like above
# e.g. ‘‘ echellea A 60 0.03 0.04’’
# -> ECHELLE GRATING TYPE A (right-angled triangle
# with hypotenuse parallel to the direction of the
# periodicity) with left interior angle Alpha=60
# degrees (i.e. depth = period times sin(Alpha)
# times cos(Alpha)) and other parameters like above
# e.g. ‘‘ echelleb 60. 0.05’’
# -> ECHELLE GRATING TYPE B (right-angled triangle
# with one of the legs parallel to the direction
# of the periodicity) with angle 60 (angle enclosed
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# by hypotenuse and by the leg parallel to the
# period) and with a coated layer of height 0.05
# micro meter (measured in direction perpendicular
# to echelle profile, height greater or equal to
# zero)
# e.g. ‘‘ echelle L 60. R 30. 0.05 0.1’’
# -> GENERAL ECHELLE GRATING with left blaze angle 60
# degrees, with right blaze angle 30 degrees, with
# coated layer over left blaze side of height 0.05
# micro meter (measured perpendicular to profile,
# height >= 0) and with coated layer over right blaze
# side of height 0.1 micro meter (measured
# perpendicular to profile, height >= 0, must be 0 if
# previous height is 0). Instead of the two inputs
# ‘‘L 60.’’ and ‘‘R 30.’’ one can choose also the
# inputs ‘‘A 90.’’ for an apex angle of 90 degrees or
# ‘‘D 0.2’’ for a depth of grating = 0.2 micro meter.
# Moreover, any combination of two inputs of the types
# ‘‘A 90.’’, ‘‘L 110.’’, ‘‘R 90’’, and ‘‘D 0.2’’ is
# accepted. However, the choice ‘‘A 90.’’ and ‘‘D 0.2’’
# might be ambiguous. By definition it fixes an
# echelle grating with right blaze angle larger than the
# left. To get the flipped grating with left blaze angle
# larger than the right, the input should be ‘‘A 90.’’
# and ‘‘D -0.2’’.
# e.g. ‘‘ trapezoid 60. 0.6 3 0.2 0.1 0.1 0.05’’
# -> TRAPEZOIDAL GRATING (trapezoid with the basis
# parallel to the direction of the periodicity)
# with angle of 60 degrees (angle enclosed by
# basis and the sides) with a base of length 0.6
# micro meter consisting of 3 material layers of
# heights 0.2, 0.1, and 0.1 micro meter,
# respectively, and with a coated layer of height
# 0.05 micro meter (greater or equal to zero)
# e.g. ‘‘ mtrapezoid
# 3
# 0.005 0.015 0.005
# 80. 90. 80.
# 0.01
# 7
# 0.05 0.075 0.05 0.05 0.075 0.075 0.05
# 0.15 0.3 0.4 0.5 0.6 0.75 0.9 ’’
# -> MULTITRAPEZOIDAL GRATING (finite number of symmetric
# trapezoidal bridges located side by side)
# each bridge consists of 3 trapezoidal layers, one over
# each other; hights in micro meter of these layers from
# above to below are 0.005, 0.015, and 0.005; sidewall
# angles in degrees of these layers from above to below
# are 80, 90, 80; height in micro meter at which the
# lateral width of the bridge is given is 0.01; number of
# trapezoidal bridges per period is 7; lateral widths in
# micro meter of these bridges are 0.05, 0.075, 0.05, 0.05,
# 0.075, 0.075, and 0.05; x-coordinates in micro meter of
# the mid-points of the bottom lines of these bridges are
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# 0.15, 0.3, 0.4, 0.5, 0.6, 0.75, and 0.9.
# e.g. ‘‘ lAmellar 3 4
# 0.2 0.6
# -0.2 1.0
# 0. 0.5 0.7
# 0.0 0.50 0.90
# 0.00 0.500 0.900 ’’
# -> LAMELLAR GRATING (rectangular grating consisting
# of several materials placed in rectangular sub-
# domains) with 3 columns each divided into 4
# rectangular layers, first column with x coordinate
# in 0<x<0.2 (given in micro meter), second column with 0.2<x<0.6,
# third columnn with 0.6<x<period (period given above),
# whole grating with y coordinate s.t. -0.2<y<1.0,
# first column: first layer with -0.2<y<0., second with
# 0.<y<0.5, third with 0.5<y<0.7 and fourth with 0.7<y<1,
# second column: first layer with -0.2<y<0.0, second with
# 0.0<y<0.50, third with 0.50<y<0.90 and fourth with 0.90<y<1.,
# third column: first layer with -0.2<y<0.00, second with
# 0.00<y<0.500, third with 0.500<y<0.900 and fourth with
# 0.900<y<1.
# e.g. ‘‘ lAmellar 1 1
# 0.2 0.8 ’’
# -> SIMPLE LAYER (special case of lamellar grating) with
# layer material s.t. y-coordinate satisfies 0.2<y<0.8
# (given in micro meter).
# e.g. ‘‘ polygon file1’’
# -> GRATING DETERMINED BY A POLYGONAL LINE defined
# by the data in the file with name ‘‘../GEOMETRIES/file1’’
# (in ‘‘../GEOMETRIES/file1’’: in each line beginning without ‘#’
# there should be the x- and y-coordinate of one
# of the consecutive corner points, first point
# with x-coordinate 0, last point with x-coordinate
# 1, same y-coordinate for first and last point,
# all x-coordinates between 0 and 1, at least two
# different y-coordinates, last line should be
# ‘‘End’’)
# e.g. ‘‘ polygon2 file1 file2’’
# -> COATED GRATING DETERMINED BY POLYGONAL LINES,
# i.e. grating profile line is defined by the data
# in the file with name ‘‘../GEOMETRIES/file1’’
# (in ‘‘../GEOMETRIES/file1’’:
# in each line beginning without ‘#’ there should
# be the x- and y-coordinate of one of the
# consecutive corner points, first point with
# x-coordinate 0, last point with x-coordinate
# 1, same y-coordinate for first and last point,
# all x-coordinates between 0 and 1, at least two
# different y-coordinates, last line should be
# ‘‘End’’) and the coated layer is enclosed between
# the polygonal line of ‘‘../GEOMETRIES/file1’’
# and the polygonal line of the file with name
# ‘‘../GEOMETRIES/file2’’
# (in ‘‘../GEOMETRIES/file2’’:
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# in each line beginning without ‘#’ there should be
# the x- and y-coordinate of one of the consecutive
# corner points, first and last point must be corner
# of first polygon, second polygon must be on left-
# hand side of first, one to one correspondence of
# the corners on the two polygons between first and
# last point of second polygon, quadrilateral between
# corresponding segments on the left of first
# polygon, these quadrilaterals must be disjoint, last
# line should be ‘‘End’’)
# e.g. ‘‘ profile’’
# -> GRATING DETERMINED BY A SMOOTH PARAMETRIC CURVE,
# i.e. grating determined by profile line given as
# {(fctx(t),fcty(t)):0<=t<=1}, where the functions
# ‘‘t|->fctx(t)’’ and ‘‘t|->fcty(t)’’ are defined
# by the ‘‘c’’-code of the file ‘‘../GEOMETRIES/profile.c’’
# e.g. ‘‘ profile_par 2 3
# 1
# 0
# 1.5
# 0.2
# 0.3 ’’
# -> GRATING DETERMINED BY A SMOOTH PARAMETRIC CURVE,
# WITH PARAMETERS,
# i.e. grating determined by profile line given as
# {(fctx(t),fcty(t)):0<=t<=1}, where the functions
# ‘‘t|->fctx(t)’’ and ‘‘t|->fcty(t)’’ are defined
# by the ‘‘c’’-code of ‘‘../GEOMETRIES/profile_par.c’’;
# the last code uses 2 integer parameters and 3
# real parameters named IPARaM1, IPARaM2, RPARaM1,
# RPARaM2, RPARaM3;
# the integer parameters take the values 1 and 0
# following the first line of the calling sequence
# and the real parameters take the values 1.5, 0.2,
# and 0.3 following the integer parameter values
# (Any number of parameters is possible for a
# corresponding file ‘‘../GEOMETRIES/profile_par.c’’.)
# e.g. ‘‘ profile 0.125*sin(2.*M_PI*t)’’
# -> GRATING DETERMINED BY A SIMPLE SMOOTH FUNCTION,
# i.e. grating determined by sine profile line given
# as {(t,fcty(t)):0<=t<=1}, where the function
# ‘‘t|->fcty(t)’’ is defined by the ‘‘c’’-code
# fcty(t)=0.125*sin(2.*M_PI*t),
# (do not use any ‘‘blank’’/‘‘space’’ in the c-code)
# e.g. ‘‘ profile 0.5+0.5*cos(M_PI*(1.-t)) 0.25*sin(M_PI*t)’’
# -> GRATING DETERMINED BY A SIMPLE SMOOTH PARAMETRIC CURVE,
# i.e., grating determined by ellipsoidal profile line
# given as {(fctx(t),fcty(t)):0<=t<=1}, where the
# functions ‘‘t|->fcty(t)’’ and ‘‘t|->fcty(t)’’ are
# defined by the ‘‘c’’-codes
# fctx(t)=0.5+0.5*cos(M_PI*(1.-t)) and
# fcty(t)=0.25*sin(M_PI*t), respectively
# (do not use any ‘‘blank’’/‘‘space’’ in the c-codes)
# e.g. ‘‘ profiles’’
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# -> GRATING DETERMINED BY SMOOTH PARAMETRIC CURVES,
# i.e. grating determined by profile lines given as
# {(fctx(j,t),fcty(j,t)):0<=t<=1}, j=1,...,n=nmb_curves,
# where the functions ‘‘t|->fctx(j,t)’’ and
# ‘‘t|->fcty(j,t)’’ are defined by the ‘‘c’’-code
# of the file ‘‘../GEOMETRIES/profiles.c’’
# e.g. ‘‘ profiles_par 1 2
# 3
# 0.5
# 0.50 ’’
# -> GRATING DETERMINED BY SMOOTH PARAMETRIC CURVES,
# WITH PARAMETERS,
# i.e. grating determined by profile lines given as
# {(fctx(j,t),fcty(j,t)):0<=t<=1}, j=1,...,n=nmb_curves,
# where the functions ‘‘t|->fctx(j,t)’’ and
# ‘‘t|->fcty(j,t)’’ are defined by the ‘‘c’’-code
# of the file ‘‘../GEOMETRIES/profiles_par.c’’;
# the last code uses 1 integer parameter and 2
# real parameters named IPARaM1, RPARaM1, RPARaM2;
# the integer parameter takes the value 3
# following the first line of the calling sequence
# and the real parameters take the values 0.5 and 0.50
# following the integer parameter values
# (Any number of parameters is possible for a
# corresponding file ‘‘../GEOMETRIES/profiles_par.c’’.)
# e.g. ‘‘ pin’’
# -> PIN GRATING DETERMINED BY PARAMETRIC CURVE,
# i.e. over a flat grating with surface {(x,0):0<=x<=1}
# a material part is attached which is located between
# {(x,0):0<=x<=1} and {(fctx(t),fcty(t)):0<=t<=1}.
# Here {(fctx(t),fcty(t)):0<=t<=1} is a simple open
# arc connecting (fctx(0),fcty(0))=(xmin,0) with
# (fctx(1),fcty(1))=(1-xmin,0) such that 0<xmin<0.5
# is a fixed number, such that 0<fctx(t)<1, 0<t<1, and
# such that 0<fcty(t), 0<t<1. The functions fctx, fcty
# and the parameter xmin are defined by the code in
# ‘‘../GEOMETRIES/pin.c’’.
# e.g. ‘‘ cpin’’
# -> COATED PIN GRATING DETERMINED BY TWO PARAMETRIC CURVES,
# i.e. over a flat grating with surface {(x,0):0<=x<=1}
# a material part is attached which is located between
# {(x,0):0<=x<=1} and {(fctx(1,t),fcty(1,t)):0<=t<=1}.
# Here {(fctx(1,t),fcty(1,t)):0<=t<=1} is a simple open
# arc connecting (fctx(1,0),fcty(1,0))=(xmin,0) with
# (fctx(1,1),fcty(1,1))=(1-xmin,0) such that 0<xmin<0.5
# is a fixed number, such that 0<fctx(1,t)<1, 0<t<1, and
# such that 0<fcty(1,t), 0<t<1. Additionaly, a coating
# layer is attached located between the first curve
# {(fctx(1,t),fcty(1,t)):0<=t<=1} and a second curve
# {(fctx(2,t),fcty(2,t)):0<=t<=1}. The last connects the
# point (fctx(1,arg1),fcty(1,arg1))=(fctx(2,0),fcty(2,0))
# with (fctx(1,arg2),fcty(1,arg2))=(fctx(2,1),fcty(2,1)).
# Moreover, {(fctx(2,t),fcty(2,t)):0<=t<=1} is a simple open
# arc above {(fctx(1,t),fcty(1,t)):0<=t<=1} such that
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# 0<fctx(2,t)<1, 0<t<1. The functions fctx(1,.), fctx(2,.),
# fcty(1,.), and fcty(2,.) and the parameters arg1, arg2,
# xmin are defined by the code of the file
# ‘‘../GEOMETRIES/cpin.c’’.
# e.g. ‘‘ cpin2’’
# -> COATED PIN GRATING DETERMINED BY TWO PARAMETRIC CURVES
# TYPE 2,
# i.e. over a flat grating with surface {(x,0):0<=x<=1}
# a material part is attached which is located between
# {(x,0):0<=x<=1} and {(fctx(1,t),fcty(1,t)):0<=t<=1}.
# Here {(fctx(1,t),fcty(1,t)):0<=t<=1} is a simple open
# arc connecting (fctx(1,0),fcty(1,0))=(xmin,0) with
# (fctx(1,1),fcty(1,1))=(1-xmin,0) such that 0<xmin<0.5
# is a fixed number, such that 0<fctx(1,t)<1, 0<t<1, and
# such that 0<fcty(1,t), 0<t<1. Additionaly, a coating
# layer is attached located between the first curve
# {(fctx(1,t),fcty(1,t)):0<=t<=1} and a second curve
# {(fctx(2,t),fcty(2,t)):0<=t<=1}. The last connects the
# point (x1,0)=(fctx(2,0),fcty(2,0)) with (x2,0)=
# (fctx(2,1),fcty(2,1)) with 0<x1<xmin<1-xmin<x2. Moreover,
# {(fctx(2,t),fcty(2,t)):0<=t<=1} is a simple open
# arc above {(fctx(1,t),fcty(1,t)):0<=t<=1} such that
# 0<fctx(2,t)<1, 0<t<1. The functions fctx(1,.), fctx(2,.),
# fcty(1,.), and fcty(2,.) and the parameter xmin are
# defined by the code of the file ‘‘../GEOMETRIES/cpin2.c’’.
# e.g. ‘‘ stack 3
# profile t /##/ 0.2*sin(2.*M_PI*t)
# 2.
# profile 0.2*sin(2.*M_PI*t)
# 1.
# profile t /##/ 0.
# 0. ’’
# -> STACK GRATING,
# i.e. a stack of 3 profile curves shifted by 2, 1, 0
# micro meter in vertical direction. For more details, see
# the description in the USERGUIDE.
# e.g. ‘‘ bOX 0.1
# -1. 1.
# 2 3
# { 2.*t }
# { -0.6 }
# { 1.+0.4*cos(2.*M_PI*t)}
# { 0.4*sin(2.*M_PI*t) }
# 1. 0.8
# 1. 0.
# 1. -0.8 ’’
# -> BOX GRATING,
# i.e. a box geometry of size [0.,period=2.]x[-1.,1.]
# given in micro m (period is supposed to be set to
# 2. in previous input lines); number 0.1 behind word
# BOX is a mesh size factor; [0.,2.]x[-1.,1.] is
# divided by 2 curves into 3 different material parts;
# curves are given by the c-code in following 2 times
# two lines; first code line is x-component of first
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# curve; second code is y-component of first curve;
# third code is x-component of second curve; etc.;
# last three input lines define material points;
# material with index one is located in part of box
# separated by above curves and containing (1.,0.8);
# material with index two is in part of box separated
# by above curves and containing (1.,0.); etc.; Note
# that the curves must be simple not self intersecting,
# contained in the box; allowed intersection points
# of two different curves are end points only; material
# areas separated by curves must be such that area with
# first index contains strip beneath upper boundary side
# of box and that area with last index contains strip
# above lower boundary side.
# e.g. ‘‘ rough_mls name ’’
# -> MULTILAYER SYSTEM WITH ROUGH INTERFACES,
# i.e. nla layers + nmld times nld layers + nlb layers,
# This system is described by the file ‘‘name’’, which
# is contained in the directory ‘‘../GEOMETRIES’’.
# (alternatively, the name must contain the path of the file)
# This input file ‘‘name’’ contains the following ordered
# data each in a separate line (comment lines begin with ’#’):
# - dummy file name
# - width of additional layer above and below the structure
# (must be positive or could be ’no’ for no additional layer)
# - period of grating ’per’
# - number ’nla’ of layers above multilayer system
# - number ’nlb’ of layers below multilayer system
# - number ’nmld’ of multilayers inbetween
# - number ’nld’ of layers in each multilayer
# - number ’ncorn’ of corner points in each polygonal approximation
# (interfaces=randomly generated polygon)
# - number ’nrand’ of standard Gaussian distributed random numbers
# needed to generate interfaces
# (automatically created if nrand=0, otherwise ’nrand’ has
# to equal ncorn*(nla+nld*nmld+nlb))
# - (optional) standard Gaussian distributed random numbers
# - ’nla’ widths of layers above multilayer system,
# - ’nld’ widths of layers in each multilayer,
# - ’nlb’ widths of layers below multilayer system,
# - standard deviation ’sigma[i]’ of each layer interface,
# for i=0,...,(’nla’+’nld’*’nmld’+’nlb’-1)
# - correlation length ’corl[i]’ of each layer interface,
# for i=0,...,(’nla’+’nld’*’nmld’+’nlb’-1)
# Note that the first of the subsequent refractive indices of
# the grating must be that of the superstrate resp. that of
# the adjacent upper layer. If the width of the additional
# layers is positive, then the last of the subsequent refractive
# indices of the grating must be that of the substrate resp. that
# of the adjacent lower layer.
# e.g. ‘‘ rough_mls k name ’’
# -> MULTILAYER SYSTEM WITH ROUGH INTERFACES k TIMES,
# just like above. However, k random realizations are computed
# and the output values are replaced by the mean values over
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# the k computations. Standard deviations are added, too.
# Grating data:
example

###################################################################
# Number of different grating materials (N_mat).
# This includes the material of substrate and cover material.
# For example,
# if Grating data is ‘‘ name1’’
# -> Number of materials given in file ‘‘name1.inp’’
# if Grating data is ‘‘ echellea ...’’
# -> N_mat = 3 with coating height >0
# N_mat = 2 with coating height =0
# if Grating data is ‘‘ echelleb ...’’
# -> N_mat = 3 with coating height >0
# N_mat = 2 with coating height =0
# if Grating data is ‘‘ echelle ...’’
# -> N_mat = 3 with coating heights >0
# N_mat = 2 with coating heights =0
# if Grating data is ‘‘ trapezoid ...’’
# -> N_mat = number of material layers +3
# for coating height >0
# N_mat = number of material layers +2
# for coating height =0
# if Grating data is ‘‘ mtrapezoid ...’’
# -> N_mat = number of material layers in each bridge +2
# if Grating data is ‘‘ lAmellar k m
# ... ’’
# -> N_mat = k times m plus 2
# if Grating data is ‘‘ polygon file1’’
# -> N_mat = 2
# if Grating data is ‘‘ polygon2 file1 file2’’
# -> N_mat = 3
# if Grating data is ‘‘ profile’’
# -> N_mat = 2
# if Grating data is ‘‘ profile 2 3
# ... ’’
# -> N_mat = 2
# if Grating data is ‘‘ profile 0.125*sin(2.*M_PI*t)’’
# -> N_mat = 2
# if Grating data is
# ‘‘ profile 0.5+0.5*cos(M_PI*(1.-t)) 0.25*sin(M_PI*t)’’
# -> N_mat = 2
# if Grating data is ‘‘ profiles’’
# -> N_mat = n+1 with n=nmb_curves from
# the file ‘‘../GEOMETRIES/profiles.c’’
# if Grating data is ‘‘ profiles ... ’’
# -> N_mat = n+1 with n=nmb_curves from
# the file ‘‘../GEOMETRIES/profiles_par.c’’
# if Grating data is ‘‘ pin ’’
# -> N_mat = 3
# if Grating data is ‘‘ cpin ’’
# -> N_mat = 4
# if Grating data is ‘‘ cpin2 ’’
# -> N_mat = 4
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# if Grating data is ‘‘ stack k’’
# -> N_mat = k+1
# if Grating data is ‘‘ bOX ...’’
# -> N_mat = number indicated as second
# integer in second lind after
# line with code word bOX
# if Grating data is ‘‘ rough_mls ...’’
# -> N_mat = nla+nld+nlb+2 if width of additional
# layer above and below is positive
# N_mat = nla+nld+nlb+1 if instead of the value for
# the width of additional layer above and below
# a ’no’ is given in the input file
# Number of materials:
4

###################################################################
# Optical indices of grating materials.
# This is c times square root of mu times epsilon.
# If meaningful, then the refractive indices should be ordered
# according to the location from above to below.
# If an input file ‘‘name1.inp’’ is used, then the optical index
# of a subdomain with the material index j is just the j-th
# optical index following below.
# If grating is ‘‘lAmellar ...’’, then first material is cover
# material, last material is substrate, and all other materials
# are ordered from left to right and inside the columns from
# below to above.
# For technical reasons, the index of the material adjacent to
# the upper line of the grating structure must coincide with
# that of the material in the adjacent upper coated layer resp.
# in the adjacent superstrate. Similarly the index of the
# materials adjacent to the lower line of the grating structure
# must coincide with that of the material in the adjacent lower
# coated layer resp. in the adjacent substrate.
# N_mat numbers are needed.
# Optical indices:
1.2 +i .0
1.5 +i .0
1.7 +i .0
2.3 +i .0

