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Abstract

We discuss various properties of Probabilistic Cellular Automata, such as

the structure of the set of stationary measures and multiplicity of stationary

measures (or phase transition) for reversible models.

1 Introduction

Probabilistic Cellular Automata (PCA) are discrete-time Markov chains on a prod-

uct space S� (con�guration space) whose transition probability is a product measure.

In this paper, S is assumed to be a �nite set (spin space), and � (set of sites) a

subset, �nite or in�nite, of ZZd. The fact that the transition probability P (d�j�0),
�; �0 2 S�, is a product measure means that all spins f�i : i 2 �g are simultaneously
and independently updated (parallel updating). This transition mechanism di�ers

from the one in the most common Gibbs samplers (e.g. [8], [3]), where only one site

is updated at each time step (sequential updating).

Several properties of PCA's, mainly of general and qualitative nature, have been

investigated ([14, 7, 23, 5, 18]). As far as we know, however, sharper properties

like e.g. rate of convergence to equilibrium or use of parallel dynamics in perfect

sampling, have not yet been investigated. PCA's are hard to analyze mainly for

the following reason. Suppose � is a �nite subset of ZZd, and let � be a given prob-

ability on S�. To �x ideas, we may think of � as a �nite volume Gibbs measure

for a given interaction and assigned boundary conditions. It is simple to construct

Markov chains on S� with sequential updating which have � as reversible measure.

Transition probabilities are given in simple form in terms of �, and reversibility

immediately implies that � is an stationary measure for the dynamics. Quite dif-

ferently, for a given �, there is no general recipe to construct a PCA for which �

is stationary. In particular, there exists Gibbs measures on SZZ2 such that no PCA

admits them as stationary measures (Theorem 4.2 in [5]).

Despite of this descouraging starting point, other aspects of PCA's make them

interesting stochastic models, and motivate further investigation.

1. For simulation and sampling, PCA's are natural stochastic algorithms for par-

allel computing. At least in some simple models (see Section 3) it is interest-

ing to evaluate their performance versus algorithms with sequential updating.

This will be the subject of a forthcoming paper.

2. In opposition to dynamics with sequential updating, it is simple to de�ne

PCA's in in�nite volume without passing to continuous time. One may try to
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study, for instance, convergence to equlibrium in in�nite volume, or in �nite

volume uniformly in the volume size. Although some perturbative methods

are available (see [20] Chapter 7, [17, 18]), a theory corresponding the one in

([21]) in continuous time, is yet to be developed.

3. PCA's that are reversible with respect to a Gibbs measure � have been com-

pletely characterized in [11]. In particular it has been shown that only a small

class of Gibbs measures may be reversible for a PCA. For such PCA's one can

investigate metastable behavior. A �rst step in this direction is done in [2].

The present paper is a small step toward a better understanding of PCA's. Our

objective is �rst to present some links between the sets of reversible, resp. stationary,

resp. Gibbs measures for general PCA's. We then illustrate these results on a

particular class of reversible PCA's already introduced in [2].

More precisely it was proved in [11] that for PCA's possessing a reversible Gibbs

measure w.r.t. a potential �, all reversible measures are gibbsian w.r.t the same

potential. We prove a similar statement on the set of stationary measures : For a

general PCA, if one shift invariant stationary measure is Gibbsian for a potential �,

then all shift invariant stationary measures are Gibbsian w.r.t. the same potential

� (see Proposition 2.2). This induce that for a class of local, shift invariant, non-

degenerated, reversible PCA the reversible measures coincide with the Gibbsian

stationary ones (Remark 3.2).

Applying this general statements to the class of PCA's considered in [2], one can

do explicit a stationary measure which is in fact Gibbsian w.r.t. a certain potential

� we write down (cf Proposition 3.2); we show that, for su�ciently small values

of the temperature parameter, phase transition occurs, that is there are several

Gibbs measures w.r.t. �. At least in certain cases, existence of phase transition

would follow from general expansion arguments, like Pirogov-Sinai theory. We have

preferred here, however, to use �softer� contour arguments. The understanding of

the right notion of contour for a speci�c model is in any case useful in many respects

(percolation, block dynamics,. . . ).

However, unlike what happens with sequential updating, not all these Gibbs mea-

sures need to be stationary for the in�nite volume PCA, the non-stationary ones

being periodic with period two. To conclude, we exhibit a Gibbs measure which is

not stationary for the associated PCA.

