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A quantum transmitting Schrödinger-Poisson system 1

Abstract

We consider a stationary Schrödinger-Poisson system on a bounded interval of
the real axis. The Schrödinger operator is defined on the bounded domain with
transparent boundary conditions. This allows to model a non-zero current flow
trough the boundary of the interval. We prove that the system always admits a
solution and give explicit a priori estimates for the solutions.

2000 Mathematics Subject Classification: 34B24, 34L40, 47B44, 81U20, 82D37.

2003 Physics and Astronomy Classification Scheme (PACS): 85.35.-p

Key words and phrases: Quantum phenomena, current carrying state, inflow bound-
ary condition, dissipative operators, open quantum systems, carrier and current
densities, density matrices, quantum transmitting boundary method.

Contents

1 Introduction 2

2 Buslaev-Fomin operator and QTB family 4

3 Eigenfunction expansion 12

4 Scattering matrix 21

5 Carrier and current densities 27

5.1 Carrier densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Current densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Carrier density operator 33

7 Quantum transmitting Schrödinger-Poisson system 37

7.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2 Definition of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Preprint 814, Weierstraß–Institut für Angewandte Analysis und Stochastik, Berlin 2003

http://www.ams.org/msc
http://www.ams.org/msc/34Bxx.html
http://www.ams.org/msc/34Lxx.html
http://www.ams.org/msc/47Bxx.html
http://www.ams.org/msc/81Uxx.html
http://www.ams.org/msc/82Dxx.html
http://publish.aps.org/PACS


2 M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg

1 Introduction

The nonlinear interactions between an electric field and charged carriers, electrons and
holes within a semiconductor device, are commonly modeled by a nonlinear Poisson equa-
tion, see [G] and references cited there. In the 1D case, which we consider here, the
Poisson equation reads

− d

dx
ε(x)

d

dx
ϕ(x) = q (C(x) +N+(ϕ)(x)−N−(ϕ)(x)) , x ∈ (a, b), (1.1)

where (a, b) ⊂ R is the bounded spatial domain occupied by the semiconductor device, q
denotes the magnitude of the elementary charge, C is the density of ionized dopants in
the semiconductor device, ε > 0 denotes the dielectric permittivity function and ϕ the
electrostatic potential. N±(ϕ) are the (in general nonlinear) operators which associate a
density of positive and negative charge (holes and electrons) to an electrostatic potential.
Therefore N±(ϕ) are called the carrier density operators. The boundary conditions for
(1.1) are usually of mixed type, see [G], allowing for Ohmic (metal) contacts on some
parts of the boundary while other parts of the boundary of the device are insulated.

Depending on the underlying physical model, the operators N±(ϕ) are set up in different
ways. In this article we are interested in the case, where the carrier density operators are
determined by Schrödinger-type operators of the form

H±(v) = −~
2

2

d

dx

1

m±

d

dx
+ v, (1.2)

on the interval (a, b); ~ is the reduced Planck constant, and m± > 0 are the position
dependent effective masses of electron and holes, respectively. The operators H±(v) are
usually regarded with homogeneous, selfadjoint boundary conditions, including mixed
ones, on the boundary of the device domain. Let us denote the operator H±(v) with some
selfadjoint boundary conditions by H±sa(v). If f± are equilibrium distribution functions
such that the operators

%±(v) := f±(H±sa(v)),

are selfadjoint, non-negative, and of trace class, i.e. density matrices, for all admissible
potentials v, then the densities N sa

± (ϕ) are given by the Radon-Nikodym derivative of the
absolutely continuous measures (with respect to the Lebesgue measure)∫

ω

dxN sa
± (ϕ)(x) = E%±(v)(ω) := tr (%±(v±)M(χω)) ,

where M(χω) denotes the multiplication operator by the indicator function χω of a set
ω ⊂ (a, b), and v± are given by

v± = w± ± qϕ,
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A quantum transmitting Schrödinger-Poisson system 3

with prescribed potentials w±. Schrödinger-Poisson systems on bounded spatial domains
in which the carrier density operators are described in the above form, have been inten-
sively studied, see [CZF, N2, KR].

The selfadjointness of the operators H±sa(v) reflects that the corresponding quantum sys-
tems of positively and negatively charged carriers are closed. Hence, there is no flow
of carriers through the boundary of the device. However, the operation of semiconduc-
tor devices is characterized by the flow of electrons and holes. Therefore one passes to
open quantum systems. One way to do so is to regard the Schrödinger operator with
certain non-selfadjoint boundary conditions thus, allowing a flow through the boundary,
see [F2, KL, BDM, KR, KNR3]. Since the current is constituted by scattering states,
on has to find boundary conditions for the operators H±(v) which allow a particle to
scatter through the device domain. Such boundary conditions are called transparent
boundary conditions, see [F2, KL, BDM]. They make the operators H±(v) essentially
non-selfadjoint. Thus, it is not clear how to determine the carrier and current densities,
which are well defined only for closed quantum systems, see [LL].

In [KNR1] the following dissipative boundary conditions have been suggested

~

2m(a)
f ′(a) = −iα2

af(a) and
~

2m(b)
f ′(b) = iα2

bf(b),

where αa, αb ∈ R, αa, αb > 0. Let us denote the operator with these boundary conditions
by H±dis(v). The operators H±dis(v) with the above boundary conditions are essentially non-
selfadjoint. But these operators are maximal dissipative, which allows an embedding of
the open quantum system described by the non-selfadjoint operators H±dis(v) into a larger
closed quantum system described by the selfadjoint dilation operator, denoted by K±dis(v),
which exists for every maximal dissipative operator [FN]. Using the selfadjoint dilations
K±dis(v) the carrier density operators can be defined in a similar way as described above
for H±sa(v) (see [KNR1, KNR2, BN] for details), which leads to the so-called dissipative
Schrödinger-Poisson system. This system has been investigated in [BKNR].

Another ansatz to introduce carrier and current densities for an open quantum system
on an interval was made by Ben Abdallah, Degond, and Markowich, see [BDM]. Their
approach is to extend the effective masses m± and the potential v± to the whole real line
by setting them constant outside the interval (a, b). This leads to selfadjoint operators
K±v± on K := L2(R) called Buslaev-Fomin operators. The boundary conditions for the
non-selfadjoint Schrödinger operator on the bounded spatial domain (a, b) are obtained
by a projection onto (a, b), see also [F2, F1, KL]. The carrier and current densities for the
open system are defined in terms of the generalized eigenfunctions corresponding to the
Buslaev-Fomin operators K±v± , see [BDM] for details. The existence of a solution for a very
special case of this model, more precisely N− ≡ 0, C ≡ 0, ε ≡ 1 and m± ≡ 1, was proved
in [BDM]. But the mathematical techniques used there to prove the existence do not apply
in the general case which we consider here. In this paper we will show that the model used
by Ben Abdallah, Degond and Markowich in [BDM] also allows an interpretation in terms
of a family of dissipative operators the so-called quantum transmitting boundary operator
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4 M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg

family, or QTB family, which leads to the quantum transmitting Schrödinger-Poisson
system. We will show that this Schrödinger-Poisson system always admits a solution and
give some a priori estimates for this solution. The quantum transmitting Schrödinger-
Poisson system is closely related to the dissipative Schrödinger-Poisson system considered
in [BKNR]. We will point out the relation between the two systems throughout this paper.
In particular we show that the dissipative Schrödinger-Poisson system and the quantum
transmitting Schrödinger-Poisson system coincide, modulo a unitary transformation, for
fixed energy.

The paper is organized as follows: In Section 2 we define the Buslaev-Fomin opera-
tor, derive the QTB family and show the relation between the QTB family and the
Buslaev-Fomin operator. In Section 3 we calculate the generalized eigenfunctions of the
Buslaev-Fomin operator, define the corresponding Fourier transform and show that the
eigenfunctions can be expressed in terms of the QTB family. Section 4 is devoted to the
scattering matrix of the Buslaev-Fomin operator. In Section 5 we define the carrier and
current density for the open quantum system related to the QTB family and show that
these densities are completely characterized by the QTB family. Section 6 is devoted
to the carrier density operator of the QTB family and its properties. In Section 7 we
investigate the Schrödinger-Poisson system with the carrier density operator of the QTB
family.

2 Buslaev-Fomin operator and QTB family

Let us first introduce some notation which will be used throughout this paper: N, R
and C denote the natural, the real and the complex numbers, respectively; C+ := {z ∈
C | Im(z) > 0}, C− := {z ∈ C | Im(z) < 0}; if z ∈ C, then z denotes the complex conjugate
number. Lp(Ω, X, ν), 1 ≤ p < ∞ is the space of ν-measurable, p-integrable functions
with values in the Banach space X; L∞(Ω, X, ν) is the corresponding space of essentially
bounded functions. If Ω ⊆ R is a domain, ν the Lebesgue measure, and X = C, then
we write short Lp(Ω), 1 ≤ p ≤ ∞. Furthermore we denote by W1,2(Ω) the usual Sobolev
space of complex-valued functions on Ω, by C(Ω) the space of continuous complex-valued
functions on Ω and by Cb(Ω) the space of continuous bounded complex-valued functions
on Ω equipped with the supremum norm. If Ω = (a, b) we will abbreviate Lp, W1,2, . . . for
Lp(Ω), W1,2(Ω), . . . ; moreover, we introduce K := L2(R) and H := L2 = L2(a, b). The
real part of a function space will be indexed by R, i.e. the real part of Lp, W1,2, . . . will
be denoted by Lp

R
, W1,2

R
, . . . . For Banach spaces X and Y , we denote by B(X, Y ) the

space of all linear, continuous operators from X into Y ; if X = Y we write B(X) and
IX ∈ B(X) for the identity operator. If X, Y are Hilbert spaces, then B1(X, Y ) denotes
the space of trace class operators and B2(X, Y ) denotes the space of Hilbert Schmidt
operators; if X = Y we abbreviate B1(X) := B1(X,X) and B2(X) := B2(X,X). For a
densely defined linear operator A : X → Y we denote by A∗ the adjoint operator and by
|A| the absolute value, if A is closed. If A is a selfadjoint operator in a Hilbert space we
denote by σ(A), σp(A), σac(A) the spectrum of A, its point spectrum, and its absolutely
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A quantum transmitting Schrödinger-Poisson system 5

continuous spectrum, respectively.

Let and va, vb ∈ R, va > vb, be given. We define the operator E : L∞
R
−→ L∞

R
(R) by

(Ev)(x) :=


va, −∞ < x ≤ a,
v(x), x ∈ (a, b),
vb, b ≤ x <∞,

v ∈ D(E) := L∞
R

= L∞
R

(a, b). (2.1)

Moreover, we assume that m ∈ L∞
R

and ma,mb ∈ R are given, with ma,mb > 0, m > 0
and 1/m ∈ L∞. We set

m̂(x) :=


ma, −∞ < x ≤ a,
m(x), x ∈ (a, b),
mb, b ≤ x <∞,

(2.2)

and define the operator Kv by

Kvf := lv(f), f ∈ D(Kv) :=

{
f ∈ W1,2(R) | 1

m̂
f ′ ∈ W1,2(R)

}
, (2.3)

where

lv(f)(x) := −~
2

2

d

dx

1

m̂(x)

d

dx
f(x) + (Ev)(x)f(x).

Kv is selfadjoint on K = L2(R). We call Kv the Buslaev-Fomin operator (see [BF] or [W,
chapter 17]). We set

qa(z) :=

√
z − va
2ma

and qb(z) :=

√
z − vb
2mb

, z ∈ C, (2.4)

where the cut of the square root is taken along [0,∞). We note that in this case we have
Im(
√
z) > 0 for z ∈ C \ [0,∞) and

√
z > 0 for z ∈ (0,∞). To construct the resolvent of

Kv we proceed as in [W, chapter17] and introduce the functions

g1(x, z) = exp
(
i2mb
~
qb(z)x

)
, x ∈ (b,∞),

h1(x, z) = exp
(
−i2ma

~
qa(z)x

)
, x ∈ (−∞, a),

for z ∈ C. Furthermore let g2(v)(x, z) be the solution of the integral equation

g2(v)(x, z) = c1(z)− 2

~

c2(z)

∫ b

x

dt m̂(t) +
2

~
2

∫ b

x

dt m̂(t)

∫ b

t

ds ((Ev)(s)− z)g2(v)(s, z),

x ∈ (−∞, b), z ∈ C, where

c1(z) := exp

(
i
2mb

~

qb(z)b

)
, c2(z) := iqb(z) exp

(
i
2mb

~

qb(z)b

)
.

Similarly we introduce h2(v)(x, z) as the solution of

h2(v)(x, z) = d1(z) +
2

~

d2(z)

∫ x

a

dt m̂(t) +
2

~
2

∫ x

a

dt m̂(t)

∫ t

a

ds ((Ev)(s)− z)h2(v)(s, z),
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6 M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg

x ∈ (a,∞), z ∈ C, with

d1(z) := exp

(
−i2ma

~

qa(z)a

)
, d2(z) := −iqa(z) exp

(
−i2ma

~

qa(z)a

)
.

Then we define

f+(v)(x, z) :=

{
g2(v)(x, z), −∞ < x < b,
g1(x, z), b ≤ x <∞, , z ∈ C, (2.5)

and

f−(v)(x, z) :=

{
h1(x, z), −∞ < x ≤ a,
h2(v)(x, z), a < x <∞, , z ∈ C. (2.6)

The f±(v) obey the equations

lv(f+(v)(x, z)) = zf+(v)(x, z), lv(f−(v)(x, z)) = zf−(v)(x, z), z ∈ C,

for almost every x ∈ R. We note that f±(v)(x, ·) are holomorphic on C \ [0,∞) and
continuous on C.

