Many models in statistical physics are based on random paths with various kinds of interactions. One example is a random walk in a random potential (the parabolic Anderson model) for the description of heat conduction through a random medium, see the mathematical topic Spectral theory of random operators). Another one is the polaron model (a self-interacting three-dimensional Brownian motion) and its mean-field variants. A third one is a collection of one-dimensional random processes, which never change their order (non-colliding particles), and a further one are random walks in random environments. Furthermore, the influence of positive temperature in quantum physical systems is often modeled by a corresponding diffusion model of interacting Brownian motions, e.g., the Bose gas (see the mathematical topic Interacting random systemsand the application topic Particle-based modeling in the Sciences). Also families of Brownian motions that randomly coagulate with each other upon contact (see the application topic Coagulation) fall into this mathematical topic, as well as interacting diffusions for the description of charging processes in batteries (see the application topic Thermodynamic models for electrochemical systems) or stochastic particle models in turbulent environments for the analysis of population bilancing systems (see the application topic Numerical methods for the simulation of population balance systems).

Contribution of the Institute

After 30 years of silence, a significant progress was made in the understanding of the mean-field polaron model, after Mukherjee and Varadhan found a ingenious strategy to prove a large-deviation principle for a prominent object, the normalised occupation measure of a Brownian motion, without assuming compactness. On base of this, the most interesting path properties of the polaron could be resolved in subsequent works by Bolthausen, König and Mukherjee, and a new swing came into the possibilities to analyse also the path properties of the original model.

On the analysis of non-colliding random processes, a breakthrough was made in 2008 by Eichelsbacher and König, who derived in a universal manner the relevant asymptotics for a large class of random paths, dropping the continuity of the paths. In a PhD project with Schmid, further non-colliding properties were analysed.

Diff_1
Fig1. - Dichotomy in the spectral properties of the random conductance Laplacian with i.i.d. weights.

Publications

  Monographs

  • H.-Chr. Kaiser, D. Knees, A. Mielke, J. Rehberg, E. Rocca, M. Thomas, E. Valdinoci, eds., PDE 2015: Theory and Applications of Partial Differential Equations, 10 of Discrete and Continuous Dynamical Systems -- Series S, American Institute of Mathematical Science, Springfield, 2017, IV+933 pages, (Collection Published).
    Abstract
    HAGs von Christoph bestätigen lassen

  • W. König, The Parabolic Anderson Model -- Random Walks in Random Potential, Pathways in Mathematics, Birkhäuser, Basel, 2016, xi+192 pages, (Monograph Published).

  • J. Diehl, P. Friz, H. Mai , H. Oberhauser, S. Riedel, W. Stannat, Chapter 8: Robustness in Stochastic Filtering and Maximum Likelihood Estimation for SDEs, in: Extraction of Quantifiable Information from Complex Systems, S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, Ch. Schwab, H. Yserentant, eds., 102 of Lecture Notes in Computational Science and Engineering, Springer International Publishing Switzerland, Cham, 2014, pp. 161--178, (Chapter Published).

  Articles in Refereed Journals

  • B. Jahnel, Ch. Külske, Sharp thresholds for Gibbs-non-Gibbs transition in the fuzzy Potts models with a Kac-type interaction, Bernoulli. Official Journal of the Bernoulli Society for Mathematical Statistics and Probability, 23 (2017) pp. 2808--2827.
    Abstract
    We investigate the Gibbs properties of the fuzzy Potts model on the $d$-dimensional torus with Kac interaction. We use a variational approach for profiles inspired by that of Fernández, den Hollander and Martínez citeFeHoMa14 for their study of the Gibbs-non-Gibbs transitions of a dynamical Kac-Ising model on the torus. As our main result, we show that the mean-field thresholds dividing Gibbsian from non-Gibbsian behavior are sharp in the fuzzy Kac-Potts model. On the way to this result we prove a large deviation principle for color profiles with diluted total mass densities and use monotocity arguments

  • M. Liero, A. Mielke, M.A. Peletier, D.R.M. Renger, On microscopic origins of generalized gradient structures, Discrete and Continuous Dynamical Systems -- Series S, 10 (2017) pp. 1--35, DOI 10.3934/dcdss.2017001 .
    Abstract
    Classical gradient systems have a linear relation between rates and driving forces. In generalized gradient systems we allow for arbitrary relations derived from general non-quadratic dissipation potentials. This paper describes two natural origins for these structures. A first microscopic origin of generalized gradient structures is given by the theory of large-deviation principles. While Markovian diffusion processes lead to classical gradient structures, Poissonian jump processes give rise to cosh-type dissipation potentials. A second origin arises via a new form of convergence, that we call EDP-convergence. Even when starting with classical gradient systems, where the dissipation potential is a quadratic functional of the rate, we may obtain a generalized gradient system in the evolutionary Gamma-limit. As examples we treat (i) the limit of a diffusion equation having a thin layer of low diffusivity, which leads to a membrane model, and (ii) the limit of diffusion over a high barrier, which gives a reaction-diffusion system.