2 Shift invariant Probabilistic Cellular Automata

Let S be a �nite set. For � 2 SZZd, � = (�i)i2ZZd, and � � ZZd, we let �� 2 S� its

restriction to �. Sometimes, when no confusion arises, we omit the index � in ��.

A time-homogeneous Markov chain on S� is determined, in law, by its transition

probabilities P�(d�j�). If P�(d�j�) is a product measure, as a probability measure

on S�, then we say that the Markov chain is a Probabilistic Cellular Automaton.
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More explicitely

P�(d�j�) = 
i2�Pi(d�ij�);

and

Pi(�i = sj�) � pi(sj�); s 2 S: (2.1)

In the case � = ZZd, we omit the index � in P�(d�j�). In this case, we say that a

PCA is shift invariant if, for every i 2 ZZd, s 2 S, � 2 SZZd , we have

pi(sj�) = p0(sj�i�);

where �i is the shift in ZZd: (�i�)j = �i+j for every j 2 ZZd. A shift invariant PCA is

said to be local if, for each s 2 S, the map � ! p0(sj�) is local, i.e. it depends on a

�nite number of components of �.

From now on, all PCA's we consider in this paper satisfy the non degeneration

condition :

p0(sj�) > 0; 8s 2 S; � 2 SZZd :

This means that we are dealing with dynamics which can not contain a deterministic

component.

In this paper we are mostly interested in stationary measures for PCA's. For this

purpose we recall the notion of Gibbs measure on SZZd. A shift invariant potential

� is a family f�� : � � ZZd; j�j < +1g of maps �� : S� ! IR with the properties

i. For all i 2 ZZd, � � ZZd �nite:

��+i = �� Æ �i:

ii.

X
�30

k��k1 < +1:

Here and later j�j denotes the cardinality of �. Letting H�(�) =
P

A\�6=;�A(�)

and choosing � 2 SZZd, also write H�
�(��) = H�(����c), where ����c is the element

of SZZd which coincides with � on � and with � on �c. The �nite volume Gibbs

measure on S� with boundary condition � is given by

���(��) =
exp [�H�

�(��)]

Z�
�

;

where Z�
� is the normalization factor. A probability measure � on SZZd is said to be

Gibbsian for the potential �, and we write � 2 G(�) if for every � � ZZd �nite and

� 2 SZZd

�(f� : �� = ��gj��c = ��c) = ���(��)

for �-a.e. � . If � is shift-invariant, i.e. � Æ �i = � for all i 2 ZZd, then we write

� 2 Gs(�). More generally, we let P (resp. Ps) be the set of probability measures

(resp. shift-invariant probability measures) on SZZd.
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Given � � ZZd, we denote by F� the �-�eld on SZZd generated by the projection

� ! ��. For � 2 P, ��� is the restriction of � to F�. We will use, for �; � 2 P, the
notion of local relative entropy:

h�(�j�) =
X
��

���(��) log
���(��)

���(��)
(2.2)

with � � ZZd �nite, and of speci�c relative entropy

h(�j�) = lim sup
�"ZZd

1

j�j
h�(�j�) (2.3)

where in the limit above � varies over hypercubes centered in the origin. It is easily

seen that 0 � h(�j�) � +1. In the case of � 2 Gs(�) for a potential �, in (2.2)

���(��) can be replaced by ���(��), for an arbitrary � , without changing the limit

in (2.3). Moreover, for � 2 Gs(�) and � 2 Ps, the limsup in (2.3) is actually a limit.

In this case the Gibbs variational principle states that, for � 2 Ps, h(�j�) = 0 if

and only if � 2 Gs(�); so h(�j�) represents a notion of (pseudo-) distance of � from

Gs(�).

We now de�ne a corresponding notion of speci�c relative entropy for transition

probabilities, that will be used to measure distance between two dynamics. Let

P (d�j�) and Q(d�j�) two transition probabilities on SZZd, and � 2 P. We de�ne

H�(P jQ) = lim sup
�"ZZd

1

j�j

Z
h�(P (�j�)jQ(�j�))�(d�):

ClearlyH�(P jQ) � 0. By conditioning to � the joint lawQ�(d�; d�) � P (d�j�)�(d�)
we obtain the backward transition probability, that we denote by P̂�(d�j�). We also

let P�(d�) be given by

P�(A) =
Z
P (Aj�)�(d�)

for A � SZZd measurable. If P� = � we say that � is stationary for P (d�j�).