If ψ1, ψ2 ∈ W1,2
loc(R), then we define the Wronskian by

W (ψ1(x), ψ2(x)) := ψ1(x)
~

2m̂(x)
ψ′2(x)− ψ2(x)

~

2m̂(x)
ψ′1(x). (2.7)

We define the restrictions of f±(v) to the cut complex plane:

k1(v)(x, z) := f+(v)(x, z), z ∈ C \ (vb,∞),

and
k2(v)(x, z) := f−(v)(x, z), z ∈ C \ (vb,∞),

x ∈ R. In the sequel the Wronskian W (k1(v)(x, z), k2(v)(x, z)) for z ∈ C \ (vb,∞) is of
interest to us, for short we write Wv(z). Indeed, this Wronskian does not depend on x.

Lemma 2.1. The resolvent (Kv − z)−1 of the Buslaev-Fomin operator (2.3) admits the
representation

((Kv − z)−1f)(x) =
k1(v)(x, z)

~Wv(z)

∫ x

−∞
dy k2(v)(y, z)f(y)

+
k2(v)(x, z)

~Wv(z)

∫ ∞
x

dy k1(v)(y, z)f(y), (2.8)

for all f ∈ K and all z from the resolvent set of Kv.

Proof. For convenience we will not indicate the dependence on v throughout the proof.
Setting

g(x) :=
1

~W (z)

(
k1(x, z)

∫ x

−∞
dy k2(y, z)f(y) + k2(x, z)

∫ ∞
x

dy k1(y, z)f(y)

)
,
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A quantum transmitting Schrödinger-Poisson system 7

for f ∈ K, we get

~
2

2

d

dx

1

m̂(x)

d

dx
g(x) =

1

~W (z)

(
((Ev)(x)− z) k1(x, z)

∫ x

−∞
dy k2(y, z)f(y)

+ ((Ev)(x)− z) k2(x, z)

∫ ∞
x

dy k1(y, z)f(y)− ~W (z)f(x)
)
.

Hence,

l(g(x))− zg(x) = f(x),

i.e. g ∈ D(K) and (K − z)g = f .

The spectrum ofKv is given by σ(Kv) = σac(Kv)∪σp(Kv), where the absolutely continuous
part is σac(Kv) = [vb,∞) and the point spectrum σp(Kv) consists of finitely many simple
eigenvalues λj(v), j = 1, · · · , N(v), with λj(v) < vb. σac(Kv) is simple on [vb, va) and has
multiplicity two on [va,∞), see [BF] or [W, Theorem 17.C.1].

With respect to (2.4) we define

κa(z) := iqa(z), κb(z) := iqb(z), z ∈ C+. (2.9)

Definition 2.2. (see [KL]) The quantum transmitting boundary operator family, short
QTB family, {Hv(z)}z∈C+ is the family of maximal dissipative operators on H = L2 given
by

D(Hv(z)) :=

f ∈ W1,2

∣∣∣∣∣∣
1
m
f ′ ∈ W1,2,
~

2m(a)
f ′(a) = −κa(z)f(a),

~

2m(b)
f ′(b) = κb(z)f(b)

 ,

and

Hv(z)f := −~
2

2

d

dx

1

m

d

dx
f + vf, f ∈ D(Hv(z)),

for all z ∈ C+.

Since Re(qj(z)) > 0 for z ∈ C+, we have Im(κj(z)) > 0, j = a, b. Thus the operator Hv(z)
is dissipative for each fixed z, i.e. Im(Hv(z)f, f) ≤ 0 for all f ∈ D(Hv(z)). Furthermore,
for each z ∈ C+ the spectrum of Hv(z) is contained in the lower half plain C− and Hv(z)
is maximal dissipative and completely non-selfadjoint, see [KNR1, Theorems 4.6 and 5.2].

Proposition 2.3. Let PKH denote the projection operator from K onto H. Then

PKH (Kv − z)−1
∣∣∣
H

= (Hv(z)− z)−1 for all z ∈ C+, (2.10)

PKH (Kv − z)−1
∣∣∣
H

= (Hv(z)∗ − z)−1 for all z ∈ C−. (2.11)
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8 M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg

Proof. We will again omit the subscript v within the proof. It suffices to show that
g := PKH (K − z)−1f satisfies the boundary condition for every f ∈ H and z ∈ C+. We
will only prove that the boundary condition at b is satisfied; the corresponding statement
at a is proven similarly. By equation (2.5) we get k1(x, z) = exp(i2mbqb(z)x), for x ≥ b.
Thus,

k1(b, z) = exp

(
i
2mb

~

qb(z)b

)
and

~

2m(b)
k′1(b, z) = iqb(z)k1(b, z).

Using the expression (2.8) for the resolvent of K we get

g(b) =
1

~W (z)

(
k1(b, z)

∫ b

−∞
dy k2(y, z)f(y) + k2(b, z)

∫ ∞
b

dy k1(y, z)f(y)

)
=
k1(b, z)

~W (z)

∫ b

a

dy k2(y, z)f(y),

since f(y) = 0 for y ∈ (b,∞). Similarly we obtain

~

2m(b)
g′(b)

=
1

~W (z)

(
iqb(z) k1(b, z)

∫ b

−∞
dy k2(y, z)f(y) +

~

2m(b)
k′2(b, z)

∫ ∞
b

dy k1(y, z)f(y)

)
= iqb(z)

k1(b, z)

~W (z)

∫ b

a

dy k2(y, z)f(y) = κb(z)g(b).

Now (2.11) follows from (2.10) by passing to the adjoints.

Remark 2.4. The QTB family {Hv(z)}z∈C+ describes an open quantum system on H.
The expression (2.10) is interpreted as the embedding of this open system into the larger
quantum system described by the Buslaev-Fomin operator Kv.

Remark 2.5. The relation (2.10) looks similar to a relation between maximal dissipative
operators and their dilations, see [FN]. More precisely: Let v ∈ L∞

R
and λ0 ∈ R with

λ0 > vb be given. We set Hdis(v) := Hv(λ0). Hdis(v) is maximal dissipative and completely
non-selfadjoint. By the dilation theory we get the existence of a larger Hilbert space Kdis
with H ⊆ Kdis and the existence of a selfadjoint operator Kdis(v) on Kdis, such that

PKdisH (Kdis(v)− z)−1
∣∣∣
H

= (Hdis(v)− z)−1 for all z ∈ C+, (2.12)

where PKdisH denotes the projection from Kdis onto H, see [FN]. The operator Kdis(v)
is called the dilation corresponding to Hdis(v). Note that the equation (2.12) differs
from the expression (2.10), since Hdis(v) is independent of z ∈ C+. The Hilbert space
Kdis and the operator Kdis have been explicitly calculated in [KNR2]. We remark that
the Hilbert space Kdis differs from the space K. Furthermore, the operator Kdis(v)
is not bounded from below and its spectrum is completely absolutely continuous, i.e.
σ(Kdis(v)) = σac(Kdis(v)) = R (see [KNR2] for details).
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A quantum transmitting Schrödinger-Poisson system 9

Proposition 2.6. If v ∈ L∞
R

and Kv is the operator (2.3), then (Kv − i)−1PKH is trace
class and its trace norm can be estimated by

‖(Kv − i)−1PKH‖B1(K) ≤ 3 +

(
8 + 4

√
‖m‖L∞

(b− a)

~

)√
1 + ‖v‖L∞ .

For the proof we need the subsequent lemma. We set

ra := Re(κa(i)), rb := Re(κb(i)), αa := Im(κa(i)), αb := Im(κb(i)).

We note that ra, rb ≤ 0 and αa, αb ≥ 0. Furthermore we abbreviateHv := Hv(i). Following
[KNR2] we introduce the (unclosed) operator α : H −→ C

2 by

αf =

( √
αbf(b)

−√αaf(a)

)
, D(α) = W1,2, (2.13)

and the operator Uv(z) : H −→ C
2 given by

Uv(z) = α(Hv − z)−1, D(Uv(z)) = H

for z from the resolvent set of the operator Hv.

Lemma 2.7. For every v ∈ L∞
R

we have the estimates

‖(Hv − i)−1‖B1(H) ≤ 3 + 4
√
‖m‖L∞

(b− a)

~

√
1 + ‖v‖L∞ , (2.14)

and
‖Uv(i)‖B1(H,C2) ≤ 8

√
1 + ‖v‖L∞ . (2.15)

Proof. We define the selfadjoint operator H0 by

D(H0) :=

{
f ∈ W1,2 | 1

m
f ′ ∈ W1,2,

~

2m(b)
f ′(b) =

~

2m(a)
f ′(a) = 0

}
,

H0f = −~
2

2

d

dx

1

m

d

dx
f + f, f ∈ D(H0).

Note that H0 ≥ I. Similar to the operator α we define the operator r : H −→ C
2 by

rf =

( √
−rbf(b)

−
√
−raf(a)

)
, D(r) = W1,2.

The operators Vα(µ), Vr(µ) : H −→ C
2 are given by

Vα(µ) = α(H0 + µ)−1/2, Vr(µ) = r(H0 + µ)−1/2, µ ≥ 0.

Furthermore we introduce the operator Bv(µ) : H −→ H by

Bv(µ) := (H0 + µ)−1/2(v − 1)(H0 + µ)−1/2 + Vr(µ)∗Vr(µ)− iVα(µ)∗Vα(µ),
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for µ ≥ 0, see [BKNR]. There is

‖(H0 + µ)−1/2(v − 1)(H0 + µ)−1/2‖B(H) ≤
1 + ‖v‖L∞

1 + µ
.

Hence,

‖(H0 + µ)−1/2(v − 1)(H0 + µ)−1/2‖ ≤ 1

2
, for µ ≥ 1 + 2‖v‖L∞ .

We set
Rv(µ) := (H0 + µ)−1/2(v − 1)(H0 + µ)−1/2 + Vr(µ)∗Vr(µ),

for µ ≥ 1+2‖v‖L∞ . Rv(µ) is selfadjoint and there is 1+Rv(µ) ≥ 1
2
. Hence, (1+Rv(µ))−1/2

exists and its norm does not exceed
√

2. Now a straightforward calculation shows that

(1 +Bv(µ))−1 = (1 +Rv(µ))−1/2×

×
(
1− i(1 +Rv(µ))−1/2Vα(µ)∗Vα(µ)(1 +Rv(µ))−1/2

)−1
(1 +Rv(µ))−1/2.

Hence,
‖(1 +Bv(µ))−1‖B(H) ≤ 2, for µ ≥ 1 + 2‖v‖L∞ . (2.16)

By Lemma 2.3 from [BKNR] we have the representation

(Hv + µ)−1 = (H0 + µ)−1/2(1 +Bv(µ))−1(H0 + µ)−1/2, (2.17)

for large, positive µ. Because both sides depend on µ analytically, this operator equality
extends to all real µ for which (1+Bv(µ))−1 ∈ B(H). This is true for any µ ≥ 1+2‖v‖L∞ ;
hence, (2.17) extends to all these µ. Using the first resolvent equation we obtain

(Hv − i)−1 = (Hv + µ)−1
(
1 + (µ+ i)(Hv − i)−1

)
,

and we get by (2.17) that

‖(Hv − i)−1‖B1(H) ≤ (2 + µ)‖(Hv + µ)−1‖B1(H) ≤ 2(2 + µ)‖(H0 + µ)−1/2‖2
B2(H). (2.18)

According to the proof of Proposition 2.4 in [BKNR] we have

‖(H0 + µ)−1/2‖2
B2(H) ≤

1

1 + µ
+
√
‖m‖L∞

(b− a)

~

√
2

1√
1 + µ

.

Thus, from (2.18) we obtain for µ = 1 + 2‖v‖L∞ :

‖(Hv − i)−1‖B1(H) ≤ 3 + 4
√
‖m‖L∞

(b− a)

~

√
1 + ‖v‖L∞ ,

i.e. the first assertion (2.14) of the lemma. To prove the second assertion we estimate for
µ ≥ 1 + 2‖v‖L∞

‖Uv(i)‖B1(H,C2) ≤ 2‖Uv(i)‖B(H,C2) ≤ 2(2 + µ)‖Uv(µ)‖B(H,C2). (2.19)
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Using the definition of Uv(µ) and the representation (2.17) for the resolvent of Hv we get

Uv(µ) = Vα(µ)(1 +Bv(µ))−1(H0 + µ)−1/2 = Vα(µ)(1 +Rv(µ))−1/2×

×
(
1− i(1 +Rv(µ))−1/2Vα(µ)∗Vα(µ)(1 +Rv(µ))−1/2

)−1×
× (1 +Rv(µ))−1/2(H0 + µ)−1/2.

Because the operator norm of

Vα(µ)(1 +Rv(µ))−1/2
(
1− i(1 +Rv(µ))−1/2Vα(µ)∗Vα(µ)(1 +Rv(µ))−1/2

)−1

is not bigger than one, we get

‖Uv(µ)‖B(H,C2) ≤
√

2‖(H0 + µ)−1/2‖B(H) ≤
√

2

1 + µ

and with (2.19):

‖Uv(i)‖B1(H,C2) ≤ 2
√

2
2 + µ√
1 + µ

≤ 4
√

2
√

1 + µ.

Setting µ = 1 + 2‖v‖L∞ we finally obtain the inequality (2.15).

Proof of Proposition 2.6. Using Proposition 2.3 we get∣∣(Kv − i)−1PKH
∣∣2 = PKH (Kv + i)−1(Kv − i)−1PKH

=
1

2i
PKH
(
(Kv + i)−1 − (Kv − i)−1

)
PKH

=
1

2i

(
(H∗v + i)−1 − (Hv − i)−1

)
.