  • E. Bolthausen, W. König, Ch. Mukherjee, Mean-field interaction of Brownian occupation measures. II: A rigorous construction of the Pekar process, Communications on Pure and Applied Mathematics, 70 (2017) pp. 1598--1629.
    Abstract
    We consider mean-field interactions corresponding to Gibbs measures on interacting Brownian paths in three dimensions. The interaction is self-attractive and is given by a singular Coulomb potential. The logarithmic asymptotics of the partition function for this model were identified in the 1980s by Donsker and Varadhan [DV83] in terms of the Pekar variational formula, which coincides with the behavior of the partition function corresponding to the polaron problem under strong coupling. Based on this, Spohn ([Sp87]) made a heuristic observation that the strong coupling behavior of the polaron path measure, on certain time scales, should resemble a process, named as the itPekar process, whose distribution could somehow be guessed from the limiting asymptotic behavior of the mean-field measures under interest, whose rigorous analysis remained open. The present paper is devoted to a precise analysis of these mean-field path measures and convergence of the normalized occupation measures towards an explicit mixture of the maximizers of the Pekar variational problem. This leads to a rigorous construction of the aforementioned Pekar process and hence, is a contribution to the understanding of the ``mean-field approximation" of the polaron problem on the level of path measures. The method of our proof is based on the compact large deviation theory developed in [MV14], its extension to the uniform strong metric for the singular Coulomb interaction carried out in [KM15], as well as an idea inspired by a itpartial path exchange argument appearing in [BS97]

  • V. Gayrard, O. Gün, Aging in the GREM-like trap model, Markov Processes and Related Fields, 22 (2016) pp. 165--202.
    Abstract
    The GREM-like trap model is a continuous time Markov jump process on the leaves of a finite volume L-level tree whose transition rates depend on a trapping landscape built on the vertices of the whole tree. We prove that the natural two-time correlation function of the dynamics ages in the infinite volume limit and identify the limiting function. Moreover, we take the limit L→ ∞ of the two-time correlation function of the infinite volume L-level tree. The aging behavior of the dynamics is characterized by a collection of clock processes, one for each level of the tree. We show that for any L, the joint law of the clock processes converges. Furthermore, any such limit can be expressed through Neveu's continuous state branching process. Hence, the latter contains all the information needed to describe aging in the GREM-like trap model both for finite and infinite levels.

  • A. Mielke, M.A. Peletier, D.R.M. Renger, A generalization of Onsager's reciprocity relations to gradient flows with nonlinear mobility, Journal of Non-Equilibrium Thermodynamics, 41 (2016) pp. 141--149.
    Abstract
    Onsager's 1931 `reciprocity relations' result connects microscopic time-reversibility with a symmetry property of corresponding macroscopic evolution equations. Among the many consequences is a variational characterization of the macroscopic evolution equation as a gradient-flow, steepest-ascent, or maximal-entropy-production equation. Onsager's original theorem is limited to close-to-equilibrium situations, with a Gaussian invariant measure and a linear macroscopic evolution. In this paper we generalize this result beyond these limitations, and show how the microscopic time-reversibility leads to natural generalized symmetry conditions, which take the form of generalized gradient flows.

  • TH. Koprucki, N. Rotundo, P. Farrell, D.H. Doan, J. Fuhrmann, On thermodynamic consistency of a Scharfetter--Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement, Optical and Quantum Electronics, 47 (2015) pp. 1327--1332.
    Abstract
    Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter-Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter-Gummel schemes.