###################################################################
# Number of levels (Lev).
# In each refinement step the step size of the mesh is halved.
# Number of refinement steps is Lev.
# (Alternatively, one can prescribe an bound for the maximal
# error of the efficiencies. E.g. the input ‘‘e 1.’’ means
# that the level for the computation is the smallest positive
# integer such that all efficiencies are computed with an
# estimated error less than 1 per cent.)
# Number:
3

###################################################################
# End
###################################################################
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12.3 Data file “generalized.Dat” for CLASSICAL resp. “coni-
cal.Dat” in CONICAL

#-*-makefile-*-
############################################################
# #
# ##################### #
# # generalized.Dat # #
# ##################### #
# #
# all lines beginning with # are comments #
# #
############################################################
#
# - input file for ‘‘GFEM’’
# - located in directory ‘‘CLASSICAL’’
# - contains constants for numerical
# method in program ‘‘GFEM’’
#
############################################################
#
# Recommendation for n_DOF and n_LFEM:
# ------------------------------------
#
# a) mild accuracy requirements
# and wave numbers not too large:
#
# n_DOF=1,3,7 n_LFEM=2*n_DOF+1
#
# b) challenging accuracy requirements
# or large wave numbers:
#
# n_DOF=3 with n_LFEM=31 or
# n_DOF=7 with n_LFEM=127 or
# n_DOF=15 with n_LFEM=511
#
# Recommendation for n_UPA:
# -------------------------
#
# Take the first level l_0 (cf. the last input in
# ‘‘name.dat’’ which is the upper bound for all
# levels to be computed, and cf. the levels
# indicated in the result files ‘‘name2.res’’)
# such that the next level results in about four
# times the number of grid points. Then, if you
# wish to compute on level l_0+l_1, set the
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# maximum level of computation (last input in
# ‘‘name.dat’’) to l_0 and choose n_UPA as 2 to
# the power l_1.
#
############################################################
# n_DOF.
# Additional degrees of freedom on each triangle side.
# Indeed, trial functions on each subdivision triangle
# are approximate solutions of pde s.t. restriction to
# triangle sides coincides with Lagrange interpolation
# polynomials on triangle side (Dirichlet’s problem).
# Here interpolation is taken over uniform grid with
# [n_DOF+2] interpolation knots.
# Value should satisfy 0<=n_DOF<100.
# value:
3

############################################################
# n_LFEM.
# Approximate solution determined by FEM over subdivision
# triangle, where additional uniform FEM partition on
# each small triangle is chosen such that the step size
# is side length divided by [n_LFEM+1].
# If n_LFEM=1, n_DOF=0: conventional FEM method.
# If n_DOF=n_LFEM: conventional FEM method with
# elimination of interior nodes of grid
# triangle, i.e. real mesh size is mesh
# size shown in result file divided by
# [n_DOF+1].
# If n_DOF<n_LFEM: method resembles p=method or PUM.
# Value should satisfy 1<=n_LFEM<2048 and
# [n_LFEM+1] must be a multiple of [n_DOF+1].
# value:
63

############################################################
# n_UPA.
# This is for additional uniform partition of all primary
# grid triangles into n_UPA*n_UPA equal subdomains,
# i.e. original side of grid triangle is split
# into n_UPA sides of uniform partition subtriangles.
# Value should satisfy 1<=n_UPA<=128.
# value:
1

############################################################
#
# that’s it
#
############################################################
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12.4 Data file “example.dat” for CONICAL

#-*-makefile-*-
######################################################################
# #
# ################# #
# # example.dat # #
# ################# #
# #
# all lines beginning with ‘‘#’’ are comments! #
# #
######################################################################
#
# - input file for ‘‘FEM/GFEM’’
# - located in directory ‘‘CONICAL’’
#
######################################################################
# Name of the output file.
# The tag ‘‘.res’’ will be added.
# The file will be written in the ‘‘RESULTS’’ directory.
# (Alternatively, a path for the location of the file
# can be added before the name. This must contain at
# least one slash ’/’. E.g. for a file ‘‘name.res’’
# in the current working directory write ‘‘ ./name’’)
# Name:
example

###################################################################
# Should there be an additional output file in the old style of
# DIPOG-1.3 (resp. an eps-file for FEM_CHECK).
# Add ‘‘ no’’ if not needed.
# Add ‘‘ yes’’ if needed. The name will be the same as
# the standard output file given above but with the tag
# ‘‘.erg’’ instead of ‘‘.res’’.
# yes or no:
yes

######################################################################
# Number of coating layers over the grating (N_co_ov).
# The grating cross section consists of a rectangular area
# parallel to the axes. This inhomogeneous part is determined
# by a triangular grid and can have already a few
# layers of coatings involved. Beneath and above
# this rectangular structure, there might be additional
# coated layers of rectangular shape. These kind of
# layers are called coating layers over the grating and
# coating layers beneath the grating, respectively.
# Alternatively a
# multilayer system input format is possible:
# E.g. the input ‘‘MLS n1 n2*n3 n4’’ with n1,n2,n3,n4
# replaced by non-negative integers means
# N_co_ov=n1+n2*n3+n4 layers with n1 layers above,
# n2 groups of n3 layers with same widths and materials
# in the middle, and with 7 layers below.
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# Number:
2

######################################################################
# Widths of coating layers in micro meter.
# N_co_ov entries. Needed only if N_co_ov >0.
# Else no entry and no line.
# For a multilayer system the widths of the
# n3 layers in the groups must be given only once.
# I.e. for a multilayer system n1+n3+n4 input numbers
# are needed.
# Widths:
0.05
0.03

######################################################################
# Number of coating layers beneath the grating (N_co_be):
1

######################################################################
# Widths of coating layers in micro meter.
# N_co_be entries. Needed only if N_co_be >0.
# Else no entry and no line.
# Widths:
0.05

######################################################################
# Wave length in micro meter (lambda).
# Either add a single value e.g. ‘‘.63’’.
# Either add more values by e.g.
# ‘‘ V
# 5
# .63
# .64
# .65
# .69
# .70 ’’.
# The last means that computation is to be done for
# the wave lengths from the Vector of length 5:
# ‘‘.63’’, ‘‘.64’’,‘‘.65’’,‘‘.69’’, and ‘‘.70’’.
# Or add e.g.
# ‘‘ I .63 .73 .02’’.
# The last means that computation is to be done for
# the wave lengths ‘‘.63+i*.02’’ with i=0,1,2,... and with
# wave length ‘‘.63+i*.02’’ less or equal to ‘‘.73’’.
# Wave length:
.635

######################################################################
# Temperature in degrees Celsius from 0 to 400.
# 20. for room temperature!
# Must be set to any fixed number.
# Will be ignored if optical indices are given explicitly.
# Temperature:
20.

######################################################################
# Optical index (refractive index) of cover material.
# This is c times square root of mu times epsilon.
# This could be complex like e.g. ‘‘4.298 +i 0.073’’ for
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# Si with wave length 500nm.
# This could be also given by the name of a material
# like: Air Ag Al Au CsBr Cu InP MgF2 NaCl PMMA PSKL
# SF5 Si TlBr TlCl Cr ZnS Ge Si1.0 - Si2.0
# TiO2r Quarz AddOn ... (cf. Userguide)
# This could be a value interpolated from a user
# defined table, determined by the name of the file
# (file is to be located in the current directory,
# name of file must begin with letter ‘‘u’’ and may
# consist of no more than five letters like e.g. user,
# the file consists of lines each with three real
# numbers, first: wave length in micro meter, second:
# the real part of the corresponding optical index,
# third: the imaginary part of the corresponding index).
# Optical index:
Air

######################################################################
# Optical indices of the materials of the upper coating layers.
# This is c times square root of mu times epsilon.
# N_co_ov entries. Needed only if N_co_ov >0.
# Else no entry and no line.
# For a multilayer system the indices of the
# n3 layers in the groups must be given only once.
# I.e. for a multilayer system n1+n3+n4 input lines
# are needed.
# Optical indices:
1.2
1.3

######################################################################
# Optical indices of the materials of the lower coating layers.
# This is c times square root of mu times epsilon.
# N_co_be entries. Needed only if N_co_be >0.
# Else no entry and no line.
# Optical indices:
1.6

######################################################################
# Optical index of substrate material.
# This is c times square root of mu times epsilon.
# Optical index:
1.5 +i 0.

######################################################################
# Type of output results.
# Either ‘‘TE/TM’’: results in terms of TE and TM part of Wave.
# Either ‘‘Jones’’: results in terms of Jones vector
# representation.
# Or ‘‘3.Com’’: results in terms of the component in the z
# axis, that is in the direction of the grooves.
# For more details cf. Section 2.3 in USERGUIDE.ps.
# Type:
3.Com

######################################################################
# Type of polarization and coordinate system for incoming wave vector.
# Either ‘‘TE’’: means that incident electric field is perpendicular
# to wave vector and to normal of grating plane
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# (plane of grating grooves) and
# incoming wave vector is presented in xz system as
# (sin theta cos phi, -cos theta, sin theta sin phi).
# Either ‘‘TM’’: means that incident magnetic field is perpendicular
# to wave vector and to normal of grating plane and
# incoming wave vector is presented in xz system as
# (sin theta cos phi, -cos theta, sin theta sin phi).
# Either ‘‘TE/TM’’:
# means TE and TM, two calculations.
# Either ‘‘TP’’: means polarized electro-magnetic field and
# incoming wave vector is presented in xz system as
# (sin theta cos phi, -cos theta, sin theta sin phi).
# Or ‘‘pol’’: means polarized electro-magnetic field and
# incoming wave vector is presented in xy system as
# (sin theta cos phi, -cos theta cos phi, sin phi).
# Type:
TE/TM

######################################################################
# Parameter of polarization.
# If type of polarization is ‘‘pol’’ or ‘‘TP’’, then this is
# the angle (in degrees) between x axis (axis in plane of
# grating grooves which is perpendicular to grooves)
# and projection of electric field vector onto x-z plane of
# grating grooves.
# Needed only if polarization is of type ‘‘pol’’ or ‘‘TP’’.
# Else no entry and no line.
# Parameter:
######################################################################
# Angle of incident wave in degrees (theta).
# If type of polarization is ‘‘pol’’,
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta cos phi, sin phi)
# with the restriction -90 < phi,theta < 90.
# If type of polarization is ‘‘TE’’/‘‘TM’’/‘‘TP’’,
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta, sin theta sin phi)
# with the restriction 0 < theta < 90.
# Either add a single value e.g. ‘‘45.’’.
# Either add more values by e.g.
# ‘‘ V
# 5
# 63.
# 64.
# 65.
# 69.
# 70. ’’.
# The last means that computation is to be done for
# the angles from the Vector of length 5:
# ‘‘63.’’, ‘‘64.’’,‘‘65.’’,‘‘69.’’, and ‘‘70.’’.
# Or add e.g.
# ‘‘ I 45 56 2’’.
# The last means that computation is to be done for
# the angles ‘‘45+i*2’’ with i=0,1,2,... and with
# angle ‘‘45+i*2’’ less or equal to ‘‘56’’.
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# Note that either the wave length or the angle of
# incident wave theta must be single valued.
# Angle:
30.

######################################################################
# Angle of incident wave in degrees (phi).
# If type of polarization is ‘‘pol’’,
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta cos phi, sin phi)
# with the restriction -90 < phi,theta < 90.
# If type of polarization is ‘‘TE’’/‘‘TM’’/‘‘TP’’,
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta, sin theta sin phi)
# with the restriction 0 < theta < 90.
# Either add a single value e.g. ‘‘45.’’.
# Either add more values by e.g.
# ‘‘ V
# 5
# 63.
# 64.
# 65.
# 69.
# 70. ’’.
# The last means that computation is to be done for
# the angles from the Vector of length 5:
# ‘‘63.’’, ‘‘64.’’,‘‘65.’’,‘‘69.’’, and ‘‘70.’’.
# Or add e.g.
# ‘‘ I 45 56 2’’.
# The last means that computation is to be done for
# the angles ‘‘45+i*2’’ with i=0,1,2,... and with
# angle ‘‘45+i*2’’ less or equal to ‘‘56’’.
# Note that two of the three, the wave length, the
# angle of incident wave theta, and the angle of
# incident wave phi, must be single valued.
# Angle:
47.

###################################################################
# Length factor of additional shift of grating geometry.
# This is shift into the x-direction, i.e. the
# direction of the period to the right.
# This is length of shift relative to period, i.e.
# the grating structure given by subsequent input
# will be shifted by factor times the period given
# in subsequent input.
# However, only the Rayleigh numbers and efficiencies
# will be computed according to the shift. The field
# vectors in the plots are drawn without shift, and
# the graphics of the executable with tag ‘‘_CHECK’’
# is drawn without shift!
# Must be a real number between 0 and 1.
# Length:
0.

###################################################################
# Stretching factor for grating in y-direction.
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# Must be a positive real number.
# Length:
1.

###################################################################
# Length of additional shift of grating geometry in micro m.
# This is shift into the y-direction, i.e. the
# direction perpendicular to the grating surface
# pointing into the cover material.
# Must be a real number.
# Length:
0.

######################################################################
# Period of grating in micro meter:
1.