By Lemma 3.2 from [KNR2] we get∣∣(Kv − i)−1PKH
∣∣2 = Uv(i)

∗Uv(i) + (H∗v + i)−1(Hv − i)−1.

Therefore we find

‖(Kv − i)−1PKH‖B1(K) = ‖ |(Kv − i)−1PKH | ‖B1(K)

≤ ‖Uv(i)‖B1(H,C2) + ‖(Hv − i)−1‖B1(H).

Now using Lemma 2.7 the proof is finished.

Proposition 2.8. Assume that v ∈ L∞
R

and let Kv be given by (2.3). The number of
eigenvalues N(v) of Kv is estimated by

N(v) ≤ 1 +

√
2‖m‖L∞(b− a)

π~

√
‖v‖L∞ + |vb|.
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Proof. We define the operator K1 by

K1 := − d2

dx2
− 2‖m‖L∞(‖v‖L∞ + |vb|)

~
2

χ(a,b), D(K1) = W2,2(R),

where χ(a,b) ∈ L∞
R

(R) is the indicator function of the set (a, b). The number of eigenvalues
of K1, which we will denote by N(K1), can be estimated, see [W, p. 274]:

N(K1) ≤ 1 +

√
2‖m‖L∞(b− a)

π~

√
‖v‖L∞ + |vb|.

Therefore it suffices to show that N(v) ≤ N(K1). A straightforward calculation shows
that ~

2

2‖m‖L∞
K1 ≤ Kv. By the min-max principle, see e.g. [RS2, Theorem XIII.2], this

implies N(v) ≤ N(K1).

3 Eigenfunction expansion

In this section we investigate the generalized eigenfunctions of the Buslaev-Fomin operator
Kv, see (2.3). These eigenfunctions will be important for the definition of the carrier and
current densities, which we will introduce in Section 5. Furthermore we will introduce the
Fourier transform corresponding to Kv and show that the eigenfunctions of the Buslaev-
Fomin operator can be expressed in terms of the QTB family. The first part of this section
slightly generalizes results of Buslaev and Fomin [BF], see also [W, chapter 17].

We define
f1(v)(x, λ) := f+(v)(x, λ), for λ ∈ (vb,∞), x ∈ R,

and
f2(v)(x, λ) := f−(v)(x, λ), for λ ∈ (vb,∞), x ∈ R.

In the following investigations Wronskians—as defined in (2.7)—will repeatedly appear.
First, a straightforward calculation shows that

W (f1(v)(x, λ), f1(v)(x, λ)) = 2iqb(λ), λ ∈ (vb,∞), (3.1)

W (f2(v)(x, λ), f2(v)(x, λ)) = −2iqa(λ), λ ∈ (va,∞). (3.2)

Furthermore we define the coefficients

C11(v)(λ) :=
1

2iqb(λ)
W (f1(v)(x, λ), f2(v)(x, λ)), λ ∈ (vb,∞),

C12(v)(λ) :=
1

2iqb(λ)
W (f2(v)(x, λ), f1(v)(x, λ)), λ ∈ (vb,∞),

C21(v)(λ) :=
1

2iqa(λ)
W (f2(v)(x, λ), f1(v)(x, λ)), λ ∈ (va,∞),

C22(v)(λ) :=
1

2iqa(λ)
W (f1(v)(x, λ), f2(v)(x, λ)), λ ∈ (va,∞).
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Thus,

f1(v)(x, λ) = C22(v)(λ)f2(v)(x, λ) + C21(v)(λ)f2(v)(x, λ), λ ∈ (va,∞), (3.3)

f2(v)(x, λ) = C11(v)(λ)f1(v)(x, λ) + C12(v)(λ)f1(v)(x, λ), λ ∈ (vb,∞). (3.4)

There are the following equations:

qb(λ)C12(v)(λ) = qa(λ)C21(v)(λ),

qb(λ)C11(v)(λ) = −qa(λ)C22(v)(λ),
λ ∈ (va,∞), (3.5)

and
qb(λ)

qa(λ)
|C12(v)(λ)|2 = 1 +

qb(λ)

qa(λ)
|C11(v)(λ)|2 = 1 +

qa(λ)

qb(λ)
|C22(v)(λ)|2 (3.6)

for λ ∈ (va,∞). Moreover, we have

C11(v)(λ) = C12(v)(λ), λ ∈ (vb, va). (3.7)

The scattering coefficients Sij(v)(λ) are given by

Sba(v)(λ) :=
1

C21(v)(λ)
, Saa(v)(λ) :=

C22(v)(λ)

C21(v)(λ)
, λ ∈ (va,∞), (3.8)

Sbb(v)(λ) :=
C11(v)(λ)

C12(v)(λ)
, Sab(v)(λ) :=

1

C12(v)(λ)
, λ ∈ (vb,∞). (3.9)

Using (3.5) and (3.6) we obtain the following relations for λ ∈ (va,∞):

qa(λ)Sab(v)(λ) = qb(λ)Sba(v)(λ),

qb(λ)Sba(v)(λ)Sbb(v)(λ) = −qa(λ)Saa(v)(λ)Sab(v)(λ)
(3.10)

and

qb(λ)

qa(λ)
|Sba(v)(λ)|2 + |Saa(v)(λ)|2 =

qa(λ)

qb(λ)
|Sab(v)(λ)|2 + |Sbb(v)(λ)|2 = 1. (3.11)

Equation (3.10) implies

|Saa(v)(λ)| ≤ 1, and |Sbb(v)(λ)| ≤ 1, for λ ∈ (va,∞). (3.12)

Furthermore, we get from (3.7)

|Sbb(v)(λ)| = 1, for λ ∈ (vb, va). (3.13)

The boundary values of Sij(λ), i, j = a, b, are given by

lim
λ→va

Sab(v)(λ) = lim
λ→vb

Sba(v)(λ) = 0, lim
λ→va

Saa(v)(λ) = lim
λ→vb

Sbb(v)(λ) = −1.
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Now we define

ψa(v)(x, λ) := Sba(v)(λ)f1(v)(x, λ), λ ∈ (va,∞),

ψb(v)(x, λ) := Sab(v)(λ)f2(v)(x, λ), λ ∈ (vb,∞).
(3.14)

By (3.3) and (3.4) we get

ψa(v)(x, λ) = f2(v)(x, λ) + Saa(v)(λ)f2(v)(x, λ) for λ ∈ (va,∞),

ψb(v)(x, λ) = f1(v)(x, λ) + Sbb(v)(λ)f1(v)(x, λ) for λ ∈ (vb,∞).

Thus, outside the interval (a, b) the functions ψa(v) and ψb(v) are given by

ψa(v)(x, λ) =

exp
(
i2ma
~
qa(λ)x

)
+ Saa(v)(λ) exp

(
−i2ma

~
qa(λ)x

)
, x ∈ (−∞, a),

Sba(v)(λ) exp
(
i2mb
~
qb(λ)x

)
, x ∈ (b,∞)

(3.15)

for λ ∈ (va,∞) and

ψb(v)(x, λ) =

Sab(v)(λ) exp
(
−i2ma

~
qa(λ)x

)
, x ∈ (−∞, a),

exp
(
−i2mb

~
qb(λ)x

)
+ Sbb(v)(λ) exp

(
i2mb
~
qb(λ)x

)
, x ∈ (b,∞)

(3.16)

for λ ∈ (vb,∞), respectively.

Remark 3.1. Formulae (3.15) and (3.16) have the following physical interpretation: The
wave exp(i2ma

~
qa(λ)x) coming from −∞ is scattered at the potential v. During the scat-

tering the wave is partially reflected and partially transmitted by v. The reflection and
the transmission part is given by

Saa(v)(λ) exp(−i2ma

~

qa(λ)x) and Sba(v)(λ) exp(i
2mb

~

qb(λ)x),

respectively. Similarly, the wave exp(−i2mb
~
qb(λ)x) which comes from +∞, splits up during

the scattering into the reflection and transmission part

Sbb(v)(λ) exp(i
2mb

~

qb(λ)x) and Sab(v)(λ) exp(−i2ma

~

qa(λ)x),

respectively.

Lemma 3.2. There are the following identities for the functions (3.14):∫
R

dxψa(v)(x, λ)ψa(v)(x, µ) = 4π~qa(λ)δ(λ− µ), for λ, µ ∈ (va,∞), (3.17)∫
R

dxψb(v)(x, λ)ψb(v)(x, µ) = 4π~qb(λ)δ(λ− µ), for λ, µ ∈ (vb,∞), (3.18)

and ∫
R

dxψa(v)(x, λ)ψb(v)(x, µ) = 0, for λ, µ ∈ (va,∞). (3.19)
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Proof. For the sake of simplicity we will omit the index v within the proof. Assume
λ, µ ∈ (va,∞). Then∫ N

−N
dxψa(x, λ)ψa(x, µ) =

~

λ− µ

(∫ N

−N
dxψa(x, λ)

∂

∂x

~

2m(x)

∂

∂x
ψa(x, µ)

−
∫ N

−N
dx

∂

∂x

~

2m(x)

∂

∂x
ψa(x, λ)ψa(x, µ)

)
=

~

λ− µ

(
W (ψa(N, λ), ψa(N,µ))−W (ψa(−N, λ), ψa(−N,µ))

)
.

For N ≥ b we get by (3.15)

W (ψa(N, λ), ψa(N,µ)) = −iSba(λ)Sba(µ)(qb(λ) + qb(µ)) exp
(
i2mb
~

(qb(λ)− qb(µ))N
)
.

(3.20)
Hence, we get by observing δ(2mb

~
(qb(λ) − qb(µ))) = 2~qb(λ)δ(λ − µ), see [GS, chapter II

§2 eq. II]:

lim
N→∞

~

λ− µ
W (ψa(N, λ), ψa(N,µ)) = π|Sba(λ)|2δ(2mb

~

(qb(λ)− qb(µ)))

= 2π~|Sba(λ)|2qb(λ)δ(λ− µ), . (3.21)

For N ≤ a one obtains, analogously to (3.20):

~

λ− µ
W (ψa(N, λ), ψa(N,µ)) =− i~

exp
(
−i2ma

~
(qa(λ)− qa(µ))N

)
2ma(qa(λ)− qa(µ))

− i~Saa(µ)
exp

(
i2ma
~

(qa(λ) + qa(µ))N
)

2ma(qa(λ) + qa(µ))

− i~Saa(λ)
exp

(
−i2ma

~
(qa(λ) + qa(µ))N

)
2ma(qa(λ) + qa(µ))

+ i~Saa(µ)Saa(λ)
exp

(
i2ma
~

(qa(λ)− qa(µ))N
)

2ma(qa(λ)− qa(µ))
.

Therefore

lim
N→−∞

1

λ− µ
W (ψa(N, λ), ψa(N,µ))

= −πqa(λ)
(

1 + Saa(µ)Saa(λ)
)
δ(

2ma

~

(qa(λ)− qa(µ)))

+ π
(
Saa(µ)− Saa(λ)

)
δ(

2ma

~

(qa(λ) + qa(µ))).

Since qa(λ
′) > 0 for all λ′ ∈ (va,∞) we get δ(2ma

~
(qa(λ) + qa(µ))) = 0. Thus,

lim
N→−∞

~

λ− µ
W (ψa(N, λ), ψa(N,µ)) = −2π~qa(µ)

(
1 + |Saa(µ)|2

)
δ(λ− µ). (3.22)
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Putting (3.21) and (3.22) together yields∫ ∞
−∞

ψa(x, λ)ψa(x, µ) dx = 2π~
(
qb(λ)|Sba(λ)|2 + qa(λ) + qa(λ)|Saa(λ)|2

)
δ(λ− µ).

By (3.11) we get ∫ ∞
−∞

ψa(x, λ)ψa(x, µ) dx = 4π~qa(λ)δ(λ− µ)

which proves (3.17). Analogously we obtain (3.18) and (3.19).

The generalized eigenfunctions of the Buslaev-Fomin operator Kv, see (2.3), are given by

φb(v)(x, λ) := 1√
4π~qb(λ)

ψb(v)(x, λ), λ ∈ (vb,∞),

φa(v)(x, λ) := 1√
4π~qa(λ)

ψa(v)(x, λ), λ ∈ (va,∞);
(3.23)

the orthonormal eigenfunctions corresponding to the eigenvalues λ1(v), . . . , λN(v)(v) are
denoted by φp(v)(x, λj(v)), j = 1, . . . , N(v).

Corollary 3.3. The functions

{φa(v)(·, λ)}λ∈(va,∞) ∪ {φb(v)(·, λ)}λ∈(vb,∞) ∪ {φp(v)(·, λ)}λ∈σp(Kv)

constitute a complete system of orthonormal generalized eigenfunctions, i.e.

(φτ (v)(·, λ), φτ ′(v)(·, λ′))K = δτ,τ ′δ(λ− λ′), τ, τ ′ ∈ {a, b, p},

where λ and λ′ are from a part of σ(Kv) which corresponds to τ and τ ′, respectively.

We now introduce the Hilbert space

K̂v := L2(σ(Kv), h(λ), ν),

see [BW, chapter 4], where

h(λ) :=

 C, λ ∈ σp(Kv) = ∪N(v)
j=1 {λj(v)},

C, λ ∈ (vb, va),
C

2, λ ∈ (va,∞).