  • M. Erbar, J. Maas, D.R.M. Renger, From large deviations to Wasserstein gradient flows in multiple dimensions, Electronic Communications in Probability, 20 (2015) pp. 1--12.
    Abstract
    We study the large deviation rate functional for the empirical distribution of independent Brownian particles with drift. In one dimension, it has been shown by Adams, Dirr, Peletier and Zimmer [ADPZ11] that this functional is asymptotically equivalent (in the sense of Gamma-convergence) to the Jordan-Kinderlehrer-Otto functional arising in the Wasserstein gradient flow structure of the Fokker-Planck equation. In higher dimensions, part of this statement (the lower bound) has been recently proved by Duong, Laschos and Renger, but the upper bound remained open, since the proof in [DLR13] relies on regularity properties of optimal transport maps that are restricted to one dimension. In this note we present a new proof of the upper bound, thereby generalising the result of [ADPZ11] to arbitrary dimensions.

  • O. Gün, W. König, O. Sekulović, Moment asymptotics for multitype branching random walks in random environment, Journal of Theoretical Probability, 28 (2015) pp. 1726--1742.
    Abstract
    We study a discrete time multitype branching random walk on a finite space with finite set of types. Particles follow a Markov chain on the spatial space whereas offspring distributions are given by a random field that is fixed throughout the evolution of the particles. Our main interest lies in the averaged (annealed) expectation of the population size, and its long-time asymptotics. We first derive, for fixed time, a formula for the expected population size with fixed offspring distributions, which is reminiscent of a Feynman-Kac formula. We choose Weibull-type distributions with parameter 1/ρij for the upper tail of the mean number of j type particles produced by an i type particle. We derive the first two terms of the long-time asymptotics, which are written as two coupled variational formulas, and interpret them in terms of the typical behavior of the system.

  • W. König, T. Wolff, Large deviations for the local times of a random walk among random conductances in a growing box, Special issue for Pastur's 75th birthday, Markov Processes and Related Fields, 21 (2015) pp. 591--638.
    Abstract
    We derive an annealed large deviation principle (LDP) for the normalised and rescaled local times of a continuous-time random walk among random conductances (RWRC) in a time-dependent, growing box in Zd. We work in the interesting case that the conductances are positive, but may assume arbitrarily small values. Thus, the underlying picture of the principle is a joint strategy of small conductance values and large holding times of the walk. The speed and the rate function of our principle are explicit in terms of the lower tails of the conductance distribution as well as the time-dependent size of the box.
    An interesting phase transition occurs if the thickness parameter of the conductance tails exceeds a certain threshold: for thicker tails, the random walk spreads out over the entire growing box, for thinner tails it stays confined to some bounded region. In fact, in the first case, the rate function turns out to be equal to the p-th power of the p-norm of the gradient of the square root for some 2d/(d+2) < p < 2. This extends the Donsker-Varadhan-Gärtner rate function for the local times of Brownian motion (with deterministic environment) from p=2 to these values.
    As corollaries of our LDP, we derive the logarithmic asymptotics of the non-exit probability of the RWRC from the growing box, and the Lifshitz tails of the generator of the RWRC, the randomised Laplace operator. To contrast with the annealed, not uniformly elliptic case, we also provide an LDP in the quenched setting for conductances that are bounded and bounded away from zero. The main tool here is a spectral homogenisation result, based on a quenched invariance principle for the RWRC.

  • A. Mielke, M.A. Peletier, D.R.M. Renger, On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Analysis, 41 (2014) pp. 1293--1325.
    Abstract
    Motivated by the occurence in rate functions of time-dependent large-deviation principles, we study a class of non-negative functions ℒ that induce a flow, given by ℒ(zt,żt)=0. We derive necessary and sufficient conditions for the unique existence of a generalized gradient structure for the induced flow, as well as explicit formulas for the corresponding driving entropy and dissipation functional. In particular, we show how these conditions can be given a probabilistic interpretation when ℒ is associated to the large deviations of a microscopic particle system. Finally, we illustrate the theory for independent Brownian particles with drift, which leads to the entropy-Wasserstein gradient structure, and for independent Markovian particles on a finite state space, which leads to a previously unknown gradient structure.

  • M.H. Duong, V. Laschos, M. Renger, Wasserstein gradient flows from large deviations of many-particle limits, ESAIM. Control, Optimisation and Calculus of Variations, 19 (2013) pp. 1166--1188.

  • M.A. Peletier, M. Renger, M. Veneroni, Variational formulation of the Fokker--Planck equation with decay: A particle approach, Communications in Contemporary Mathematics, 15 (2013) pp. 1350017/1--1350017/43.