Our �rst result concerns the entropy production for a PCA (cf. [4]). The

corresponding result in continuous time has appeared in [9].

Proposition 2.1 Suppose � is a stationary measure for a shift invariant, local PCA

with transition probability P (d�j�). If � is also a shift invariant Gibbs measure w.r.t.

a certain potential � ( � 2 Gs(�)), then, for any shift invariant measure �,

h(�j�)� h(P�j�) = H�(P̂�jP̂�):

In particular, if � 2 Gs(�), then P� 2 Gs(�), that is the set of shift-invariant Gibbs
measures w.r.t. the potential � is stable under the action of this PCA dynamics.

Proof. Let � be a �nite subset of ZZd, and consider

P�(�j�) =
Y
i2�

pi(�ij�):
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This expression depends on the restriction of � to a neighborhood of �, that we

denote by �.

Consider now the measure Q�(d�; d�) de�ned above. For A;B � ZZd with A �nite,

we denote by Q�(�Aj�B) the restriction to the �-�eld generated by the projection

(�; �)! �A of the measure Q conditioned to the �-�eld generated by the projection

(�; �) ! �B. So, e.g., P�(�j�) = Q�(��j�ZZd) � Q�(��j�), independently of �.

Similarly, Q̂�(�Aj�B) denotes the time-reversed conditioning, so that

��P̂�(��j�) = Q̂�(��j�): (2.4)

For C � ZZd we will also use conditionings of the form

Q̂(�Aj�B; �C);

with the obvious meaning.

A simple computation, using the fact that P� = �, yields

h�(�j�)� h�(P�j�) =

=
X
��

��(P�)(��)
X
�
�

Q̂�(��j��) log
Q̂�(��j��)

Q̂�(��j��)

= EQ

"
log

Q̂�(��j��)

Q̂�(��j��)

#
:

Since

h(�j�)� h(P�j�) = lim
�"ZZd

1

j�j
[h�(�j�)� h�(P�j�)];

then the conclusion follows provided we show (see (2.4))

lim
�"ZZd

1

j�j
EQ

"
log

Q̂�(��j��)

Q̂�(��j�)

#
= 0 (2.5)

and

lim
�"ZZd

1

j�j
EQ

"
log

Q̂�(��j��)

Q̂�(��j�)

#
= 0: (2.6)

Note that (2.6) is a special case of (2.5).

Let now �
 be the probability measure on SZZd obtained by taking the in�nite

product of the uniform measure � in S. We denote by �
(��) the projection of

�
 on F�. Let also fi1; : : : ; ij�jg be the lexicographic ordering of the elements of

�; de�ne �k = fi1; : : : ; ikg for 1 � k � j�j, and �0 = ;. By the chain rule for

conditional measures

log
Q̂(��j��)

�
(��)
=

j�jX
k=1

log
Q̂(�ik j��; ��k�1

)

�(�ik)
: (2.7)
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Moreover, by shift invariance of Q

EQ

2
4log Q̂(�ik j��; ��k�1

)

�(�ik)

3
5 = EQ

2
4log Q̂(�0j��

�ik
�; ��

�ik
�k�1

)

�(�0)

3
5 : (2.8)

Let ZZd� = fi 2 ZZd : i � 0g, where ��� is the lexicographic order. By the Shannon-

Breiman-McMillan Theorem ([1]), for every � > 0 there are A � ZZd, B � ZZd� �nite

such that if A � V and B � W � ZZd� then

�����EQ

"
log

Q̂(�0j�V ; �W )

�(�0)

#
� EQ

"
log

Q̂(�0j�A; �B)

�(�0)

#����� < �: (2.9)

Note that, if we take � large enough and ik 2 � is far enough from the boundary of

�, then A � ��ik�, and B � ��ik�k�1. For the other values of ik 2 �,

EQ

2
4log Q̂(�0j��

�ik
�; ��

�ik
�k�1

)

�(�0)

3
5 � log jSj;

which is the upper bound for the entropy of any probability measure is S with

respect to �. Summing all up

lim
�"ZZd

1

j�j
EQ

"
log

Q̂(��j��)

�
(��)

#
= EQ

2
4log Q̂(�0j�ZZd; �ZZd

�

)

�(�0)

3
5 : (2.10)

Exactly in the same way one shows that

lim
�"ZZd

1

j�j
EQ

"
log

Q̂(��j�)

�
(��)

#
= EQ

2
4log Q̂(�0j�ZZd; �ZZd

�

)

�(�0)

3
5 : (2.11)

Thus (2.10) and (2.11) establish (2.5).