(3.24)

The measure ν(·) decomposes

ν(·) = νp(·) + νac(·) (3.25)

into an atomic measure νp({λj(v)}) = 1, j = 1, . . . , N(v), supported on σp(Kv), and an
absolutely continuous measure dνac(λ) = χ(vb,∞)(λ)dλ supported on (vb,∞). With respect
to the decomposition (3.24) we define

~φv(x, λ) :=


φp(v)(x, λ), λ ∈ σp(Kv),

φb(v)(x, λ), λ ∈ (vb, va),(
φb(v)(x, λ)
φa(v)(x, λ)

)
, λ ∈ (va,∞).

(3.26)
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By means of the functions ~φv(x, λ) we now define the Fourier transform with respect to

Kv as the unitary operator Φv : K −→ K̂v, see [W, Theorem 17.C.2]:

(Φvf)(λ) =

∫
R

dx f(x)~φv(x, λ), λ ∈ σ(Kv). (3.27)

The inverse Fourier transform Φ−1
v : K̂v −→ K is given by

(Φ−1
v ĝ)(x) =

∫
σ(Kv)

dν(λ)
(
ĝ(λ), ~φv(x, λ)

)
h(λ)

, x ∈ R, ĝ ∈ K̂v.

We note that
ΦvKvΦ

−1
v = M,

where M is the multiplication operator

(Mg)(λ) := λg(λ) for g ∈ D(M) := {g ∈ K̂v | λg(λ) ∈ K̂v} .

In the following we will give a description of the eigenfunctions of the Buslaev-Fomin
operator Kv, see (2.3), on the interval (a, b) in terms of the QTB family. To that end we
consider the QTB family {Hv(λ)}λ∈R on the real axis. By the definition of Hv(λ) we have
to distinguish two cases:

λ ∈ (−∞, vb) : The coefficients κa(λ) and κb(λ) are real and negative. Therefore the
operator family {Hv(λ)}λ∈(−∞,vb) is a family of selfadjoint operators.

λ ∈ (vb,∞) : The imaginary part of κb(λ) is strictly positive, Im(κb(λ)) > 0. Hence, the
operator family {Hv(λ)}λ∈(vb,∞) is a family of dissipative operators.

Let us first show that the generalized eigenfunctions of Kv are closely related to the family
{Hv(λ)}λ∈(vb,∞). To that end we introduce the operators α(λ) : H −→ h(λ), λ ∈ (vb,∞),
see also (2.13):

α(λ)f :=


√

2
√
qb(λ)f(b), λ ∈ (vb, va),

√
2

( √
qb(λ)f(b)

−
√
qa(λ)f(a)

)
, λ ∈ (va,∞),

f ∈ D(α(λ)) = W1,2 (3.28)

Moreover, we define the vectors eb(λ), ea(λ) ∈ h(λ), λ ∈ (vb,∞), by

eb(λ) :=

{
1, λ ∈ (vb, va),
(1, 0)T , λ ∈ (va,∞),

ea(λ) :=

{
0, λ ∈ (vb, va),
(0, 1)T , λ ∈ (va,∞),

where T denotes the transposed of a vector. Furthermore we define the operators Tv(λ) :
H −→ h(λ), λ ∈ (vb,∞), by

Tv(λ)f := α(λ)(Hv(λ)∗ − λ)−1f, f ∈ H. (3.29)

Note that the definition makes sense, since the spectrum of Hv(λ) does not intersect the
real line, see [KNR1, Theorem 5.2].
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Lemma 3.4. For x ∈ (a, b) there is the following representations of the eigenfunctions of
the Buslaev-Fomin operator Kv:

φb(v)(x, λ) = −i
√
~

2π
exp

(
−i2mb

~

qb(λ)b

)
(Tv(λ)∗eb(λ))(x), λ ∈ (vb,∞), (3.30)

φa(v)(x, λ) = i

√
~

2π
exp

(
i
2ma

~

qa(λ)a

)
(Tv(λ)∗ea(λ))(x), λ ∈ (va,∞). (3.31)

Proof. Using Lemma 2.1 and Proposition 2.3 we get for every f ∈ H and x ∈ (a, b)

((Hv(λ)∗ − λ)−1f)(x)

=
f1(v)(x, λ)

~Wv(λ)

∫ x

a

dy f2(v)(y, λ)f(y) +
f2(v)(x, λ)

~Wv(λ)

∫ b

x

dy f1(v)(y, λ)f(y).

Hence,

Tv(λ)f =

√
2

~Wv(λ)


√
qb(λ) f1(v)(b, λ)

∫ b
a
dy f2(v)(y, λ)f(y), λ ∈ (vb, va),( √

qb(λ) f1(v)(b, λ)
∫ b
a
dy f2(v)(y, λ)f(y)

−
√
qa(λ) f2(v)(a, λ)

∫ b
a
dy f1(v)(y, λ)f(y)

)
, λ ∈ (va,∞).

Since

f1(v)(b, λ) = exp

(
i
2mb

~

qb(λ)b

)
and f2(v)(a, λ) = exp

(
−i2ma

~

qa(λ)a

)
,

we obtain for all x ∈ (a, b):

(Tv(λ)∗eb(λ))(x) =

√
2qb(λ)f2(v)(x, λ)

~Wv(λ)
exp

(
i
2mb

~

qb(λ)b

)
, λ ∈ (vb,∞),

(Tv(λ)∗ea(λ))(x) = −
√

2qa(λ)f1(v)(x, λ)

~Wv(λ)
exp

(
−i2ma

~

qa(λ)a

)
, λ ∈ (va,∞).

By the definition (2.7) of the Wronskians Wv(λ) we have

Wv(λ) = −2iqa(λ)C21(v)(λ) = −2iqb(λ)C12(v)(λ)

or in terms of the scattering coefficients (3.8) and (3.9)

1

Wv(λ)
=

i

2qa(λ)
Sba(v)(λ) =

i

2qb(λ)
Sab(v)(λ).

Thus,

1√
2π

(Tv(λ)∗eb(λ))(x) =
i exp

(
i2mb
~
qb(λ)b

)
~

√
4πqb(λ)

Sab(v)(λ)f2(v)(x, λ)

=
i exp

(
i2mb
~
qb(λ)b

)
~

√
4πqb(λ)

ψb(v)(x, λ)

=
i exp

(
i2mb
~
qb(λ)b

)
√
~

φb(x, λ),
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which proves (3.31); similarly we get (3.30).

By means of

~φT (v)(x, λ) :=


(Tv(λ)∗eb(λ))(x), λ ∈ (vb, va),(

(Tv(λ)∗eb(λ))(x)
(Tv(λ)∗ea(λ))(x)

)
, λ ∈ (va,∞),

and

Q(λ) :=


−i exp

(
−i2mb

~
qb(λ)b

)
, λ ∈ (vb, va),(

−i exp
(
−i2mb

~
qb(λ)b

)
0

0 i exp
(
i2ma
~
qa(λ)a

) ) , λ ∈ (va,∞),
(3.32)

we can write the functions (3.26)

~φ(v)(x, λ) =

√
~

2π
Q(λ)~φT (v)(x, λ), λ ∈ (vb,∞), x ∈ (a, b).

Thus, we get the following

Corollary 3.5. For f ∈ H we get

(Φvf) (λ) =

√
~

2π
Q(λ)∗Tv(λ)f, λ ∈ (vb,∞).

Remark 3.6. Let v ∈ L∞
R

and λ0 ∈ R, with λ0 > vb be given. We set Hdis(v) := Hv(λ0)
and denote by Kdis(v) the selfadjoint dilation corresponding to Hdis(v), see Remark 2.5.
In [KNR2] it was shown, that the generalized eigenfunctions φdis,b(v), φdis,a(v) of Kdis(v)
on the interval (a, b) are given by

φdis,b(v)(x, ξ) =
1√
2π

(Tdis(v; ξ)∗eb(λ0))(x), ξ ∈ R, x ∈ (a, b)

φdis,a(v)(x, ξ) =
1√
2π

(Tdis(v; ξ)∗ea(λ0))(x), ξ ∈ R, x ∈ (a, b),

where Tdis(v; ξ) : H −→ C
2 is defined by

Tdis(v; ξ) := α(λ0)(Hdis(v)∗ − ξ)−1, ξ ∈ C−,

see [KNR2, Theorem 5.1.]. Therefore we get by Lemma 3.4 (~ scaled to 1)(
φb(v)(x, λ0)
φa(v)(x, λ0)

)
= Q(λ0)

(
φdis,b(v)(x, λ0)
φdis,a(v)(x, λ0)

)
, x ∈ (a, b).

i.e. the generalized eigenfunctions of Kv and Kdis(v) coincide, modulo a unitary transfor-
mation, for any fixed energy λ0 > vb.
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We are now going to show that the eigenfunctions and eigenvalues of the operator family
{Hv(λ)}λ∈(−∞,vb) determine the eigenfunctions and eigenvalues of Kv in a unique way. Let
us first define what we mean by the eigenvalues and eigenfunction of an operator family.

Definition 3.7. An element f ∈ H is called an eigenvector of the operator family
{Hv(λ)}λ∈(−∞,vb), if Hv(µ(v))f = µ(v)f for some µ(v) ∈ (−∞, vb); µ(v) is called the
corresponding eigenvalue. The set of all these eigenvalues—the spectrum of {Hv(λ)}—is
denoted by σ({Hv(λ)}) and the normalized eigenfunctions of {Hv(λ)}λ∈(−∞,vb) correspond-
ing to the eigenvalue µ(v) are denoted by η(v)(·, µ(v)).

For every µ(v) ∈ σ({Hv(λ)}) we set

φ̃(v)(x, µ(v)) =


exp

(
−κa(µ(v))2ma

~
(x− a)

)
η(v)(a, µ(v)), x ∈ (−∞, a],

η(v)(x, µ(v)), x ∈ (a, b),
exp

(
κb(µ(v))2mb

~
(x− b)

)
η(v)(b, µ(v)), x ∈ [b,∞).

Note that κa(λ), κb(λ) < 0 for all λ ∈ (−∞, vb). Hence, φ̃(v)(·, µ(v)) ∈ K for every
µ(v) ∈ σ({Hv(λ)}). Since η(v)(·, µ(v)) ∈ D(Hv(µ(v))), see Definition 2.2, it satisfies the
quantum transmitting boundary condition and a straightforward calculation shows that(

φ̃(v)(·, µ(v)), φ̃(v)(·, ξ(v))
)
K

= 0, for µ(v), ξ(v) ∈ σ({Hv(λ)}), µ(v) 6= ξ(v). (3.33)

The following Lemma states the relation between the eigenvalues and eigenfunctions of
the family {Hv(λ)}λ∈(−∞,vb) and the eigenvalues and eigenfunctions of the Buslaev-Fomin
operator Kv.

Lemma 3.8. Assume that v ∈ L∞
R

.

(i) If µ(v) ∈ σ({Hv(λ)}), then

φp(v)(·, µ(v)) :=
φ̃(v)(·, µ(v))

‖φ̃(v)(·, µ(v))‖K
, (3.34)

is an eigenfunction of Kv corresponding to the eigenvalue µ(v). Furthermore, these
eigenfunctions are mutually orthonormal for different eigenvalues µ(v).

(ii) If λj(v) ∈ σp(Kv), then the function

η(v)(x, λj(v)) :=
φp(v)(x, λj(v))

‖φp(v)(·, λj(v))χ(a,b)‖K
, x ∈ (a, b),

is a normalized eigenfunction of the family {Hv(λ)}λ∈(−∞,vb).

(iii) The point spectrum of Kv and the spectrum of the operator family {Hv(λ)} coincide,
i.e.

σp(Kv) = σ({Hv(λ)}).
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Proof. Let us first prove (i). Assume that µ(v) ∈ σ({Hv(λ)}). Using the boundary
conditions of η(v)(·, µ(v)) one verifies that φ̃(v)(·, µ(v)) ∈ D(Kv). Since

Hv(µ(v))η(v)(·, µ(v)) = µ(v)η(v)(·, µ(v))

there is

Kvφ̃(v)(·, µ(v)) = µ(v)φ̃(v)(·, µ(v)).

By means of (3.33) and (3.34) one now obtains that the φp(v)(·, µ(v)) are indeed mutually
orthogonal eigenfunctions of Kv for different eigenvalues of the family {Hv(λ)}λ∈(−∞,vb).
Moreover, the φp(v)(·, µ(v)) have norm one in K.

Assume now λj(v) ∈ σp(Kv). In order to prove (ii) it suffices to show that the functions
φp(v)(·, λj(v)) satisfy the boundary condition at a and b imposed on functions from the
domain of the QTB family {Hv(λ)}λ∈(−∞,vb), see Definition 2.2. We set

ψ̃(v)(x, λj(v)) :=


exp

(
−κa(λj(v))2ma

~
(x− a)

)
φp(v)(a, λj(v)), x ∈ (−∞, a],

φp(v)(x, λj(v)), x ∈ (a, b),

exp
(
κb(λj(v))2mb

~
(x− b)

)
φp(v)(b, λj(v)), x ∈ [b,∞).

There is ψ̃(v)(·, λj(v)) ∈ D(Kv) and Kvψ̃(v)(·, λj(v)) = λj(v)ψ̃(v)(·, λj(v)). Since the
eigenvalues of Kv are simple, there exists a constant C(λj(v)) ∈ C such that

φp(v)(·, λj(v)) = C(λj(v))ψ̃(v)(·, λj(v)).

We have

~

2m(a)
ψ̃′(v)(a, λj(v)) =

~

2ma

ψ̃′(v)(a, λj(v)) = −κa(λj(v))ψ̃(v)(a, λj(v)),

i.e. ψ̃(v)(·, λj(v)) satisfies the boundary condition at a. In the same way one gets that
ψ̃(v)(·, λj(v)) satisfies the boundary condition at b. Thus, (ii) has been proven. The
statement (iii) follows directly from the statements (i) and (ii).