  • S. Adams, A. Collevecchio, W. König, A variational formula for the free energy of an interacting many-particle system, The Annals of Probability, 39 (2011) pp. 683--728.
    Abstract
    We consider $N$ bosons in a box in $R^d$ with volume $N/rho$ under the influence of a mutually repellent pair potential. The particle density $rhoin(0,infty)$ is kept fixed. Our main result is the identification of the limiting free energy, $f(beta,rho)$, at positive temperature $1/beta$, in terms of an explicit variational formula, for any fixed $rho$ if $beta$ is sufficiently small, and for any fixed $beta$ if $rho$ is sufficiently small. The thermodynamic equilibrium is described by the symmetrised trace of $rm e^-beta Hcal_N$, where $Hcal_N$ denotes the corresponding Hamilton operator. The well-known Feynman-Kac formula reformulates this trace in terms of $N$ interacting Brownian bridges. Due to the symmetrisation, the bridges are organised in an ensemble of cycles of various lengths. The novelty of our approach is a description in terms of a marked Poisson point process whose marks are the cycles. This allows for an asymptotic analysis of the system via a large-deviations analysis of the stationary empirical field. The resulting variational formula ranges over random shift-invariant marked point fields and optimizes the sum of the interaction and the relative entropy with respect to the reference process. In our proof of the lower bound for the free energy, we drop all interaction involving lq infinitely longrq cycles, and their possible presence is signalled by a loss of mass of the lq finitely longrq cycles in the variational formula. In the proof of the upper bound, we only keep the mass on the lq finitely longrq cycles. We expect that the precise relationship between these two bounds lies at the heart of Bose-Einstein condensation and intend to analyse it further in future.

  • W. König, P. Schmid, Brownian motion in a truncated Weyl chamber, Markov Processes and Related Fields, 17 (2011) pp. 499--522.
    Abstract
    We examine the non-exit probability of a multidimensional Brownian motion from a growing truncated Weyl chamber. Different regimes are identified according to the growth speed, ranging from polynomial decay over stretched-exponential to exponential decay. Furthermore we derive associated large deviation principles for the empirical measure of the properly rescaled and transformed Brownian motion as the dimension grows to infinity. Our main tool is an explicit eigenvalue expansion for the transition probabilities before exiting the truncated Weyl chamber.

  • W. König, P. Schmid, Random walks conditioned to stay in Weyl chambers of type C and D, Electronic Communications in Probability, (2010) pp. 286--295.

  • G. Grüninger, W. König, Potential confinement property in the parabolic Anderson model, Annales de l'Institut Henri Poincare. Probabilites et Statistiques, 45 (2009) pp. 840--863.

  • W. König, H. Lacoin, P. Mörters, N. Sidorova, A two cities theorem for the parabolic Anderson model, The Annals of Probability, 37 (2009) pp. 347--392.

  Preprints, Reports, Technical Reports

  • F. Flegel, M. Heida, M. Slowik, Homogenization theory for the random conductance model with degenerate ergodic weights and unbounded-range jumps, Preprint no. 2371, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2371 .
    Abstract, PDF (598 kByte)
    We study homogenization properties of the discrete Laplace operator with random conductances on a large domain in Zd. More precisely, we prove almost-sure homogenization of the discrete Poisson equation and of the top of the Dirichlet spectrum. We assume that the conductances are stationary, ergodic and nearest-neighbor conductances are positive. In contrast to earlier results, we do not require uniform ellipticity but certain integrability conditions on the lower and upper tails of the conductances. We further allow jumps of arbitrary length. Without the long-range connections, the integrability condition on the lower tail is optimal for spectral homogenization. It coincides with a necessary condition for the validity of a local central limit theorem for the random walk among random conductances. As an application of spectral homogenization, we prove a quenched large deviation principle for thenormalized and rescaled local times of the random walk in a growing box. Our proofs are based on a compactness result for the Laplacian's Dirichlet energy, Poincaré inequalities, Moser iteration and two-scale convergence

  • D. Belomestny, J.G.M. Schoenmakers, Projected particle methods for solving McKean--Vlaslov equations, Preprint no. 2341, WIAS, Berlin, 2016, DOI 10.20347/WIAS.PREPRINT.2341 .
    Abstract, PDF (320 kByte)
    We study a novel projection-based particle method to the solution of the corresponding McKean-Vlasov equation. Our approach is based on the projection-type estimation of the marginal density of the solution in each time step. The projection-based particle method can profit from additional smoothness of the underlying density and leads in many situation to a significant reduction of numerical complexity compared to kernel density estimation algorithms. We derive strong convergence rates and rates of density estimation. The case of linearly growing coefficients of the McKean-Vlasov equation turns out to be rather challenging and requires some new type of averaging technique. This case is exemplified by explicit solutions to a class of McKean-Vlasov equations with affine drift.