###################################################################
# Grating data.
# Either this should be e.g. ‘‘name1’’ if ‘‘name1.inp’’
# is the input file with the geometry data in sub-
# directory ‘‘GEOMETRIES’’.
# (Alternatively, a path for the location of the file
# can be added before the name. This must contain at
# least one slash ’/’. E.g. for a file in the current
# working directory write ‘‘ ./name1’’)
# Or this could be a stack of profiles given by the
# code word stack and many more lines (cf. Userguide)
# Or this could be
# e.g. ‘‘ echellea R 0.3 0.03 0.04’’
# -> ECHELLE GRATING TYPE A (right-angled triangle
# with hypotenuse parallel to the direction of the
# periodicity, right interior angle > 45 degrees)
# with depth of 0.3 micro meter and with coated
# layers of height 0.03 micro meter resp. 0.04 micro
# meter over the first resp. second part of the
# grating (measured in direction perpendicular to
# echelle profile, height greater or equal to zero)
# e.g. ‘‘ echellea L 0.3 0.03 0.04’’
# -> ECHELLE GRATING TYPE A (right-angled triangle
# with hypotenuse parallel to the direction of the
# periodicity, left interior angle > 45 degrees)
# with parameters like above
# e.g. ‘‘ echellea A 60 0.03 0.04’’
# -> ECHELLE GRATING TYPE A (right-angled triangle
# with hypotenuse parallel to the direction of the
# periodicity) with left interior angle Alpha=60
# degrees (i.e. depth = period times sin(Alpha)
# times cos(Alpha)) and other parameters like above
# e.g. ‘‘ echelleb 60. 0.05’’
# -> ECHELLE GRATING TYPE B (right-angled triangle
# with one of the legs parallel to the direction
# of the periodicity) with angle 60 (angle enclosed
# by hypotenuse and by the leg parallel to the
# period) and with a coated layer of height 0.05
# micro meter (measured in direction perpendicular
# to echelle profile, height greater or equal to
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# zero)
# e.g. ‘‘ echelle L 60. R 30. 0.05 0.1’’
# -> GENERAL ECHELLE GRATING with left blaze angle 60
# degrees, with right blaze angle 30 degrees, with
# coated layer over left blaze side of height 0.05
# micro meter (measured perpendicular to profile,
# height >= 0) and with coated layer over right blaze
# side of height 0.1 micro meter (measured
# perpendicular to profile, height >= 0, must be 0 if
# previous height is 0). Instead of the two inputs
# ‘‘L 60.’’ and ‘‘R 30.’’ one can choose also the
# inputs ‘‘A 90.’’ for an apex angle of 90 degrees or
# ‘‘D 0.2’’ for a depth of grating = 0.2 micro meter.
# Moreover, any combination of two inputs of the types
# ‘‘A 90.’’, ‘‘L 110.’’, ‘‘R 90’’, and ‘‘D 0.2’’ is
# accepted. However, the choice ‘‘A 90.’’ and ‘‘D 0.2’’
# might be ambiguous. By definition it fixes an
# echelle grating with right blaze angle larger than the
# left. To get the flipped grating with left blaze angle
# larger than the right, the input should be ‘‘A 90.’’
# and ‘‘D -0.2’’.
# e.g. ‘‘ trapezoid 60. 0.6 3 0.2 0.1 0.1 0.05’’
# -> TRAPEZOIDAL GRATING (trapezoid with the basis
# parallel to the direction of the periodicity)
# with angle of 60 degrees (angle enclosed by
# basis and the sides) with a base of length 0.6
# micro meter consisting of 3 material layers of
# heights 0.2, 0.1, and 0.1 micro meter,
# respectively, and with a coated layer of height
# 0.05 micro meter (greater or equal to zero)
# e.g. ‘‘ mtrapezoid
# 3
# 0.005 0.015 0.005
# 80. 90. 80.
# 0.01
# 7
# 0.05 0.075 0.05 0.05 0.075 0.075 0.05
# 0.15 0.3 0.4 0.5 0.6 0.75 0.9 ’’
# -> MULTITRAPEZOIDAL GRATING (finite number of symmetric
# trapezoidal bridges located side by side)
# each bridge consists of 3 trapezoidal layers, one over
# each other; hights in micro meter of these layers from
# above to below are 0.005, 0.015, and 0.005; sidewall
# angles in degrees of these layers from above to below
# are 80, 90, 80; height in micro meter at which the
# lateral width of the bridge is given is 0.01; number of
# trapezoidal bridges per period is 7; lateral widths in
# micro meter of these bridges are 0.05, 0.075, 0.05, 0.05,
# 0.075, 0.075, and 0.05; x-coordinates in micro meter of
# the mid-points of the bottom lines of these bridges are
# 0.15, 0.3, 0.4, 0.5, 0.6, 0.75, and 0.9.
# e.g. ‘‘ lAmellar 3 4
# 0.2 0.6
# -0.2 1.0
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# 0. 0.5 0.7
# 0.0 0.50 0.90
# 0.00 0.500 0.900 ’’
# -> LAMELLAR GRATING (rectangular grating consisting
# of several materials placed in rectangular sub-
# domains) with 3 columns each divided into 4
# rectangular layers, first column with x coordinate
# in 0<x<0.2 (given in micro meter), second column with 0.2<x<0.6,
# third columnn with 0.6<x<period (period given above),
# whole grating with y coordinate s.t. -0.2<y<1.0,
# first column: first layer with -0.2<y<0., second with
# 0.<y<0.5, third with 0.5<y<0.7 and fourth with 0.7<y<1,
# second column: first layer with -0.2<y<0.0, second with
# 0.0<y<0.50, third with 0.50<y<0.90 and fourth with 0.90<y<1.,
# third column: first layer with -0.2<y<0.00, second with
# 0.00<y<0.500, third with 0.500<y<0.900 and fourth with
# 0.900<y<1.
# e.g. ‘‘ lAmellar 1 1
# 0.2 0.8 ’’
# -> SIMPLE LAYER (special case of lamellar grating) with
# layer material s.t. y-coordinate satisfies 0.2<y<0.8
# (given in micro meter).
# e.g. ‘‘ polygon file1’’
# -> GRATING DETERMINED BY A POLYGONAL LINE defined
# by the data in the file with name ‘‘../GEOMETRIES/file1’’
# (in ‘‘../GEOMETRIES/file1’’: in each line beginning without ‘#’
# there should be the x- and y-coordinate of one
# of the consecutive corner points, first point
# with x-coordinate 0, last point with x-coordinate
# 1, same y-coordinate for first and last point,
# all x-coordinates between 0 and 1, at least two
# different y-coordinates, last line should be
# ‘‘End’’)
# e.g. ‘‘ polygon2 file1 file2’’
# -> COATED GRATING DETERMINED BY POLYGONAL LINES,
# i.e. grating profile line is defined by the data
# in the file with name ‘‘../GEOMETRIES/file1’’
# (in ‘‘../GEOMETRIES/file1’’:
# in each line beginning without ‘#’ there should
# be the x- and y-coordinate of one of the
# consecutive corner points, first point with
# x-coordinate 0, last point with x-coordinate
# 1, same y-coordinate for first and last point,
# all x-coordinates between 0 and 1, at least two
# different y-coordinates, last line should be
# ‘‘End’’) and the coated layer is enclosed between
# the polygonal line of ‘‘../GEOMETRIES/file1’’
# and the polygonal line of the file with name
# ‘‘../GEOMETRIES/file2’’
# (in ‘‘../GEOMETRIES/file2’’:
# in each line beginning without ‘#’ there should be
# the x- and y-coordinate of one of the consecutive
# corner points, first and last point must be corner
# of first polygon, second polygon must be on left-
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# hand side of first, one to one correspondence of
# the corners on the two polygons between first and
# last point of second polygon, quadrilateral between
# corresponding segments on the left of first
# polygon, these quadrilaterals must be disjoint, last
# line should be ‘‘End’’)
# e.g. ‘‘ profile’’
# -> GRATING DETERMINED BY A SMOOTH PARAMETRIC CURVE,
# i.e. grating determined by profile line given as
# {(fctx(t),fcty(t)):0<=t<=1}, where the functions
# ‘‘t|->fctx(t)’’ and ‘‘t|->fcty(t)’’ are defined
# by the ‘‘c’’-code of the file ‘‘../GEOMETRIES/profile.c’’
# e.g. ‘‘ profile_par 2 3
# 1
# 0
# 1.5
# 0.2
# 0.3 ’’
# -> GRATING DETERMINED BY A SMOOTH PARAMETRIC CURVE,
# WITH PARAMETERS,
# i.e. grating determined by profile line given as
# {(fctx(t),fcty(t)):0<=t<=1}, where the functions
# ‘‘t|->fctx(t)’’ and ‘‘t|->fcty(t)’’ are defined
# by the ‘‘c’’-code of ‘‘../GEOMETRIES/profile_par.c’’;
# the last code uses 2 integer parameters and 3
# real parameters named IPARaM1, IPARaM2, RPARaM1,
# RPARaM2, RPARaM3;
# the integer parameters take the values 1 and 0
# following the first line of the calling sequence
# and the real parameters take the values 1.5, 0.2,
# and 0.3 following the integer parameter values
# (Any number of parameters is possible for a
# corresponding file ‘‘../GEOMETRIES/profile_par.c’’.)
# e.g. ‘‘ profile 0.125*sin(2.*M_PI*t)’’
# -> GRATING DETERMINED BY A SIMPLE SMOOTH FUNCTION,
# i.e. grating determined by sine profile line given
# as {(t,fcty(t)):0<=t<=1}, where the function
# ‘‘t|->fcty(t)’’ is defined by the ‘‘c’’-code
# fcty(t)=0.125*sin(2.*M_PI*t).
# (do not use any ‘‘blank’’/‘‘space’’ in the c-code)
# e.g. ‘‘ profile 0.5+0.5*cos(M_PI*(1.-t)) 0.25*sin(M_PI*t)’’
# -> GRATING DETERMINED BY A SIMPLE SMOOTH PARAMETRIC CURVE,
# i.e., grating determined by ellipsoidal profile line
# given as {(fctx(t),fcty(t)):0<=t<=1}, where the
# functions ‘‘t|->fcty(t)’’ and ‘‘t|->fcty(t)’’ are
# defined by the ‘‘c’’-codes
# fctx(t)=0.5+0.5*cos(M_PI*(1.-t)) and
# fcty(t)=0.25*sin(M_PI*t), respectively
# (do not use any ‘‘blank’’/‘‘space’’ in the c-codes)
# e.g. ‘‘ profiles’’
# -> GRATING DETERMINED BY SMOOTH PARAMETRIC CURVES,
# i.e. grating determined by profile lines given as
# {(fctx(j,t),fcty(j,t)):0<=t<=1}, j=1,...,n=nmb_curves,
# where the functions ‘‘t|->fctx(j,t)’’ and
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# ‘‘t|->fcty(j,t)’’ are defined by the ‘‘c’’-code
# of the file ‘‘../GEOMETRIES/profiles.c’’
# e.g. ‘‘ profiles_par 1 2
# 3
# 0.5
# 0.50 ’’
# -> GRATING DETERMINED BY SMOOTH PARAMETRIC CURVES,
# WITH PARAMETERS,
# i.e. grating determined by profile lines given as
# {(fctx(j,t),fcty(j,t)):0<=t<=1}, j=1,...,n=nmb_curves,
# where the functions ‘‘t|->fctx(j,t)’’ and
# ‘‘t|->fcty(j,t)’’ are defined by the ‘‘c’’-code
# of the file ‘‘../GEOMETRIES/profiles_par.c’’;
# the last code uses 1 integer parameter and 2
# real parameters named IPARaM1, RPARaM1, RPARaM2;
# the integer parameter takes the value 3
# following the first line of the calling sequence
# and the real parameters take the values 0.5 and 0.50
# following the integer parameter values
# (Any number of parameters is possible for a
# corresponding file ‘‘../GEOMETRIES/profiles_par.c’’.)
# e.g. ‘‘ pin’’
# -> PIN GRATING DETERMINED BY PARAMETRIC CURVE,
# i.e. over a flat grating with surface {(x,0):0<=x<=1}
# a material part is attached which is located between
# {(x,0):0<=x<=1} and {(fctx(t),fcty(t)):0<=t<=1}.
# Here {(fctx(t),fcty(t)):0<=t<=1} is a simple open
# arc connecting (fctx(0),fcty(0))=(xmin,0) with
# (fctx(1),fcty(1))=(1-xmin,0) such that 0<xmin<0.5
# is a fixed number, such that 0<fctx(t)<1, 0<t<1, and
# such that 0<fcty(t), 0<t<1. The functions fctx, fcty
# and the parameter xmin are defined by the code in
# ‘‘../GEOMETRIES/pin.c’’.
# e.g. ‘‘ cpin’’
# -> COATED PIN GRATING DETERMINED BY TWO PARAMETRIC CURVES,
# i.e. over a flat grating with surface {(x,0):0<=x<=1}
# a material part is attached which is located between
# {(x,0):0<=x<=1} and {(fctx(1,t),fcty(1,t)):0<=t<=1}.
# Here {(fctx(1,t),fcty(1,t)):0<=t<=1} is a simple open
# arc connecting (fctx(1,0),fcty(1,0))=(xmin,0) with
# (fctx(1,1),fcty(1,1))=(1-xmin,0) such that 0<xmin<0.5
# is a fixed number, such that 0<fctx(1,t)<1, 0<t<1, and
# such that 0<fcty(1,t), 0<t<1. Additionaly, a coating
# layer is attached located between the first curve
# {(fctx(1,t),fcty(1,t)):0<=t<=1} and a second curve
# {(fctx(2,t),fcty(2,t)):0<=t<=1}. The last connects the
# point (fctx(1,arg1),fcty(1,arg1))=(fctx(2,0),fcty(2,0))
# with (fctx(1,arg2),fcty(1,arg2))=(fctx(2,1),fcty(2,1)).
# Moreover, {(fctx(2,t),fcty(2,t)):0<=t<=1} is a simple open
# arc above {(fctx(1,t),fcty(1,t)):0<=t<=1} such that
# 0<fctx(2,t)<1, 0<t<1. The functions fctx(1,.), fctx(2,.),
# fcty(1,.), and fcty(2,.) and the parameters arg1, arg2,
# and xmin are defined by the code of the file
# ‘‘../GEOMETRIES/cpin.c’’.
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# e.g. ‘‘ stack 3
# profile t /##/ 0.2*sin(2.*M_PI*t)
# 2.
# profile 0.2*sin(2.*M_PI*t)
# 1.
# profile t /##/ 0.
# 0. ’’
# -> STACK GRATING,
# i.e. a stack of 3 profile curves shifted by 2, 1, 0
# micro meter in vertical direction. For more details, see
# the description in the USERGUIDE.
# e.g. ‘‘ bOX 0.1
# -1. 1.
# 2 3
# { 2.*t }
# { -0.6 }
# { 1.+0.4*cos(2.*M_PI*t)}
# { 0.4*sin(2.*M_PI*t) }
# 1. 0.8
# 1. 0.
# 1. -0.8 ’’
# -> BOX GRATING,
# i.e. a box geometry of size [0.,period=2.]x[-1.,1.]
# given in micro m (period is supposed to be set to
# 2. in previous input lines); number 0.1 behind word
# BOX is a mesh size factor; [0.,2.]x[-1.,1.] is
# divided by 2 curves into 3 different material parts;
# curves are given by the c-code in following 2 times
# two lines; first code line is x-component of first
# curve; second code is y-component of first curve;
# third code is x-component of second curve; etc.;
# last three input lines define material points;
# material with index one is located in part of box
# separated by above curves and containing (1.,0.8);
# material with index two is in part of box separated
# by above curves and containing (1.,0.); etc.; Note
# that the curves must be simple not self intersecting,
# contained in the box; allowed intersection points
# of two different curves are end points only; material
# areas separated by curves must be such that area with
# first index contains strip beneath upper boundary side
# of box and that area with last index contains strip
# above lower boundary side.
# e.g. ‘‘ rough_mls name ’’
# -> MULTILAYER SYSTEM WITH ROUGH INTERFACES,
# i.e. nla layers + nmld times nld layers + nlb layers,
# This system is described by the file ‘‘name’’, which
# is contained in the directory ‘‘../GEOMETRIES’’.
# (alternatively, the name must contain the path of the file)
# This input file ‘‘name’’ contains the following ordered
# data each in a separate line (comment lines begin with ’#’):
# - dummy file name
# - width of additional layer above and below the structure
# (must be positive or could be ’no’ for no additional layer)
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# - period of grating ’per’
# - number ’nla’ of layers above multilayer system
# - number ’nlb’ of layers below multilayer system
# - number ’nmld’ of multilayers inbetween
# - number ’nld’ of layers in each multilayer
# - number ’ncorn’ of corner points in each polygonal approximation
# (interfaces=randomly generated polygon)
# - number ’nrand’ of standard Gaussian distributed random numbers
# needed to generate interfaces
# (automatically created if nrand=0, otherwise ’nrand’ has
# to equal ncorn*(nla+nld*nmld+nlb))
# - (optional) standard Gaussian distributed random numbers
# - ’nla’ widths of layers above multilayer system,
# - ’nld’ widths of layers in each multilayer,
# - ’nlb’ widths of layers below multilayer system,
# - standard deviation ’sigma[i]’ of each layer interface,
# for i=0,...,(’nla’+’nld’*’nmld’+’nlb’-1)
# - correlation length ’corl[i]’ of each layer interface,
# for i=0,...,(’nla’+’nld’*’nmld’+’nlb’-1)
# Note that the first of the subsequent refractive indices of
# the grating must be that of the superstrate resp. that of
# the adjacent upper layer. If the width of the additional
# layers is positive, then the last of the subsequent refractive
# indices of the grating must be that of the substrate resp. that
# of the adjacent lower layer.
# e.g. ‘‘ rough_mls k name ’’
# -> MULTILAYER SYSTEM WITH ROUGH INTERFACES k TIMES,
# just like above. However, k random realizations are computed
# and the output values are replaced by the mean values over
# the k computations. Standard deviations are added, too.
# Grating data:
lamellar

######################################################################
# Number of different grating materials (N_mat).
# This includes the material of substrate and cover material.
# For example,
# if Grating data is ‘‘ name1’’
# -> Number of materials given in file ‘‘name1.inp’’
# if Grating data is ‘‘ echellea ...’’
# -> N_mat = 3 with coating height >0
# N_mat = 2 with coating height =0
# if Grating data is ‘‘ echelleb ...’’
# -> N_mat = 3 with coating height >0
# N_mat = 2 with coating height =0
# if Grating data is ‘‘ echelle ...’’
# -> N_mat = 3 with coating heights >0
# N_mat = 2 with coating heights =0
# if Grating data is ‘‘ trapezoid ...’’
# -> N_mat = number of material layers +3
# for coating height >0
# N_mat = number of material layers +2
# for coating height =0
# if Grating data is ‘‘ mtrapezoid ...’’
# -> N_mat = number of material layers in each bridge +2
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# if Grating data is ‘‘ lAmellar k m
# ... ’’
# -> N_mat = k times m plus 2
# if Grating data is ‘‘ polygon file1’’
# -> N_mat = 2
# if Grating data is ‘‘ polygon2 file1 file2’’
# -> N_mat = 3
# if Grating data is ‘‘ profile’’
# -> N_mat = 2
# if Grating data is ‘‘ profile 2 3
# ... ’’
# -> N_mat = 2
# if Grating data is ‘‘ profile 0.125*sin(2.*M_PI*t)’’
# -> N_mat = 2
# if Grating data is
# ‘‘ profile 0.5+0.5*cos(M_PI*(1.-t)) 0.25*sin(M_PI*t)’’
# -> N_mat = 2
# if Grating data is ‘‘ profiles’’
# -> N_mat = n+1 with n=nmb_curves from
# the file ‘‘../GEOMETRIES/profiles.c’’
# if Grating data is ‘‘ profiles ... ’’
# -> N_mat = n+1 with n=nmb_curves from
# the file ‘‘../GEOMETRIES/profiles_par.c’’
# if Grating data is ‘‘ pin ’’
# -> N_mat = 3
# if Grating data is ‘‘ cpin ’’
# -> N_mat = 4
# if Grating data is ‘‘ stack k’’
# -> N_mat = k+1
# if Grating data is ‘‘ bOX ...’’
# -> N_mat = number indicated as second
# integer in second lind after
# line with code word bOX
# if Grating data is ‘‘ rough_mls ...’’
# -> N_mat = nla+nld+nlb+2 if width of additional
# layer above and below is positive
# N_mat = nla+nld+nlb+1 if instead of the value for
# the width of additional layer above and below
# a ’no’ is given in the input file
# Number of materials:
2

######################################################################
# Optical indices of grating materials.
# This is c times square root of mu times epsilon.
# If meaningful, then the refractive indices should be ordered
# according to the location from above to below.
# If an input file ‘‘name1.inp’’ is used, then the optical index
# of a subdomain with the material index j is just the j-th
# optical index following below.
# If grating is ‘‘lAmellar ...’’, then first material is cover
# material, last material is substrate, and all other materials
# are ordered from left to right and inside the columns from
# below to above.
# For technical reasons, the index of the material adjacent to
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# the upper line of the grating structure must coincide with
# that of the material in the adjacent upper coated layer resp.
# in the adjacent superstrate. Similarly the index of the
# materials adjacent to the lower line of the grating structure
# must coincide with that of the material in the adjacent lower
# coated layer resp. in the adjacent substrate.
# N_mat numbers are needed.
# Optical indices:
1.3 +i 0.
1.6 +i 0.

######################################################################
# Number of levels (Lev).
# In each refinement step the step size of the mesh is halved.
# Lev refinement steps are performed.
# (Alternatively, one can prescribe an bound for the maximal
# error of the efficiencies. E.g. the input ‘‘e 1.’’ means
# that the level for the computation is the smallest positive
# integer such that all efficiencies are computed with an
# estimated error less than 1 per cent.)
# Number:
1

######################################################################
# End
######################################################################

12.5 Output file “example.res” of FEM-FULLINFO in CLASSI-
CAL

**************************************
**************************************
** **
** D P O G T R **
** **
**************************************
**************************************

date =’10. Feb 2003, 09:55:17’

Program solves Helmholtz equation for
optical grating and TE/TM polarization:

boundary conditions - periodic with respect to x,
non-local condition on {(x,y),y=y_max}
and {(x,y),y=y_min}
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method - FEM
partitioning - based on Shewchuk’s ‘‘Triangle’’
matrix assembly - pdelib
solver - pardiso

code generated with: -DCONV

=================================================================
INPUT FILE FOR GRATING:
=================================================================

Name of input file without extension ‘‘.inp’’:
example

Comments:
This is a fantasy grid
for the test of gen_polyx!

Number of materials:
4

Minimal angle of subdivision triangles:
20.000000

Upper bound for mesh size:
0.500000

Width of additional strip above and below:
0.200000

Grid points:
1: 0.000000 0.800000
2: 0.500000 0.800000
3: 0.000000 0.400000
4: 0.250000 0.400000
5: 1.000000 0.400000
6: 0.750000 0.200000
7: 1.000000 0.200000
8: 0.000000 0.000000
9: 0.250000 -0.200000
10: 1.000000 -0.200000
11: 0.000000 -0.600000
12: 1.000000 -0.800000

Triangles:
( 1, 3, 4), mat= 2, fac= 1.000000
( 4, 6, 2), mat= 2, fac= 1.000000
( 6, 7, 5), mat= 2, fac= 1.000000
( 3, 8, 4), mat= 2, fac= 1.000000
( 8, 9, 4), mat= 2, fac= 0.300000
( 4, 9, 6), mat= 2, fac= 1.000000
( 6, 10, 7), mat= 3, fac= 1.000000
( 8, 11, 9), mat= 3, fac= 1.000000
( 9, 12, 6), mat= 3, fac= 1.000000
( 6, 12, 10), mat= 3, fac= 1.000000

=================================================================
INPUT DATA:
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=================================================================

COATED LAYERS

nmb of upper layers: 2
corresponding widths:

(last width = last width of *.dat
file + width in grating geometry)
0.50 micro m
0.40 micro m

nmb of lower layers: 3
corresponding widths:

(first width = first width of *.dat
file + width in grating geometry)
0.40 micro m
0.30 micro m
0.20 micro m

REFRACT.INDICES

cover material: 1.00 + i 0.00
layers above grating:

1.10 + i 0.00
1.20 + i 0.00

layers below grating:
2.30 + i 0.00
2.20 + i 0.00
2.10 + i 0.00

substrate material: 2.00 + i 0.00

FURTHER DATA

temperature: 20.00 degrees Celsius
wave length: 0.635 micro m
angle of inc.theta: 65.00 degrees
polarization type: TM

GRATING

grating period: 1.00 micro m
grating height: 1.60 micro m
fem grid height: 2.00 micro m
nmb of materials: 4
corr.refract.indices:

1.20 + i 0.00
1.50 + i 0.00
1.70 + i 0.00
2.30 + i 0.00

nmb of levels f.comp.: 5

=================================================================
INFO OF SOLUTION (LEVEL=1):
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=================================================================

degrees of freedom = 813
stepsize of discr. = 0.81789
numb.of nonzero entr.= 5859
rate of nonzero entr.= 0.886426 per cent
memory for pardiso = 536 kB

Reflection efficiencies and coefficients

n= 0 theta = -65.00 ( 0.039594, 0.181811) e_ 0 = 3.462309
n= -1 theta = -15.74 ( -0.008538, 0.021079) e_ -1 = 0.117800
n= -2 theta = 21.33 ( 0.031693, 0.008219) e_ -2 = 0.236279
n= -3 theta = 87.07 ( 0.102928, -0.466177) e_ -3 = 2.757185

Reflected energy: 6.573574

Transmission efficiencies and coefficients

n= 0 theta = 26.95 ( -0.132885, 0.438747) e_ 0 = 22.164372
n= 1 theta = 50.41 ( -0.034493, -0.866995) e_ 1 = 56.761614
n= -1 theta = 7.80 ( -0.228543, -0.163526) e_ -1 = 9.256892
n= -2 theta = -10.48 ( -0.171167, 0.062429) e_ -2 = 3.861878
n= -3 theta = -29.96 ( -0.096782, -0.007596) e_ -3 = 0.966041
n= -4 theta = -54.77 ( -0.001540, 0.078023) e_ -4 = 0.415630

Transmitted energy: 93.426426

=================================================================
INFO OF SOLUTION (LEVEL=2):
=================================================================

degrees of freedom = 3197
stepsize of discr. = 0.34705
numb.of nonzero entr.= 23379
rate of nonzero entr.= 0.228739 per cent
memory for pardiso = 2606 kB

Reflection efficiencies and coefficients

n= 0 theta = -65.00 ( -0.004059, 0.131487) e_ 0 = 1.730540
n= -1 theta = -15.74 ( 0.003041, -0.001482) e_ -1 = 0.002606
n= -2 theta = 21.33 ( -0.009015, 0.008718) e_ -2 = 0.034668
n= -3 theta = 87.07 ( 0.007285, 0.148711) e_ -3 = 0.268177

Reflected energy: 2.035991

Transmission efficiencies and coefficients

n= 0 theta = 26.95 ( -0.439727, 0.251543) e_ 0 = 27.066021
n= 1 theta = 50.41 ( 0.521995, -0.681800) e_ 1 = 55.589973
n= -1 theta = 7.80 ( 0.061566, -0.302391) e_ -1 = 11.162601
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n= -2 theta = -10.48 ( -0.021529, -0.115618) e_ -2 = 1.609071
n= -3 theta = -29.96 ( -0.071286, -0.050452) e_ -3 = 0.781807
n= -4 theta = -54.77 ( -0.002095, 0.160324) e_ -4 = 1.754536

Transmitted energy: 97.964009

=================================================================
INFO OF SOLUTION (LEVEL=3):
=================================================================

degrees of freedom = 12628
stepsize of discr. = 0.19522
numb.of nonzero entr.= 92896
rate of nonzero entr.= 0.058254 per cent
memory for pardiso = 12659 kB

Reflection efficiencies and coefficients

n= 0 theta = -65.00 ( 0.012070, 0.139848) e_ 0 = 1.970304
n= -1 theta = -15.74 ( 0.003512, 0.014030) e_ -1 = 0.047639
n= -2 theta = 21.33 ( -0.002098, 0.002527) e_ -2 = 0.002377
n= -3 theta = 87.07 ( -0.079551, 0.082779) e_ -3 = 0.159453

Reflected energy: 2.179773

Transmission efficiencies and coefficients

n= 0 theta = 26.95 ( -0.498922, 0.127814) e_ 0 = 27.975753
n= 1 theta = 50.41 ( 0.613317, -0.568916) e_ 1 = 52.762242
n= -1 theta = 7.80 ( 0.134396, -0.299329) e_ -1 = 12.619565
n= -2 theta = -10.48 ( 0.040241, -0.125325) e_ -2 = 2.015636
n= -3 theta = -29.96 ( 0.038098, -0.111135) e_ -3 = 1.414798
n= -4 theta = -54.77 ( -0.101705, -0.069144) e_ -4 = 1.032234

Transmitted energy: 97.820227

=================================================================
INFO OF SOLUTION (LEVEL=4):
=================================================================

degrees of freedom = 50133
stepsize of discr. = 0.09156
numb.of nonzero entr.= 369931
rate of nonzero entr.= 0.014719 per cent
memory for pardiso = 59346 kB

Reflection efficiencies and coefficients

n= 0 theta = -65.00 ( 0.012847, 0.143535) e_ 0 = 2.076732
n= -1 theta = -15.74 ( 0.000916, 0.015911) e_ -1 = 0.057844
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n= -3 theta = 87.07 ( -0.088879, 0.060381) e_ -3 = 0.139668

Reflected energy: 2.274312

Transmission efficiencies and coefficients

n= 0 theta = 26.95 ( -0.502017, 0.095119) e_ 0 = 27.533702
n= 1 theta = 50.41 ( 0.636562, -0.542658) e_ 1 = 52.752053
n= -1 theta = 7.80 ( 0.165801, -0.295567) e_ -1 = 13.462258
n= -2 theta = -10.48 ( 0.064145, -0.115134) e_ -2 = 2.020839
n= -3 theta = -29.96 ( 0.059586, -0.088603) e_ -3 = 1.168650
n= -4 theta = -54.77 ( -0.049270, -0.095506) e_ -4 = 0.788186