Next result shows that the measures in Ps for which the entropy production is

zero are exactly those in Gs(�). This result goes back to [10], where it has been

proved for reversible systems in continuous time. The assumption of reversibility

has been dropped in [12]. In discrete-time, the proof for a special class of reversible

PCA is given in [11], Proposition 1. In the generality given here, the �rst proof

was contained (but unpublished) in one of the authors' PhD Thesis ([4]). Later,

a proof using general entropy arguments was given in [19]. In this paper we have

preferred to emphasize the fact that the following result comes from the precise

entropy production formula presented in Proposition 2.1.

Proposition 2.2 Under the same assumptions of Proposition 2.1, suppose � 2 Ps

is such that

h(�j�) = h(P�j�) (2.12)

(in particular, this happens when � is stationary). Then � 2 Gs(�).

6



Proof. By what seen in Proposition 2.1, (2.12) amounts to

H�(P̂�jP̂�) = 0: (2.13)

We now adapt a classical argument for Gibbs measures (see e.g. [22], Th. 7.4). Let

V be a �xed hypercube and, for k > 0,

@kV = fi 2 V c : dist(i; V ) � kg;

where dist(�) is the Euclidean distance. Take, now, a hypercube �m;k that is obtained

as disjoint union of md translates of V [ @kV , say

�m;k = [md

i=1Wi;k;

where Wi;k = Ti(V [ @kV ), and Ti is a suitable translation. We also write Vi = TiV .

De�ning, for i 2 f1; : : : ; mdg
Bi;k = Wi;k n Vi

we have (we use the notations introduced in the proof of Proposition 2.1)

log
Q̂�(��m;k

j�)

Q̂�(��m;k
j�)

=
mdX
i=1

log
Q̂�(�Vij�Bi;k

; �)

Q̂�(�Vi j�Bi;k
; �)

+ log
Q̂�(�B1;k

j�)

Q̂�(�B1;k
j�)

:

By positivity of relative entropy:

EQ

2
4log Q̂�(�B1;k

j�)

Q̂�(�B1;k
j�)

3
5 � 0

so that

EQ

2
4log Q̂�(��m;k

j�)

Q̂�(��m;k
j�)

3
5 � mdX

i=1

EQ

2
4log Q̂�(�Vij�Bi;k

; �)

Q̂�(�Vij�Bi;k
; �)

3
5 : (2.14)

By translation invariance of Q:

EQ

2
4log Q̂�(�Vij�Bi;k

; �)

Q̂�(�Vi j�Bi;k
; �)

3
5 = EQ

2
4log Q̂�(�V j�T�1

i
Bi;k

; �)

Q̂�(�V j�T�1
i

Bi;k
; �)

3
5 : (2.15)

Moreover, since Bi;k " V
c
i as k " +1, using again the Shannon-Breiman-McMillan

Theorem, for each � > 0 we can choose k large enough so that

������EQ

2
4log Q̂�(�V j�T�1

i
Bi;k

; �)

Q̂�(�V j�T�1
i

Bi;k
; �)

3
5� EQ

"
log

Q̂�(�V j�V c ; �)

Q̂�(�V j�V c; �)

#������ � �: (2.16)

Summing up (2.14), (2.15) and (2.16), we get

1

md
EQ

2
4log Q̂�(��m;k

j�)

Q̂�(��m;k
j�)

3
5 � EQ

"
log

Q̂�(�V j�V c; �)

Q̂�(�V j�V c; �)

#
� �: (2.17)
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But md is proportional to j�m;kj, so, by (2.13)

lim
m!+1

1

md
EQ

2
4log Q̂�(��m;k

j�)

Q̂�(��m;k
j�)

3
5 = 0:

Thus, since � is arbitrary, (2.17) yields

EQ

"
log

Q̂�(�V j�V c ; �)

Q̂�(�V j�V c; �)

#
= 0

that, by elementary properties of relative entropy, implies

Q̂�(�V j�V c ; �) = Q̂�(�V j�V c; �) Q� a.s. (2.18)

At this point we use Proposition 3.2 in [13], which implies that if (2.18) holds for a

� 2 Gs(�), then �(�V j�V c) = �(�V j�V c) a.s. and then � 2 Gs(�) too. This completes

the proof.