4 Scattering matrix

In this section we investigate the scattering matrix corresponding to the Buslaev-Fomin
operator (2.3). As we will see later, the scattering matrix plays an important role for
the current. Furthermore, we will show that the scattering matrix can be completely
expressed in terms of the QTB family. The scattering matrix Sv(λ) is defined by

Sv(λ) :=

{
Sbb(v)(λ), λ ∈ (vb, va),

S̃(v)(λ), λ ∈ (va,∞),
(4.1)
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where

S̃(v)(λ) :=

 Sbb(v)(λ)
√

qb(λ)
qa(λ)

Sba(v)(λ)√
qa(λ)
qb(λ)

Sab(v)(λ) Saa(λ)


and Sij(v)(λ), i, j = a, b are the scattering coefficients (3.8), (3.9). By (3.10), (3.11) and
(3.13) we get that Sv(λ)Sv(λ)∗ = S∗v(λ)Sv(λ) = Ih(λ), λ ∈ (vb,∞), i.e. Sv(λ) is unitary.

We define K̂ac := L2((vb,∞), h(λ), dλ). By Ŝv we denote the—unitary—multiplication

operator Ŝv : K̂ac −→ K̂ac induced by Sv(λ):

(Ŝvf)(λ) = Sv(λ)f(λ), f ∈ D(Ŝv) := K̂ac. (4.2)

Since

(Kv−i)−1−(Kw−i)−1 = (Kv−i)−1(Ev−Ew)(Kw−i)−1 = (Kv−i)−1(v−w)PKH (Kw−i)−1

is trace class for all v, w ∈ L∞
R

the wave operators

W±(Kv, Kw) := s-lim
t→±∞

exp(itKv) exp(−itKw)Pac(Kw),

exist and are asymptotically complete, where Pac(Kw) denotes the projection onto the
absolutely continuous subspace of Kw, see [RS1, Theorem XI.9].

Lemma 4.1. (For the case va = vb = 0 and m̂ ≡ 1 see also [W, 17.c].) For every v,
w ∈ L∞

R
the wave operators obey

ΦvW+(Kv, Kw)Φ∗w = Ŝv
∗
Ŝw, ΦvW−(Kv, Kw)Φ∗w = IK̂ac ,

where Φv is the Fourier transform with respect to Kv, see (3.27), and Ŝv is the multipli-
cation operator (4.2) induced by the scattering matrix.

Proof. We will only prove the first equation, the second one can be proven similarly. Let
us define the projections P1(v) : K → K and P2(v) : K → K by

P1(v) := Φ∗vχ(vb,va)Φv, P2(v) := Φ∗vχ(va,∞)Φv, v ∈ L∞
R
.

There is

W+(Kv, Kw) = P1(v)W+(Kv, Kw)P1(w) + P2(v)W+(Kv, Kw)P2(w).

Hence, it suffices to show:(
ΦvW+(Kv, Kw)Φ∗wf̂

)
(λ) = Sbb(v)(λ)Sbb(w)f̂(λ), f̂ ∈ L2(vb, va), (4.3)(

ΦvW+(Kv, Kw)Φ∗wf̂
)

(λ) = S̃(v)(λ)∗S̃(w)(λ)f̂(λ), f̂ ∈ L2((va,∞),C2). (4.4)
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We will only prove (4.3); the proof of (4.4) is similar. Since χ(a,b)(Kw + i)−1 is compact,
in fact it is even trace class, we get by [BW, Proposition 6.70] that

s-lim
t→+∞

χ(a,b)(Kw + i)−1 exp(−itKw)Pac(Kw) = 0.

Applying this to all vectors of the form (Kw + i)f we obtain

s-lim
t→+∞

χ(a,b) exp(−itKw)Pac(Kw) = 0. (4.5)

Therefore

ΦvW+(Kv, Kw)Φ∗wf̂ = ΦvWa(Kv, Kw)Φ∗wf̂ + ΦvWb(Kv, Kw)Φ∗wf̂ (4.6)

for f̂ ∈ L2(vb, va), where

Wa(Kv, Kw) := s-lim
t→+∞

exp(itKv)χ(−∞,a) exp(−itKw)Pac(Kw),

Wb(Kv, Kw) := s-lim
t→+∞

exp(itKv)χ(b,∞) exp(−itKw)Pac(Kw).

For every ĝ ∈ L2(vb, va) there is

(χ(−∞,a)Φ
∗
wĝ)(x) = χ(−∞,a)(x)

∫ va

vb

dλφb(w)(x, λ)ĝ(λ).

Since qa(λ) is purely imaginary for λ ∈ (vb, va), we obtain by (3.16) that χ(−∞,a)Φ
∗
w is a

compact operator from L2(vb, va) into K. This yields

lim
t→+∞

χ(−∞,a) exp(−itKw)Φ∗wf̂ = 0 for all f̂ ∈ L2(vb, va).

Therefore
ΦvWa(Kv, Kw)Φ∗wf̂ = 0 for all f̂ ∈ L2(vb, va). (4.7)

For every f̂ ∈ C∞0 (vb, va) we have(
ΦvWb(Kv, Kw)Φ∗wf

)
(λ)

= lim
t→+∞

lim
N→+∞

∫ N

b

dx

∫ va

vb

dµ exp(it(λ− µ))φb(v)(x, λ)φb(w)(x, µ)f̂(µ). (4.8)

Using (3.16) we find for x ∈ (b,∞)

φb(v)(x, λ)φb(v0)(x, µ) =
1

4π~
√
qb(λ)qb(µ)

(
exp

(
i2mb
~

(qb(λ)− qb(µ))x
)

+ Sbb(v)(λ) exp
(
−i2mb

~
(qb(λ) + qb(µ))x

)
+ Sbb(w)(µ) exp

(
i2mb
~

(qb(λ) + qb(µ))x
)

+ Sbb(v)(λ)Sbb(w)(µ) exp
(
−i2mb

~
(qb(λ)− qb(µ))x

))
.

(4.9)

Preprint 814, Weierstraß–Institut für Angewandte Analysis und Stochastik, Berlin 2003



24 M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg

We have∫ N

b

dx

∫ va

vb

dµ
exp

(
i2mb
~

(qb(λ)− qb(µ))x
)

4π~
√
qb(λ)qb(µ)

exp (it(λ− µ)) f̂(µ)

=

∫ va

vb

dµ f̂(µ)eit(λ−µ)

∫ N

b

dx
exp

(
i2mb
~

(qb(λ)− qb(µ))x
)

4~π
√
qb(λ)qb(µ)

.

There is in the sense of distributions

~

iπ

exp
(
i2mb
~

(qb(λ)− qb(µ))N
)

2mb(qb(λ)− qb(µ))
−→ δ

(
2mb

~

(qb(λ)− qb(µ))

)
as N →∞. (4.10)

Hence,

lim
N→+∞

∫ N

b

dx
exp

(
i2mb
~

(qb(λ)− qb(µ))x
)

4π~
√
qb(λ)qb(µ)

=
δ
(

2mb
~

(qb(λ)− qb(µ))
)

4~
√
qb(λ)qb(µ)

−
exp

(
i2mb
~

(qb(λ)− qb(µ))b
)

4iπ
√
qb(λ)qb(µ)

(qb(λ) + qb(µ))

λ− µ

=
1

2
δ(λ− µ)−

exp
(
i2mb
~

(qb(λ)− qb(µ))b
)

4iπ
√
qb(λ)qb(µ)

(qb(λ) + qb(µ))

λ− µ
.

Further we get

lim
N→+∞

∫ N

b

dx

∫ va

vb

dµ
exp

(
i2mb
~

(qb(λ)− qb(µ))x
)

4π~
√
qb(λ)qb(µ)

f̂(µ)

=
1

2
f̂(λ)− 1

2

∫ va

vb

dµ f̂(µ)
exp (it(λ− µ))

2iπ(λ− µ)
exp

(
i2mb
~

(qb(λ)− qb(µ))b
)(qb(λ) + qb(µ))√

qb(λ)qb(µ)
.

Since in the sense of distributions

1

iπ

exp (it(λ− µ))

λ− µ
−→ δ(λ− µ) as t→∞ (4.11)

we finally obtain

lim
t→+∞

∫ ∞
b

dx

∫ va

vb

dµ
exp

(
i2mb
~

(qb(λ)− qb(µ))x
)

4π~
√
qb(λ)qb(µ)

exp (it(λ− µ)) f̂(µ) = 0. (4.12)

Furthermore we have

lim
N→+∞

∫ N

b

dx

∫ va

vb

dµ
Sbb(v)(λ)

4π~
√
qb(λ)qb(µ)

exp
(
−i2mb

~
(qb(λ) + qb(µ))x

)
exp (it(λ− µ)) f̂(µ)

= Sbb(v)(λ)

∫ va

vb

dµf̂(µ) exp (it(λ− µ))

∫ ∞
b

dx
exp

(
−i2mb

~
(qb(λ) + qb(µ))x

)
4π~

√
qb(λ)qb(µ)

.
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Since∫ ∞
b

dx
exp

(
−i2mb

~
(qb(λ) + qb(µ))x

)
4π~

√
qb(λ)qb(µ)

=
exp

(
−i2mb

~
(qb(λ) + qb(µ))b

)
4πi
√
qb(λ)qb(µ)

(qb(λ)− qb(µ))

λ− µ

one gets

∫ ∞
b

dx

∫ va

vb

dµ
Sbb(v)(λ)

4π~
√
qb(λ)

√
qb(µ)

exp
(
−i2mb

~
(qb(λ) + qb(µ))x

)
exp (it(λ− µ)) f̂(µ)

= Sbb(v)(λ)

∫ va

vb

dµf̂(µ)
exp (it(λ− µ))

iπ(λ− µ)
exp

(
−i2mb

~
(qb(λ) + qb(µ))b

) (qb(λ)− qb(µ))

4
√
qb(λ)qb(µ)

which yields

lim
t→∞

∫ ∞
b

dx

∫ va

vb

dµ
Sbb(v)(λ)

4π~
√
qb(λ)qb(µ)

exp
(
−i2mb

~
(qb(λ) + qb(µ))x

)
exp (it(λ− µ)) f̂(µ) = 0.

(4.13)
Similarly we prove

lim
t→∞

∫ ∞
b

dx

∫ va

vb

dµ
Sbb(w)(µ)

4π~
√
qb(λ)qb(µ)

exp
(
i2mb
~

(qb(λ) + qb(µ))x
)

exp (it(λ− µ)) f̂(µ) = 0.

(4.14)
We have

lim
N→+∞

∫ N

b

dx

∫ va

vb

dµ
Sbb(v)(λ)Sbb(w)(µ)

4π~
√
qb(λ)qb(µ)

exp (−i2mb (qb(λ)− qb(µ))x)×

× exp (it(λ− µ)) f̂(µ)

=

∫ va

vb

dµf̂(µ) exp (it(λ− µ))
Sbb(v)(λ)Sbb(w)(µ)

4π~
√
qb(λ)qb(µ)

∫ ∞
b

dx exp
(
−i2mb

~
(qb(λ)− qb(µ))x

)
.

Since

lim
N→+∞

∫ N

b

dx
exp

(
−i2mb

~
(qb(λ)− qb(µ))x

)
4π~

√
qb(λ)qb(µ)

=
δ
(

2mb
~

(qb(λ)− qb(µ))
)

4
√
qb(λ)qb(µ)

+
exp

(
−i2mb

~
(qb(λ)− qb(µ))b

)
4iπ
√
qb(λ)qb(µ)

(qb(λ) + qb(µ))

λ− µ

=
1

2
δ(λ− µ) +

exp
(
−i2mb

~
(qb(λ)− qb(µ))b

)
4iπ
√
qb(λ)qb(µ)

(qb(λ) + qb(µ))

λ− µ
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we obtain

lim
t→+∞

∫ ∞
b

dx

∫ va

vb

dµ
Sbb(v)(λ)Sbb(w)(µ)

4π
√
qb(λ)qb(µ)

exp
(
−i2mb

~
(qb(λ)− qb(µ))x

)
×

× exp (it(λ− µ)) f̂(µ)

= Sbb(v)(λ)Sbb(w)(λ)f̂(λ). (4.15)

Thus, we get by (4.8), (4.9), (4.12), (4.13), (4.14), and (4.15) that(
ΦvWb(Kv, Kw)Φ∗wf̂

)
(λ) = Sbb(v)(λ)Sbb(w)(λ)f̂(λ) (4.16)

for f ∈ C∞0 (vb, va) and λ ∈ (vb, va). Now (4.16), (4.7) and (4.6) imply the assertion
(4.4).

In the following we set v0 ∈ L∞
R

, v0 ≡ vb. Lemma 4.1 implies

Corollary 4.2. If v0(x) = vb for all x ∈ R, then

Φv = Φv0W−(Kv, Kv0)∗ = Ŝv
∗
Ŝv0Φv0W+(Kv, Kv0)∗

Ŝv = Ŝv0Φv0W+(Kv, Kv0)∗W−(Kv, Kv0)Φ∗v0
= Ŝv0Φv0S(Kv, Kv0)Φ∗v0

for all v ∈ L∞
R

, where S(Kv, Kv0) is the scattering operator

S(Kv, Kv0) := W+(Kv, Kv0)∗W−(Kv, Kv0).

