Weierstraß-Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.
Preprint
ISSN 0946-8633

An analytic approach to a generalized Naghdi shell model

Jürgen Sprekels ${ }^{1}$, Dan Tiba ${ }^{1,2}$

submitted: 21st February 2001

1 Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstrasse 39
D - 10117 Berlin
Germany
E-Mail: sprekels@wias-berlin.de
E-Mail: tiba@wias-berlin.de

2 Institute of Mathematics
Romanian Academy
P. O. Box 1-764

RO-70700 Bucharest
Romania
E-Mail: dtiba@imar.ro

Preprint No. 643
Berlin 2001

1991 Mathematics Subject Classification. 74K25, 35Q72.
Key words and phrases. Shells with little regularity, simplified approach.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
D-10117 Berlin
Germany

Fax: $\quad+49302044975$
E-Mail (X.400): $\quad c=d e ; a=d 400-\mathrm{gw} ; \mathrm{p}=\mathrm{WIAS}-\mathrm{BERLIN} ; \mathrm{s}=$ preprint
E-Mail (Internet): preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

In this paper a shell model of generalized Naghdi type is studied which requires only low regularity conditions. It is shown that the corresponding system of linear variational equations (representing a boundary value problem for a linear system of six partial differential equations on the shell) admits a unique solution. The main step in the proof is to show the coercivity of the corresponding bilinear form which is equivalent to a Korn inequality in curvilinear coordinates. In this paper, a direct approximation argument is used for the proof of coercivity.

1 Introduction

In this work, we propose a model of a thin shell which may be viewed as a direct generalization of the classical Naghdi model or of the Reissner-Mindlin linear plate model. We underline that our work enters the class of hierarchical models, and we quote the treatise of Ciarlet [3], [4] for a detailed presentation of the subject.

In our study, we are motivated by several aims. First, we relax the regularity assumptions which are generally used in the literature on shells and curved rods, namely the three times differentiability of the middle surface or of the line of centroids. Our assumption requires just piecewise C^{2}-surfaces and it may be compared with the recent works of Geymonat and Sanchez-Palencia [6], Blouza [1], Le Dret and Blouza [5], Ignat, Sprekels and Tiba [7], although the methods are very different. In Remark 2.1, we point out that even slightly less regularity is enough for our present approach to work.
Another scope of this paper is to provide a simplified proof for the existence and uniqueness theorem for the shell equation. Consequently, we have minimized, as much as possible, the use of elements from differential geometry and even from mechanics, and this explains the title of our work. In this sense, we have made the simplifying assumption that the middle surface of the shell is given by the graph of a function, which still allows for a large class of applications. We also point out that the main reason behind this hypothesis is our intention to study, in a subsequent work, shape optimization questions associated to our model. Taking into account the complexity and the novelty of the problem and of the approach, such a simplification seems reasonable.

In Section 2, we perform a detailed description of our partially clamped shell model, and we state the main result. Section 3 provides the rather lengthy existence proof, organized as a sequence of lemmas.

Finally, we mention that in the case of arches it was shown in Sprekels and Tiba [10], and Ignat, Sprekels and Tiba [8], that Lipschitz regularity suffices for the existence results; besides, a complete optimization theory was developed.

2 The model

Let $\omega \subset \mathbb{R}^{2}$ be an open bounded connected set, not necessarily simply connected, with Lipschitz boundary $\partial \omega$. For $\varepsilon>0$, we define $\Omega:=\omega \times]-\varepsilon, \varepsilon\left[\subset \mathbb{R}^{3}\right.$, satisfying the same assumptions as ω. We denote by $\left.\left(x_{1}, x_{2}\right) \in \omega, x_{3} \in\right]-\varepsilon, \varepsilon[, \bar{x}=$ $\left(x_{1}, x_{2}, x_{3}\right) \in \Omega$, the independent variables.
Let $p: \omega \rightarrow \mathbb{R}$ denote a piecewise $C^{2}(\bar{\omega})$-mapping whose graph represents the middle surface \mathcal{S} of the shell. We consider the geometric transformation $F: \Omega \rightarrow$ \mathbb{R}^{3},