Transmitted energy: 97.725688

=================================================================
INFO OF SOLUTION (LEVEL=5):
=================================================================

degrees of freedom = 200431
stepsize of discr. = 0.04493
numb.of nonzero entr.= 1481809
rate of nonzero entr.= 0.003689 per cent
memory for pardiso = 278626 kB

Reflection efficiencies and coefficients

n= 0 theta = -65.00 ( 0.012980, 0.144468) e_ 0 = 2.103941
n= -1 theta = -15.74 ( 0.000471, 0.016141) e_ -1 = 0.059386
n= -2 theta = 21.33 ( -0.000145, -0.000968) e_ -2 = 0.000211
n= -3 theta = 87.07 ( -0.090729, 0.055189) e_ -3 = 0.136430

Reflected energy: 2.299969

Transmission efficiencies and coefficients

n= 0 theta = 26.95 ( -0.502603, 0.087406) e_ 0 = 27.447303
n= 1 theta = 50.41 ( 0.642427, -0.535243) e_ 1 = 52.715032
n= -1 theta = 7.80 ( 0.174148, -0.293832) e_ -1 = 13.675032
n= -2 theta = -10.48 ( 0.069855, -0.111978) e_ -2 = 2.026452
n= -3 theta = -29.96 ( 0.062905, -0.082480) e_ -3 = 1.102941
n= -4 theta = -54.77 ( -0.036440, -0.097038) e_ -4 = 0.733271

Transmitted energy: 97.700031

=================================================================
CONVERGENCE PROPERTIES:
=================================================================

1.VALUE (ORDER 0)
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+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 3.4623 | | 1.3312 | |
| 0.347 | 1.7305 | | 0.4006 | |
| 0.195 | 1.9703 | 1.9411 | 0.1608 | 2.85 |
| 0.092 | 2.0767 | 2.1617 | 0.0544 | 1.17 |
| 0.045 | 2.1039 | 2.1133 | 0.0272 | 1.97 |
+-------+--------------+--------------+--------------+-----------+

2.VALUE (ORDER -1)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 0.1178 | | 0.0569 | |
| 0.347 | 0.0026 | | 0.0583 | |
| 0.195 | 0.0476 | 0.0350 | 0.0133 | 1.36 |
| 0.092 | 0.0578 | 0.0608 | 0.0031 | 2.14 |
| 0.045 | 0.0594 | 0.0597 | 0.0015 | 2.73 |
+-------+--------------+--------------+--------------+-----------+

NO ERROR ANALYSIS FOR ORDER 3

4.VALUE (ORDER -3)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 2.7572 | | 2.6240 | |
| 0.347 | 0.2682 | | 0.1350 | |
| 0.195 | 0.1595 | 0.1545 | 0.0263 | 4.52 |
| 0.092 | 0.1397 | 0.1353 | 0.0065 | 2.46 |
| 0.045 | 0.1364 | 0.1358 | 0.0032 | 2.61 |
+-------+--------------+--------------+--------------+-----------+

5.VALUE (REFLECTED ENERGY)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 6.5736 | | 4.2479 | |
| 0.347 | 2.0360 | | 0.2896 | |
| 0.195 | 2.1798 | 2.1754 | 0.1459 | 4.98 |
| 0.092 | 2.2743 | 2.4558 | 0.0513 | 0.60 |
| 0.045 | 2.3000 | 2.3095 | 0.0257 | 1.88 |
+-------+--------------+--------------+--------------+-----------+

6.VALUE (ORDER 0)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
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| 0.818 | 22.1644 | | 5.1965 | |
| 0.347 | 27.0660 | | 0.2949 | |
| 0.195 | 27.9758 | 28.1831 | 0.6148 | 2.43 |
| 0.092 | 27.5337 | 27.6783 | 0.1728 | 1.04 |
| 0.045 | 27.4473 | 27.4263 | 0.0864 | 2.36 |
+-------+--------------+--------------+--------------+-----------+

7.VALUE (ORDER 1)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 56.7616 | | 4.0836 | |
| 0.347 | 55.5900 | | 2.9120 | |
| 0.195 | 52.7622 | 57.5905 | 0.0842 | -1.27 |
| 0.092 | 52.7521 | 52.7520 | 0.0740 | 8.12 |
| 0.045 | 52.7150 | 52.7661 | 0.0370 | -1.86 |
+-------+--------------+--------------+--------------+-----------+

8.VALUE (ORDER -1)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 9.2569 | | 4.6309 | |
| 0.347 | 11.1626 | | 2.7252 | |
| 0.195 | 12.6196 | 17.3500 | 1.2682 | 0.39 |
| 0.092 | 13.4623 | 14.6183 | 0.4255 | 0.79 |
| 0.045 | 13.6750 | 13.7469 | 0.2128 | 1.99 |
+-------+--------------+--------------+--------------+-----------+

9.VALUE (ORDER -2)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 3.8619 | | 1.8298 | |
| 0.347 | 1.6091 | | 0.4230 | |
| 0.195 | 2.0156 | 1.9535 | 0.0164 | 2.47 |
| 0.092 | 2.0208 | 2.0209 | 0.0112 | 6.29 |
| 0.045 | 2.0265 | 1.9495 | 0.0056 | -0.11 |
+-------+--------------+--------------+--------------+-----------+

10.VALUE (ORDER -3)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 0.9660 | | 0.0712 | |
| 0.347 | 0.7818 | | 0.2554 | |
| 0.195 | 1.4148 | 0.9245 | 0.3776 | -1.78 |
| 0.092 | 1.1687 | 1.2376 | 0.1314 | 1.36 |
| 0.045 | 1.1029 | 1.0790 | 0.0657 | 1.91 |
+-------+--------------+--------------+--------------+-----------+
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11.VALUE (ORDER -4)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 0.4156 | | 0.2627 | |
| 0.347 | 1.7545 | | 1.0762 | |
| 0.195 | 1.0322 | 1.2853 | 0.3539 | 0.89 |
| 0.092 | 0.7882 | 0.6637 | 0.1098 | 1.57 |
| 0.045 | 0.7333 | 0.7173 | 0.0549 | 2.15 |
+-------+--------------+--------------+--------------+-----------+

12.VALUE (TRANSMITTED ENERGY)

+-------+--------------+--------------+--------------+-----------+
| h | value | extrap. | error | conv.ord. |
+-------+--------------+--------------+--------------+-----------+
| 0.818 | 93.4264 | | 4.2479 | |
| 0.347 | 97.9640 | | 0.2896 | |
| 0.195 | 97.8202 | 97.8246 | 0.1459 | 4.98 |
| 0.092 | 97.7257 | 97.5442 | 0.0513 | 0.60 |
| 0.045 | 97.7000 | 97.6905 | 0.0257 | 1.88 |
+-------+--------------+--------------+--------------+-----------+

=================================================================
END:
=================================================================

date =’10. Feb 2003, 09:56:18’

Thank you for choosing ‘‘dpogtr’’!
Bye, bye!

12.6 Output file “example.res” of GFEM in CLASSICAL

date =’10. Feb 2003, 10:13:19’

***************************************
***************************************
** **
** G D P O G T R **
** **
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***************************************
***************************************

=================================================================
INFO OF SOLUTION (LEVEL=1):
=================================================================

Reflection efficiencies and coefficients

n= 0 theta = -65.00 ( 0.013025, 0.144735) e_ 0 = 2.111777
n= -1 theta = -15.74 ( 0.000363, 0.016237) e_ -1 = 0.060075
n= -2 theta = 21.33 ( 0.000035, -0.001347) e_ -2 = 0.000400
n= -3 theta = 87.07 ( -0.091483, 0.053904) e_ -3 = 0.136395

Reflected energy: 2.308647

Transmission efficiencies and coefficients

n= 0 theta = 26.95 ( -0.502786, 0.085087) e_ 0 = 27.424602
n= 1 theta = 50.41 ( 0.644183, -0.532792) e_ 1 = 52.687989
n= -1 theta = 7.80 ( 0.176698, -0.293270) e_ -1 = 13.741238
n= -2 theta = -10.48 ( 0.071550, -0.111089) e_ -2 = 2.031272
n= -3 theta = -29.96 ( 0.063904, -0.080675) e_ -3 = 1.085740
n= -4 theta = -54.77 ( -0.032720, -0.097400) e_ -4 = 0.720512

Transmitted energy: 97.691353

=================================================================
INFO OF SOLUTION (LEVEL=2):
=================================================================

Reflection efficiencies and coefficients

n= 0 theta = -65.00 ( 0.013043, 0.144752) e_ 0 = 2.112318
n= -1 theta = -15.74 ( 0.000365, 0.016240) e_ -1 = 0.060098
n= -2 theta = 21.33 ( 0.000044, -0.001384) e_ -2 = 0.000423
n= -3 theta = 87.07 ( -0.091547, 0.053854) e_ -3 = 0.136472

Reflected energy: 2.309310

Transmission efficiencies and coefficients

n= 0 theta = 26.95 ( -0.502838, 0.084941) e_ 0 = 27.427416
n= 1 theta = 50.41 ( 0.644282, -0.532607) e_ 1 = 52.682703
n= -1 theta = 7.80 ( 0.176861, -0.293228) e_ -1 = 13.745111
n= -2 theta = -10.48 ( 0.071650, -0.111036) e_ -2 = 2.031559
n= -3 theta = -29.96 ( 0.063954, -0.080553) e_ -3 = 1.084372
n= -4 theta = -54.77 ( -0.032481, -0.097406) e_ -4 = 0.719528
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Transmitted energy: 97.690690

=================================================================
END:
=================================================================

date =’10. Feb 2003, 10:30:53’

Thank you for choosing ‘‘gdpogtr’’!
Bye, bye!

12.7 Output file “example.res” of FEM in CONICAL

date =’10. Feb 2003, 10:06:22’

***************************************
***************************************
** **
** C O N I C A L **
** **
***************************************
***************************************

=====================================================================
INFO OF SOLUTION (LEVEL=1):
=====================================================================

Reflection efficiencies and coefficients
----------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 30.00 ( 0.19657, -0.16355)
( -0.05050, -0.15697) 9.25813

-1 128.80 27.98 ( 0.01482, -0.03567)
( 0.06213, -0.13130) 2.30360

-2 158.51 86.74 ( 0.07634, 0.09663)
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( 0.12963, 0.05033) 0.22670

Reflected energy: 11.78843

Transmission efficiencies and coefficients
------------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 160.53 ( -0.18113, 0.45695)
( -0.14912, 0.68850) 80.24261

1 20.54 135.99 ( 0.07497, 0.15146)
( -0.05129, 0.15348) 5.32346

-1 128.80 161.77 ( -0.05523, -0.08440)
( 0.02083, -0.07834) 2.29025

-2 158.51 138.27 ( 0.03830, 0.01953)
( 0.01062, 0.03930) 0.35525

Transmitted energy: 88.21157

=====================================================================
INFO OF SOLUTION (LEVEL=2):
=====================================================================

Reflection efficiencies and coefficients
----------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 30.00 ( 0.00901, -0.00844)
( -0.13596, -0.02289) 1.91613

-1 128.80 27.98 ( -0.00200, 0.08454)
( 0.04245, 0.01373) 0.93218

-2 158.51 86.74 ( -0.06824, 0.05857)
( -0.06300, 0.12368) 0.17972

Reflected energy: 3.02802

Transmission efficiencies and coefficients
------------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 160.53 ( -0.31129, 0.27182)
( -0.49973, 0.42367) 62.77211

1 20.54 135.99 ( -0.26115, 0.05446)
( -0.32171, 0.20006) 17.87244

-1 128.80 161.77 ( -0.12492, -0.19255)
( -0.13873, -0.20804) 14.07546

-2 158.51 138.27 ( 0.08036, -0.05007)
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( 0.10289, -0.07817) 2.25198

Transmitted energy: 96.97198

=====================================================================
INFO OF SOLUTION (LEVEL=3):
=====================================================================

Reflection efficiencies and coefficients
----------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 30.00 ( 0.06129, -0.00846)
( -0.09079, -0.04955) 1.45263

-1 128.80 27.98 ( -0.02946, 0.01247)
( 0.02120, -0.02318) 0.20498

-2 158.51 86.74 ( -0.05922, -0.00385)
( -0.01123, 0.00823) 0.02441

Reflected energy: 1.68202

Transmission efficiencies and coefficients
------------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 160.53 ( -0.38108, 0.19799)
( -0.58998, 0.31418) 66.49400

1 20.54 135.99 ( -0.22472, -0.00453)
( -0.37512, 0.09299) 15.48188

-1 128.80 161.77 ( -0.07243, -0.23512)
( -0.06585, -0.25190) 15.85666

-2 158.51 138.27 ( 0.05169, 0.00215)
( 0.03000, -0.03203) 0.48544

Transmitted energy: 98.31798

=====================================================================
INFO OF SOLUTION (LEVEL=4):
=====================================================================

Reflection efficiencies and coefficients
----------------------------------------

Order Phi Theta E_z
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H_z Efficiency
0 47.00 30.00 ( 0.06068, 0.01649)

( -0.07617, -0.03097) 1.07145
-1 128.80 27.98 ( -0.02951, 0.00963)

( 0.01652, -0.00861) 0.13367
-2 158.51 86.74 ( -0.04706, -0.03015)

( 0.00604, 0.01967) 0.02330

Reflected energy: 1.22842

Transmission efficiencies and coefficients
------------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 160.53 ( -0.38965, 0.12856)
( -0.61617, 0.20649) 61.81559

1 20.54 135.99 ( -0.25045, -0.03050)
( -0.41925, 0.03884) 18.86494

-1 128.80 161.77 ( -0.02063, -0.25490)
( -0.01257, -0.27967) 17.53158

-2 158.51 138.27 ( 0.05192, 0.01214)
( 0.04725, -0.02301) 0.55947

Transmitted energy: 98.77158

=====================================================================
INFO OF SOLUTION (LEVEL=5):
=====================================================================

Reflection efficiencies and coefficients
----------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 30.00 ( 0.06175, 0.01688)
( -0.07173, -0.03108) 1.02091

-1 128.80 27.98 ( -0.02812, 0.00775)
( 0.01579, -0.00606) 0.11595

-2 158.51 86.74 ( -0.04494, -0.03733)
( 0.00386, 0.01787) 0.02462

Reflected energy: 1.16148

Transmission efficiencies and coefficients
------------------------------------------

Order Phi Theta E_z
H_z Efficiency

0 47.00 160.53 ( -0.39161, 0.10975)
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( -0.61958, 0.17733) 60.76400
1 20.54 135.99 ( -0.25177, -0.03911)

( -0.42754, 0.02212) 19.38467
-1 128.80 161.77 ( -0.00565, -0.25896)

( 0.00395, -0.28489) 18.04542
-2 158.51 138.27 ( 0.05587, 0.01457)

( 0.05139, -0.02021) 0.64442

Transmitted energy: 98.83852

=====================================================================
END:
=====================================================================

date =’10. Feb 2003, 10:06:25’

Thank you for choosing ‘‘CONICAL’’!
Bye, bye!

12.8 Data file “example.dat” of OPTIMIZE in OPTIM

#-*-makefile-*-
######################################################################
# #
# ##################### #
# ##################### #
# ## ## #
# ## E X A M P L E ## #
# ## ## #
# ##################### #
# ##################### #
# #
# all lines beginning with ‘‘#’’ are comments! #
# #
######################################################################
#
# input file for local optimization
# using GFEM for conical diffraction
#
######################################################################
# #
# N A M E O F O U T P U T F I L E #
# #
######################################################################
# Name of the output file.
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# The tag ‘‘.res’’ will be added.
# The file will be written in the ‘‘RESULTS’’ directory.
# (Alternatively, a path for the location of the file
# can be added before the name. This must contain at
# least one slash ’/’. E.g. for a file ‘‘name.res’’
# in the current working directory write ‘‘ ./name’’)
# Name:
example

######################################################################
# #
# G R A T I N G + I L L U M I N A T I O N #
# #
######################################################################
# Number of coating layers over the grating (N_co_ov).
# The grating cross section consists of a rectangular area
# parallel to the axes. This inhomogeneous part is determined
# by a triangular grid and can have already a few
# layers of coatings involved. Beneath and above
# this rectangular structure, there might be additional
# coated layers of rectangular shape. These kind of
# layers are called coating layers over the grating and
# coating layers beneath the grating, respectively.
# Alternatively a
# multilayer system input format is possible:
# E.g. the input ‘‘MLS n1 n2*n3 n4’’ with n1,n2,n3,n4
# replaced by non-negative integers means
# N_co_ov=n1+n2*n3+n4 layers with n1 layers above,
# n2 groups of n3 layers with same widths and materials
# in the middle, and with 7 layers below.
# Number:
0

######################################################################
# Widths of coating layers in micro meter.
# N_co_ov entries. Needed only if N_co_ov >0.
# Else no entry and no line.
# Widths:
######################################################################
# Number of coating layers beneath the grating (N_co_be):
0

######################################################################
# Widths of coating layers in micro meter.
# N_co_be entries. Needed only if N_co_be >0.
# Else no entry and no line.
# For a multilayer system the widths of the
# n3 layers in the groups must be given only once.
# I.e. for a multilayer system n1+n3+n4 input numbers
# are needed.
# Widths:
######################################################################
# Wave length in micro meter (lambda).
# Either add a single value e.g. ‘‘.63’’.
# Either add more values by e.g.
# ‘‘ V
# 5
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# .63
# .64
# .65
# .69
# .70 ’’.
# The last means that computation is to be done for
# the wave lengths from the Vector of length 5:
# ‘‘.63’’, ‘‘.64’’,‘‘.65’’,‘‘.69’’, and ‘‘.70’’.
# Or add e.g.
# ‘‘ I .63 .73 .02’’.
# The last means that computation is to be done for
# the wave lengths ‘‘.63+i*.02’’ with i=0,1,2,... and with
# wave length ‘‘.63+i*.02’’ less or equal to ‘‘.73’’.
# Wave length:
# 1.2
I .635 .636 .002

######################################################################
# Temperature in degrees Celsius from 0 to 400.
# 20. for room temperature!
# Must be set to any fixed number.
# Will be ignored if optical indices are given explicitly.
# Temperature:
20.

######################################################################
# Optical index (refractive index) of cover material.
# This is c times square root of mu times epsilon.
# This could be complex like e.g. ‘‘4.298 +i 0.073’’ for
# Si with wave length 500nm.
# This could be also given by the name of a material
# like: Air Ag Al Au CsBr Cu InP MgF2 NaCl PMMA PSKL
# SF5 Si TlBr TlCl Cr ZnS Ge Si1.0 - Si2.0
# TiO2r Quarz AddOn ... (cf. Userguide)
# This could be a value interpolated from a user
# defined table, determined by the name of the file
# (file is to be located in the current directory,
# name of file must begin with letter ‘‘u’’ and may
# consist of no more than five letters like e.g. user,
# the file consists of lines each with three real
# numbers, first: wave length in micro meter, second:
# the real part of the corresponding optical index,
# third: the imaginary part of the corresponding index).
# Optical index:
1.0 +i 0.

######################################################################
# Optical indices of the materials of the upper coating layers.
# This is c times square root of mu times epsilon.
# N_co_ov entries. Needed only if N_co_ov >0.
# Else no entry and no line.
# For a multilayer system the indices of the
# n3 layers in the groups must be given only once.
# I.e. for a multilayer system n1+n3+n4 input lines
# are needed.
# Optical indices:
######################################################################
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# Optical indices of the materials of the lower coating layers.
# This is c times square root of mu times epsilon.
# N_co_be entries. Needed only if N_co_be >0.
# Else no entry and no line.
# Optical indices:
######################################################################
# Optical index of substrate material.
# This is c times square root of mu times epsilon.
# Optical index:
1.5 +i 0.

######################################################################
# Type of output results.
# Either ‘‘TE/TM’’: results in terms of TE and TM part of Wave.
# Either ‘‘Jones’’: results in terms of Jones vector
# representation.
# Or ‘‘3.Com’’: results in terms of the component in the z
# axis, that is in the direction of the grooves.
# For more details cf. Section 2.3 in USERGUIDE.ps.
# Type:
TE/TM

######################################################################
# Type of polarization and coordinate system for incoming wave vector.
# Either ‘‘TE’’: means that incident electric field is perpendicular
# to wave vector and to normal of grating plane
# (plane of grating grooves) and
# incoming wave vector is presented in xz system as
# (sin theta cos phi, -cos theta, sin theta sin phi).
# Either ‘‘TM’’: means that incident magnetic field is perpendicular
# to wave vector and to normal of grating plane and
# incoming wave vector is presented in xz system as
# (sin theta cos phi, -cos theta, sin theta sin phi).
# Either ‘‘TE/TM’’:
# means TE and TM, two calculations.
# Either ‘‘TP’’: means polarized electro-magnetic field and
# incoming wave vector is presented in xz system as
# (sin theta cos phi, -cos theta, sin theta sin phi).
# Or ‘‘pol’’: means polarized electro-magnetic field and
# incoming wave vector is presented in xy system as
# (sin theta cos phi, -cos theta cos phi, sin phi).
# Type:
TP

######################################################################
# Parameter of polarization.
# If type of polarization is ‘‘pol’’ or ‘‘TP’’, then this is
# the angle (in degrees) between x axis (axis in plane of
# grating grooves which is perpendicular to grooves)
# and projection of electric field vector onto x-z plane of
# grating grooves.
# Needed only if polarization is of type ‘‘pol’’ or ‘‘TP’’.
# Else no entry and no line.
# Parameter:
20.

