

Weierstrass Institute for **Applied Analysis and Stochastics** 

# Karsten Tabelow<sup>(1)</sup>, Henning U. Voss<sup>(2)</sup>, Jörg Polzehl<sup>(1)</sup>

# Local estimation of noise standard deviation in MRI images using propagation separation



HBM 2014 -Poster #1634-MoTue

#### **Objective of this research**

We present a method for local estimation of the signal-dependent noise level in magnetic resonance images. The procedure uses a multi-scale approach to adaptively infer on local neighborhoods with similar data distribution. It exploits a maximum-likelihood estimator for the local noise level. We evaluated the validity of the method on repeated diffusion data of a phantom (not shown here) and simulated data. The method is especially useful for low SNR and high MR image resolution. For example, in diffusion MRI it can be used for **improved diffusion tensor (DTI) estimates** or for **improved noise reduction**.



- Noise variation can be estimated from image background, cf. Aja-Fernandez (2009), MRI 27, 1397-1409.
- However, noise variation is not homogeneous over image!
- Missing background in restricted field-of-view techniques!
- Local noise variation determines a) local image quality, b) bias due to skewed signal distribution, c) effectiveness of noise reduction methods.

#### We demonstrate the improvements by examples.

### Data acquisition

# Maximum Likelihood estimator

- Complex Gaussian noise in k-space for each coil
- Signal distribution  $S/\sigma$  is (approximately) non-central  $\chi_{2L,\eta}$  with density  $p_S$  for S:

 $\frac{S^{L}\eta^{(1-L)}}{\sigma^{(L+1)}}e^{-\frac{1}{2}\left(\frac{S^{2}}{\sigma^{2}}+\eta^{2}\right)}I_{L-1}\left(\frac{\eta S}{\sigma}\right)$ 

န္မ a) Single coil: L=1, global  $\sigma$  (Rician)  $\sigma$  c) GRAPPA: local L and  $\sigma$  d) SENSE1: L=1, local  $\sigma$ 

 $\sigma_K = 50$ 

- Given signal values  $S_j$  in voxel j:  $(S_j/\sigma_j) \sim \chi_{2L,\eta_j}$
- Weighted log-likelihood  $(\hat{\sigma}_i, \hat{\eta}_i) =$

 $\underset{(\boldsymbol{\eta},\boldsymbol{\sigma})}{\operatorname{argmax}}\sum_{j} w_{ij} \log p_{S}(S_{j};\boldsymbol{\eta},\boldsymbol{\sigma},L)$ 

cf. Sijbers (1998) MRI, 16, 87-90.

 $\sigma_K = 400$ 

 $\sigma_K = 800$ 

- $w_{ij} = 1$ , if  $\eta_i = \eta_j$ , 0 otherwise
- Assume: local constant (homogeneous)  $\eta$
- Assume: slowly varying  $\sigma$
- Assume: known *L*

 $\sigma_K = 200$ 

# Homogeneity region definition

## How to define region of homogeneous $\eta$ ?



in noisy data?

Homogeneity region defined by weights  $w_{ii}$ 

MRI acquisition (diffusion weighted dataset)

#### **Propagation separation**

Sequential multi-scale algorithm

# Compute adaptive weights



where  $s_{ii}^{(k-1)}$  evaluates the statistical difference between the estimates in voxel i and jfrom step k-1.

Estimate  $\hat{\sigma}_i$ ,  $\hat{\eta}_i$  by weighted log-likelihood. Iterate over increasing scales  $\{h^{(k)}\}_{k=0}^{k^{\star}}$ 

# Evaluation of new method using simulated MR data (T1)

 $\sigma_K = 100$ 





**Figure:** Simulation results for a slice of the BrainWeb MR volume. a) Original slice. b)-f) slice after adding complex Gaussian noise with standard deviation  $\sigma_K$  in k-space and SENSE1 reconstruction from 8 receiver coils (positive correlation between receiver coils). g) image of (locally varying) effective  $\sigma$  h)-l) relative error of local estimates  $\hat{\sigma}_i$  using the proposed method. m)-q) relative error of local estimates  $\hat{\sigma}_i$  using the method described in Aja-Fernandez (2013), MRI 31, 272-285. The errors are given on a log-scale.

#### **Conclusions:**

- New method enables *local* estimation of scale parameter in the non-central  $\chi$  distribution in MR imaging, good agreement with true values in simulation.
- Good agreement with estimate from repeated measurements, see Tabelow et al. (2014).

ZOOPPA acceleration factor of 4.6. A total of 91 slices with 10% overlap were acquired at a field-of-view (FoV) of  $143 \times 147 \text{mm}^2$ resulting in an isotropic high resolution of  $800 \mu m$ . Diffusion weighting gradients were applied along 60 different directions at a bvalue of 1000s/mm<sup>2</sup>. 7 interspersed non-diffusion weighted images were acquired. The scan was repeated 4 times. The subject was a healthy adult volunteer after obtaining written informed consent in accordance with the ethical approval from the University of Leipzig. Total acquisition time was 65min.

We re-analyzed a dataset described already in Becker (2012) and Becker (2013). Data were acquired from a whole body 7T MAGNE-

TOM scanner (Siemens Healthcare) with a maximum gradient amplitude of 70 mT/m and a maximum slew rate of 200 T/m/s (SC72,

Siemens Healthcare, Erlangen, Germany). The scan was performed using a single channel transmit, 24-channel receive phased ar-

ray head coil (Nova Medical, Wilmington, MA, USA). An optimized monopolar Stejskal-Tanner sequence according to Morelli (2010)

together with the ZOOPPA approach described in Heidemann (2012) was used with TR 14.1s, TE 65ms, BW 1132Hz/pixel, and

# Application I - Local variance reduction by msPOAS, see Poster #1635-MoTue



Application II - DTI by quasi-likelihood (QL) instead of non-linear regression (NLR)



#### Estimation inside white and gray matter regions.





#### Software

- Free download: http://www.nitrc.org/projects/rdti/
- and http://cran.r-project.org/web/packages/dti/index.html
- J. Polzehl, K. Tabelow (2011), 'Beyond the Gaussian Model in Diffusion-Weighted Imaging: The package dti', J. Statist. Software, vol. 44, issue 12. (Explaining the usage of the package for HARDI)
- J. Polzehl, K. Tabelow (2009), 'Structural adaptive smoothing in diffusion tensor imaging: The R package dti', J. Statist. Software, vol. 31, pp. 1–24. (Explaining the usage of the package for DTI)

# Further reading

K. Tabelow, H.U. Voss, J. Polzehl, (2014) Local estimation of the noise level in MRI using structural adaptation, WIAS Preprint No. 1947.

 $vop_{l}$ 

- S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, J. Polzehl, (2014) Adaptive smoothing of multishell diffusion-weighted magnetic resonance data by msPOAS, NeuroImage vol. 95, pp. 90–105.
- S. Becker, K. Tabelow, H.U. Voss, A. Anwander, R.M. Heidemann, J. Polzehl, (2012) Positionorientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS), Med. Image Anal. 16, pp. 1142–1155.

<sup>1</sup> Weierstrass Institute · karsten.tabelow@wias-berlin.de <sup>2</sup> Weill Cornell Medical College, New York, NY