$$
\begin{equation*}
F(\bar{x}):=\bar{\pi}\left(x_{1}, x_{2}\right)+x_{3} \bar{n}\left(x_{1}, x_{2}\right), \tag{2.1}
\end{equation*}
$$

with $\bar{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=\left(x_{1}, x_{2}, p\left(x_{1}, x_{2}\right)\right)$, and with $\bar{n}=\left(n_{1}, n_{2}, n_{3}\right)$ denoting the normal vector to \mathcal{S} in the point $\bar{\pi}\left(x_{1}, x_{2}\right)$. Notice that the vectors $\frac{\partial \bar{\pi}}{\partial x_{1}}=\left(1,0, p_{1}\right)$, $\frac{\partial \bar{\pi}}{\partial x_{2}}=\left(0,1, p_{2}\right)$, where $p_{1}:=\frac{\partial p}{\partial x_{1}}$ and $p_{2}:=\frac{\partial p}{\partial x_{2}}$, are always linearly independent; consequently,

$$
\begin{align*}
\bar{n} & =\frac{\frac{\partial \bar{\pi}}{\partial x_{1}} \wedge \frac{\partial \bar{\pi}}{\partial x_{2}}}{\left|\frac{\partial \bar{\pi}}{\partial x_{1}} \wedge \frac{\partial \bar{\pi}}{\partial x_{2}}\right|_{\mathbb{R}{ }^{3}}} \\
& =\left(-\frac{p_{1}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}},-\frac{p_{2}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}, \frac{1}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}\right) \tag{2.2}
\end{align*}
$$

Here " \wedge " is the exterior product in \mathbb{R}^{3}, while $|\cdot|_{\mathbb{R}^{K}}$ and $\langle\cdot, \cdot\rangle_{\mathbb{R}^{K}}$ denote norm and scalar product,respectively, in the Euclidian space \mathbb{R}^{K}. In addition, standard notations for vectors, matrices, and so on, will be used throughout the text.

Assume that $\partial \omega$ is divided in two nonoverlapping open parts γ_{0}, γ_{1}. We introduce the notations $\left.\Gamma_{0}:=\gamma_{0} \times\right]-\varepsilon, \varepsilon\left[, \Gamma_{1}:=\partial \Omega \backslash \Gamma_{0}\right.$, as well as

$$
\begin{equation*}
\hat{\Omega}:=F(\Omega), \quad \hat{\Gamma}_{0}:=F\left(\Gamma_{0}\right), \quad \hat{\Gamma}_{1}:=F\left(\Gamma_{1}\right) . \tag{2.3}
\end{equation*}
$$

Under our subsequent assumptions (see (2.15)), F is a homeomorphism, and $\hat{\Omega}$ is an open connected bounded set in \mathbb{R}^{3} representing the shell and having the Lipschitz boundary $\partial \hat{\Omega}:=\overline{\hat{\Gamma}_{0}} \cup \hat{\Gamma}_{1}$. For $\hat{\Omega}$, we introduce the Hilbert space

$$
\begin{equation*}
V(\hat{\Omega})=\left\{\hat{v} \in H^{1}(\hat{\Omega})^{3} ;\left.\hat{v}\right|_{\hat{\Gamma}_{0}}=0\right\} \tag{2.4}
\end{equation*}
$$

and the linear elasticity system in the weak formulation,

$$
\begin{align*}
& \int_{\hat{\Omega}}\left[\lambda \hat{e}_{p p}(\hat{u}) \hat{e}_{q q}(\hat{v})+2 \mu \hat{e}_{i j}(\hat{u}) \hat{e}_{i j}(\hat{v})\right] d \hat{x} \\
= & \int_{\hat{\Omega}} \hat{f}_{i} \hat{v}_{i} d \hat{x}+\int_{\hat{\Gamma}_{1}} \hat{h}_{i} \hat{v}_{i} d \hat{\Gamma}, \quad \forall \hat{v} \in V(\hat{\Omega}) . \tag{2.5}
\end{align*}
$$