######################################################################
# Angle of incident wave in degrees (theta).
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# If type of polarization is ‘‘pol’’,
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta cos phi, sin phi)
# with the restriction -90 < phi,theta < 90.
# If type of polarization is ‘‘TE’’/‘‘TM’’/‘‘TP’’,
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta, sin theta sin phi)
# with the restriction 0 < theta < 90.
# Either add a single value e.g. ‘‘45.’’.
# Either add more values by e.g.
# ‘‘ V
# 5
# 63.
# 64.
# 65.
# 69.
# 70. ’’.
# The last means that computation is to be done for
# the angles from the Vector of length 5:
# ‘‘63.’’, ‘‘64.’’,‘‘65.’’,‘‘69.’’, and ‘‘70.’’.
# Or add e.g.
# ‘‘ I 45 56 2’’.
# The last means that computation is to be done for
# the angles ‘‘45+i*2’’ with i=0,1,2,... and with
# angle ‘‘45+i*2’’ less or equal to ‘‘56’’.
# Note that either the wave length or the angle of
# incident wave theta must be single valued.
# Angle:
I 30. 31. 2.

######################################################################
# Angle of incident wave in degrees (phi).
# If type of polarization is ‘‘pol’’,
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta cos phi, sin phi)
# with the restriction -90 < phi,theta < 90.
# If type of polarization is ‘‘TE’’/‘‘TM’’/‘‘TP’’,
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta, sin theta sin phi)
# with the restriction 0 < theta < 90.
# Either add a single value e.g. ‘‘45.’’.
# Either add more values by e.g.
# ‘‘ V
# 5
# 63.
# 64.
# 65.
# 69.
# 70. ’’.
# The last means that computation is to be done for
# the angles from the Vector of length 5:
# ‘‘63.’’, ‘‘64.’’,‘‘65.’’,‘‘69.’’, and ‘‘70.’’.
# Or add e.g.
# ‘‘ I 45 56 2’’.
# The last means that computation is to be done for
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# the angles ‘‘45+i*2’’ with i=0,1,2,... and with
# angle ‘‘45+i*2’’ less or equal to ‘‘56’’.
# Note that two of the three, the wave length, the
# angle of incident wave theta, and the angle of
# incident wave phi, must be single valued.
# Angle:
I 47. 48. 2.

###################################################################
# Length factor of additional shift of grating geometry.
# This is shift into the x-direction, i.e. the
# direction of the period to the right.
# This is length of shift relative to period, i.e.
# the grating structure given by subsequent input
# will be shifted by factor times the period given
# in subsequent input.
# However, only the Rayleigh numbers and efficiencies
# will be computed according to the shift. The field
# vectors in the plots are drawn without shift, and
# the graphics of the executable with tag ‘‘_CHECK’’
# is drawn without shift!
# Must be a real number between 0 and 1.
# Length:
0.

###################################################################
# Stretching factor for grating in y-direction.
# Must be a positive real number.
# Length:
1.

###################################################################
# Length of additional shift of grating geometry in micro m.
# This is shift into the y-direction, i.e. the
# direction perpendicular to the grating surface
# pointing into the cover material.
# Must be a real number.
# Length:
0.

######################################################################
# Period of grating in micro meter:
0.25

######################################################################
# #
# P A R A M E T E R S O F G R A T I N G #
# #
######################################################################
# Parameters nd_geom_param, dl_geom_param, du_geom_param, and
# ni_geom_param, and i_geom_param to describe grating geometry.
#
# integer parameters: i_geom_param[i],
# i=1,...,ni_geom_param
# In particular
# i_geom_param[1] - class of gratings
# i_geom_param[2] - number of materials
# real parameters: d_geom_param[i],
# i=1,...,nd_geom_param
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# bounds of real parameters: dl_geom_param[i],du_geom_param[i],
# i=1,...,nd_geom_param,
# dl_geom_param[i]<=du_geom_param[i].
# name parameters (character strings):
# s_geom_param[i],
# i=1,...,ns_geom_param
#
# Optimization runs over all real parameters d_geom_param[i] in
# [dl_geom_param[i],du_geom_param[i]] with i such that
# dl_geom_param[i]<du_geom_param[i].The parameters d_geom_param[i]
# with dl_geom_param[i]=du_geom_param[i] keep their values.
# The integer and string parameters switch between the implemented
# sub classes of gratings.
#
# If the real parameter is the real resp. imaginary part of a
# refractive index, then its value can be fixed by an input string
# like ‘‘Re Cr’’ or ‘‘Im Ag’’. The same string must be the input
# for the corresponding lower and upper bounds (cf. Userguide).
#
# If a real parameter depends on other free parameters, then this
# dependency can be indicated as follows. Write ‘‘Dep’’ on the
# input place for d_geom_param[i] and du_geom_param[i]. On the
# input place of dl_geom_param[i] write ‘‘Dep:’’ followed by the
# dependency in c-code. For instance, the simple dependency
# expression d_geom_param[i]=d_geom_param[11]*d_geom_param[7] is
# indicated by the line (cf. Userguide):
# Dep: p11*p7
#
# If possible try to present the dependency in the form
#
# Dep: f1+(f2)/(f3)
#
# with f1, f2, and f3 as terms including the variables
# d_geom_param[i], constants, and the operations +, -, and *
# but without any blank and bracket.
#
##################
#
# CLASS 1 (i_geom_param[1]=1): polygonal function profile
# -------------------------------------------------------
#
# - Polygonal grating defined by profile function
# which is piecewise linear between the knots over
# a uniform partition of the interval [0,Period]
# - Number of string parameters: ns_geom_param=0
# - Number of integer parameters: ni_geom_param=3
# i_geom_param[1]=1
# i_geom_param[2]=2
# i_geom_param[3]=number of interior knots in the
# uniform partition of [0,Period]
# - Number of real parameters: nd_geom_param=i_geom_param[3]+4
# k=1,...,i_geom_param[3]
# d_geom_param[k]=function value of profile curve
# at Period*k/(i_geom_param[3]+1),
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# in other words, polygonal grating
# has i_geom_param[3]+2 corners at
# the points
# (0,0)
# (x_k,y_k), k=1,...,i_geom_param[3]
# (Period,0)
# where:
# x_k:=Period*k/(i_geom_param[3]+1)
# y_k:=d_geom_param[k]
# k=i_geom_param[3]+1
# d_geom_param[k]=real part of refractive index of
# cover material
# k=i_geom_param[3]+2
# d_geom_param[k]=imaginary part of refractive index of
# cover material
# k=i_geom_param[3]+3
# d_geom_param[k]=real part of refractive index of
# substrate material
# k=i_geom_param[3]+4
# d_geom_param[k]=imaginary part of refractive index of
# substrate material
# - Following parameters must be fixed by setting upper bound=
# lower bound:
# d_geom_param[k],k=i_geom_param[3]+1,...,i_geom_param[3]+4
#
##################
#
# CLASS 2 (i_geom_param[1]=2): polygonal profile curve, no proper constraints
# ---------------------------------------------------------------------------
#
# - Polygonal grating defined by profile curve
# which is piecewise linear between the knots
# - Warning: iterative solutions are tested for
# selfintersection
# but the constraints expressed by no
# selfintersection is not included into
# the optimization
# - Number of string parameters: ns_geom_param=0
# - Number of integer parameters: ni_geom_param=3
# i_geom_param[1]=2
# i_geom_param[2]=2
# i_geom_param[3]=number of interior knots
# with x-coordinate in (0,Period)
# - Number of real parameters: nd_geom_param=2*i_geom_param[3]+4
# m=1,...,i_geom_param[3]
# (d_geom_param[2*m-1],d_geom_param[2*m])
# =corner point of profile curve
# in other words, polygonal grating
# has i_geom_param[3]+2 corners at
# the points
# (0,0)
# (x_m,y_m), m=1,...,i_geom_param[3]
# (Period,0)
# where:
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# x_m:=d_geom_param(2*m-1)
# y_m:=d_geom_param(2*m)
# k=2*i_geom_param[3]+1
# d_geom_param[k]=real part of refractive index of
# cover material
# k=2*i_geom_param[3]+2
# d_geom_param[k]=imaginary part of refractive index of
# cover material
# k=2*i_geom_param[3]+3
# d_geom_param[k]=real part of refractive index of
# substrate material
# k=2*i_geom_param[3]+4
# d_geom_param[k]=imaginary part of refractive index of
# substrate material
# - Following parameters must be fixed by setting upper bound=
# lower bound:
# d_geom_param[k],k=2*i_geom_param[3]+1,...,2*i_geom_param[3]+4
#
##################
#
# CLASS 3 (i_geom_param[1]=3): polygonal profile curve with proper constraints
# ----------------------------------------------------------------------------
#
# - Polygonal grating defined by profile curve
# which is piecewise linear between the knots
# - In contrast to CLASS 2:
# constraints expressed by no
# selfintersection (cf. the constraints below)
# is included into the optimization
# - For this class, we have implemented only the conjugate
# gradient algorithm (choose ind_opt=1).
# - Number of string parameters: ns_geom_param=0
# - Number of integer parameters: ni_geom_param=3
# i_geom_param[1]=3
# i_geom_param[2]=2
# i_geom_param[3]=nkn:=number of interior knots
# with x-coordinate in (0,Period)
# - Number of real parameters: nd_geom_param=2*i_geom_param[3]+5
# k=1,...,i_geom_param[3]
# P_k:=(d_geom_param[2*m-1],d_geom_param[2*m])
# =corner point of profile curve
# in other words, polygonal grating
# has i_geom_param[3]+2 corners at
# the points
# P_0 :=(0,0),
# P_m :=(x_m,y_m), m=1,...,nks
# P_{nks+1}:=(Period,0)
# where:
# x_m:=d_geom_param(2*m-1)
# y_m:=d_geom_param(2*m)
# nks:=i_geom_param[3]
# k=2*i_geom_param[3]+1
# d_geom_param[k]=real part of refractive index of
# cover material
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# k=2*i_geom_param[3]+2
# d_geom_param[k]=imaginary part of refractive index of
# cover material
# k=2*i_geom_param[3]+3
# d_geom_param[k]=real part of refractive index of
# substrate material
# k=2*i_geom_param[3]+4
# d_geom_param[k]=imaginary part of refractive index of
# substrate material
# k=2*i_geom_param[3]+5
# d_geom_param[k]=small threshold EPSilon appearing
# in the constraint conditions for the
# feasible sets of parameters
# (0.0001<EPSilon<0.5)
# - Constraints:
# first nks+1 conditions: two consecutive points not too
# close to each other
# next nks*(nks-1) conditions: each point is not to close to
# each side of polygonal which
# does not contain the point
# (point not in ellipse around
# side with small half axis
# about square root of EPSilon
# times side length)
# last condition: no intersection of non-neighbour
# lines
# more precisely:
# a) i=1,2,...,nks+1
#
# 2 2 2
# |P_i-P_(i-1)| >=EPSilon *Period
#
# b) j=1,2,...,nks,
# m=1,2,...,j-1,j+2,...,nks+1,
# i=nks+1+(m’-1)*nks+j, m’:=m if m<j
# m’:=m-2 if m>j
#
# |P_j-P_m|+|P_j-P_(m-1)|-|P_m-P_(m-1)|>=EPSilon*|P_m-P_(m-1)|
#
# c) no intersection of [P_(i-1),P_i] and [P_(j-1),P_j] for
# i,j=1,2,3,...,nks+1 if |i-j|>1
# - Following parameters must be fixed by setting upper bound=
# lower bound:
# d_geom_param[k],k=2*i_geom_param[3]+1,...,2*i_geom_param[3]+5
#
##################
#
# CLASS 4 (i_geom_param[1]=4): stack of trapezoids
# ------------------------------------------------
#
# - Stack grating consisting of several trapezoids
# with refractive indices included into the set of
# optimization parameters
# - Number of trapezoids is prescribed
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# - Whole stack in one period of the grating
# - Lower side of stack is fixed by two parameters:
# param_1 = posb/d = ratio of distance of right lower corner
# from the left boundary line of the period
# and period d
# param_2 = posa/posb = ratio of distance of left lower corner
# from the left boundary line of the period
# and distance of right lower corner
# from the left boundary line of the period
# - Each trapezoid is determined by its hight, by the lower side
# which is the upper side of the adjacent lower trapezoid, and
# by the upper side prescribed by the two parameters:
# param_k_1 = b_k/d = ratio of distance of right upper corner
# from the left boundary line of the period
# and period d
# param_k_2 = a_k/b_k = ratio of distance of left upper corner
# from the left boundary line of the period
# and distance of right upper corner
# from the left boundary line of the period
# - Refractive index of the material of each trapezoid
# is prescribed as an optimization parameter
# - Number of string parameters: ns_geom_param=0
# - Number of integer parameters: ni_geom_param=2
# i_geom_param[1]=4
# i_geom_param[2]=number of different materials
# =2+number of trapezoids
# - Number of real parameters: nd_geom_param=5*i_geom_param[2]-4
#
# k=1,...,i_geom_param[2]-2
# h_k:=d_geom_param[5*k-4] =height of k-th trapezoid in stack
# (in micro meter, h_k>0)
# b_k/d:=d_geom_param[5*k-3] =ratio of distance of right upper
# corner from the left boundary
# line of the period and period d
# (0<b_k/d<=1)
# a_k/b_k:=d_geom_param[5*k-2]=ratio of distance of left upper
# corner from the left boundary
# line of the period and distance
# of right upper corner from the
# left boundary line of the period
# (0<=a_k/b_k<1.
# If not both of the parameters
# b_k/d and a_k/b_k are fixed,
# then we require:
# a_k/b_k>0 for b_k/d=1)
# n_k:=d_geom_param[5*k-1]+i*d_geom_param[5*k]
# =refractive index
# of k-th trapezoid in stack
# (Re n_k>0, Im n_k>=0)
# k=5*i_geom_param[2]-9
# posb/d:=d_geom_param[k] =ratio of distance of right lower
# corner from the left boundary
# line of the period and period d
# (0<posb/d<=1)
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# k=5*i_geom_param[2]-8
# posa/posb:=d_geom_param[k] =ratio of distance of left lower
# corner from the left boundary
# line of the period and distance
# of right lower corner from the
# left boundary line of the period
# (0<=posa/posb<1.
# If not both of the parameters
# posb/d and posa/posb are fixed,
# then we require:
# posa/posb>0 for posb/d=1)
# k=5*i_geom_param[2]-7
# n_co:=d_geom_param[k]+i*d_geom_param[k+1]
# =refractive index of cover
# material
# (Re n_co>0, Im n_co>=0)
# k=5*i_geom_param[2]-5
# n_su:=d_geom_param[k]+i*d_geom_param[k+1]
# =refractive index of substrate
# material resp. material
# of adjacent lower coating
# strip
# (Re n_su>0, Im n_su=0)
# - Following parameters must be fixed by setting upper bound=
# lower bound:
# d_geom_param[k],k=5*i_geom_param[2]-7,...,5*i_geom_param[2]-4
#
#
#
# + + + + + + + + + + + + +
#
#
#
# Refractive indices:
#
# n_co
#
# +-----------------------------+
# / n_3 |
# / |
# +--------------------------------+
# \ /
# \ /
# \ n_2 /
# \ /
# \ /
# \ /
# +------------------+
# / n_1 \
# +---------------+----------------------+-----------------+
#
# n_su
#
#
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# + + + + + + + + + + + + +
#
#
#
# Geometry parameters:
#
# b_k
# <...........................................>
# . .
# . a_k .
# <..........> .
# . . .
# . . .
# . . +-----------------------------+
# . . / |
# . ./ |
# . +--------------------------------+
# . \ / ^
# . \ / :
# . \ / : h_k
# . k-th trapez.:\ / :
# . (k=2) \ / :
# . \ / v
# . +------------------+
# . / \
# +---------------+----------------------+-----------------+
# (0,0) (posa,0) (posb,0) (d,0)
#
#
#
#
# + + + + + + + + + + + + +
#
#
#
# The presented parameters of CLASS 4 are the internal parameters.
# The class can be determined by external parameters, too:
#
#
# External geometry parameters:
#
# d_k
# <................................>
#
#
# +-----------------------------+
# / |
# / |
# +--------------------------------+
# \ / ^
# \ / :
# \ . . . / : h_k
# k-th trapezoid:\ . / :
# (k=2) \ . angle a_k / :
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# \ . / v
# +------------------+
# / \
# +---------------+----------------------+-----------------+
# (0,0) (posa,0) (posb,0) (d,0)
#
#
#
#
# + + + + + + + + + + + + +
#
#
#
#
# Number of real parameters: nd_geom_param=5*i_geom_param[2]-4
#
# k=1,...,i_geom_param[2]-2
# h_k:=d_geom_param[5*k-4] =height of k-th trapezoid in stack
# (in micro meter, h_k>0)
# d_k:=d_geom_param[5*k-3] =length of the upper side
# of k-th trapezoid in stack
# (in micro meter)
# a_k:=d_geom_param[5*k-2] =angle at the right lower corner
# of k-th trapezoid in stack
# (in degrees)
# n_k:=d_geom_param[5*k-1]+i*d_geom_param[5*k]
# =refractive index
# of k-th trapezoid in stack
# (Re n_k>0, Im n_k>=0)
# k=5*i_geom_param[2]-9
# posa:=d_geom_param[k] =distance of left lower stack
# corner from left starting point
# of the period
# (in micro meter)
# k=5*i_geom_param[2]-8
# posb:=d_geom_param[k] =distance of right lower stack
# corner from left starting point
# of the period
# (in micro meter)
# k=5*i_geom_param[2]-7
# n_co:=d_geom_param[k]+i*d_geom_param[k+1]
# =refractive index of cover
# material
# (Re n_co>0, Im n_co>=0)
# k=5*i_geom_param[2]-5
# n_su:=d_geom_param[k]+i*d_geom_param[k+1]
# =refractive index of substrate
# material resp. material
# of adjacent lower coating
# strip
# (Re n_su>0, Im n_su=0)
#
#
#
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# + + + + + + + + + + + + +
#
#
#
# Switch from external to internal parameter happens
# automatically if one of the parameters d_geom_param[5*k-2],
# k=1,...,i_geom_param[2]-2 is larger than one.
# In this case the upper and lower bounds for the internal
# parameters d_geom_param[l] with l=5*k-3, l=5*i_geom_param[2]-9
# are set to 0.9 and 0.1, respectively. The upper and lower
# bounds for the internal parameters d_geom_param[l] with
# l=5*k-2, l=5*i_geom_param[2]-8 are set to 0.9 and 0.,
# respectively.
#
##################
#
# CLASS 5 (i_geom_param[1]=5): input grating to be extended
# ---------------------------------------------------------
#
# - Grating of input file ’name.inp’ extended by a new polygonal
# interface curve and with refractive indices included into the
# set of optimization parameters,
# new polygonal interface:
# - The new interface connects two given interface points
# P1 and P2.
# - These two points are located at the boundary of a
# domain of a fixed material and are grid points of
# the file ’name.inp’.
# - This domain is convex and the periodic boundary lines
# {(0,y): y real} and {(dperiod,y): y real} must not
# intersect its interior.
# - The new interface curve divides this domain into two.
# - This new polygonal interface curve is a polygonal
# function over the straight line segment connecting
# the two points. In other words, if U is the convex
# domain fixed by a given material index and if P1 and P2
# are two given grid points at its boundary, then the
# j-th corner (j=1,...,m) of the polygonal curve connecting
# P1 and P2 is chosen at the straight line segment
#
# { P = [P1+(P2-P1)*j/(m+1)] + t*n in U:
# i) dl_geom_param[j]<t<du_geom_param[j]
# ii) P+epsilon*n in U
# iii) P-epsilon*n in U },
#
# epsilon :=
# d_geom_param[2*i_geom_param[2]+i_geom_param[3]+1]
#
# where n is the unit vector normal at the segment [P1,P2]
# pointing to the left side of [P1,P2].
# - Number of string parameters: ns_geom_param=1
# &s_geom_param[(1-1)*buffer_size] - ’name.inp’
# name of input file for DIPOG-2.1
# carrying the geometry information
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# without the extension by the new
# polygonal interface curve
# - Number of integer parameters: ni_geom_param=6
# i_geom_param[1]=5
# i_geom_param[2]=number of materials
# (should be number of materials in input
# file ’name.inp’ plus one if i_geom_param[3]
# is positive and should be number of materials
# in input file ’name.inp’ if i_geom_param[3]
# zero)
# i_geom_param[3]=number of interior knots in the
# polygonal interface
# (should be non-negative)
# If this is zero, then the convex
# domain is not divided into two,
# and only the refractive indices
# are optimized.
# i_geom_param[4]=index of the grid and interface point P1
# (dummy if i_geom_param[3]=0)
# i_geom_param[5]=index of the grid and interface point P2
# (dummy if i_geom_param[3]=0)
# i_geom_param[6]=index of convex domain which is
# divided by the new polygonal interface
# (should be between 2 and i_geom_param[2]-1
# and is a dummy if i_geom_param[3]=0)
# After dividing the convex domain, the
# first subdomain (right of the polygonal curve
# running from interface point P1 to interface
# point P2) inherits the material index
# i_geom_param[6] and the index of the second
# is appointed to i_geom_param[2]-1.
# The domain adjacent to the lower boundary
# with material index i_geom_param[2]-1
# before the subdivision now gets the
# material index i_geom_param[2].
# - Number of real parameters: nd_geom_param=2*i_geom_param[2]+
# i_geom_param[3]+1
# k=1,...,i_geom_param[2]
# d_geom_param[2*k-1]=real part of refractive index of
# grating material with index k
# d_geom_param[2*k] =imaginary part of refractive index of
# grating material with index k
# k=2*i_geom_param[2]+j, j=1,...,i_geom_param[3]
# d_geom_param[k] =height of j-th corner of new polygonal
# interface curve over line through the
# given interface points P1 and P2, which
# are located at boundary of the convex
# domain with material index i_geom_param[4]
# and which are the left and right end
# points of the new polygonal interface
# curve
# in other words, the j-th corner point
# is P=P1+(P2-P1)*j/(m+1)+t*n, where n
# is the vector normal at the segment
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# [P1,P2] and where t=d_geom_param[k]
# is a positive or negative real
# (in micro meter,
# -1000<d_geom_param[k]<1000)
# d_geom_param[2*i_geom_param[2]+i_geom_param[3]+1]
# =threshold for distance of interface
# corner point to boundary of convex
# domain U which is to be split,
# distance is measured in direction of
# normal to [P1,P2],
# this is a dummy if i_geom_param[3]=0,
# (in micro meter,
# 0<d_geom_param[2*i_geom_param[2]
# +i_geom_param[3]+1]<1000)
#
# - Following parameters must be fixed by setting upper bound=
# lower bound:
# d_geom_param[2*i_geom_param[2]+i_geom_param[3]+1]
# d_geom_param[k],k=1,2
# i.e. the refractive indices of the cover
# material
# d_geom_param[k],k=2*i_geom_param[2]-1,2*i_geom_param[2]
# i.e. the refractive indices of the
# substrate material
#
##################
#
# CLASS 6 (i_geom_param[1]=6): EUV bridge
# ---------------------------------------
#
# - Stack of several trapezoids (bridge) in grating
# with refractive indices included into the set of
# optimization parameters
# - Non-stop layers of different heights beneath the stack
# with refractive indices included into the set of
# optimization parameters
# (In other words: Some of the lower additional layers
# can be added through the set of optimization
# parameters. Fixed further layers can be added
# in the GRATING+ILLUMINATION part of this input
# file.)
# - Extra layer beside stack, height (>=zero, If upper
# line of this layers contains a corner of the trapezoids
# in the stack, then the height of the extra layer and all
# trapezoid heights of trapezoid beneath this line must
# be fixed by setting upper bound equal to lower bound.)
# and refractive indices included into the set of
# optimization parameters
# - Number of trapezoids and layers is prescribed
# - Whole stack (bridge) in one period of the grating
# - sidewall angles can be restricted by penalty terms
# - Lower side of stack (bridge) is fixed by two parameters:
# param_1 = posb/d = ratio of distance of right lower corner
# from the left boundary line of the period
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# and period d
# param_2 = posa/posb = ratio of distance of left lower corner
# from the left boundary line of the period
# and distance of right lower corner
# from the left boundary line of the period
# - Each trapezoid is determined by its hight, by the lower side
# which is the upper side of the adjacent lower trapezoid, and
# by the upper side prescribed by the two parameters:
# param_k_1 = b_k/d = ratio of distance of right upper corner
# from the left boundary line of the period
# and period d
# param_k_2 = a_k/b_k = ratio of distance of left upper corner
# from the left boundary line of the period
# and distance of right upper corner
# from the left boundary line of the period
# - Refractive index of the material of each trapezoid
# and layer is prescribed as an optimization parameter
# - Number of string parameters: ns_geom_param=0
# - Number of integer parameters: ni_geom_param=5
# i_geom_param[1]=6 (indicator of EUV bridge)
# i_geom_param[2]=number of different materials
# =number of trapezoids in stack (bridge) +
# number of non-stop layers beneath stack +
# (so far no non-stop layers are allowed)
# 3 if height of additional layer > 0
# i_geom_param[2]=number of different materials
# =number of trapezoids in stack (bridge) +
# number of non-stop layers beneath stack +
# (so far no non-stop layers are allowed)
# 2 if height of additional layer = 0
# i_geom_param[3]=number of trapezoids in stack
# i_geom_param[4]=number of non-stop layers beneath stack
# i_geom_param[5]=index of trapezoid in stack through which
# the upper line of the extra layer beside
# the stack goes
# (1<=i_geom_param[5]<=i_geom_param[3])
# - Number of real parameters:
# nd_geom_param=5*i_geom_param[3]+3*i_geom_param[4]+12
#
#
# + + + + + + + + + + + + +
#
#
#
# Refractive indices:
#
# n_co
#
# +--------------------------+
# / n_3 \
# / \
# +--------------------------------+
# \ /
# \ /
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# \ n_2 /
# \ /
# +---------------+ +-----------------+
# \ /
# nel +------------------+ nel
# / n_1 \
# +---------------+----------------------+-----------------+
# nl_1
# +--------------------------------------------------------+
# nl_2
# +--------------------------------------------------------+
# nl_3
# +--------------------------------------------------------+
#
# n_su
#
# n_co:=d_geom_param[nd_geom_param-6]+
# i*d_geom_param[nd_geom_param-5]
# =refractive index of cover material
# (Re n_co>0, Im n_co>=0)
# n_k :=d_geom_param[5*k-1]+i*d_geom_param[5*k]
# =refractive index of k-th trapezoid in stack
# (Re n_k>0, Im n_k>=0), k=1,...,i_geom_param[3]
# nel :=d_geom_param[nd_geom_param-8]+
# i*d_geom_param[nd_geom_param-7]
# =refractive index of extra layer material
# (Re nel>0, Im nel>=0)
# nl_k:=d_geom_param[5*i_geom_param[3]+1+3*k]+
# i*d_geom_param[5*i_geom_param[3]+2+3*k]
# =refractive index of k-th layer beneath stack
# (Re nl_k>0, Im nl_k>=0), k=1,...,i_geom_param[4]
# n_su:=d_geom_param[nd_geom_param-4]+
# i*d_geom_param[nd_geom_param-3]
# =refractive index of substrate material resp. material
# of adjacent lower coatingstrip
# (Re n_su>0, Im n_su=0)
#
#
# + + + + + + + + + + + + +
#
#
#
# Geometry parameters:
#
# b_k
# <...........................................>
# . .
# . a_k .
# <..........> .
# . . .
# . . .
# . . +--------------------------+ .
# . . / \ .
# . ./ \.
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# . +--------------------------------+ ^
# . \ / :
# ^ +------------+ +--------------+
# : . \ k-th trapez. / : h_k
# : . \ (k=2) / :
# : hel . \ / :
# : . \ / :
# v . . . . . . +------------------+ v
# . / \
# +---------------+----------------------+-----------------+
# (0,0) (posa,0) (posb,0) (d,0)
# ^ +--------------------------------------------------------+
# : hl_k k-th layer (k=2)
# v +--------------------------------------------------------+
#
# +--------------------------------------------------------+
#
# The height hel of the extra layer beside the
# bridge may be any non-negative number, h_1<hel<h_2
# is not supposed!
#
#
# h_k:=d_geom_param[5*k-4] =height of k-th trapezoid in stack
# (in micro meter, h_k>0)
# b_k/d:=d_geom_param[5*k-3] =ratio of distance of right upper
# corner from the left boundary
# line of the period and period d
# (0<b_k/d<=1)
# a_k/b_k:=d_geom_param[5*k-2]=ratio of distance of left upper
# corner from the left boundary
# line of the period and distance
# of right upper corner from the
# left boundary line of the period
# (0<=a_k/b_k<1.
# If not both of the parameters
# b_k/d and a_k/b_k are fixed,
# then we require:
# a_k/b_k>0 for b_k/d=1)
# k=1,...,i_geom_param[3]
# posb/d:=d_geom_param[5*i_geom_param[3]+1]
# =ratio of distance of right lower
# corner from the left boundary
# line of the period and period d
# (0<posb/d<=1)
# posa/posb:=d_geom_param[5*i_geom_param[3]+2]
# =ratio of distance of left lower
# corner from the left boundary
# line of the period and distance
# of right lower corner from the
# left boundary line of the period
# (0<=posa/posb<1.
# If not both of the parameters
# posb/d and posa/posb are fixed,
# then we require:
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# posa/posb>0 for posb/d=1)
# hel/h_m:=d_geom_param[nd_geom_param-9], m=i_geom_param[5]
# =height of extra layer beside
# stack (bridge) over the
# lower line of the m-th trapezoid
# relative to height of m-th
# trapezoid
# (in micro meter, 0<=hel<=1),
# hl_k:=d_geom_param[5*i_geom_param[3]+3*k]
# =height of k-th layer beneath stack
# (in micro meter, hl_k>0),
# k=1,...,i_geom_param[4],
#
# + + + + + + + + + + + + +
#
#
#
# Penalty term parameters:
#
# phi_min=d_geom_param[nd_geom_param-2] minimal angle
# for sidewall angles of trapezoids
# (except the uppermost trapezoid)
# phi_max=d_geom_param[nd_geom_param-1] maximal angle
# for sidewall angles of trapezoids
# (except the uppermost trapezoid)
# phi_fac=d_geom_param[nd_geom_param] factor of penalty
# term
#
# In other words, to exclude solutions with too large
# or too small sidewall angles phi, a penalty term of
# the following form is added to the objective
# functional for each sidewall angle phi.
#
# /
# | 2
# phi_fac * < max { 0 , phi-phi_max }
# |
# \
# \
# 2 |
# + max { 0 , phi_min-phi } >
# |
# /
#
# - Following parameters must be fixed by setting upper bound=
# lower bound:
#
# - d_geom_param[k],k=nd_geom_param-6,...,nd_geom_param
# i.e. refractive index of cover and substrate material
# and the constants of the penalty terms
# - if d_geom_param[nd_geom_param-9]=hel/h_m=0., then:
# d_geom_param[nd_geom_param-9]
# i.e. degenerated height hel
# d_geom_param[5*k-4], k=1,2,..,i_geom_param[5]-1
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# i.e. heights of trapezoids beneath upper
# boundary line of extra layer
# - if d_geom_param[nd_geom_param-9]=hel/h_m=1., then:
# d_geom_param[nd_geom_param-9]
# i.e. degenerated height hel
# d_geom_param[5*k-4], k=1,2,..,i_geom_param[5]
# i.e. heights of trapezoids beneath upper
# boundary line of extra layer
#
##################
#
# CLASS 6 (i_geom_param[1]=6): EUV bridge with environment
# --------------------------------------------------------
# variable EUV_SWA_90 set to yes
# ------------------------------
#
# - Stack of several trapezoids (bridge) in grating
# with sidewall angles less or equal to 90 degrees
# and with refractive indices included into the set of
# optimization parameters
# - Non-stop layers of different heights beneath the stack
# with refractive indices included into the set of
# optimization parameters
# (In other words: Some of the lower additional layers
# can be added through the set of optimization
# parameters. Fixed further layers can be added
# in the GRATING+ILLUMINATION part of this input
# file.)
# - Extra layer beside stack, height (>=zero, If upper
# line of this layers contains a corner of the trapezoids
# in the stack, then the height of the extra layer and all
# trapezoid heights of trapezoid beneath this line must
# be fixed by setting upper bound equal to lower bound.)
# and refractive indices included into the set of
# optimization parameters
# - Number of trapezoids and layers is prescribed
# - Whole stack (bridge) in one period of the grating
# - sidewall angles can be restricted by penalty terms
# - Lower side of stack (bridge) is fixed by two parameters:
# param_1 = posb/d = ratio of distance of right lower corner
# from the left boundary line of the period
# and period d
# param_2 = posa/posb = ratio of distance of left lower corner
# from the left boundary line of the period
# and distance of right lower corner
# from the left boundary line of the period
# - Each trapezoid is determined by its hight, by the lower side
# which is the upper side of the adjacent lower trapezoid, and
# by the upper side prescribed by the two parameters:
# param_k_1 = b_k/b_(k-1)
# = ratio of distance of right upper corner
# from the left boundary line of the period
# and distance of right lower corner
# from the left boundary line of the period
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# b_0:=posb
# param_k_2 = (a_k-a_(k-1))/(b_k-a_(k-1))
# = ratio of difference of x-coordinates of
# left upper and left lower trapezoid corner
# over difference of x-coordinates of
# right upper and left lower trapezoid corner
# a_0:=posa
# - Refractive index of the material of each trapezoid
# and layer is prescribed as an optimization parameter
# - Number of string parameters: ns_geom_param=0
# - Number of integer parameters: ni_geom_param=5
# i_geom_param[1]=6 (indicator of EUV bridge)
# i_geom_param[2]=number of different materials
# =number of trapezoids in stack (bridge) +
# number of non-stop layers beneath stack +
# (so far no non-stop layers are allowed)
# 3 if height of additional layer > 0
# i_geom_param[2]=number of different materials
# =number of trapezoids in stack (bridge) +
# number of non-stop layers beneath stack +
# (so far no non-stop layers are allowed)
# 2 if height of additional layer = 0
# i_geom_param[3]=number of trapezoids in stack
# i_geom_param[4]=number of non-stop layers beneath stack
# i_geom_param[5]=index of trapezoid in stack through which
# the upper line of the extra layer beside
# the stack goes
# (1<=i_geom_param[5]<=i_geom_param[3])
# - Number of real parameters:
# nd_geom_param=5*i_geom_param[3]+3*i_geom_param[4]+12
#
#
# + + + + + + + + + + + + +
#
#
#
# Refractive indices:
#
# n_co
#
# +--------------------------+
# / n_3 \
# / \
# +--------------------------------+
# \ /
# \ /
# \ n_2 /
# \ /
# +---------------+ +-----------------+
# \ /
# nel +------------------+ nel
# / n_1 \
# +---------------+----------------------+-----------------+
# nl_1
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# +--------------------------------------------------------+
# nl_2
# +--------------------------------------------------------+
# nl_3
# +--------------------------------------------------------+
#
# n_su
#
# n_co:=d_geom_param[nd_geom_param-6]+
# i*d_geom_param[nd_geom_param-5]
# =refractive index of cover material
# (Re n_co>0, Im n_co>=0)
# n_k :=d_geom_param[5*k-1]+i*d_geom_param[5*k]
# =refractive index of k-th trapezoid in stack
# (Re n_k>0, Im n_k>=0), k=1,...,i_geom_param[3]
# nel :=d_geom_param[nd_geom_param-8]+
# i*d_geom_param[nd_geom_param-7]
# =refractive index of extra layer material
# (Re nel>0, Im nel>=0)
# nl_k:=d_geom_param[5*i_geom_param[3]+1+3*k]+
# i*d_geom_param[5*i_geom_param[3]+2+3*k]
# =refractive index of k-th layer beneath stack
# (Re nl_k>0, Im nl_k>=0), k=1,...,i_geom_param[4]
# n_su:=d_geom_param[nd_geom_param-4]+
# i*d_geom_param[nd_geom_param-3]
# =refractive index of substrate material resp. material
# of adjacent lower coatingstrip
# (Re n_su>0, Im n_su=0)
#
#
# + + + + + + + + + + + + +
#
#
#
# Geometry parameters:
#
# b_k
# <...........................................>
# . .
# . a_k .
# <..........> .
# . . .
# . . .
# . . +--------------------------+ .
# . . / \ .
# . ./ \.
# . +--------------------------------+ ^
# . \ / :
# ^ +------------+ +--------------+
# : . \ k-th trapez. / : h_k
# : . \ (k=2) / :
# : hel . \ / :
# : . \ / :
# v . . . . . . +------------------+ v
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# . / \
# +---------------+----------------------+-----------------+
# (0,0) (posa,0) (posb,0) (d,0)
# ^ +--------------------------------------------------------+
# : hl_k k-th layer (k=2)
# v +--------------------------------------------------------+
#
# +--------------------------------------------------------+
#
# The height hel of the extra layer beside the
# bridge may be any non-negative number, h_1<hel<h_2
# is not supposed!
#
#
# h_k:=d_geom_param[5*k-4] =height of k-th trapezoid in stack
# (in micro meter, h_k>0)
# b_k/b_(k-1):=d_geom_param[5*k-3]
# =ratio of distance of right upper
# corner from the left boundary
# line of the period and
# distance of right lower
# corner from the left boundary
# line of the period
# (0<b_k/b_(k-1)<=1, b_0:=posb)
# (a_k-a_(k-1))/(b_k-a_(k-1)):=d_geom_param[5*k-2]
# =ratio of difference of
# x-coordinates of left upper and
# left lower trapezoid corner
# over difference of x-coordinates
# of right upper and left lower
# trapezoid corner
# (0<=(a_k-a_(k-1))/(b_k-a_(k-1))<1,
# a_0:=posa)
# k=1,...,i_geom_param[3]
# posb/d:=d_geom_param[5*i_geom_param[3]+1]
# =ratio of distance of right lower
# corner from the left boundary
# line of the period and period d
# (0<posb/d<=1)
# posa/posb:=d_geom_param[5*i_geom_param[3]+2]
# =ratio of distance of left lower
# corner from the left boundary
# line of the period and distance
# of right lower corner from the
# left boundary line of the period
# (0<=posa/posb<1.
# If not both of the parameters
# posb/d and posa/posb are fixed,
# then we require:
# posa/posb>0 for posb/d=1)
# hel/h_m:=d_geom_param[nd_geom_param-9], m=i_geom_param[5]
# =height of extra layer beside
# stack (bridge) over the
# lower line of the m-th trapezoid
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# relative to height of m-th
# trapezoid
# (in micro meter, 0<=hel<=1),
# hl_k:=d_geom_param[5*i_geom_param[3]+3*k]
# =height of k-th layer beneath stack
# (in micro meter, hl_k>0),
# k=1,...,i_geom_param[4],
#
# + + + + + + + + + + + + +
#
#
#
# Penalty term parameters:
#
# phi_min=d_geom_param[nd_geom_param-2] minimal angle
# for sidewall angles of trapezoids
# (except the uppermost trapezoid)
# phi_max=d_geom_param[nd_geom_param-1] maximal angle
# for sidewall angles of trapezoids
# (except the uppermost trapezoid)
# phi_fac=d_geom_param[nd_geom_param] factor of penalty
# term
#
# In other words, to exclude solutions with too large
# or too small sidewall angles phi, a penalty term of
# the following form is added to the objective
# functional for each sidewall angle phi.
#
# /
# | 2
# phi_fac * < max { 0 , phi-phi_max }
# |
# \
# \
# 2 |
# + max { 0 , phi_min-phi } >
# |
# /
#
# - Following parameters must be fixed by setting upper bound=
# lower bound:
#
# - d_geom_param[k],k=nd_geom_param-6,...,nd_geom_param
# i.e. refractive index of cover and substrate material
# and the constants of the penalty terms
# - if d_geom_param[nd_geom_param-9]=hel/h_m=0., then:
# d_geom_param[nd_geom_param-9]
# i.e. degenerated height hel
# d_geom_param[5*k-4], k=1,2,..,i_geom_param[5]-1
# i.e. heights of trapezoids beneath upper
# boundary line of extra layer
# - if d_geom_param[nd_geom_param-9]=hel/h_m=1., then:
# d_geom_param[nd_geom_param-9]
# i.e. degenerated height hel
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# d_geom_param[5*k-4], k=1,2,..,i_geom_param[5]
# i.e. heights of trapezoids beneath upper
# boundary line of extra layer
#
##################
# Number nd_geom_param of real parameters:
6