3 A class of reversible dynamics

In this section we introduce a class of reversible PCA's we will be dealing with in

the rest of the paper, and give some general results on their stationary measures,

resp. reversible measures. Let us remember that a PCA P is called reversible if

there exists at least one probability measure � such that the Markov process with

initial law � and dynamics P is reversible.

We choose S = f�1; 1g as spin space. Consider a function k : ZZd ! IR that

is of �nite range, i.e. there exists R > 0 such that k(i) = 0 for jij > R, and

symmetric, i.e. k(i) = k(�i) for every i 2 ZZd (this last assumption being necessary

to assure the reversibility of the PCA, cf [11]). Moreover, let � 2 f�1; 1gZZ
d

be a

�xed con�guration, that will play the role of boundary condition. For � � ZZd, we

de�ne the transition probability P �
�(d�j�) = 
i2�P

�
i (d�ij�) by

P �
i (�i = sj�) = pi(sj~�) =

1

2

2
41 + s tanh(�

X
i2ZZd

k(i� j)~�j + �h);

3
5 (3.1)

where ~� = ����c ; h 2 IR, � > 0 are given parameters. According to [11], this par-

ticular form of pi is indeed the most general one for a shift invariant non degenerate

local PCA on f�1; 1gZZ
d

.

In the case � is a hypercube, we can also consider periodic boundary conditions.

The associated transition probability is denoted by P per
� . In general, when � is

�nite, we write P �
�(�j�) in place of P �

�(f�gj�). In the case � = ZZd, the boundary

condition � plays no role, and will be omitted.

In the rest of this section we establish some simple facts about stationary measures

for these PCA's.
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Proposition 3.1 Let � � ZZd �nite, and � 2 f�1; 1gZZ
d

. Then the �nite volume

PCA with transition probability P �
�(�j�) has a unique stationary measure ��� given

by

���(�) =
1

W �
�

Y
i2�

e�h�i cosh

2
4� X

j2ZZd

k(i� j)~�j + �h

3
5 e��iPj2�c

k(i�j)�j ;

where, as before, ~� = ����c, andW �
� is the normalization. Moreover, ��� is reversible

for P �
�.

Proof. It is clear that P �
�(�j�) > 0 8 �; �, so that the Markov chain with transition

probability P �
� has a unique stationary measure. Thus, we only have to show that

��� is reversible, i.e.

P �
�(�j�)�

�
�(�) � P �

�(�j�)�
�
�(�): (3.2)

Observe that, since �i 2 f�1; 1g; P
�
� may be written in the form

P �
�(�j�) =

Y
i2�

e
��i

�P
j
k(i�j)~�j+h

�

2 cosh
�
�
P

j k(i� j)~�j + �h
� :

Thus (3.2) amounts to

X
i2�

X
j2ZZd

�i~�jk(i� j) +
X
i2�

X
j 62�

�i�jk(i� j) =
X
i2�

X
j2ZZd

�i~�jk(i� j) +
X
i2�

X
j 62�

�i�jk(i� j)

which is easily checked.

The above result on stationary measures for PCA's in �nite volume, has an imme-

diate consequence in in�nite volume.

Proposition 3.2 Let � be any �xed boundary condition, and � be any limit point

of ��� as � " ZZd. Then � is reversible for the in�nite volume PCA de�ned in (3.1),

and � is Gibbsian for the shift-invariant potential � given by

�fig(�i) = ��h�i
�Ui

(�Ui
) = � log cosh

h
�
P

j k(i� j)�j + �h
i

��(��) = 0 otherwise ;

(3.3)

where Ui = fj : k(i� j) 6= 0g, that is �nite by assumption.

Proof. Note that the �nite volume Gibbs measure for � is

���(�) =
1

Z�
�

Y
i:dist(i;�)�R

cosh

2
4�X

j

k(i� j)~�j + �h

3
5 e�h�i ;

that di�ers from ��� only for boundary terms (and for the renormalization constant).