Here, $\lambda \geq 0, \mu>0$ are the Lamé constants of the material, $\hat{f}_{i} \in L^{2}(\hat{\Omega})$ are the body forces, $\hat{h}_{i} \in L^{2}\left(\hat{\Gamma}_{1}\right)$ are the surface tractions, and the summation convention is used. The components of the linearized strain or change of metric tensor are given by

$$
\begin{equation*}
\hat{e}_{i j}(\hat{v})=\frac{1}{2}\left(\frac{\partial \hat{v}_{i}}{\partial \hat{x}_{j}}+\frac{\partial \hat{v}_{j}}{\partial \hat{x}_{i}}\right), \quad i, j=\overline{1,3} . \tag{2.6}
\end{equation*}
$$

Our main geometric assumption is that the displacement $\hat{u} \in V(\hat{\Omega})$ has the form

$$
\begin{equation*}
\hat{u}(\hat{x})=\bar{u}\left(x_{1}, x_{2}\right)+x_{3} \bar{r}\left(x_{1}, x_{2}\right), \quad \hat{x} \in \hat{\Omega}, \tag{2.7}
\end{equation*}
$$

with $\bar{x}=\left(x_{1}, x_{2}, x_{3}\right)=F^{-1}(\hat{x})$, and where $\bar{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\bar{r}=\left(r_{1}, r_{2}, r_{3}\right)$ belong to the space

$$
\begin{equation*}
V(\omega):=\left\{\bar{v}=\left(v_{1}, v_{2}, v_{3}\right) \in H^{1}(\omega)^{3} ;\left.\bar{v}\right|_{\gamma_{0}}=0\right\} . \tag{2.8}
\end{equation*}
$$

This means that we are looking for solutions in the infinite dimensional subspace

$$
\begin{equation*}
\tilde{V}(\hat{\Omega}):=\{\hat{u} \in V(\hat{\Omega}) ; \hat{u} \quad \text { is of the form (2.7) }\} \tag{2.9}
\end{equation*}
$$

Note that $\tilde{V}(\hat{\Omega})$ can through the relation (2.7) be identified with the product space $V(\omega)^{2}:=V(\omega) \times V(\omega)$. Therefore, instead of working in the space $\tilde{V}(\hat{\Omega})$, we can always work in $V(\omega)^{2}$. We will do this repeatedly later in this paper.

From the geometrical point of view, it should be clear that \bar{u} represents the displacement of the middle surface \mathcal{S} of the shell, while \bar{r} is the modification of the points along the normal $\bar{n}\left(x_{1}, x_{2}\right)$ which are assumed to remain on a line. Note also that the form (2.7) allows for both dilation and contraction of the elastic material, and that it constitutes a generalization of the standard assumptions associated with the so-called Naghdi model (cf. Ciarlet [4], Blouza [1]).
Let us now collect some properties of the transformation F. The Jacobian $J:=D F$ of F is given by

$$
J(\bar{x})=\left[\begin{array}{ccc}
1+x_{3} \frac{\partial n_{1}}{\partial x_{1}} & x_{3} \frac{\partial n_{1}}{\partial x_{2}} & n_{1} \tag{2.10}\\
x_{3} \frac{\partial n_{2}}{\partial x_{1}} & 1+x_{3} \frac{\partial n_{2}}{\partial x_{2}} & n_{2} \\
p_{1}+x_{3} \frac{\partial n_{3}}{\partial x_{1}} & p_{2}+x_{3} \frac{\partial n_{3}}{\partial x_{2}} & n_{3}
\end{array}\right]
$$