# Lower bounds dl_geom_param (nd_geom_param numbers in nd_geom_param lines):
-0.5
-0.5
1.
0.
1.5
0.

# Upper bounds du_geom_param (nd_geom_param numbers in nd_geom_param lines):
0.5
0.5
1.
0.
1.5
0.

# Number ni_geom_param of integer parameters:
3

# Integer params. i_geom_param (ni_geom_param numbers in ni_geom_param lines):
1
2
2

# Number ns_geom_param of name parameters:
0

# Parameter names s_geom_param.
# Each in one line, i.e., ns_geom_param lines.
# Parameters:
######################################################################
# Parameters d_geom_param of initial grating.
# d_geom_param (nd_geom_param numbers in nd_geom_param lines).
# With dl_geom_param[i]<=d_geom_param[i]<=du_geom_param[i] for all i.
# (If initial solution is to be sought by a deterministic search
# algorithm, then add the line: ‘‘ no n_0 n_1 n_2’’, where n_0
# is the refinement level for the FEM computation, n_1 is the
# number of maximal subdivision points per dimension, and n_2 is
# an indicator. If n_2=1, then the minimum is improved by computing
# the local minimum of the linear Taylor polynomial around each
# mesh point.)
# Parameters:
0.07
-0.04
1.
0.
1.5
0.

