Die Gruppe arbeitet zu den folgenden mathematischen Forschungsthemen des WIAS:

Analysis partieller Differentialgleichungen und Evolutionsgleichungen

Partielle Differentialgleichungen bieten einen leistungsstarken und vielseitigen Rahmen für eine Kontinuumsbeschreibung von Phänomenen in Naturwissenschaft und Technik mit komplexen Wechselwirkungen und Abhängigkeiten. Am Weierstrass-Institut hat die Forschung hierzu drei hauptsächliche Schwerpunkte: (a) Mathematische Analysis allgemeiner Evolutionsgleichungen im Hinblick auf Existenz, Einzigkeit und Regularität von verschiedener Begriffen von Lösungen, (b) Entwicklung von variationellen Methoden unter Verwendung des Werkzeugkastens der Variationsrechnung, (c) Regularitätsergebnisse für Lösungen von elliptischen und parabolischen partiellen Differentialgleichungen. [>> more]

Freie Randwertprobleme für partielle Differentialgleichungen

Freie Randwertprobleme für partielle Differentialgleichungen beschreiben Situationen, in denen eine partielle Differentialgleichung auf einen Gebiet betrachtet wird, welches von der Lösung der Gleichung abhängt. Im Zusammenhang mit freien Randwertproblemen werden am WIAS Themen wie Eigenschaften von Lösungen, Phasenfeld-Approximationen, Kompatibilität mit der Thermodynamik, Beschreibung dünner Filme, Variationelle Ungleichungen, (implizite) Hindernisprobleme und Anwendungen beim Warmformen behandelt. [>> more]

Hysterese-Operatoren und ratenunabhängige Systeme

Zeitabhängige Prozesse in Physik, Biologie und Wirtschaft zeigen häufig ein ratenunabhängiges Eingangs-Ausgangs-Verhalten. In diesen Prozessen treten häufig Hystereseeffekte auf, die von einem dem Prozess innewohnenden Gedächtnis hervorgerufen werden. Am WIAS werden zwei Methoden verwendet, um derartige Systeme zu beschreiben: Ratenunabhängige Systeme sind ratenunabhängige quasistatische Evolutionsgleichungen, die mit einem Energiefunktional und einem Dissipationspotential formuliert werden. Hysterese-Operatoren bilden zeitabhängige (input-)Funktionen auf zeitabhängige (Output-) Funktionen ab, wobei der Operator raten-unabhängig und kausal ist. [>> more]

Mehrskalenmodellierung, asymptotische Analysis und Hybridmodelle

Um das Zusammenspiel von verschiedenen physikalischen Effekten zu verstehen, müssen häufig mehrere Längenskalen in das Modell einbezogen werden. Dabei ist ein Ziel, die Beschreibungen uber partielle Differentialgleichungen zu vereinfachen. Um den effektiven Einfluss zwischen den Skalen zu verstehen, werden mathematische Methoden wie Homogenisierung, asymptotische Analysis oder Gamma-Konvergenz verwendet. Die entstehenden Effektivmodelle sind gekoppelte Systeme partieller Differentialgleichungen, die sowohl Volumen- als auch Oberflächeneffekte enthalten. [>> more]

Systeme partieller Differentialgleichungen: Modellierung, numerische Analysis und Simulation

Die mathematische Beschreibung einer großen Zahl von Fragestellungen aus Wissenschaft und Technik führt auf (Anfangs-) Randwert-Probleme mit Systemen partieller Differentialgleichungen (PDEs). [>> more]

Variationsrechnung

Viele physikalische Phänomene lassen sich durch Extremalprinzipien für geeignete Funktionale beschreiben, deren kritische Punkte als Gleichgewichtslösungen relevant sind, insbesondere lokale und globale Minimierer. Die Seifenblase minimiert die Oberfläche bei gegebenem Volumen und ein elastischer Körper minimiert die gespeicherte Energie unter gegebenen Randbedingungen. Am WIAS werden Methoden aus der Variationsrechnung angewandt und weiterentwickelt für Probleme aus verschiedenen Bereichen der Physik, wie z.B. in der Kontinuumsmechanik, der Quantenmechanik und der optimalen Steuerung. [>> more]