We recall the relations

$$
\begin{align*}
& n_{1}=-n_{3} p_{1}, \quad n_{2}=-n_{3} p_{2} \tag{2.11}\\
& \frac{\partial \bar{n}}{\partial x_{1}}\left(x_{1}, x_{2}\right)=\frac{\partial n_{1}}{\partial x_{1}} \frac{\partial \bar{\pi}}{\partial x_{1}}+\frac{\partial n_{2}}{\partial x_{1}} \frac{\partial \bar{\pi}}{\partial x_{2}} \tag{2.12}\\
& \frac{\partial \bar{n}}{\partial x_{2}}\left(x_{1}, x_{2}\right)=\frac{\partial n_{1}}{\partial x_{2}} \frac{\partial \bar{\pi}}{\partial x_{1}}+\frac{\partial n_{2}}{\partial x_{2}} \frac{\partial \bar{\pi}}{\partial x_{2}} \tag{2.13}
\end{align*}
$$

which are easy consequences of (2.2) and of $|\bar{n}|_{\mathbb{R}^{3}}=1$ which implies that $\left\langle\bar{n}, \frac{\partial \bar{n}}{\partial x_{i}}\right\rangle_{\mathbb{R}^{3}}$ $=0$. Hence, $\frac{\partial \bar{n}}{\partial x_{i}}$ is orthogonal to \bar{n} and generated by $\frac{\partial \bar{\pi}}{\partial x_{1}}$ and $\frac{\partial \bar{\pi}}{\partial x_{2}}, i=1,2$. Notice that (2.12), (2.13) are special cases of the equations of movement of the local frame on the surface \mathcal{S}, see Cartan [2]. The coefficients $\frac{\partial n_{i}}{\partial x_{\alpha}}, i=\overline{1,3}, \alpha=\overline{1,2}$, may be interpreted as various curvatures of \mathcal{S}.

Using (2.10)-(2.13), one can easily check that

$$
\begin{align*}
\operatorname{det} J(\bar{x})= & {\left[1+x_{3}\left(\frac{\partial n_{1}}{\partial x_{1}}+\frac{\partial n_{2}}{\partial x_{2}}\right)+x_{3}^{2}\left(\frac{\partial n_{1}}{\partial x_{1}} \frac{\partial n_{2}}{\partial x_{2}}-\frac{\partial n_{1}}{\partial x_{2}} \frac{\partial n_{2}}{\partial x_{1}}\right)\right] } \\
& \cdot \sqrt{1+p_{1}^{2}+p_{2}^{2}} . \tag{2.14}
\end{align*}
$$

Since $p \in W^{2, \infty}(\omega)$, it follows from (2.14) that if $\varepsilon>0$ is assumed to be "small", then

$$
\begin{equation*}
\operatorname{det} J(\bar{x}) \geq c>0 \quad \forall \bar{x} \in \Omega \tag{2.15}
\end{equation*}
$$

This justifies the definition (2.3) of the shell $\hat{\Omega}$ via the geometric transformation F from (2.1). From now on, we will always assume that $0<\varepsilon<1$ is small enough to guarantee the validity of (2.15).
In the next section, the inverse of J and the Jacobian of F^{-1} will be needed. We denote them by

$$
\begin{equation*}
J(\bar{x})^{-1}=\left(h_{i j}(\bar{x})\right)_{i, j=\overline{1,3}}, \quad D F^{-1}(\hat{x})=\left(d_{i j}(\hat{x})\right)_{i, j=\overline{1,3}} . \tag{2.16}
\end{equation*}
$$

Their calculation is tedious (but straightforward), and we just list some elements of $J(\bar{x})^{-1} \cdot \operatorname{det} J(\bar{x})$ (with obvious notations):

$$
\begin{align*}
& \tilde{h}_{11}=n_{3}\left(1+x_{3} \frac{\partial n_{2}}{\partial x_{2}}\right)-n_{2}\left(p_{2}+x_{3} \frac{\partial n_{3}}{\partial x_{2}}\right) \tag{2.17}\\
& \tilde{h}_{21}=n_{2}\left(p_{1}+x_{3} \frac{\partial n_{3}}{\partial x_{1}}\right)-n_{3} x_{3} \frac{\partial n_{2}}{\partial x_{1}} \tag{2.18}
\end{align*}
$$

