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Objective of this research

We present a method for local estimation of the signal-dependent noise level in magnetic resonance im-
ages. The procedure uses a multi-scale approach to adaptively infer on local neighborhoods with similar
data distribution. It exploits a maximum-likelihood estimator for the local noise level. We evaluated the va-
lidity of the method on repeated diffusion data of a phantom (not shown here) and simulated data. The
method is especially useful for low SNR and high MR image resolution. For example, in diffusion MRI it
can be used for improved diffusion tensor (DTI) estimates or for improved noise reduction.

We demonstrate the improvements by examples.

� Noise variation can be estimated from image background, cf. Aja-
Fernandez (2009), MRI 27, 1397-1409.

� However, noise variation is not homogeneous over image!

� Missing background in restricted field-of-view techniques!

� Local noise variation determines a) local image quality, b) bias due
to skewed signal distribution, c) effectiveness of noise reduction
methods.

Data acquisition

� Complex Gaussian noise in k-space for
each coil

� Signal distribution S/σ is (approximately)
non-central χ2L,η with density pS for S:

SLη(1−L)

σ (L+1) e−
1
2

(
S2

σ2+η2
)
IL−1

(
ηS
σ

)
a) Single coil: L = 1, global σ (Rician)

b) Sum-of-squares: local L and σ (correlation)

c) GRAPPA: local L and σ

d) SENSE1: L = 1, local σS
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Maximum Likelihood estimator

� Given signal values S j in voxel j:
(S j/σ j)∼ χ2L,η j

� Weighted log-likelihood (σ̂i, η̂i) =

argmax
(η ,σ)

∑
j

wi j log pS(S j;η ,σ ,L)

cf. Sijbers (1998) MRI, 16, 87-90.

� wi j = 1, if ηi = η j, 0 otherwise

� Assume: local constant (homogeneous) η

� Assume: slowly varying σ

� Assume: known L

Homogeneity region definition

� How to define region of homogeneous η?

� ... in noisy data?

� Homogeneity region defined by weights wi j

Propagation separation

� Sequential multi-scale algorithm

� Compute adaptive weights
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where s(k−1)

i j evaluates the statistical differ-
ence between the estimates in voxel i and j
from step k−1.

� Estimate σ̂i, η̂i by weighted log-likelihood.

� Iterate over increasing scales {h(k)}k?
k=0

Evaluation of new method using simulated MR data (T1)
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Figure: Simulation results for a slice of the BrainWeb MR volume. a) Original slice. b)-f) slice after adding
complex Gaussian noise with standard deviation σK in k-space and SENSE1 reconstruction from 8 receiver
coils (positive correlation between receiver coils). g) image of (locally varying) effective σ h)-l) relative error
of local estimates σ̂i using the proposed method. m)-q) relative error of local estimates σ̂i using the method
described in Aja-Fernandez (2013), MRI 31, 272-285. The errors are given on a log-scale.

Conclusions:

� New method enables local estimation of scale parameter in the non-central χ distribution in MR
imaging, good agreement with true values in simulation.

� Good agreement with estimate from repeated measurements, see Tabelow et al. (2014).

� Estimation inside white and gray matter regions.

MRI acquisition (diffusion weighted dataset)

We re-analyzed a dataset described already in Becker (2012) and Becker(2013). Data were acquired from a whole body 7T MAGNE-

TOM scanner (Siemens Healthcare) with a maximum gradient amplitude of 70mT/m and a maximum slew rate of 200T/m/s (SC72,

Siemens Healthcare, Erlangen, Germany). The scan was performed using a single channel transmit, 24-channel receive phased ar-

ray head coil (Nova Medical, Wilmington, MA, USA). An optimized monopolar Stejskal-Tanner sequence according to Morelli (2010)

together with the ZOOPPA approach described in Heidemann (2012) was used with TR14.1s, TE65ms, BW1132Hz/pixel, and

ZOOPPA acceleration factor of 4.6. A total of 91 slices with 10% overlap were acquired at a field-of-view (FoV) of 143×147mm2

resulting in an isotropic high resolution of 800µm. Diffusion weighting gradients were applied along 60 different directions at a b-

value of 1000s/mm2. 7 interspersed non-diffusion weighted images were acquired. The scan was repeated 4 times. The subject

was a healthy adult volunteer after obtaining written informed consent in accordance with the ethical approval from the University of

Leipzig. Total acquisition time was 65min.

Application I - Local variance reduction by msPOAS, see Poster #1635-MoTue
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noisy original data using local σ estimate using global σ estimate

Application II - DTI by quasi-likelihood (QL) instead of non-linear regression (NLR)
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estimated σ for DWI

DTI model: ζp,i = ζ 0
i exp(−bp~g>p Di~gp)
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Software

� Free download: http://www.nitrc.org/projects/rdti/

� ... and http://cran.r-project.org/web/packages/dti/index.html

� J. Polzehl, K. Tabelow (2011), ’Beyond the Gaussian Model in Diffusion-Weighted Imaging: The pack-
age dti’, J. Statist. Software, vol. 44, issue 12. (Explaining the usage of the package for HARDI)

� J. Polzehl, K. Tabelow (2009), ’Structural adaptive smoothing in diffusion tensor imaging: The R pack-
age dti’, J. Statist. Software, vol. 31, pp. 1–24. (Explaining the usage of the package for DTI)

Further reading

� K. Tabelow, H.U. Voss, J. Polzehl, (2014) Local estimation of the noise level in MRI using structural
adaptation, WIAS Preprint No. 1947.

� S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, J. Polzehl, (2014) Adaptive smoothing of multi-
shell diffusion- weighted magnetic resonance data by msPOAS, NeuroImage vol. 95, pp. 90–105.

� S. Becker, K. Tabelow, H.U. Voss, A. Anwander, R.M. Heidemann, J. Polzehl, (2012) Position-
orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS), Med. Image
Anal. 16, pp. 1142–1155.
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