######################################################################
# #
# L E V E L O F D I S C R E T I Z A T I O N #
# #
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######################################################################
# Number of levels (Lev).
# Computation is performed on this level.
# Alternatively, an incremental input is possible.
# E.g.
# ‘‘ I 2 8 3’’.
# The last means that computation is to be done for
# the levels ‘‘2+i*3’’ with i=0,1,2,... as long as
# level ‘‘2+i*3’’ is less or equal to ‘‘8’’.
# The initial solution of the computation on level ‘‘2’’
# is the input initial solution. The initial solution
# of the computation on level ‘‘2+i*3’’ for i>0 is the
# final solution of the level ‘‘2+(i-1)*3’’.
# Number:
1

######################################################################
# #
# O B J E C T I V E F U N C T I O N A L #
# #
######################################################################
#
# reflected
# value = w_lin_ene_re * energy +
#
#
# transmitted
# w_lin_ene_tr * energy +
#
#
# total
# w_lin_ene_to * energy +
#
#
# n_lin_re
# --- reflected
# > w_lin_re * efficiency +
# --- j o_lin_re
# j=1 j
#
# n_lin_tr
# --- transmitted
# > w_lin_tr * efficiency +
# --- j o_lin_tr
# j=1 j
#
# n_qua_re
# --- reflected 2
# > w_qua_re [ efficiency - c_qua_re ] +
# --- j o_qua_re j
# j=1 j
#
# n_qua_tr
# --- transmitted 2
# > w_qua_tr [ efficiency - c_qua_tr ] +
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# --- j o_qua_tr j
# j=1 j
#
# n_lin_1_re
# --- reflected
# > w_lin_1_re * efficiency_1 +
# --- j o_lin_1_re
# j=1 j
#
# n_lin_1_tr
# --- transmitted
# > w_lin_1_tr * efficiency_1 +
# --- j o_lin_1_tr
# j=1 j
#
# n_qua_1_re
# --- reflected 2
# > w_qua_1_re [ efficiency - c_qua_1_re ] +
# --- j o_qua_1_re j
# j=1 j
#
# n_qua_1_tr
# --- transmitted 2
# > w_qua_1_tr [ efficiency_1 - c_qua_1_tr ] +
# --- j o_qua_1_tr j
# j=1 j
#
# n_lin_2_re
# --- reflected
# > w_lin_2_re * efficiency_2 +
# --- j o_lin_2_re
# j=1 j
#
# n_lin_2_tr
# --- transmitted
# > w_lin_2_tr * efficiency_2 +
# --- j o_lin_2_tr
# j=1 j
#
# n_qua_2_re
# --- reflected 2
# > w_qua_2_re [ efficiency_2 - c_qua_2_re ] +
# --- j o_qua_2_re j
# j=1 j
#
# n_qua_2_tr
# --- transmitted 2
# > w_qua_2_tr [ efficiency_2 - c_qua_2_tr ] +
# --- j o_qua_2_tr j
# j=1 j
#
# n_psh_1_re
# --- reflected 2
# > w_psh_1_re [ phaseshift_1 - c_psh_1_re ] +
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# --- j o_psh_1_re j *
# j=1 j
#
# n_psh_1_tr
# --- transmitted 2
# > w_psh_1_tr [ phaseshift_1 - c_psh_1_tr ] +
# --- j o_psh_1_tr j *
# j=1 j
#
# n_psh_2_re
# --- reflected 2
# > w_psh_2_re [ phaseshift_2 - c_psh_2_re ] +
# --- j o_psh_2_re j *
# j=1 j
#
# n_psh_2_tr
# --- transmitted 2
# > w_psh_2_tr [ phaseshift_2 - c_psh_2_tr ] +
# --- j o_psh_2_tr j *
# j=1 j
#
# reflected 2
# w_qua_ene_re [ energy - c_ene_re ] +
#
# transmitted 2
# w_qua_ene_tr [ energy - c_ene_tr ] +
#
# total 2
# w_qua_ene_to [ energy - c_ene_to ]
#
# 2 2
# Here: [ p-c ] := sin ( Pi*(p-c)/360 )
# *
#
########################
# refl./transm.
# Note that the angles of phase shift phaseshift_m
# are between -180 and 180. o
#
#
# refl./transm.
# Note that the efficiencies efficiency_1 denote the
# o
# the efficiency TE-part for TE/TM output resp. the S-part for
# Jones output.
#
# refl./transm.
# Note that the efficiencies efficiency_2 denote the
# o
# the efficiency TM-part for TE/TM output resp. the P-part for
# Jones output.
#
# For 3.Comp output these first and second efficiency terms are
# not allowed, i.e. the corresponding n_lin/qua_m_re/tr are
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# to be set to zero.
#
########################
#
# If the wavelength or/and the incidence angles or/and the
# polarization run over a fixed set of values, then the last value
# of the objective function is replaced by the sum over the last
# values depending on the wavelengths or/and the angles or/and the
# polarization. In this case, the values w_... equal to
#
#
# w_lin_ene_re, w_lin_ene_tr, w_lin_ene_to,
#
#
# w_lin_re , w_lin_tr ,
# j j
#
# w_lin_k_re , w_lin_k_tr , k=1,2
# j j
#
# w_qua_re , w_qua_tr ,
# j j
#
# w_qua_k_re , w_qua_k_tr , k=1,2
# j j
#
# w_psh_k_re , w_psh_k_tr , k=1,2
# j j
#
# w_qua_ene_re, w_qua_ene_tr, w_qua_ene_to
#
#
# and, similarly, the corresponding prescribed parameters c_...
# equal to
#
#
# c_qua_re , c_qua_tr ,
# j j
#
# c_qua_k_re , c_qua_k_tr , k=1,2
# j j
#
# c_psh_k_re , c_psh_k_tr , k=1,2
# j j
#
# c_ene_re, c_ene_tr, c_ene_to
#
#
# may depend on the wavelengths or/and the angles or/and the
# polarization type. If the n_... values of c_... depend on
# m wavelengths resp. angles theta resp. angles phi, then
# the input consists of m*n_...+1 lines. The first contains
# the indicator ‘‘WAL’’ resp. ‘‘ATH’’ resp. ‘‘APH’’ and is
# followed by m*n_... lines each containing a number c_...
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# for one value of the wavelength resp. angle theta
# resp. angle phi and for one order of mode. If the n_... values
# of c_... depends on m1 wavelengths + m2 angles theta resp. m1
# wavelengths + m2 angles phi resp. m1 angles theta + m2 angles
# phi, then the input consists of m1*m2*n_...+1 lines. The first
# contains the indicator ‘‘W+T’’ resp. ‘‘W+P’’ resp. ‘‘T+P’’ and
# is followed by m1*m2*n_... lines each containing a number
# c_... for one pair of values wavelength + angle theta resp.
# wavelength + angles phi resp. angle theta + angle phi and for
# one order of mode. If the n_... values of c_... depend on
# m1 wavelengths + m2 angles theta + m3 angles phi, then the input
# consists of m1*m2*m3*n_...+1 lines. The first contains the
# indicator ‘‘WTP’’ and is followed by m1*m2*m2*n_... lines each
# containing a number c_... for one triple of values wavelength
# + angle theta + angle phi. E.g.:
#
#
# ‘‘ WAL
# c_...(lambda1,mode1 )
# c_...(lambda1,mode2 )
# ...
# c_...(lambda1,moden_...)
# c_...(lambda2,mode1 )
# c_...(lambda2,mode2 )
# ...
# c_...(lambda2,moden_...)
# ...
# c_...(lambdam,mode1 )
# c_...(lambdam,mode2 )
# ...
# c_...(lambdam,moden_...) ’’
#
#
# ‘‘ W+P
# c_...(lambda1 ,phi1 ,mode1 )
# c_...(lambda1 ,phi1 ,mode2 )
# ...
# c_...(lambda1 ,phi1 ,moden_...)
# c_...(lambda1 ,phi2 ,mode1 )
# c_...(lambda1 ,phi2 ,mode2 )
# ...
# c_...(lambda1 ,phi2 ,moden_...)
# ...
# c_...(lambda1 ,phim2,mode1 )
# c_...(lambda1 ,phim2,mode2 )
# ...
# c_...(lambda1 ,phim2,moden_...)
# c_...(lambda2 ,phi1 ,mode1 )
# c_...(lambda2 ,phi1 ,mode2 )
# ...
# c_...(lambda2 ,phi1 ,moden_...)
# c_...(lambda2 ,phi2 ,mode1 )
# c_...(lambda2 ,phi2 ,mode2 )
# ...
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# c_...(lambda2 ,phi2 ,moden_...)
# ...
# c_...(lambda2 ,phim2,mode1 )
# c_...(lambda2 ,phim2,mode2 )
# ...
# c_...(lambda2 ,phim2,moden_...)
# ...
# c_...(lambdam1,phi1 ,mode1 )
# c_...(lambdam1,phi1 ,mode2 )
# ...
# c_...(lambdam1,phi1 ,moden_...)
# c_...(lambdam1,phi2 ,mode1 )
# c_...(lambdam1,phi2 ,mode2 )
# ...
# c_...(lambdam1,phi2 ,moden_...)
# ...
# c_...(lambdam1,phim2,mode1 )
# c_...(lambdam1,phim2,mode2 )
# ...
# c_...(lambdam1,phim2,moden_...) ’’
#
#
# ‘‘ WTP
# c_...(lambda1 ,theta1 ,phi1 ,mode1 )
# c_...(lambda1 ,theta1 ,phi1 ,mode2 )
# ...
# c_...(lambda1 ,theta1 ,phi1 ,moden_...)
# c_...(lambda1 ,theta1 ,phi2 ,mode1 )
# c_...(lambda1 ,theta1 ,phi2 ,mode2 )
# ...
# c_...(lambda1 ,theta1 ,phi2 ,moden_...)
# ...
# c_...(lambda1 ,theta1 ,phim3,mode1 )
# c_...(lambda1 ,theta1 ,phim3,mode2 )
# ...
# c_...(lambda1 ,theta1 ,phim3,moden_...)
# c_...(lambda1 ,theta2 ,phi1 ,mode1 )
# c_...(lambda1 ,theta2 ,phi1 ,mode2 )
# ...
# c_...(lambda1 ,theta2 ,phi1 ,moden_...)
# c_...(lambda1 ,theta2 ,phi2 ,mode1 )
# c_...(lambda1 ,theta2 ,phi2 ,mode2 )
# ...
# c_...(lambda1 ,theta2 ,phi2 ,moden_...)
# ...
# c_...(lambda1 ,theta2 ,phim3,mode1 )
# c_...(lambda1 ,theta2 ,phim3,mode2 )
# ...
# c_...(lambda1 ,theta2 ,phim3,moden_...)
# ...
# c_...(lambda1 ,thetam2,phi1 ,mode1 )
# c_...(lambda1 ,thetam2,phi1 ,mode2 )
# ...
# c_...(lambda1 ,thetam2,phi1 ,moden_...)
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# c_...(lambda1 ,thetam2,phi2 ,mode1 )
# c_...(lambda1 ,thetam2,phi2 ,mode2 )
# ...
# c_...(lambda1 ,thetam2,phi2 ,moden_...)
# ...
# c_...(lambda1 ,thetam2,phim3,mode1 )
# c_...(lambda1 ,thetam2,phim3,mode2 )
# ...
# c_...(lambda1 ,thetam2,phim3,moden_...)
# c_...(lambda2 ,theta1 ,phi1 ,mode1 )
# c_...(lambda2 ,theta1 ,phi1 ,mode2 )
# ...
# c_...(lambda2 ,theta1 ,phi1 ,moden_...)
# c_...(lambda2 ,theta1 ,phi2 ,mode1 )
# c_...(lambda2 ,theta1 ,phi2 ,mode2 )
# ...
# c_...(lambda2 ,theta1 ,phi2 ,moden_...)
# ...
# c_...(lambda2 ,theta1 ,phim3,mode1 )
# c_...(lambda2 ,theta1 ,phim3,mode2 )
# ...
# c_...(lambda2 ,theta1 ,phim3,moden_...)
# c_...(lambda2 ,theta2 ,phi1 ,mode1 )
# c_...(lambda2 ,theta2 ,phi1 ,mode2 )
# ...
# c_...(lambda2 ,theta2 ,phi1 ,moden_...)
# c_...(lambda2 ,theta2 ,phi2 ,mode1 )
# c_...(lambda2 ,theta2 ,phi2 ,mode2 )
# ...
# c_...(lambda2 ,theta2 ,phi2 ,moden_...)
# ...
# c_...(lambda2 ,theta2 ,phim3,mode1 )
# c_...(lambda2 ,theta2 ,phim3,mode2 )
# ...
# c_...(lambda2 ,theta2 ,phim3,moden_...)
# ...
# c_...(lambda2 ,thetam2,phi1 ,mode1 )
# c_...(lambda2 ,thetam2,phi1 ,mode2 )
# ...
# c_...(lambda2 ,thetam2,phi1 ,moden_...)
# c_...(lambda2 ,thetam2,phi2 ,mode1 )
# c_...(lambda2 ,thetam2,phi2 ,mode2 )
# ...
# c_...(lambda2 ,thetam2,phi2 ,moden_...)
# ...
# c_...(lambda2 ,thetam2,phim3,mode1 )
# c_...(lambda2 ,thetam2,phim3,mode2 )
# ...
# c_...(lambda2 ,thetam2,phim3,moden_...)
# ...
# c_...(lambdam1,theta1 ,phi1 ,mode1 )
# c_...(lambdam1,theta1 ,phi1 ,mode2 )
# ...
# c_...(lambdam1,theta1 ,phi1 ,moden_...)
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# c_...(lambdam1,theta1 ,phi2 ,mode1 )
# c_...(lambdam1,theta1 ,phi2 ,mode2 )
# ...
# c_...(lambdam1,theta1 ,phi2 ,moden_...)
# ...
# c_...(lambdam1,theta1 ,phim3,mode1 )
# c_...(lambdam1,theta1 ,phim3,mode2 )
# ...
# c_...(lambdam1,theta1 ,phim3,moden_...)
# c_...(lambdam1,theta2 ,phi1 ,mode1 )
# c_...(lambdam1,theta2 ,phi1 ,mode2 )
# ...
# c_...(lambdam1,theta2 ,phi1 ,moden_...)
# c_...(lambdam1,theta2 ,phi2 ,mode1 )
# c_...(lambdam1,theta2 ,phi2 ,mode2 )
# ...
# c_...(lambdam1,theta2 ,phi2 ,moden_...)
# ...
# c_...(lambdam1,theta2 ,phim3,mode1 )
# c_...(lambdam1,theta2 ,phim3,mode2 )
# ...
# c_...(lambdam1,theta2 ,phim3,moden_...)
# ...
# c_...(lambdam1,thetam2,phi1 ,mode1 )
# c_...(lambdam1,thetam2,phi1 ,mode2 )
# ...
# c_...(lambdam1,thetam2,phi1 ,moden_...)
# c_...(lambdam1,thetam2,phi2 ,mode1 )
# c_...(lambdam1,thetam2,phi2 ,mode2 )
# ...
# c_...(lambdam1,thetam2,phi2 ,moden_...)
# ...
# c_...(lambdam1,thetam2,phim3,mode1 )
# c_...(lambdam1,thetam2,phim3,mode2 )
# ...
# c_...(lambdam1,thetam2,phim3,moden_...) ’’
#
# If, additionally, the type of polarization runs over two types
# (in this case input type of polarization must be TE/TM:
# first type poltype1=TE and second type poltype2=TM), then the
# value of the objective function is replaced by the additional
# sum over the polarization types. In this case, the values
# c_... may depend on the type of polarization, too. The input of
# these values is
#
# ‘‘ POL
# c_...(poltyp1,mode1)
# c_...(poltyp1,mode2)
# ...
# c_...(poltyp1,moden_...)
# c_...(poltyp2,mode1)
# c_...(poltyp2,mode2)
# ...
# c_...(poltyp2,moden_...) ’’
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#
# if the values do not depend on lambda, theta, and phi. In case
# it depends on lambda, theta, or phi, the input starts with
# ‘‘WAL+POL’’ for ‘‘WAL’’, ‘‘ATH+POL’’ for ‘‘ATH’’, ‘‘APH+POL’’
# for ‘‘APH’’, ‘‘W+T+POL’’ for ‘‘W+T’’, ‘‘W+P+POL’’ for ‘‘W+P’’,
# ‘‘T+P+POL’’ for ‘‘T+P’’, ‘‘WTP+POL’’ for ‘‘WTP’’. Then there
# follows the doubled number of lines with values of c_... .
# This corresponds to a loop over lambda/theta/phi, as usually.
# In the inner of the loop, for fixed lambda, theta, and phi,
# first the n_... values for the first polarization type poltyp1
# are listed in the usual order. Then the n_... values for the
# second polarization type poltyp2 follow.
#
# If a value c_... or a value w_... depends on the wavelengths
# or/and the angles or/and the polarization type, then the
# corresponding value w_... or a value c_... must be given in
# the same way. In other words, if, e.g., w_... is constant
# but c_... depends on m values of wavelength, then the
# input for w_... must start with the line ‘‘WAL’’ and after
# wards the constant value w_... must be repeated m-times in
# m separate lines.
#
########################
#
# If the type of polarization and coordinate system for the
# incoming wave vector is ‘‘TE/TM’’, then the phase shifts
# are computed first for TE and then for TM, and terms like
#
#
# n_psh_1_re
# --- reflected,TE/TM 2
# > w_psh_1_re [ ps_1 - c_psh_1_re ] +
# --- j o_psh_1_re j *
# j=1 j
#
# n_psh_1_tr
# --- transmitted ,TE/TM 2
# > w_psh_1_tr [ ps_1 - c_psh_1_tr ] +
# --- j o_psh_1_tr j *
# j=1 j
#
# n_psh_2_re
# --- reflected,TE/TM 2
# > w_psh_2_re [ ps_2 - c_psh_2_re ] +
# --- j o_psh_2_re j *
# j=1 j
#
# n_psh_2_tr
# --- transmitted,TE/TM 2
# > w_psh_2_tr [ ps_2 - c_psh_2_tr ]
# --- j o_psh_2_tr j *
# j=1 j
#
#
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#
# with
#
#
# reflected,TE/TM reflected,TE reflected,TM
# ps_1 = phaseshift_1 - phaseshift_1
# o_psh_1_re o_psh_1_re o_psh_1_re
# j j j
#
# transmitted,TE/TM transmitted,TE transmitted,TM
# ps_1 = phaseshift_1 - phaseshift_1
# o_psh_1_tr o_psh_1_tr o_psh_1_tr
# j j j
#
# reflected,TE/TM reflected,TE reflected,TM
# ps_2 = phaseshift_2 - phaseshift_2
# o_psh_2_re o_psh_2_re o_psh_2_re
# j j j
#
# transmitted,TE/TM transmitted,TE transmitted,TM
# ps_2 = phaseshift_2 - phaseshift_2
# o_psh_2_tr o_psh_2_tr o_psh_2_tr
# j j j
#
#
# are of interest. To indicate that terms of this type are to be
# included instead of the terms depending on one phaseshift only
# add a TE/TM before the input of the numbers n_psh_1_re,
# n_psh_2_re, n_psh_1_tr, and n_psh_2_tr, respectively. E.g.
#
# # n_phs_2_tr:
# TE/TM
# 1
#
# In such a case an input of weights w_... and prescribed values
# c_... beginning with ...+POL is wrong since the phaseshifts
# for different polarization are included into one term, only.
#
# If the type of polarization and coordinate system for the
# incoming wave vector is ‘‘TE/TM’’, if the type of output
# is ‘‘TE/TM’’, and if the angle phi of illumination is zero
# (classical case), then the phase shift are computed first
# for TE and then for TM, and terms like
#
#
# n_psh_1_re
# --- reflected,TE/TM 2
# > w_psh_1_re [ PS_1 - c_psh_1_re ] +
# --- j o_psh_1_re j *
# j=1 j
#
# n_psh_1_tr
# --- transmitted ,TE/TM 2
# > w_psh_1_tr [ PS_1 - c_psh_1_tr ] +
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# --- j o_psh_1_tr j *
# j=1 j
#
#
# with
#
#
# reflected,TE/TM reflected,TE reflected,TM
# PS_1 = phaseshift_1 - phaseshift_2
# o_psh_1_re o_psh_1_re o_psh_1_re
# j j j
#
# transmitted,TE/TM transmitted,TE transmitted,TM
# PS_1 = phaseshift_1 - phaseshift_2
# o_psh_1_tr o_psh_1_tr o_psh_1_tr
# j j j
#
# are of interest. To indicate that terms of this type are to be
# included instead of the terms depending on one phaseshift only
# add a CL:TE/TM before the input of the numbers n_psh_1_re
# and n_psh_1_tr, respectively. E.g.
#
# # n_phs_1_tr:
# CL:TE/TM
# 2
#
# In such a case an input of weights w_... and prescribed values
# c_... beginning with ...+POL is wrong since the phaseshifts
# for different polarization are included into one term, only.
#
########################
#
# If the weights for the efficiency terms should be the
# reciprocal squared uncertainty and if this uncertainty
# should be a function of the prescribed efficiency value, e.g.:
#
# w_qua_1_tr=1/(u*u), u=f(c_qua_1_tr), f(E):=sqrt(E*E+1e-2)
#
# Then the input is as follows:
#
# ‘‘# n_qua_1_tr
# 2
# # w_qua_1_tr
# unc.fct. sqrt(E*E+1e-2)
# 0.
# 1.
# # o_qua_1_tr
# -1
# 0
# # c_qua_1_re
# 10.
# 13. ’’
#
# Note that the two input values for the w_qua_1_tr
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# are dummy values. The final values will be computed as
#
# w_qua_1_tr=1/(u*u), u=sqrt(c_qua_1_re*c_qua_1_re+1e-2)
# with c_qua_1_re=10 or c_qua_1_re=13.
#
# if the dummy input for w_qua_1_tr is positive, and it
# will be set to zero if w_qua_1_tr is less or equal to zero.
#
########################
#
#LINEAR TERMS, REFLECTED EFFICIENCY
# w_ene_lin_re
0

# w_ene_lin_tr
0

# w_ene_lin_to
0

# n_lin_re:
0

# w_lin_re (n_lin_re numbers in n_lin_re lines):
# o_lin_re (n_lin_re numbers in n_lin_re lines):
#LINEAR TERMS, FIRST (TE or S) REFLECTED EFFICIENCY
# n_lin_1_re:
0

# w_lin_1_re (n_lin_1_re numbers in n_lin_1_re lines):
# o_lin_1_re (n_lin_1_re numbers in n_lin_1_re lines):
#LINEAR TERMS, SECOND (TM or P) REFLECTED EFFICIENCY
# n_lin_2_re:
0

# w_lin_2_re (n_lin_2_re numbers in n_lin_2_re lines):
# o_lin_2_re (n_lin_2_re numbers in n_lin_2_re lines):
#LINEAR TERMS, TRANSMITTED EFFICIENCY
# n_lin_tr:
0

# w_lin_tr (n_lin_tr numbers in n_lin_tr lines):
# o_lin_tr (n_lin_tr numbers in n_lin_tr lines):
#LINEAR TERMS, FIRST (TE or S) TRANSMITTED EFFICIENCY
# n_lin_1_tr:
0

# w_lin_1_tr (n_lin_1_tr numbers in n_lin_1_tr lines):
# o_lin_1_tr (n_lin_1_tr numbers in n_lin_1_tr lines):
#LINEAR TERMS, SECOND (TM or P) TRANSMITTED EFFICIENCY
# n_lin_2_tr:
0

# w_lin_2_tr (n_lin_2_tr numbers in n_lin_2_tr lines):
# o_lin_2_tr (n_lin_2_tr numbers in n_lin_2_tr lines):
#QUADRATIC TERMS, REFLECTED EFFICIENCY
# n_qua_re:
0