The fact that the limit of ��� is Gibbsian for � follows therefore from general facts on

Gibbs measures ([6]). The reversibility of � for the in�nite volume PCA is obtained
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as follows. Let f : f�1; 1gZZ
d

� f�1; 1gZZ
d

! IR be a function which is local in both

variables. For � large enough, reversibility of ��� yields

X
�;�

P �
�(�j�)�

�
�(�)f(�; �) =

X
�;�

P �
�(�j�)�

�
�(�)f(�; �): (3.4)

Note that, for � large enough, the boundary condition � in P �
� does not play any

role in (3.4). Thus, letting � " ZZd in (3.4) obtaining

Z
P (d�j�)�(d�)f(�; �) =

Z
P (d�j�)�(d�)f(�; �); (3.5)

that establishes reversibility of �.

Remark 3.1 Instead of �xed boundary conditions, one can choose periodic bound-

ary conditions. In this case, the �nite volume measure de�ned by

�per� (�) =
1

W per
�

Y
i2�

cosh

2
4� X

j2ZZd

k(i� j)~�j + �h

3
5 e�h�i

where ~� is the periodic continuation of �, is the unique stationary reversible measure

for P per
� . Remark that, in opposition to �xed boundary conditions, we now have that

�per� = �per� , which means that the �nite volume stationary measure for the �nite

volume PCA is equal to the local speci�cation of the associated Gibbs measure.

Moreover, the following result gives a complete description of the links between the

set of reversible measures for the PCA P (which will be denoted by R), the set

of stationary ones denoted by S, the set G(�) of Gibbs measures with respect to

the potential � de�ned by (3.3), and their respective intersections with the set of

shift-invariant measures : Rs, Ss, Gs(�).

Proposition 3.3 The reversible measures for the PCA P de�ned in (3.1) are ex-

actly those Gibbs measures w.r.t. � given in (3.3) which are also stationary :

R = S \ G(�): (3.6)

Moreover, the subset of shift invariant reversible measures is equal to the set of shift

invariant stationary measures :

Rs = Ss: (3.7)

(see Fig. 1)
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Gi bbs  measur es

St ati onar y  measur es

Shi f t  i nv ar i ant  Gi bbs  measur es

Non− Shi f t  i nv ar i ant  Revers i bl e measur es

  Shift invariant Reversible measures

Reversible measures

Figure 1: Relative positions of the sets of stationary measures, reversible measures

and Gibbs measures.

Proof. The proof of the �rst assertion is based on the following proposition proved

in [11] :

Let P be a non degenerate local reversible PCA. Each reversible measure � for P is

Gibbs w.r.t. a certain potential �P . Reciprocally, any Gibbs measure w.r.t. �P is

either a reversible measure for P or periodic of period two.

Since obviously R � S, the abovementioned proposition implies R � S \G(�). For
the reciprocal inclusion, since stationary measures can not be 2-periodic, a stationary

Gibbsian measure is necessarely a reversible one.

To prove the second assertion, note that by Proposition 3.2 and Remark 3.1, Ss \
Gs(�) 3 �per. Thus Proposition 2.2 applies, that is : Ss � Gs(�). On the other

hand, from the �rst assertion: Rs = Ss \ Gs(�). Then Rs = Ss.

Remark 3.2 The proof of Proposition 3.3 doesn't use the speci�c form of the PCA

P . So equalities (3.6) and (3.7) hold as soon as Proposition 2.2 and the abovemen-

tioned result of [11] apply, that is for the general class of local, shift invariant, non

degenerate reversible PCA dynamics on SZZd for any S �nite.

4 Phase transition

In this section we show that for some reversible PCA it is indeed the case that not

all Gibbs measures for the potential in (3.3) are stationary. We treat those PCA

11



de�ned in (3.1) for which k(i) = 0 for jij > 1 (id est R=1), h = 0 and d = 2. Besides

�, there are three parameters in the game: k(0); k(e1) and k(e2), where e1; e2 are

the basis vectors in IR2. The �rst result concernes the existence of phase transition

for the potential �.

Proposition 4.1 Assume k(e1) 6= 0, k(e2) 6= 0. Then there exists �c 2 (0;+1)

such that for � > �c jG(�)j > 1.

Proof. We divide the proof into di�erent cases, depending on the signes of

k(0); k(e1); k(e2). Note that the transformation k(�) ! �k(�) leaves invariant the
potential �.

Case 1: k(0) � 0, k(e1) > 0, k(e2) > 0.