$$
\begin{align*}
& \tilde{h}_{31}=x_{3} \frac{\partial n_{2}}{\partial x_{1}}\left(p_{2}+x_{3} \frac{\partial n_{3}}{\partial x_{2}}\right)-\left(1+x_{3} \frac{\partial n_{2}}{\partial x_{2}}\right)\left(p_{1}+x_{3} \frac{\partial n_{3}}{\partial x_{1}}\right) \tag{2.19}\\
& \tilde{h}_{32}=x_{3} \frac{\partial n_{1}}{\partial x_{2}}\left(p_{1}+x_{3} \frac{\partial n_{3}}{\partial x_{1}}\right)-\left(1+x_{3} \frac{\partial n_{1}}{\partial x_{1}}\right)\left(p_{2}+x_{3} \frac{\partial n_{3}}{\partial x_{2}}\right) . \tag{2.20}
\end{align*}
$$

We introduce the vectorial mapping $\bar{w}: \Omega \rightarrow R^{3}$ by

$$
\begin{equation*}
\bar{w}(\bar{x})=\bar{u}\left(x_{1}, x_{2}\right)+x_{3} \bar{r}\left(x_{1}, x_{2}\right), \quad \bar{x} \in \Omega, \tag{2.21}
\end{equation*}
$$

so that

$$
\begin{equation*}
\hat{u}(\hat{x})=\bar{w}\left(F^{-1}(\hat{x})\right), \quad \hat{x} \in \hat{\Omega} . \tag{2.22}
\end{equation*}
$$

The Jacobian of \bar{w} is

$$
D \bar{w}(\bar{x})=\left[\begin{array}{lll}
\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}} & r_{1} \tag{2.23}\\
\frac{\partial u_{2}}{\partial x_{1}}+x_{3} \frac{\partial r_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}}+x_{3} \frac{\partial r_{2}}{\partial x_{2}} & r_{2} \\
\frac{\partial u_{3}}{\partial x_{1}}+x_{3} \frac{\partial r_{3}}{\partial x_{1}} & \frac{\partial u_{3}}{\partial x_{2}}+x_{3} \frac{\partial r_{3}}{\partial x_{2}} & r_{3}
\end{array}\right] .
$$

We infer that, for $\bar{x}=F^{-1}(\hat{x})$,

$$
\begin{align*}
& D \hat{u}(\hat{x})=D \bar{w}\left(F^{-1}(\hat{x})\right) D F^{-1}(\hat{x})=D \bar{w}(\bar{x}) \cdot\left(d_{i j}(\hat{x})\right)_{i, j=\overline{1,3}} \\
= & D \bar{w}\left(F^{-1}(\hat{x})\right) J\left(F^{-1}(\hat{x})\right)^{-1}=D \bar{w}(\bar{x}) J(\bar{x})^{-1} \\
= & D \bar{w}(\bar{x}) \cdot\left(h_{i j}(\bar{x})\right)_{i, j=\overline{1,3}} . \tag{2.24}
\end{align*}
$$

Consequently, we have (again $\bar{x}=F^{-1}(\hat{x})$)
$\left.\frac{\partial \hat{u}_{i}}{\partial \hat{x}_{j}}(\hat{x})=\left\langle\left(\frac{\partial u_{i}}{\partial x_{1}}+x_{3} \frac{\partial r_{i}}{\partial x_{1}}, \frac{\partial u_{i}}{\partial x_{2}}+x_{3} \frac{\partial r_{i}}{\partial x_{2}}, r_{i}\right),\left(d_{1 j}(\hat{x})\right), d_{2 j}(\hat{x}), d_{3 j}(\hat{x})\right)\right\rangle_{\mathbb{R}^{3}}$.
To arrive at our final model, we now restrict the set of admissible test functions $\hat{v} \in V(\hat{\Omega})$. In accordance with the expected special form (2.7) of the displacement, we consider test functions $\hat{v} \in \tilde{V}(\hat{\Omega})$,

