WIAS Preprint No. 2443, (2017)

On the dissociation degree of ionic solutions considering solvation effects



Authors

  • Landstorfer, Manuel
    ORCID: 0000-0002-0565-2601

2010 Mathematics Subject Classification

  • 78A57 35Q35 34B15

Keywords

  • ion pairs, dissociation degree, double layer, solvation shell, mixture theory

DOI

10.20347/WIAS.PREPRINT.2443

Abstract

In this work the impact of solvation effects on the dissociation degree of strong electrolytes and salts is discussed. The investigation is based on a thermodynamic model which is capable to predict qualitatively and quantitatively the double layer capacity of various electrolytes. A remarkable relationship between capacity maxima, partial molar volume of ions in solution, and solvation numbers, provides an experimental access to determine the number of solvent molecules bound to a specific ion in solution. This shows that the Stern layer is actually a saturated solution of 1 mol L-1 solvated ions, and we point out some fundamental similarities of this state to a saturated bulk solution. Our finding challenges the assumption of complete dissociation, even for moderate electrolyte concentrations, whereby we introduce an undissociated ion-pair in solution. We re-derive the equilibrium conditions for a two-step dissociation reaction, including solvation effects, which leads to a new relation to determine the dissociation degree. A comparison to Ostwald's dilution law clearly shows the shortcomings when solvation effects are neglected and we emphasize that complete dissociation is questionable beyond 0.5 mol L-1 for aqueous, mono-valent electrolytes.

Appeared in

Download Documents