# w_qua_re (n_qua_re numbers in n_qua_re lines):
# o_qua_re (n_qua_re numbers in n_qua_re lines):
# c_qua_re (n_qua_re numbers in n_qua_re lines):
#QUADRATIC TERMS, FIRST (TE or S) REFLECTED EFFICIENCY
# n_qua_1_re:
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1
# w_qua_1_re (n_qua_1_re numbers in n_qua_1_re lines):
0.03

# o_qua_1_re (n_qua_1_re numbers in n_qua_1_re lines):
0

# c_qua_1_re (n_qua_1_re numbers in n_qua_1_re lines):
51.603605

#QUADRATIC TERMS, SECOND (TM or P) REFLECTED EFFICIENCY
# n_qua_2_re:
0

# w_qua_2_re (n_qua_2_re numbers in n_qua_2_re lines):
# o_qua_2_re (n_qua_2_re numbers in n_qua_2_re lines):
# c_qua_2_re (n_qua_2_re numbers in n_qua_2_re lines):
#QUADRATIC TERMS, TRANSMITTED EFFICIENCY
# n_qua_tr:
0

# w_qua_tr (n_qua_tr numbers in n_qua_tr lines):
# o_qua_tr (n_qua_tr numbers in n_qua_tr lines):
# c_qua_tr (n_qua_tr numbers in n_qua_tr lines):
#QUADRATIC TERMS, FIRST (TE or S) TRANSMITTED EFFICIENCY
# n_qua_1_tr:
0

# w_qua_1_tr (n_qua_1_tr numbers in n_qua_1_tr lines):
# o_qua_1_tr (n_qua_1_tr numbers in n_qua_1_tr lines):
# c_qua_1_tr (n_qua_1_tr numbers in n_qua_1_tr lines):
#QUADRATIC TERMS, SECOND (TM or P) TRANSMITTED EFFICIENCY
# n_qua_2_tr:
0

# w_qua_2_tr (n_qua_2_tr numbers in n_qua_2_tr lines):
# o_qua_2_tr (n_qua_2_tr numbers in n_qua_2_tr lines):
# c_qua_2_tr (n_qua_2_tr numbers in n_qua_2_tr lines):
#QUADRATIC TERMS, FIRST (TE or S) REFLECTED PHASE SHIFT
# n_phs_1_re:
1

# w_phs_1_re (n_phs_1_re numbers in n_phs_1_re lines):
30.

# o_phs_1_re (n_phs_1_re numbers in n_phs_1_re lines):
0

# c_phs_1_re (n_phs_1_re numbers in n_phs_1_re lines):
-91.464440

#QUADRATIC TERMS, FIRST (TE or S) TRANSMITTED PHASE SHIFT
# n_phs_1_tr:
0

# w_phs_1_tr (n_phs_1_tr numbers in n_phs_1_tr lines):
# o_phs_1_tr (n_phs_1_tr numbers in n_phs_1_tr lines):
# c_phs_1_tr (n_phs_1_tr numbers in n_phs_1_tr lines):
#QUADRATIC TERMS, SECOND (TM or P) REFLECTED PHASE SHIFT
# n_phs_2_re:
0

# w_phs_2_re (n_phs_2_re numbers in n_phs_2_re lines):
# o_phs_2_re (n_phs_2_re numbers in n_phs_2_re lines):
# c_phs_2_re (n_phs_2_re numbers in n_phs_2_re lines):
#QUADRATIC TERMS, SECOND (TM or P) TRANSMITTED PHASE SHIFT
# n_phs_2_tr:
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0
# w_phs_2_tr (n_phs_2_tr numbers in n_phs_2_tr lines):
# o_phs_2_tr (n_phs_2_tr numbers in n_phs_2_tr lines):
# c_phs_2_tr (n_phs_2_tr numbers in n_phs_2_tr lines):
#QUADRATIC TERMS, REFLECTED ENERGY
# w_qua_ene_re:
0.

# c_ene_re (no line if w_ene_re=0.):
#QUADRATIC TERMS, TRANSMITTED ENERGY
# w_qua_ene_tr:
0.

# c_ene_tr (no line if w_ene_tr=0.):
#QUADRATIC TERMS, TOTAL ENERGY
# w_qua_ene_to:
0.

# c_ene_to (no line if w_ene_to=0.):
######################################################################
# #
# O P T I M I Z A T I O N A L G O R I T H M #
# #
######################################################################
# Data for optimization algorithm.
#
# - maximal number of iterations
# This is usually a positive number.
# However, if the level is varying (incremental input of level),
# then the maximal number of iterations can be chosen in
# dependence of the level. For m different number of levels,
# the corresponding input consists of m+1 lines. The first line
# contains ‘‘LEV’’ and is followed by m lines each containing
# a positive number of maximal iterations.
# E.g. for the level input ‘‘ I 2 8 3’’:
# ‘‘ LEV
# 5
# 7
# 13 ’’
# means maximal 5 iterations for level 2
# maximal 7 iterations for level 5 and
# maximal 13 iterations for level 8.
# - indicator ind_opt of method
# ind_opt=1: conjugate gradient method/projection
# onto feasibility set
# ind_opt=2: interior point method
# ind_opt=3: augmented Lagrangian method
# ind_opt=4: simulated annealing
# ind_opt=5: Newton type method
# - number of integer parameters ni_opt
# - vector i_opt of integer parameters (each number
# in a separate line, ni_opt numbers)
# - number of real parameters nd_opt
# - vector d_opt of real parameters (each number
# in a separate line, nd_opt numbers)
# - number of string parameters ns_opt
# - vector s_opt of string parameters (each string
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# in a separate line, nd_opt numbers)
# - vector d_geom_scal of positive scaling parameters
# d_geom_scal[j], j=1,...,nd_geom_param
# Indeed, if partial derivatives of objective functional
# with respect to some parameter coordinate d_geom_param[j]
# are much larger than the others, then this d_geom_param[j]
# together with the bounding [dl_geom_param[j],du_geom_param[j]]
# must be scaled:
#
# d_geom_param[j]’ = d_geom_param[j]*d_geom_scal[j]
# dl_geom_param[j]’=du_geom_param[j]*d_geom_scal[j]
# du_geom_param[j]’=dl_geom_param[j]*d_geom_scal[j]
#
# (Without scaling the iterative procedure reduces the
# large components of the gradient vector upto the
# discretization error, and an optimization in the
# gradient directions of the remaining components
# is hindered by the relatively large discretization error
# of the gradient components which had formerly been large.)
# All scaling factors d_geom_scal[j] for the d_geom_param[j]
# fixed by setting dl_geom_param[j]=du_geom_param[j] must be
# set to one.
#
##################
#
# CONJUGATE GRADIENT METHOD / PROJECTION (ind_opt=1)
#
# - ni_opt=1
# - i_opt[1]: number n_norm of same gradient norms
# after which the algorithm stops
# (e.g. 3)
# - nd_opt=5
# - d_opt[1]: maximal stepsize factor alpha_max in line search
# (e.g. 1.)
# - d_opt[2]: constant c_1 in Armijo stopping criterion
# for line search in conjugate gradient
# for conjugate gradient (e.g. 0.001)
# - d_opt[3]: threshold eps_acc:
# if difference of component to
# upper/lower bound is less than this,
# then point is considered to be at boundary
# (should be about desired accuracy)
# - d_opt[4]: threshold eps_gra for gradient to stop iteration
# (should be about discretization error
# of gradient calculation)
# - d_opt[5]: threshold eps_norm: if relative difference of two
# squared norms is less than this number,
# then the norms are considered to be the same
# (e.g. 1e-2)
#
##################
#
# INTERIOR POINT METHOD (ind_opt=2)
#
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# - ni_opt=1
# - i_opt[1]: number n_norm of same gradient norms
# after which the algorithm stops
# (e.g. 3)
# - nd_opt=8
# - d_opt[1]: initial value rho_0 for parameter in
# algorithm (parameter of operator F)
# (e.g. 0.1)
# - d_opt[2]: reduction factor q to reduce
# parameter in algorithm for
# each new iteration (parameter of operator F)
# (e.g. 0.5)
# - d_opt[3]: Constant c1 in Armijo stopping criterion
# for line search in conjugate gradient
# (e.g. 0.001)
# - d_opt[4]: factor alpha_max the initial bound for step
# size factor in line search
# (e.g. 0.9)
# - d_opt[5]: accuracy threshold eps_acc: considers the
# parameter values to be on the boundary if distance
# to boundary (slack variable) is less than this
# (should be the expected accuracy)
# - d_opt[6]: accuracy threshold eps_ste: stop iteration if
# improvement step of iterates is less than this
# (should be a tenth of the previous accuracy)
# - d_opt[7]: accuracy threshold eps_gra: stop iteration if
# norm of reduced gradient is less than this
# (should be about discretization error of gradient
# calculation)
# - d_opt[8]: threshold eps_norm: if relative difference of two
# squared norms is less than this number,
# then the norms are considered to be the same
# (e.g. 1e-3)
#
##################
#
# AUGMENTED LAGRANGIAN METHOD (ind_opt=3)
#
# - ni_opt=2
# - i_opt[1]: maximal number liter_max of conjugate gradient
# steps in inner iteration
# (e.g. 50)
# - i_opt[2]: number n_norm of same gradient norms
# after which the algorithm stops
# (e.g. 3)
# - nd_opt=8
# - d_opt[1]: value rho for parameter in
# algorithm (factor in augmented Lagrangian)
# (e.g. .5)
# - d_opt[2]: calibration factor c_cal of objective functional in
# modified Lagrangian = sum of objective
# functional plus perturbation term
# smaller value enforces better fulfillment
# of constraints
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# should be such that value of objective functional
# multiplied by c_cal is (much) less than one
# - d_opt[3]: threshold eps_mul: if deviation in iterates of
# multiplyer is less than this number divided
# by r, then iteration stops
# should be about maximum of i) the accuracy of
# the constraint conditions and ii) the accuracy
# of the minimum value of the objective functional
# multiplied by c_cal
# - d_opt[4]: threshold eps_gra: if norm of gradient of
# Lagrangian is less than this number times c_cal,
# then inner iteration stops
# should be about discretization error of gradient
# calculation
# - d_opt[5]: threshold eps_acc: if step size in line search
# of inner cg algorithm is less than this, then
# line search is stopped
# moreover, for computation of reduced gradient,
# the point is considered to be at boundary if its
# distance to the boundary is less than
# eps_acc
# should be less than error of the parameter solution
# set
# (e.g. 1.e-15)
# - d_opt[6]: constant c1 in Armijo stopping criterion
# for line search in conjugate gradient
# (e.g. 0.001)
# - d_opt[7]: bound alpha_max for initial bound for step size
# factor in line search
# (e.g. .5)
# - d_opt[8]: threshold eps_norm: if relative difference of two
# squared norms is less than this number,
# then the norms are considered to be the same
# (e.g. 1e-3)
#
##################
#
# SIMULATED ANNEALING (ind_opt=4)
#
# - ni_opt=1
# - i_opt[1]: number n_rest of restarts,
# algorithm starts from initial solution and
# from n_rest randomly chosen other
# solutions
# (e.g. 0)
# - nd_opt=5
# - d_opt[1]: initial temperature t_ini,
# should be about the oscillation of the
# objective functional,
# if this is 0, then initial temperature will
# be determined automatically
# (e.g. 0.)
# - d_opt[2]: cooling factor c_fact,
# starting from an initial temperature,
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# the algorithm manipulates over several
# temperatures, each of this is obtained
# by cooling the previous by the factor
# c_fact,
# if c_fact=-1, then a logarithmic
# cooling scheme is used
# if c_fact=-111, then a rational
# cooling scheme is used
# (e.g. 0.95)
# - d_opt[3]: stopping threshold eps_stop
# algorithm stops if the difference of the
# objective function of the solution from
# the previous temperature step differs from
# that of the current temperature by a value
# less than eps_stop,
# no stopping rule for eps_stop=0.
# (e.g. 0.)
# - d_opt[4]: initial value rho_ini of neighbourhood
# radius where the function ‘‘transition’’
# searches a new iterate,
# should satisfy 0<rho_ini,
# (e.g. expected accuracy of final solution)
# - d_opt[5]: reduction factor rho_fact of radius of
# neighbourhood for function ‘‘transition’’,
# the neighbourhood’s diameter for this
# stochastic choice is reduced by this factor
# after each temperature step,
# value should satisfy 0<rho_fact<=1.
# (e.g. 1.)
#
##################
#
# NEWTON METHOD / PROJECTION (ind_opt=5)
#
# - ni_opt=2
# - i_opt[1]: number n_norm of same gradient norms
# after which the algorithm stops
# (e.g. 3)
# - i_opt[2]: maximal number of iteration for which
# an increase of the functional is accepted
# (e.g. 5)
# - nd_opt=3
# - d_opt[1]: threshold eps_acc:
# if difference of component to
# upper/lower bound is less than this,
# then point is considered to be at boundary
# (should be about desired accuracy)
# - d_opt[2]: threshold eps_gra for gradient to stop iteration
# (should be about discretization error
# of gradient calculation)
# - d_opt[3]: threshold eps_norm: if relative difference of two
# squared norms is less than this number,
# then the norms are considered to be the same
# (e.g. 1e-2)
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#
##################
#
# LEVENBERG MARQUARDT METHOD (ind_opt=6)
#
# - ni_opt=0
# - nd_opt=4
# - d_opt[1]: scaling factor mu for initial regularization
# of symmetrized Jacobian
# - d_opt[2]: stopping threshold epsilon1
# stop if gradient norm ||J^T e||_inf<epsilon1
# - d_opt[3]: stopping threshold epsilon2
# stop if increment norm ||Dp||^2_2<epsilon2 ||Dp’||^2_2
# with ||Dp’||^2_2 the term of previous step
# - d_opt[4]: stopping threshold epsilon3
# stop if least square functional
# ||e||^2_2<epsilon3
#
##################
# Maximal number of iterations:
10000

# Indicator for optimization method:
1 # conj.grad.meth.

# ni_opt:
1 # number of integer param.

# i_opt:
3 # n times the same grad.norms -> stop

# nd_opt:
5 # number of real param.

# d_opt:
1. # maximal stepsize factor in line search
0.001 # constant c_1 in Armijo criterion
1e-3 # expected accuracy threshold
1e-2 # gradient accuracy threshold
1e-2 # grad.norm deviation threshold

# Scaling parameters d_geom_scal:
1.
1.
1.
1.
1.
1.

######################################################################
# #
# S T O C H A S T I C E R R O R A N A L Y S I S #
# #
######################################################################
#
# No further input is required. However, if the next
# line starts with " SD: ", then:
# Suppose that prescribed input values for the
# efficiencies E and/or the phase shifts P
# (corresponding to the efficiency value denoted
# by E) have a normally distributed error of
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# expectation 0 and standard deviation sigma(E)
# and sigma(P), respectively.
# Programm computes
# - standard deviations of reconstructed values
# - correlation factors
#
# The following three varaiants can be chosen:
#
# 1) Suppose that standard deviation sigma(E) and
# sigma(P) are given as
#
# sigma(E) = u(E),
# sigma(P) = u(E) * 360/100,
#
# The function u of variable E should be given in
# the next input line as a c code formula without
# blanks preceded by "SD: ".
#
# 2) Suppose that standard deviation sigma(E) and
# sigma(P) are equal to the deviation of the given
# (measured) values from those computed for the
# reconstructed grating. Input line should be:
# "SD: dev"
#
# 3) Suppose that standard deviation sigma(E)
# and sigma(P) are to be equal to the reciprocal
# square root of the weight for the corresponding
# term in the objective functional. Input line
# should be: "SD: orig"
#
# No error analysis is provided
# - if the c code is not defined in this data input file
# - if linear terms appear in objective functional
# - if energy terms appear in objective functional
# - if phase shift terms appear without the analoguous
# structure of efficiency term input
#
##################
#
SD: sqrt(1e-2+E*E)

# SD: dev
# SD: orig
######################################################################
# #
# E N D #
# #
######################################################################

203



12.9 Output file “example.res” of OPTIMIZE in OPTIM

***************************************
***************************************
** **
** OPTIMIZE GRATING/CONICAL CASE **
** **
***************************************
***************************************

date =’ 9. Aug 2005, 10:27:23’

=================================================================
DATA OF OPTIMIZATION PROBLEM:
=================================================================

grating geometry:
-----------------

refr.ind.of cov.mater. = 1.0000000 +i 0.0000000
n.of diff.grating mat. = 5

refr.ind. = 0.5421322 +i 0.1500000
refr.ind. = 0.6495191 +i 0.0000000
refr.ind. = 0.0000000 +i 0.0000000
refr.ind. = 0.0000000 +i 0.0000000
refr.ind. = -0.0000000 +i 0.6495191

refr.ind.of substr.mat. = 1.5000000 +i 0.0000000
temperature = 20.0000000
discret.level = 3
additional horizontal sh.= 0.0000000
stretching factor = 1.0000000
additional vertical sh. = 0.0000000
period of grating = 1.0000000

incoming light:
---------------

wave length = I 0.6350000 0.6360000 0.0020000
type of output res. = TE/TM
type of polarization = TP
polarization angle = 20.0000000
angle of incidence theta = I 30.0000000 31.0000000 2.0000000
angle of incidence phi = I 47.0000000 48.0000000 2.0000000

data of generalized FEM:
------------------------

n_DOF = 0
n_LFEM = 0
n_UPA = 0
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grating parameters:
-------------------

class number = 5
number of materials = 5
number of real param. = 13

real param.[1] = 1.0000000
real param.[2] = 0.0000000
real param.[3] in : [ 1.0000000 , 1.5000000 ]
real param.[4] in : [ 0.0000000 , 0.5000000 ]
real param.[5] in : [ 1.0000000 , 1.5000000 ]
real param.[6] in : [ 0.0000000 , 0.5000000 ]
real param.[7] in : [ 1.0000000 , 1.5000000 ]
real param.[8] in : [ 0.0000000 , 0.5000000 ]
real param.[9] = 1.5000000
real param.[10] = 0.0000000
real param.[11] in : [ -0.1350241 , 0.0953109 ]
real param.[12] in : [ -0.2417941 , 0.1350241 ]
real param.[13] = 0.1000000

number of integer param. = 6
integer param.[3] = 2
integer param.[4] = 11
integer param.[5] = 9
integer param.[6] = 3

number of char strg.par. = 1
char strg.par.[1] =

initial parameters:
-------------------

real parameter[ 3] = 1.3500000
real parameter[ 4] = 0.1000000
real parameter[ 5] = 1.2500000
real parameter[ 6] = 0.1500000
real parameter[ 7] = 1.1500000
real parameter[ 8] = 0.1000000
real parameter[11] = 0.0500000
real parameter[12] = 0.0500000

objective functional:
---------------------

functional value = 0.0550000 * [eff_1(tra,-1)-11.0418380]^2
+ 0.0250000 * [eff_2(tra,0)-27.0614650]^2
+ 15000.0000000 * [psh_1(tra,-1)-135.6202900]_*^2
+ 50.0000000 * [psh_2(tra,0)-69.1695300]_*^2

[psh_i(...,k)-c]_*^2 := sin^2( Pi*(psh_i(...,k)-c)/360 )

data for optimization:
----------------------

max.n.of iterations = 100
method of optimization = interior point method
initial parameter of op. = 0.10000000000000001
reduct.fact.for param. = 0.50000000000000000
const.in Armijo criter. = 0.00100000000000000
bound of stepsize factor = 0.90000000000000002
threshold for gradient = 0.00000000000001000
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threshold of rel.diff. = 0.00001000000000000
max.n.of almost same res.= 3

=================================================================
DISCRETIZATION DATA:
=================================================================

level of discr. = 3
stepsize of discr. = 0.03978873577297385 times period
number of nodes = 3935
degrees of freedom = 7870

=================================================================
DATA OF INTERIOR POINT METHOD:
=================================================================

number of iterations = 81 (max. 100 per call)
number of eval.grad. = 230
norm of red.gradient = 0.63985931836072452
call of inter_pnt_me : only once
stopping criterion : Warning: 3 times the same gradient norm!

=================================================================
RESULTS OF OPTIMIZATION:
=================================================================

optimal value of objective functional = 0.00006906968592636
optimal set of parameters:

param[ 3] = 1.39654044740417649
param[ 4] = 0.02205203290024821
param[ 5] = 1.29279672856900452
param[ 6] = 0.08879797922972749
param[ 7] = 1.16142455471499551
param[ 8] = 0.06526282507629259
param[11] = 0.07701248245801905
param[12] = 0.13277015218125693

=====================================================================
END:
=====================================================================

date =’ 9. Aug 2005, 10:30:13’

Thank you for choosing ‘‘OPTIMIZE’’!
Bye, bye!
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13 Copyright

Responsible programmer :

A. Rathsfeld

The programs are part of the package :

DIPOG
(Direct and Inverse Problems for Optical Gratings)

The programs require codes written by :

J.R. Shewchuk : triangulation code TRIANGLE
O. Schenk, K. Gärtner : direct solver PARDISO
R.W. Freund, N.M. Nachtigal : qmr solver
B. Spitzak and others: FLTK for graphical user interface

The programs are based on codes written by :

K. Gärtner : direct solver, cgs solver
R. Schlundt : gmres solver
J. Ehlert : simplex method
J. Fuhrmann, T. Koprucki, H. Langmach : PDELIB, adaption of GLTOOLS
F. Huth, M. Uhle : TGUI, graphical user interface for TRIANGLE
T. Arnold : some routines for optimization
B. Kleemann, G. Schmidt, A. Rathsfeld : adaption to the grating,

diffraction problem,
generalized Fem

Owner of program :

Weierstrass Institute for Applied Analysis and Stochastics
D-10117 Berlin, Mohrenstr. 39, Germany
part of: Forschungsverbund Berlin e.V.
Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V.

References : see Sections 2.4 and 10.4.
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