$$
\begin{equation*}
\hat{v}(\hat{x})=\bar{\mu}\left(x_{1}, x_{2}\right)+x_{3} \bar{\rho}\left(x_{1}, x_{2}\right), \quad \hat{x} \in \hat{\Omega}, \tag{2.26}
\end{equation*}
$$

where $\bar{x}=F^{-1}(\hat{x})$ and $\bar{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right), \bar{\rho}=\left(\rho_{1}, \rho_{2}, \rho_{3}\right) \in V(\omega)$. As $\hat{u}, \hat{v} \in$ $V(\hat{\Omega})$, we can insert \hat{u}, \hat{v} in (2.5) in order to obtain the bilinear form governing our
generalized Naghdi model,

$$
\left.\left.\left.\left.\begin{array}{rl}
B(\hat{u}, \hat{v})=\lambda \int_{\hat{\Omega}}\left\{\sum_{i=1}^{3}\left[\left(\frac{\partial u_{i}}{\partial x_{1}}+x_{3} \frac{\partial r_{i}}{\partial x_{1}}\right) d_{1 i}+\left(\frac{\partial u_{i}}{\partial x_{2}}+x_{3} \frac{\partial r_{i}}{\partial x_{2}}\right) d_{2 i}+r_{i} d_{3 i}\right]\right\} \\
\cdot\left\{\sum_{j=1}^{3}\left[\left(\frac{\partial \mu_{j}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{j}}{\partial x_{1}}\right) d_{1 j}+\left(\frac{\partial \mu_{j}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{j}}{\partial x_{2}}\right) d_{2 j}+\rho_{j} d_{3 j}\right]\right\} d \hat{x} \\
+2 \mu \int_{\hat{\Omega}} \sum_{i=1}^{3}\left[\left(\frac{\partial u_{i}}{\partial x_{1}}+x_{3} \frac{\partial r_{i}}{\partial x_{1}}\right) d_{1 i}+\left(\frac{\partial u_{i}}{\partial x_{2}}+x_{3} \frac{\partial r_{i}}{\partial x_{2}}\right) d_{2 i}+r_{i} d_{3 i}\right] \\
\cdot & {\left[\left(\frac{\partial \mu_{i}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{i}}{\partial x_{1}}\right) d_{1 i}+\left(\frac{\partial \mu_{i}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{i}}{\partial x_{2}}\right) d_{2 i}+\rho_{i} d_{3 i}\right] d \hat{x}} \\
+\mu \int\{ & {\left[\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) d_{12}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) d_{22}+r_{1} d_{32}\right.} \\
\hat{\Omega} \begin{array}{rl}
\end{array} \\
& \left.+\left(\frac{\partial u_{2}}{\partial x_{1}}+x_{3} \frac{\partial r_{2}}{\partial x_{1}}\right) d_{11}+\left(\frac{\partial u_{2}}{\partial x_{2}}+x_{3} \frac{\partial r_{2}}{\partial x_{2}}\right) d_{21}+r_{2} d_{31}\right] \\
\cdot & {\left[\left(\frac{\partial \mu_{1}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{1}}{\partial x_{1}}\right) d_{12}+\left(\frac{\partial \mu_{1}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{1}}{\partial x_{2}}\right) d_{22}+\rho_{1} d_{32}\right.} \\
& \left.+\left(\frac{\partial \mu_{2}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{2}}{\partial x_{1}}\right) d_{11}+\left(\frac{\partial \mu_{2}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{2}}{\partial x_{2}}\right) d_{21}+\rho_{2} d_{31}\right] \\
+ & {\left[\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) d_{13}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) d_{23}+r_{1} d_{33}\right.} \\
& \left.+\left(\frac{\partial u_{3}}{\partial x_{1}}+x_{3} \frac{\partial r_{3}}{\partial x_{1}}\right) d_{11}+\left(\frac{\partial u_{3}}{\partial x_{2}}+x_{3} \frac{\partial r_{3}}{\partial x_{2}}\right) d_{21}+r_{3} d_{31}\right] \\
\cdot & {\left[\left(\frac{\partial \mu_{1}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{1}}{\partial x_{1}}\right) d_{13}+\left(\frac{\partial \mu_{1}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{1}}{\partial x_{2}}\right) d_{23}+\rho_{1} d_{33}\right.} \\
+ & \left.+\left(\frac{\partial \mu_{3}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{3}}{\partial x_{1}}\right) d_{11}+\left(\frac{\partial \mu_{3}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{3}}{\partial x_{2}}\right) d_{21}+\rho_{3} d_{31}\right] \\
+ & {\left[\left(\frac{\partial u_{2}}{\partial x_{1}}+x_{3} \frac{\partial r_{2}}{\partial x_{2}}\right) d_{13}+\left(\frac{\partial u_{2}}{\partial x_{2}}+x_{3} \frac{\partial r_{2}}{\partial x_{2}}\right) d_{23}+r_{2} d_{33}\right.} \\
\left.+\left(\frac{\partial u_{3}}{\partial x_{1}}+x_{3} \frac{\partial x_{3}}{\partial x_{2}}\right) d_{12}+\left(\frac{\partial u_{3}}{\partial x_{2}}+x_{3} \frac{\partial r_{3}}{\partial x_{2}}\right) d_{22}+r_{3} d_{32}\right] \\
\cdot & +\left(\frac{\partial \mu_{2}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{2}}{\partial x_{1}}\right) d_{13}+\left(\frac{\partial \mu_{2}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{2}}{\partial x_{2}}\right) d_{23}+\rho_{2} d_{33} \tag{2.27}\\
\partial x_{2}
\end{array} x_{3} \frac{\partial \rho_{3}}{\partial x_{2}}\right) d_{22}+\rho_{3} d_{32}\right]\right\} d \hat{x} .\right\}
$$