  • W. König, Ch. Mukherjee, Mean-field interaction of Brownian occupation measures. I: Uniform tube property of the Coulomb functional, Preprint no. 2199, WIAS, Berlin, 2015.
    Abstract, PDF (262 kByte)
    We study the transformed path measure arising from the self-interaction of a three-dimensional Brownian motion via an exponential tilt with the Coulomb energy of the occupation measures of the motion by time $t$. The logarithmic asymptotics of the partition function were identified in the 1980s by Donsker and Varadhan [DV83-P] in terms of a variational formula. Recently [MV14] a new technique for studying the path measure itself was introduced, which allows for proving that the normalized occupation measure asymptotically concentrates around the set of all maximizers of the formula. In the present paper, we show that likewise the Coulomb functional of the occupation measure concentrates around the set of corresponding Coulomb functionals of the maximizers in the uniform topology. This is a decisive step on the way to a rigorous proof of the convergence of the normalized occupation measures towards an explicit mixture of the maximizers, which will be carried out elsewhere. Our methods rely on deriving Hölder-continuity of the Coulomb functional of the occupation measure with exponentially small deviation probabilities and invoking the large-deviation theory developed in [MV14] to a certain shift-invariant functional of the occupation measures.

  • B. Jahnel, Ch. Külske, Attractor properties for irreversible and reversible interacting particle systems, Preprint no. 2145, WIAS, Berlin, 2015.
    Abstract, PDF (262 kByte)
    We consider translation-invariant interacting particle systems on the lattice with finite local state space admitting at least one Gibbs measure as a time-stationary measure. The dynamics can be irreversible but should satisfy some mild non-degeneracy conditions. We prove that weak limit points of any trajectory of translation-invariant measures, satisfying a non-nullness condition, are Gibbs states for the same specification as the time-stationary measure. This is done under the additional assumption that zero entropy loss of the limiting measure w.r.t. the time-stationary measure implies that they are Gibbs measures for the same specification.We also give an alternate version of the last condition such that the non-nullness requirement can be dropped. For dynamics admitting a reversible Gibbs measure the alternative condition can be verified, which yields the attractor property for such dynamics. This generalizes convergence results using relative entropy techniques to a large class of dynamics including irreversible and non-ergodic ones. We use this to show synchronization for the rotation dynamics exhibited in citeJaKu12 possibly at low temperature, and possibly non-reversible. We assume the additional regularity properties on the dynamics: 1 There is at least one stationary measure which is a Gibbs measure. 2 Zero loss of relative entropy density under dynamics implies the Gibbs property.

  Talks, Poster

  • J.G.M. Schoenmakers, Projected particle methods for solving McKean-Vlasov SDEs, Dynstoch 2017, April 5 - 7, 2017, Universität Siegen, Department Mathematik, Fachgruppe Stochastik, April 6, 2017.

  • M. Maurelli, Enhanced Sanov theorem and large deviations for interacting particles, Workshop ``Rough Paths, Regularity Structures and Related Topics'', May 1 - 7, 2016, Mathematisches Forschungsinstitut Oberwolfach, May 5, 2016.

  • A. Mielke, Exponential decay into thermodynamical equilibrium for reaction-diffusion systems with detailed balance, Workshop ``Patterns of Dynamics'', July 25 - 29, 2016, Freie Universität Berlin, Fachbereich Mathematik und Informatik, July 28, 2016.

  • A. Mielke, Gradient structures and dissipation distances for reaction-diffusion equation, Mathematisches Kolloquium, Westfälische Wilhelms-Universität, Institut für Mathematik, Münster, April 28, 2016.

  • B. Jahnel, Classes of nonergodic interacting particle systems with unique invariant measure, Kyoto University, Research Institute for Mathematical Sciences, Kyoto, Japan, November 16, 2015.

  • P. Keeler, When do wireless network signals appear Poisson?, 18th Workshop on Stochastic Geometry, Stereology and Image Analysis, March 22 - 27, 2015, Universität Osnabrück, Lingen, March 24, 2015.