The scattering matrix Sv(λ) can be completely described by the QTB family:

Lemma 4.3. Let α(λ), Tv(λ), and Q(λ) be given by (3.28), (3.29), and (3.32), respec-
tively. The scattering matrix (4.1) obeys

Sv(λ) = Q(λ)
(
Ih(λ) + i~α(λ)Tv(λ)∗

)
Q(λ), λ ∈ (vb,∞). (4.17)

Proof. Using the definitions of α(λ) and Tv(λ) one gets

α(λ)Tv(λ)∗ =
√

2


√
qb(λ)(Tv(λ)∗eb)(b), λ ∈ (vb, va),( √

qb(λ)(Tv(λ)∗eb)(b)
√
qb(λ)(Tv(λ)∗ea)(b)

−
√
qa(λ)(Tv(λ)∗eb)(a) −

√
qa(λ)(Tv(λ)∗ea)(a)

)
, λ ∈ (va,∞).

Taking into account (3.30) and (3.31) we obtain

α(λ)Tv(λ)∗ = i

√
4π

~


pb(λ)

√
qb(λ)φb(b, λ), λ ∈ (vb, va),(

pb(λ)
√
qb(λ)φb(b, λ) −pa(λ)

√
qb(λ)φa(b, λ)

−pb(λ)
√
qa(λ)φb(a, λ) pa(λ)

√
qa(λ)φa(a, λ)

)
, λ ∈ (va,∞),
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where

pb(λ) := exp
(
i2mb
~
qb(λ)b

)
and pa(λ) := exp

(
−i2ma

~
qa(λ)a

)
.

By equations (3.15), (3.16), and (3.23) one has

α(λ)Tv(λ)∗ =
i

~

Ih(λ)

+
i

~


Sbb(v)(λ)pb(λ)2, λ ∈ (vb, va), Sbb(v)(λ)pb(λ)2 −

√
qb(λ)
qa(λ)

Sba(v)(λ)pb(λ)pa(λ)

−
√

qa(λ)
qb(λ)

Sab(v)(λ)pb(λ)pa(λ) Saa(v)(λ)pa(λ)2

 , λ ∈ (va,∞)

which yields (4.17).

Remark 4.4. Rewriting (4.17) formally as

Sv(λ) = Q(λ)
(
Ih(λ) + i~α(λ)(Hv(λ)− λ)−1α(λ)∗

)
Q(λ)

one suspects, that the resonances of Kv are given by

{z ∈ C−|z is eigenvalue of Hv(z)} ,

see also Definition 3.7.

Remark 4.5. Let v ∈ L∞
R

and λ0 ∈ R with λ0 > vb be given. As in Remarks 2.5
and 3.6 we set Hdis(v) := Hv(λ0). The adjoint of the so-called characteristic function
ΘHdis(v)(z) : C2 −→ C

2, z ∈ C+, corresponding to the dissipative operator Hdis(v) (see
[FN]) is given by

ΘHdis(v)(z)∗ = IC2 + iα(λ0)Tdis(v; z)∗, z ∈ C+,

where Tdis(v; z) is defined as in Remark 3.6, and ~ is scaled to 1, see [KNR2, Lemma 3.3].
Therefore we get by Lemma 4.3

Sv(λ0) = Q(λ0)ΘHdis(v)(λ0)∗Q(λ0),

i.e. for any fixed energy λ0 the characteristic function is equal to the scattering matrix
Sv(λ0), modulo the transformation Q(λ0).

5 Carrier and current densities

In this section we introduce the carrier density and the current density corresponding to
the QTB family {Hv(z)}z∈C+ from Definition 2.2.
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5.1 Carrier densities

We now assume that ρ is a function

ρ = ρp ⊕ ρac with ρp ∈ Cb
R
(−∞, vb), ρac ∈ L∞((vb,∞),B(h(λ)), νac), (5.1)

where νac is given as in (3.25). Note that νac does not depend on the potential v while
νp in (3.25) does. We have ρ(·) ∈ L∞(σ(Kv),B(h(λ)), ν) for all v ∈ L∞

R
. Furthermore we

assume

ρac(λ)∗ = ρac(λ), ρac(λ) ≥ 0 for a.e. λ ∈ (vb,∞), and ρp ≥ 0. (5.2)

By means of a function (5.1) we define the multiplication operator ρ̂ on K̂v by

(ρ̂g)(λ) := ρ(λ)g(λ), g ∈ D(ρ̂) = L2(σ(Kv), h(λ), ν) (5.3)

and finally the steady state %(v) : K −→ K by

%(v) = Φ∗vρ̂Φv. (5.4)

Obviously %(v) is a bounded, non-negative, selfadjoint operator which commutes with Kv.

Remark 5.1. There is a one-to-one correspondence between bounded, non-negative, self-
adjoint operators which commute with Kv and multiplication operators of the form (5.3),
i.e. if %(v) : K −→ K is a bounded, non-negative, selfadjoint operator, which commutes
with Kv, then there exists exactly one function ρ ∈ L∞(σ(Kv),B(h(λ)), ν) such that %(v)
has the representation given by (5.4), see [BW, Proposition 4.18].

Remark 5.2. Using Corollary 4.2 we can rewrite equation (5.4) in the form

%(v) = %p(v) + %ac(v), (5.5)

where
%ac(v) = W−(Kv, Kv0)%(v0)W−(Kv, Kv0)∗, %(v0) = Φ∗v0

ρ̂acΦv0 , (5.6)

and Kv0 is the operator (2.3) and Φv0 the corresponding Fourier transform with respect
to the constant potential v0 ≡ vb, see also Corollary 4.2. The operator %p(v) admits the
representation, see also [N1],

%p(v) =

N(v)∑
j=1

ρp(λj(v))P (λj(v)), (5.7)

where P (λj(v)) are the orthogonal projections of Kv onto the eigenspaces corresponding
to the eigenvalues λj(v), j = 1, . . . , N(v) , i.e.

P (λj(v))f =
(
f, ~φv(·, λj(v))

)
K
~φv(·, λj(v)), f ∈ K.
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In the following we assume

Cac := esssup
λ∈(vb,∞)

‖ρac(λ)‖B(h(λ))

√
λ2 + 1 <∞ (5.8)

and we define
Cp := sup

λ∈(−∞,vb)
ρp(λ). (5.9)

(5.4) and (5.8) imply
‖%ac(v)(Kv − i)‖B(K) = Cac <∞. (5.10)

For every h ∈ L∞
R

we define the multiplication operator M(h) : K −→ K by

(M(h)f)(x) =

{
h(x)f(x), x ∈ (a, b),

0, x ∈ R \ (a, b),
f ∈ D(M(h)) = K; (5.11)

note ran(M(h)) ⊆ H. For any Borel set ω ⊆ (a, b) we consider the observable U(ω) :=
M(χω) : K −→ K. Now we define the expectation value of U(ω) with respect to %(v) for
any Borel set ω ⊂ (a, b) by

E%(v)(ω) := tr(%(v)U(ω)).

The definition is justified since

|tr(%(v)U(ω))| ≤ CpN(v) + Cac‖(Kv − i)−1PKH‖B1(K) <∞,

where (5.10) comes to bear. There is

tr(%(v)U(ω)) = tr(ρ̂ΦvU(ω)Φ∗v) =

∫
ω

dx

∫
σ(Kv)

dν(λ) trh(λ)(ρ(λ)D(v)(x, λ)), (5.12)

where

D(v)(x, λ) :=


|φp(v)(x, λ)|2, λ ∈ σp(Kv),

|φb(v)(x, λ)|2, λ ∈ (vb, va),(
|φb(v)(x, λ)|2 φa(v)(x, λ)φb(v)(x, λ)

φb(v)(x, λ)φa(v)(x, λ) |φa(v)(x, λ)|2

)
, λ ∈ (va,∞).

Hence, E%(v)(·) defines a measure which is absolutely continuous with respect to the
Lebesgue measure.

Definition 5.3. The Radon-Nikodym derivative of E%(v)(·) is called the carrier den-
sity, with respect to %(v), of the open quantum system described by the QTB family
{Hv(z)}z∈C+ and will be denoted by u%(v). Note the assumptions (5.1), (5.2), and (5.8).

(5.12) directly implies

u%(v)(x) =

∫
σ(Kv)

dν(λ) u%(v)(x, λ), x ∈ (a, b), (5.13)
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with

u%(v)(x, λ) :=
(
ρ(λ)T ~φv(x, λ), ~φv(x, λ)

)
h(λ)

, λ ∈ σ(Kv), x ∈ (a, b), (5.14)

where ρ(λ)T denotes the transposed matrix. Since ρ ≥ 0 the carrier density is positive,
i.e. u%(v)(x) ≥ 0 for a.e. x ∈ (a, b). Note that in (5.14) enter only the values of the
eigenfunctions for arguments x ∈ (a, b). These can be expressed by the QTB family, see
Lemma 3.4 and Lemma 3.8.

Remark 5.4. As in Remarks 2.5, 3.6, and 4.5 we fix a λ0 > vb and define

ρdis(λ0) := Q(λ0)∗ρ(λ0)Q(λ0), (5.15)

where Q(λ0) is given by (3.32). Remark 3.6 and the results from [KNR2, Section 3] imply

udis,v(x, λ0) = u%(v)(x, λ),

where udis,v(x, ξ), ξ ∈ R, is defined as in [KNR2, Section 3] with the density matrix
ρdis(λ0) given by (5.15). Thus, we get that the carrier density of the dissipative system
and the carrier density of the QTB system coincide for fixed energy λ0, if the density
matrix for the dissipative system is transformed by (5.15).

Example 5.5. Let f ∈ Cb
R
(R) be positive and

esssup
λ∈(vb,∞)

f(λ)
√
λ2 + 1 <∞.

For %(v) = f(Kv) we obtain

u%(v)(x) =

∫
σ(Kv)

dν(λ) f(λ)
∥∥∥~φv(x, λ)

∥∥∥2

h(λ)
, x ∈ (a, b).

Example 5.6. Assume that f is given as in the previous example. Furthermore, let
εa, εb, εp ∈ R be given constants. If

ρ(λ) :=


f(λ− εp), λ ∈ (−∞, vb],
f(λ− εb), λ ∈ (vb, va),(
f(λ− εb) 0

0 f(λ− εa)

)
, λ ∈ [va,∞),

then

u%(v)(x) =

N(v)∑
j=1

f(λj(v)− εp)|φp(v)(x, λj(v))|2

+

∫ ∞
vb

dλ f(λ− εb)|φb(v)(x, λ)|2 +

∫ ∞
va

dλ f(λ− εa)|φa(v)(x, λ)|2, x ∈ (a, b).

The function f can be interpreted as a distribution function and the constants εa, εb as
the Fermi level of the reservoir at a, b, respectively, see [F1, MKS]; the constant εp is
the Fermi level of the bounded states. If εa = εb = εp, then one is in the situation of
Example 5.5.
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Lemma 5.7. The carrier density u%(v) from Definition 5.3 obeys∫ b

a

dx u%(v)(x)h(x) = tr(%(v)M(h)), for all h ∈ L∞
R

, (5.16)

M(h) being the multiplication operator (5.11). In particular there is

‖u%(v)‖L1 ≤ CpN(v) + Cac‖(Kv − i)−1PKH‖B1(K).

Proof. For any Borel set ω ⊆ (a, b) there is

tr(%(v)M(χω)) = E%(ω) =

∫ b

a

dx u%(v)(x)χω(x),

i.e. (5.16) for all h = χω. By linearity (5.16) also holds for step functions on (a, b). Since
u%(v) is in L1

R
and %M(χ(a,b)) is a trace class operator (5.16) extends by density of the step

functions in L∞
R

and continuity to all h ∈ L∞
R

. Because M(χ(a,b)) = PKH there is

‖u%(v)‖L1 = tr(%(v)PKH ) ≤ CpN(v) + Cac‖(Kv − i)−1PKH‖B1(K).

5.2 Current densities

For x ∈ (a, b), λ ∈ σ(Kv) the current density j%(v) is defined by, see [LL],

j%(v)(x) :=

∫
σ(Kv)

dν(λ) j%(v)(x, λ),

j%(v)(x, λ) := Im

((
ρ(λ)T

~

m(x)

∂

∂x
~φv(x, λ), ~φv(x, λ)

)
h(λ)

)
.

(5.17)

Direct calculation shows that ~ ∂
∂x
j%(v)(x, λ) = 0, i.e. j%(v) is constant j%(v)(x) ≡ j%(v).

Remark 5.8. The point spectrum and the simple spectrum do not contribute to the
current:

j%(v)(λ) = 0, λ ∈ σ(Kv) \ (va,∞).

Indeed, as Im(iqa(λ)) = 0 for λ ∈ (vb, va) we get by (3.16)

j%(v)(λ) = Im

(
−i2ma

~

qa(λ)|Sab(v)(λ)|2 exp

(
−i4ma

~

qa(λ)a

))
= 0, λ ∈ (vb, va).

Now let us regard a µ ∈ σp(Kv). By Lemma 3.8 we have that µ ∈ σ({Hv(λ)}). Since
{Hv(λ)}λ∈(−∞,vb) are selfadjoint operators, we get

φp(v)(a, µ) = η(v)(a, µ) and ~

2m(a)
φ′p(a, µ) = −κa(µ)η(v)(a, µ),

Preprint 814, Weierstraß–Institut für Angewandte Analysis und Stochastik, Berlin 2003



32 M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg

where η(v)(·, µ) is the eigenfunction of the family {Hv(λ)}λ∈(−∞,vb) corresponding to the
eigenvalue µ. Therefore

j%(v)(µ) = Im
(
−κa(µ)|η(v)(a, µ)|2

)
= 0, for all µ ∈ σp(Kv).