The generalized Naghdi model of a partially clamped shell is now finally obtained
by (2.7), (2.26), (2.27), and by the variational equation
$B(\hat{u}, \hat{v})=\int_{\hat{\Omega}} \hat{f}_{i} \hat{v}_{i} d \hat{x}+\int_{\hat{\Gamma}_{1}} \hat{h}_{i} \hat{v}_{i} d \hat{\Gamma} \quad \forall \hat{v} \in \tilde{V}(\hat{\Omega})$.
We underline that (2.28) is a projection of the general elasticity system (2.5) from $V(\hat{\Omega})$ onto the infinite dimensional subspace $\tilde{V}(\hat{\Omega})$. This process is reminiscent to the finite element approximation method where the projection subspaces are however only finite dimensional. We also note that with the bilinear form B acting on $\tilde{V}(\hat{\Omega}) \times \tilde{V}(\hat{\Omega})$ we can associate a bilinear form \mathcal{B} acting on $V(\omega)^{2} \times V(\omega)^{2}$ through the identity
$\mathcal{B}((\bar{u}, \bar{r}),(\bar{\mu}, \bar{\rho}))=B(\hat{u}, \hat{v})$.
In what follows, we will mainly work with the bilinear form B even if \mathcal{B} is actually meant. From this no confusion will arise.

After a standard change of variables, using also (2.22), we can rewrite the bilinear forms B and \mathcal{B}, respectively, as