For a given square � � ZZ2, let Clm(�) = fi 2 ZZd : dist(i;�) � mg. Consider a �xed
con�guration � 2 f�1;+1gZZ

2

such that �i � +1 for i 62 � ( ��c � +1). Moreover

let ZZ2
� = ZZ2+(1=2; 1=2). We recall the classical notion of Peierls contour associated

to �. We say that the segment joining two nearest neighbors a; b 2 ZZ2
� is marked if

this segment separates two nearest neighbors i; j 2 ZZ2 for which �i�j = �1. Marked

segments form a �nite family of closed, non self-intersecting, piecewise linear curves,

that we call Peierls contours. Each segment of a contour  separates two nearest

neighbors whose spins have di�erent signes (they necessarily belong to Cl1(�)). If

i; j are nearest neighbors separated by  and �i = �1 we write i 2 @� and j 2 @+.

We call the union of the sets of sites @� and @+ the boundary of the contour .

For each i 2 � for which �i = �1, there is a minimal Peierls contour  around i,

i.e. such that i is in the interior of the closed curve .

This notion of minimal contour is the one used for the Ising model. Here we have to

modify it as follows. Two Peierls contours ; 0 are called adjacent if their boundaries

have a common point. We say that two Peierls contours ; 0 communicates if they

belong to a sequence of Peierls contours 1; : : : ; n such that for all k, k and k+1 are

adjacent. The relation of communicating is an equivalence relation. We call simply

contour the union of the Peierls contours in an equivalence class. The minimal

contour around i with �i = �1 is the one formed by the equivalence class which

contains the minimal Peierls contour around i. The boundary (@+ or @�) of a

contour is simply the union of the boundaries of the Peierls contours that form it

(see Fig. 2).

Let now �+� be the �nite volume Gibbs measure with + boundary condition, that

we write as follows:

�+�(�) =
1

ZZ+�

Y
i2Cl1(�)

cosh(�
P

j k(i� j)�+j )

cosh(�
P

j k(i� j))
with �+ = ��(+1)�c:

We have modi�ed the normalization for later convenience. A given �+ 2 f�1;+1gZZ
2

corresponds, as described above, to a collection of contours � = fc1; : : : ; cmg. Each
contour ci is a union of Peierls contours. Peierls contours belonging to di�erent ci's

do not communicate. We can write:

�+�(�) =
1

ZZ+�

mY
k=1

F (ck);
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Figure 2: Example of a con�guration � on Cl2(�) such that �0 = �1 and ��c � +1.

Drawing of its corresponding contours : 1 is the minimal Peierls contour around

the origin ; (1 [ 2 [ 3 [ 4) is the minimal contour around the origin (i.e. the

equivalence class of 1) ; f5; 6g; f7g; f8; 9; 10g; f11g; f12g are the other equiv-
alence classes.
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where

F (ck) =
Y
i2@ck

cosh(�
P

j k(i� j)�j)

cosh(�
P

j k(i� j))

and @ck = @+ck [ @�ck. Observing that if �0 = �1 then there is a contour around

0, we have:

�+�(�0 = �1) =
1

ZZ+
�

X
c1 around 0

F (c1)
X
�3c1

F (� n c1);

where, for � = c1 [ c2 [ � � � [ cm, we let F (� n c1) =
Qm

k=2 F (ck). Note that, if � is

a contour, � n c1 is also a contour, that corresponds to the con�guration obtained

by �ipping all the spins �1 inside c1 in the con�guration associated to �. It follows

that X
�3c1

F (� n c1) � Z+
� �

X
�

F (�);

and therefore

�+�(�0 = �1) �
X

c1 around 0

F (c1): (4.1)

Now note that if c1 is a contour and i 2 @c1, then the spins �i; �i�e1; �i�e2 do not

have the same sign, so that

cosh(�
P

j k(i� j)�j)

cosh(�
P

j k(i� j))
�

cosh(�A)

cosh(�B)
;

where B =
P

j k(j), A is the maximum value of j
P

j k(i � j)�j)j for � such that

�0; ��e1; ��e2 do not have the same sign, and therefore A < B. Thus, we have to

compare for a contour c1, the cardinal of its boundary j@c1j with its length denoted

by l(c1). But remark that to any point of @c1 correspond at most 4 marked segments

on c1. So, l(c1) � 4j@c1j, and we have

F (c1) �

"
cosh(�A)

cosh(�B)

#j@c1j
�

"
cosh(�A)

cosh(�B)

#l(c1)=4
:

On the other hand, for a given length l, it is easily checked that the number of

contours around 0 of length l is bounded by l33l�1. Thus, by (4.1),

�+�(�0 = �1) �
X
l�0

l33l�1
"
cosh(�A)

cosh(�B)

#l=4

that goes to zero as � " +1. Thus, taking � large enough and letting L " ZZd in

�+� , we construct a Gibbs measure � for which �+(�0 = �1) < 1=2. Simmetrically,

taking minus boundary conditions, we obtain a Gibbs measure �� for which

��(�0 = �1) > 1=2, and this proves phase transition.
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Case 2: k(0) < 0, k(e1) > 0, k(e2) > 0.