A straightforward calculation shows that

j%(v)(λ) = trC2(ρ(λ)C(v)(λ)), λ ∈ (va,∞), (5.18)

with

C(v)(λ) =
1

i

(
W (φb(v)(x, λ), φb(x, λ)) W (φb(v)(x, λ), φa(x, λ))

W (φa(v)(x, λ), φb(x, λ)) W (φa(v)(x, λ), φa(x, λ))

)
. (5.19)

Lemma 5.9. The operator C(v)(λ) is selfadjoint and admits the representation

C(v)(λ) =
1

2π~

 − qb(λ)
qa(λ)
|Sba(v)(λ)|2

√
qa(λ)
qb(λ)

Sab(v)(λ)Sbb(v)(λ)

−
√

qb(λ)
qa(λ)

Sba(v)(λ)Saa(v)(λ) qa(λ)
qb(λ)
|Sab(v)(λ)|2

 . (5.20)

There is

C(v)(λ) =
1

2π~
(PaSv(λ)∗Pb − PbSv(λ)∗Pa)Sv(λ) for λ ∈ (va,∞), (5.21)

where Pa := (·, ea)C2ea and Pb := (·, eb)C2eb with eb := (1, 0)T , ea := (0, 1)T ∈ C2.

Proof. By (3.23) and (3.16) for x ≤ a we have

W (φb(v)(x, λ), φb(x, λ)) = − 1

4π~qa(λ)
W (ψb(x, λ), ψb(x, λ)) = − i

2π~

qa(λ)

qb(λ)
|Sab(v)(λ)|2

Using (3.23) as well as (3.15) and (3.16) for x ≥ b we get

W (φa(v)(x, λ), φb(x, λ)) =
i

2π~

√
qb(λ)

qa(λ)
Sba(v)(λ)Sbb(v)(λ).

Similarly we obtain

W (φb(v)(x, λ), φa(x, λ)) = − i

2π~

√
qa(λ)

qb(λ)
Sab(v)(λ)Saa(v)(λ).

and

W (φa(v)(x, λ), φa(x, λ)) =
i

2π~

qb(λ)

qa(λ)
|Sba(v)(λ)|2.

Using (5.19) and (3.10) we verify (5.20). The relation (5.21) immediately follows from
(5.20). The selfadjointness of C(v)(λ) follows from (3.10) and the identity (5.20).
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Note that the current depends only on the density matrix ρ(·) and the scattering matrix
Sv(λ). As has been shown in Lemma 4.3 the scattering matrix is completely described by
the QTB family. Thus, the same is true for the current.

Remark 5.10. As in Remark 5.4 we assume that λ0 > vb is fixed. Let ρdis(λ0) be given by
(5.15) and let jdis,v denote the current density of the dissipative system corresponding to
the density matrix %dis as defined in [KNR2, Section 4]. By Lemma 5.9 and [BN, Theorem
7.1.] we get jdis,v(λ0) = j%(v)(λ0), i.e. the current density of the dissipative system and of
the QTB system coincide for fixed energy λ0.

Example 5.11. For the density matrix ρ from Example 5.6 we get the current

j%(v)(λ) = T (v)(λ) (f(λ− εa)− f(λ− εb)) , λ ∈ (va,∞),

where

T (v)(λ) :=
qb(λ)

qa(λ)
|Sba(λ)|2 =

qa(λ)

qb(λ)
|Sab(λ)|2

is the so-called transmission coefficient. Note that if εa = εb, then j%(v)(λ) = 0, i.e. in
particular for any density matrix as in Example 5.5 the current is zero.

Proposition 5.12. If ∫ ∞
va

dλ trC2(ρ(λ)) <∞,

then the total current is bounded and the bound does not depend on v:

|j%(v)| ≤
1

2π~

∫ ∞
va

dλ trC2(ρ(λ)).

Proof. Since ‖(PaSv(λ)∗Pb − PbSv(λ)∗Pa)Sv(λ)‖h(λ) ≤ 1 for λ ∈ (va,∞) we immediately
get from (5.18) and Lemma 5.9

|j%(v)| ≤
1

2π~

∫ ∞
va

dλ trC2(ρ(λ)).

6 Carrier density operator

In this section we define the nonlinear carrier density operator which associates the poten-
tial seen by particles to their density and prove that the density depends continuously on
the potential. Following [BKNR] the carrier density operator Nρ̂ : L∞

R
−→ L1

R
, is defined

by
Nρ̂(v) := u%(v), v ∈ D(Nρ̂) := L∞

R
, (6.1)

where u%(v) is the carrier density from Definition 5.3,
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Remark 6.1. If we assume instead of (5.8) the slightly stronger condition

esssup
λ∈(vb,∞)

‖ρac(λ)‖B(h(λ))(1 + λ2) <∞,

then one can prove that the particle density operator Nρ̂(·) is not only well defined as an
operator from L∞

R
into L1

R
, but takes its values in W1,2

R
.

By means of Proposition 2.6, Proposition 2.8, and Lemma 5.7 one obtains

Lemma 6.2. If v ∈ L∞
R

, then

‖Nρ̂(v)‖L1 ≤ Cp

(
1 +

√
2‖m‖L∞(b− a)

π~

√
‖v‖L∞ + |vb|

)

+ Cac

(
3 +

(
8 + 4

√
‖m‖L∞

(b− a)

~

)√
1 + ‖v‖L∞ .

)
.

We are now going to prove that the particle density operator is continuous. For doing
this we need some technical lemmata.

Lemma 6.3. Assume (vn)n∈N ⊂ L∞
R

and v ∈ L∞
R

. If vn
L∞−→ v as n→∞, then

lim
n→∞

‖(Kvn − z)−1 − (Kv − z)−1‖B1(K) = 0,

for all z in the resolvent set of Kv.

Proof. By [K, Theorem IV.1.16] Kvn − z is boundedly invertible for z in the resolvent set

of Kv, if ‖v − vn‖L∞ <
(
‖(Kv − z)−1‖B(K)

)−1
. Hence, z is also in the resolvent set of Kvn

for sufficiently large n. Furthermore, there is

‖(Kvn − z)−1‖B(K) ≤
‖(Kv − z)−1‖B(K)

1− ‖vn − v‖L∞‖(Kv − z)−1‖B(K)

.

Since PKH (Kv − z)−1 is trace class one gets

‖(Kvn − z)−1 − (Kv − z)−1‖B1(K) ≤ ‖(Kvn − z)−1‖B(K)‖vn − v‖L∞‖PKH (Kv − z)−1‖B1(K)

which completes the proof.

Lemma 6.4. Assume v ∈ L∞
R

, (vn)n∈N ⊆ L∞
R

. Let λ1(v), . . . , λN(v)(v) and λ1(vn), . . . ,

λN(vn)(vn) be the eigenvalues of Kv and Kvn, respectively. If vn
L∞−→ v as n→∞, then we

have N(v) = N(vn) for sufficiently large n and

lim
n→∞

λk(vn) = λk(v), lim
n→∞

‖P (λj(vn))− P (λj(v))‖B(K) = 0, k = 1, · · · , N(v),

where P (λk(vn)), P (λk(v)), denote the projection onto the eigenspaces of Kvn, Kv corre-
sponding to the eigenvalue λk(vn), λk(v), k = 1, ·, N(v), respectively.
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The proof follows immediately from Lemma 6.3 and [K, Theorem IV.3.16].

Lemma 6.5. If v ∈ L∞
R

, (vn)n∈N ⊆ L∞
R

with vn
L∞−→ v, then

s-lim
n→∞

W±(Kvn , Kv0) = W±(Kv, Kv0),

s-lim
n→∞

W ∗
±(Kvn , Kv0) = W ∗

±(Kv, Kv0),
(6.2)

where Kv0 is the operator (2.3) referring to the constant potential v ≡ v0, see also Corol-
lary 4.2.

Proof. Lemma 6.3 and [K, Theorem X.4.15] provide

s-lim
n→∞

W±((Kvn + µ)−1, (Kv0 + µ)−1) = W±((Kv + µ)−1, (Kv0 + µ)−1)

for a sufficiently large µ ∈ R. Taking into account the invariance principle, see for example
[BW], we obtain the first assertion, the second one follows in the same manner.

Theorem 6.6. Assume v ∈ L∞
R

and (vn)n∈N ⊂ L∞
R

. If vn
L∞−→ v, then

Nρ̂(vn)
L1

−→ Nρ̂(v) and j%(vn) −→ j%(v) as n→∞,

i.e. the carrier density operator is a continuous operator from L∞
R

to L1
R

and the current
density operator is continuous from L∞

R
to R.

Proof. According to Lemma 5.7 there is∫ b

a

dx ((Nρ̂(vn))(x)− (Nρ̂(v))(x))h(x) = tr((%(vn)− %(v))M(h)), (6.3)

for every real-valued h ∈ L∞. Using the decomposition (5.5) for the steady states %(vn)
and %(v) we get

tr((%(vn)− %(v))M(h)) = tr((%p(vn)− %p(v))M(h)) + tr((%ac(vn)− %ac(v))M(h)), (6.4)

where %ac(v), %ac(vn) and %p(v), %p(vn) are given by (5.6) and (5.7), respectively. We will
first show that the first addend in (6.4) tends to zero as n→∞. By Lemma 6.4 we have
that dim(ran(%p(vn))) = dim(ran(%p(v))) =: N < ∞, for sufficiently large n. Hence, it
suffices to show that ‖%p(vn) − %p(v)‖B(K) → 0 as n → ∞. We have by the definition of
%p(vn) and %p(v), see (5.7),

‖%p(vn)− %p(v)‖B(K)

≤
N∑
j=1

(
|ρp(λj(vn))− ρp(λj(v))|+ |ρp(λj(v))| ‖P (λj(vn))− P (λj(v))‖B(K)

)
. (6.5)
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Since ρp ∈ Cb
R
(−∞, vb), see (5.1), we get by Lemma 6.4 and (6.5) that %p(vn) converges

in the norm of B(K) to %p(v) as n→∞. Hence,

lim
n→∞

sup
‖h‖L∞≤1

|tr((%p(vn)− %p(v))M(h))| ≤ N lim
n→∞

‖%p(vn)− %p(v)‖B(K) = 0. (6.6)

To prove that the second addend in (6.4) tends to zero as n→∞, we set

W := W−(Kv, Kv0) and Wn := W−(Kvn , Kv0).

By (5.6) we obtain

%ac(vn)− %ac(v) = (Wn −W )%ac(v0)W ∗
n +W%ac(v0)(W ∗

n −W ∗).

Since WKv0 = KvW , WnKv0 = KvnWn, and ‖%ac(v0)(Kv0 ± i)‖ ≤ Cac < ∞, see (5.10),
we get

|tr((%ac(vn)− %ac(v))M(h))|

≤
∣∣tr (((Kvn + i)−1Wn − (Kv0 + i)−1W

)
%ac(v0)(Kv0 + i)W ∗

nM(h)
)∣∣

+
∣∣tr (W (Kv0 − i)%ac(v0)

(
W ∗
n(Kvn − i)−1 −W ∗(Kv0 − i)−1

)
M(h)

)∣∣ .
We estimate the terms on the right hand side separately:∣∣tr (((Kvn + i)−1Wn − (Kv0 + i)−1W )%ac(v0)(Kv0 + i)W ∗

nM(h)
)∣∣

≤ Cac
∥∥(W ∗

n(Kvn − i)−1 −W ∗(Kv0 − i)−1
)
M(h)

∥∥
B1(K)

,

∣∣tr (W (Kv0 − i)%ac(v0)(W ∗
n(Kvn − i)−1 −W ∗(Kv0 − i)−1)M(h)

)∣∣
≤ Cac

∥∥(W ∗
n(Kvn − i)−1 −W ∗(Kv0 − i)−1

)
M(h)

∥∥
B1(K)

≤ Cac
∥∥(Kvn − i)−1 − (Kv0 − i)−1

∥∥
B1(K)

‖h‖L∞

+ Cac
∥∥(W ∗

n −W ∗)(Kv0 − i)−1PKH
∥∥

B1(K)
‖h‖L∞

and finally obtain

|tr((%ac(vn)− %ac(v))M(h))| ≤ 2Cac‖h‖L∞
(∥∥(Kvn − i)−1 − (Kv − i)−1

∥∥
B1(K)

+
∥∥(W ∗

n −W ∗)(Kv0 − i)−1PKH
∥∥

B1(K)

)
.

By Lemma 6.3, Lemma 6.5 and the fact that (Kv0 − i)−1PKH is trace class one gets

lim
n→∞

sup
‖h‖L∞≤1

|tr((%ac(vn)− %ac(v))M(h))| = 0. (6.7)

Now (6.3), (6.4), (6.6) and (6.7) imply the assertion.

Lemma 6.5 implies by Corollary 4.2 the strong convergence Ŝvn
s−→ Ŝv. Using the expres-

sion (5.21) for C(v)(λ) one sees that j%(vn) −→ j%(v) as n→∞.
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7 Quantum transmitting Schrödinger-Poisson system

Let us now consider the quantum transmitting Schrödinger-Poisson system, i.e. the non-
linear Poisson equation (1.1) with the carrier density operator from Section 6:

− d

dx
ε
d

dx
ϕ = q

(
C +N+

ρ̂+
(v+)−N−ρ̂−(v−)

)
in (a, b) (7.1)

and the mixed boundary conditions

ϕ = ϕΓ on Γ, − ε d
dx
ϕ = k(ϕ− ϕΓ) on {a, b} \ Γ, (7.2)

where Γ ⊆ {a, b} is the Dirichlet part of the boundary and the function ϕΓ, defined
on [a, b], represents the Dirichlet boundary values given on Γ and the inhomogeneous
boundary conditions of third kind on {a, b} \ Γ; the function k ≥ 0 is defined on {a, b}
and can be seen as the capacity of the boundary; in particular k is zero at an insulating
interface, see [G]. We recall from Section 1 that ε is the dielectric permittivity function,
q is the elementary charge, C is the concentration of ionized dopants. Each of the carrier
density operators N±ρ̂±(v±) is determined by a Buslaev-Fomin operators K±v± , one for
electrons (with index −) and for holes (with index +). The potential for the electrons
and holes is given by

v± := w± ± qϕ,

where w± are given real-valued potentials—the band edge offsets. The thus specified non-
linear Poisson equation (7.1), (7.2) will be called the quantum transmitting Schrödinger-
Poisson system. In order to define the notion of solutions to this system precisely we in-
troduce the following function spaces: With respect to the (possibly empty) set Γ ⊂ {a, b}
of Dirichlet points in the boundary conditions on Poisson’s equation we define

W1,2
Γ := W1,2

R
∩ {ψ |ψ(Γ) ⊂ {0}}.