  • M. Maurelli, A large deviation principle for interacting particle SDEs via rough paths, 38th Conference on Stochastic Processes and their Applications, July 13 - 17, 2015, University of Oxford, Oxford-Man Institute of Quantitative Finance, UK, July 14, 2015.

  • M. Maurelli, Enhanced Sanov theorem for Brownian rough paths and an application to interacting particles, Seminar Stochastic Analysis, Imperial College London, UK, October 20, 2015.

  • M. Maurelli, Stochastic 2D Euler equations: A poorly correlated multiplicative noise regularizes the two-point motion, Universität Augsburg, Institut für Mathematik, March 24, 2015.

  • D.R.M. Renger, From large deviations to Wasserstein gradient flows in multiple dimensions, Workshop on Gradient Flows, Large Deviations and Applications, November 22 - 29, 2015, EURANDOM, Mathematics and Computer Science Department, Eindhoven, Netherlands, November 23, 2015.

  • D.R.M. Renger, The inverse problem: From gradient flows to large deviations, Workshop ``Analytic Approaches to Scaling Limits for Random System'', January 26 - 30, 2015, Universität Bonn, Hausdorff Research Institute for Mathematics, January 26, 2015.

  • A. Mielke, The Chemical Master Equation as a discretization of the Fokker--Planck and Liouville equation for chemical reactions, Colloquium of Collaborative Research Center/Transregio ``Discretization in Geometry and Dynamics'', Technische Universität Berlin, Institut für Mathematik, Berlin, February 10, 2015.

  • D.R.M. Renger, Connecting particle systems to entropy-driven gradient flows, Conference on Nonlinearity, Transport, Physics, and Patterns, October 6 - 10, 2014, Fields Institute for Research in Mathematical Sciences, Toronto, Canada, October 9, 2014.

  • D.R.M. Renger, Connecting particle systems to entropy-driven gradient flows, Oberseminar ``Stochastische und Geometrische Analysis'', Universität Bonn, Institut für Angewandte Mathematik, May 28, 2014.

  • H. Mai, Pathwise stability of likelihood estimators for diffusions via rough paths, International Workshop ``Advances in Optimization and Statistics'', May 15 - 16, 2014, Russian Academy of Sciences, Institute of Information Transmission Problems (Kharkevich Institute), Moscow, May 16, 2014.

  • H. Mai, Robust drift estimation: Pathwise stability under volatility and noise misspecification, Berlin-Oxford Young Researchers Meeting on Applied Stochastic Analysis, July 1 - 2, 2014, University of Oxford, Oxford-Man Institute of Quantitative Finance, UK, July 2, 2014.

  • S. Neukamm, Optimal decay estimate on the semigroup associated with a random walk among random conductances, Dirichlet Forms and Applications, German-Japanese Meeting on Stochastic Analysis, September 9 - 13, 2013, Universität Leipzig, Mathematisches Institut, September 9, 2013.

  • A. Mielke, Gradient structures and dissipation distances for reaction-diffusion systems, Workshop ``Material Theory'', December 16 - 20, 2013, Mathematisches Forschungsinstitut Oberwolfach, December 17, 2013.

  • A. Mielke, On the geometry of reaction-diffusion systems: Optimal transport versus reaction, Recent Trends in Differential Equations: Analysis and Discretisation Methods, November 7 - 9, 2013, Technische Universität Berlin, Institut für Mathematik, November 9, 2013.

  • B. Metzger, The parabolic Anderson model: The asymptotics of the statistical moments and Lifshitz tails revisited, EURANDOM, Eindhoven, Netherlands, December 1, 2010.

  • W. König, Die Universalitätsklassen im parabolischen Anderson-Modell, Mathematisches Kolloquium, Technische Universität Darmstadt, Fachbereich Mathematik, July 7, 2010.

  • W. König, Ordered random walks, Augsburger Mathematisches Kolloquium, Universität Augsburg, Institut für Mathematik, January 26, 2010.

  • W. König, Ordered random walks, Mathematisches Kolloquium der Universität Trier, Fachbereich Mathematik, April 29, 2010.

  • W. König, The parabolic Anderson model, XIV Escola Brasileira de Probabilidade, August 2 - 7, 2010, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, Brazil.

  External Preprints

  • J.-D. Deuschel, P. Friz, M. Maurelli, M. Slowik, The enhanced Sanov theorem and propagation of chaos, Preprint no. arxiv:1602.08043, Cornell University Library, arXiv.org, 2016.