De�ne

k�(i) =

(
k(i) for i 6= 0

�k(0) for i = 0;

and let �� be the associated potential.

Consider also the map T : f�1; 1gZZ
2

! f�1; 1gZZ
2

given by

(T�)i =

(
�i for i 2 ZZ2e
��i for i 2 ZZ2o:

To stress dependence on the potential � we write ���;� for ���. It is easily seen that

���;�(�) = �T��;��(T�);

so that the map �! � Æ T is a bijection between G(�) and G(��). The conclusion

follows from the fact that jG(��)j > 1, as seen in case 1.

Case 3: k(0) � 0, k(e1) > 0, k(e2) < 0.

This case is treated as case 2, with the following choices:

k�(i) =

(
k(i) for i 6= e2
�k(e2) for i = e2;

and

(T�)i =

(
�i for i = (x; y) with y even

��i otherwise :

the proof is now completed.

Remark 4.1 The special case k(0) = 0 was already treated in [11] example 2 (for

k(e1) = k(e2) = 1) , where a remarkable relation with Ising model was pointed out.

We recall here in some more generality the principal steps of the argumentation :

let ZZ2
o = f(x; y) 2 ZZ2 : x + y is odd g, ZZ2e = ZZ2 n ZZ2

o and, similarly, �o = � \ ZZ2o,

�e = � \ ZZ2e. Note that since k(0) = 0; ��o
and ��e

are independent under ���, i.e.

��� = ���e

 ���o

. Consider the following anisotropic Ising model on f�1; 1g�:

���(�) =
1

N �
�

exp

"
�
X
i2�

(k(e1)�i~�i+e1 + k(e2)�i~�i+e2)

#
;

where N �
� is the normalization and ~� = ����c. Restricting this measure to the sites

in �e we obtain

��e
���(��e

) =
X
��o

���(�)

=
2

N �
�

Y
i2�o

cosh

2
4�X

j

k(i� j)~�j

3
5

= ���o
(��e

):
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Therefore, phase transition for G(�) follows from phase transition for the Ising

model: since ��(�0 = +1) < 1
2
< �+(�0 = +1), the restrictions ��e

�� and ��e
�+

are di�erent, and then

(�+
ZZ2o

= ��e
�+) 6= (��e

�� = ��
ZZ2o
):

We now show that, in certain cases, there are elements in G(�) that are not station-
ary.

Proposition 4.2 Suppose k(0) � 0, k(e1) < 0, k(e2) < 0, and let �+ be the Gibbs

mesure corresponding to plus boundary conditions. Suppose � is large enough so

that �+ 6= ��. Then �+ is not stationary.

Proof. We �rst observe that the transformation k(�) ! �k(�) do not change the

elements of G(�), but it does change the dynamics. We recall few basic notions

on stochastic ordering. Given �; � 2 f�1; 1gZZ
2

, we say that � � � if �i � �i for

every i 2 ZZ2. Monotonicity of functions f�1; 1gZZ
2

! IR is de�ned with respect to

this partial order. Finally, for �; � probabilities on f�1; 1gZZ
2

, we say that � � � ifR
fd� �

R
fd� for every increasing f .

The key observation consists in the fact that, under our assumptions on k(�), the
transition probability P (d�j�) is decreasing, i.e.

� � � implies P� � P�:

This follows from the facts that p0(1j�) is decreasing in �, while p0(�1j�) is increasing
in � (see [14] or [16] for details). Let now �0 be a limit point of the sequence �per�

de�ned in Remark 3.1. By using the criterion in [15], Th. II 2.9, it is easy to check

that �
per
� � �+� for every �, and so �0 � �+. Moreover,

�0(�0 = �1) =
1

2
> �+(�0 = �1)

. So �0 6= �+. On the other hand, by Proposition 3.2, �0 is stationary. Therefore

P�+ � P�0 = �0 < �+, which completes the proof.
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