The dual space of W1,2
Γ is denoted by W−1,2

Γ and by 〈·, ·〉 we denote the dual pairing
between W1,2

Γ and W−1,2
Γ . The embedding constants from W 1,2

R
into L∞

R
is denoted ε∞ and

the embedding constant from L1
R

into W−1,2
Γ is denoted by ε1.

7.1 Assumptions

Throughout this section we make the following assumptions on the data of the problem:

A1. The effective masses m± are positive and obey m±, 1
m±
∈ L∞

R
. The constants m±a ,

m±b ∈ R are positive.

A2. The real constants v±a , v±b obey v±a > v±b .

A3. The external potentials w± belong to L∞
R

.
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A4. The functions ρ±(·) = ρ±p (·)⊕ ρ±ac(·), with

ρ±p (·) ∈ Cb
R
(−∞, v±b ) and ρ±ac(·) ∈ L∞((v±b ,∞),B(h±(λ)), νac),

see (5.1), where h±(λ) are given by (3.24) with vb, va replaced by v±b , v±a . Further-
more, the ρ±(·) satisfy (5.2) and (5.8).

A5. The doping profile C, see (7.1), belongs to the function space W−1,2
Γ .

A6. The dielectric permittivity function ε is positive and obeys ε, 1
ε
∈ L∞

R
. We set

ε̃ := max{1, ‖1
ε
‖L∞}.

A7. The set Γ ⊂ {a, b} is not empty or at least one of the numbers k(x), x ∈ {a, b} \ Γ,
is strictly positive.

A8. The function ϕΓ is from the space W1,2
R

.

To each Buslaev-Fomin operator K±v± , see (2.3), we associate a QTB family {H±v±(z)}z∈C+

according to Definition 2.2. The functions ρ±(·) define by (5.4) steady states %±(v), i.e.
non-negative selfadjoint operators which commute with K±v± . The carrier densities u%±(v)

for the electrons and holes are determined by Definition 5.3. The corresponding carrier
density operators (6.1) are denoted by N±ρ̂±(v).

7.2 Definition of solutions

The linear Poisson operator P : W1,2
R
−→ W−1,2

Γ is defined by

〈Pυ, ς〉 =

∫ b

a

dx ε(x)υ′(x)ς ′(x) +
∑

x∈{a,b}\Γ

k(x)υ(x)ς(x),

for all ς ∈ W1,2
Γ , υ ∈ D(P) = W1,2

R
.

The restriction of P to W1,2
Γ will be denoted by P0. We note that the inverse of P0 exists;

its norm does not exceed ε̃(1 + γk), see [BKNR], where

γk := sup
0 6=ψ∈W 1,2

Γ

‖ψ‖2
L2

‖ψ′‖2
L2 +

∑
x∈{a,b}\Γ k(x)|ψ(x)|2

which is finite since the case of purely homogeneous Neumann boundary conditions is
excluded by assumption A7. We denote by ϕ̃Γ the bounded linear form

υ 7−→
∫ b

a

dx ε(x)ϕ′Γ(x)υ′(x), υ ∈ D(ϕ̃Γ) = W1,2
Γ .
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Definition 7.1. If u± ∈ L1
R
, then ϕ ∈ W1,2

R
is a solution of Poisson’s equation

− d

dx
ε
d

dx
ϕ = q

(
C + u+ − u−

)
in (a, b)

with the boundary conditions (7.2) iff ϕ− ϕΓ ∈ W1,2
Γ satisfies

P0(ϕ− ϕΓ) = D + q E1u
+ − q E1u

−, (7.3)

where D := qC − ϕ̃Γ and E1 denotes the embedding operator from L1 into W−1,2
Γ .

Definition 7.2. (ϕ, u+, u−) ∈ W1,2
R
× L1

R
× L1

R
is a solution of the quantum transmitting

Schrödinger-Poisson system if ϕ satisfies Poisson’s equation in the sense of Definition 7.1
with

u+ = u+
%+(w++qE∞ϕ) and u− = u−%−(w−−qE∞ϕ),

where E∞ denotes the embedding operator from W1,2
R

into L∞
R

.

7.3 Existence of solutions

Following [KR] we define a mapping whose fixed points determine the solutions of the
quantum transmitting Schrödinger-Poisson system. To that end we first introduce the
mapping J : L1

R
× L1

R
−→ W1,2

R
which assigns to a couple of densities (u+, u−) ∈ L1

R
× L1

R

the solution of Poisson’s equation:

J (u+, u−) = P−1
0

(
D + qE1(u+ − u−)

)
+ ϕΓ. (7.4)

Obviously, the map J is continuous. Now we define Ψ : L∞
R
−→ W1,2

R
by

Ψ : v 7→
(
N+
ρ̂+

(w+ + qv),N−ρ̂−(w− − qv)
)
7→ J

(
N+
ρ̂+

(w+ + qv),N−ρ̂−(w− − qv)
)
.

Since the carrier density operators N±ρ̂± are continuous, see Theorem 6.6, we get that Ψ
is continuous. Finally we define Ψ∞ : L∞

R
−→ L∞

R
by

Ψ∞ := E∞Ψ.

As both Ψ and the embedding operator E∞ from W1,2
R

into L∞
R

are continuous so is Ψ∞,
Moreover, the map Ψ∞ is compact because E∞ is compact.

Lemma 7.3. An element v ∈ L∞
R

is a fixed point of Ψ∞ if and only if the triple

(Ψ(v), u+, u−) = (Ψ(v), u+
%+(w++qv), u

−
%−(w−−qv))

is a solution of the quantum transmitting Schrödinger-Poisson system.

The proof follows directly from the definitions.

Preprint 814, Weierstraß–Institut für Angewandte Analysis und Stochastik, Berlin 2003



40 M. Baro, H.-Chr. Kaiser, H. Neidhardt, J. Rehberg

Definition 7.4. With respect to the data of the problem we define

x0 :=
σ1

2
+

√
σ2

1

4
+ σ2,

as the (unique) positive root of the polynomial p : x 7→ x2 − σ1x− σ2, where

σ1 := ε∞ε1ε̃(1 + γk)q(σ
+
1 + σ−1 ), (7.5)

σ2 := ε∞‖ϕΓ‖W1,2 + ε∞ε̃(1 + γk)
{
‖D‖W−1,2 + qε1(σ+

2 + σ−2 )
}
, (7.6)

and

σ±1 :=
√
qC±ac

(
8 + 4

√
‖m±‖L∞

(b− a)

~

)
+
√
qC±p

(√
2‖m±‖L∞(b− a)

π~

)
, (7.7)

σ±2 :=C±ac

(
3 +

(
8 + 4

√
‖m±‖L∞

(b− a)

~

)√
1 + ‖w±‖L∞

)
+ C±p

(
1 +

√
2‖m±‖L∞(‖w±‖L∞ + |vb|)(b− a)

π~

)
, (7.8)

with C±ac and C±p according to (5.8) and (5.9), respectively

Theorem 7.5. The map Ψ∞ : L∞
R
−→ L∞

R
has a fixed point. For any fixed point v of Ψ∞

there is
‖v‖L∞ ≤ x2

0, (7.9)

where x0 is according to Definition 7.4.

Proof. By the definition (7.4) of the operator J we have

‖J (u+, u−)‖W1,2
R

≤ ‖ϕΓ‖W1,2
R

+ ε̃(1 + γk)‖D + qE1(u+ − u−)‖W−1,2
Γ

(7.10)

≤ ‖ϕΓ‖W1,2
R

+ ε̃(1 + γk)
(
‖D‖W−1,2

Γ
+ ε1q

(
‖u+‖L1 + ‖u−‖L1

))
.

Since u± := N±ρ̂±(v±) with v± = w± ± qv we get from Lemma 6.2:

‖u±‖L1 ≤σ±1
√
‖v‖L∞ + σ±2 , (7.11)

where σ±1 and σ±2 are given by (7.7) and (7.8). Thus, (7.10), (7.5), and (7.6) provide

‖Ψ∞(v)‖L∞ ≤ ε∞‖J (N+
ρ̂+

(v),N−ρ̂−(v))‖W1,2 ≤ σ1‖v‖1/2
L∞ + σ2. (7.12)

If x0 is the unique positive root of the polynomial p : x 7→ x2− σ1x− σ2 and ‖v‖L∞ ≤ x2
0,

then
‖Ψ∞(v)‖L∞ ≤ σ1x0 + σ2 = x2

0.
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Hence, Ψ∞ maps the ball {v ∈ L∞
R
| ‖v‖L∞ ≤ x2

0} continuously into itself. Since Ψ∞ is
compact, the image of this ball is precompact in L∞

R
. Therefore Schauder’s fixed point

theorem assures the existence of a fixed point.

Let us now assume the second assertion were false, i.e. we assume that there exists a fixed
point v satisfying ‖v‖L∞ > x2

0. By (7.12) we get

(‖v‖1/2
L∞)2 = ‖v‖L∞ = ‖Ψ∞(v)‖L∞ ≤ σ1‖v‖1/2

L∞ + σ2.

This is a contradiction to p(x) > 0 for x > x0.

Theorem 7.6. Under the assumptions A1–A8 the quantum transmitting Schrödinger-
Poisson system always admits a solution in the sense of Definition 7.2 and any solution
(ϕ, u+, u−) of the quantum transmitting Schrödinger-Poisson system satisfies the a priori
estimate

‖ϕ‖L∞ ≤ x2
0, ‖u±‖L1 ≤ C±acr± + C±p s±, (7.13)

where x0 is given by Definition 7.4 and

r± := 3 +

(
8 + 4

√
‖m±‖L∞

(b− a)

~

)(√
qx0 +

√
1 + ‖w±‖L∞

)
,

s± := 1 +

√
2‖m±‖L∞(b− a)

π~

(√
‖w±‖L∞ + |vb|+

√
qx0

)
.

Proof. The first assertion follows from Lemma 7.3 and Theorem 7.5. The first inequal-
ity (7.13) is obtained by (7.9); The second inequality is implied by the first one and
Lemma 6.2.

7.4 Concluding remarks

Open quantum systems like the quantum transmitting Schrödinger-Poisson system were
treated in a very general framework by F. Nier in [N1]. In [N1] the density matrix %(v)
was assumed to be of the form %(v) = f(Kv), for some smooth function f with compact
support. This leads to a zero current, see example 5.11. We have demonstrated that
for density matrices of a more general form the QTB family allows to model a non zero
current flow through the boundary of the device. This allows a current coupling of a QTB
family with a classical drift diffusion model or a kinetic model. However, in coupling
the QTB family with an external model for the potential to be seen by Schrödinger’s
operator one cannot assume anymore that the potential outside the interval (a, b), i.e. va,
vb is fixed. Hence, the operator E defined by (2.1) has to be replaced by the operator
Ẽ : CR([a, b]) −→ Cb

R
(R) given by

(
Ẽv
)

(x) :=


v(a), −∞ < x ≤ a,

v(x), x ∈ (a, b),

v(b), b ≤ x <∞,
v ∈ D(Ẽ) = CR([a, b]).
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The Buslaev-Fomin operators are then defined by

K̃v := −~
2

2

d

dx

1

m̂

d

dx
+ Ẽv.

Note that in this case the absolutely continuous spectrum depends on the potential v, i.e.
σac(K̃v) = [min{v(a), v(b)},∞). Furthermore, in general the wave operators

W±(K̃w, K̃v) = s-lim
t→±∞

exp(itK̃w) exp(−itK̃v)Pac(K̃v), v, w ∈ CR([a, b])

do not exist and therefore we do not have a representation as given in Remark 5.2. Thus,
the techniques used in this paper to prove the continuity of the particle density operator,
see Theorem 6.6 do not apply in this case.

There is a close relation between the dissipative Schrödinger-Poisson system treated in
[BKNR] and the quantum transmitting Schrödinger-Poisson system we have investigated
in this paper: As already noted in Remark 5.4 and Remark 5.10 the carrier and current
densities of the dissipative and the quantum transmitting Schrödinger-Poisson system
coincide for fixed energy λ0 > vb, provided the density matrix of the dissipative system is
transformed according to (5.15). Therefore the dissipative Schrödinger-Poisson system can
be regarded as a single energy approximation of the quantum transmitting Schrödinger-
Poisson system.

We have demonstrated that the quantum transmitting Schrödinger-Poisson system always
admits a solution, if the assumptions A1–A8 are satisfied. Moreover, there are a priori
estimates for any solution ϕ and the corresponding carrier densities u±. However, unique-
ness of solutions has not been settled. We have shown that the QTB family contains all the
information, which is needed to determine the carrier and the current density, see Lemma
3.4 and the expression (5.13) for the carrier density and Lemmata 4.3 and 5.9 for the
current density. Since the QTB family lives on a bounded domain, an efficient numerical
algorithm can be developed to implement the quantum transmitting Schrödinger-Poisson
system.
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