$$
\begin{aligned}
& B(\hat{u}, \hat{v})=\mathcal{B}((\bar{u}, \bar{r}),(\bar{\mu}, \bar{\rho})) \\
&=\quad \lambda \int_{\Omega}\left\{\sum_{i=1}^{3}\left[\left(\frac{\partial u_{i}}{\partial x_{1}}+x_{3} \frac{\partial r_{i}}{\partial x_{1}}\right) h_{1 i}+\left(\frac{\partial u_{i}}{\partial x_{2}}+x_{3} \frac{\partial r_{i}}{\partial x_{2}}\right) h_{2 i}+r_{i} h_{3 i}\right]\right\} \\
& \cdot\left\{\sum_{j=1}^{3}\left[\left(\frac{\partial \mu_{j}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{j}}{\partial x_{1}}\right) h_{1 j}+\left(\frac{\partial \mu_{j}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{j}}{\partial x_{2}}\right) h_{2 j}+\rho_{j} h_{3 j}\right]\right\}|\operatorname{det} J(\bar{x})| d \bar{x} \\
&+2 \mu \int_{\Omega} \sum_{i=1}^{3}\left[\left(\frac{\partial u_{i}}{\partial x_{1}}+x_{3} \frac{\partial r_{i}}{\partial x_{1}}\right) h_{1 i}+\left(\frac{\partial u_{i}}{\partial x_{2}}+x_{3} \frac{\partial r_{i}}{\partial x_{2}}\right) h_{2 i}+r_{i} h_{3 i}\right] \\
& \cdot {\left[\left(\frac{\partial \mu_{i}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{i}}{\partial x_{1}}\right) h_{1 i}+\left(\frac{\partial \mu_{i}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{i}}{\partial x_{2}}\right) h_{2 i}+\rho_{i} h_{3 i}\right]|\operatorname{det} J(\bar{x})| d \bar{x} } \\
&+\mu \int_{\Omega}\left\{\left[\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) h_{12}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) h_{22}+r_{1} h_{32}\right.\right. \\
&\left.+\left(\frac{\partial u_{2}}{\partial x_{1}}+x_{3} \frac{\partial r_{2}}{\partial x_{1}}\right) h_{11}+\left(\frac{\partial u_{2}}{\partial x_{2}}+x_{3} \frac{\partial r_{2}}{\partial x_{2}}\right) h_{21}+r_{2} h_{31}\right] \\
& \cdot {\left[\left(\frac{\partial \mu_{1}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{1}}{\partial x_{1}}\right) h_{12}+\left(\frac{\partial \mu_{1}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{1}}{\partial x_{2}}\right) h_{22}+\rho_{1} h_{32}\right.} \\
&\left.+\left(\frac{\partial \mu_{2}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{2}}{\partial x_{1}}\right) h_{11}+\left(\frac{\partial \mu_{2}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{2}}{\partial x_{2}}\right) h_{21}+\rho_{2} h_{31}\right] \\
&+ {\left[\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) h_{13}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) h_{23}+r_{1} h_{33}\right.}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left(\frac{\partial u_{3}}{\partial x_{1}}+x_{3} \frac{\partial r_{3}}{\partial x_{1}}\right) h_{11}+\left(\frac{\partial u_{3}}{\partial x_{2}}+x_{3} \frac{\partial r_{3}}{\partial x_{2}}\right) h_{21}+r_{3} h_{31}\right] \\
& \cdot\left[\left(\frac{\partial \mu_{1}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{1}}{\partial x_{1}}\right) h_{13}+\left(\frac{\partial \mu_{1}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{1}}{\partial x_{2}}\right) h_{23}+\rho_{1} h_{33}\right. \\
& \left.+\left(\frac{\partial \mu_{3}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{3}}{\partial x_{1}}\right) h_{11}+\left(\frac{\partial \mu_{3}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{3}}{\partial x_{2}}\right) h_{21}+\rho_{3} h_{31}\right] \\
& +\left[\left(\frac{\partial u_{2}}{\partial x_{1}}+x_{3} \frac{\partial r_{2}}{\partial x_{1}}\right) h_{13}+\left(\frac{\partial u_{2}}{\partial x_{2}}+x_{3} \frac{\partial r_{2}}{\partial x_{2}}\right) h_{23}+r_{2} h_{33}\right. \\
& +\left(\left(\frac{\partial u_{3}}{\partial x_{1}}+x_{3} \frac{\partial r_{3}}{\partial x_{1}}\right) h_{12}+\left(\frac{\partial u_{3}}{\partial x_{2}}+x_{3} \frac{\partial r_{3}}{\partial x_{2}}\right) h_{22}+r_{3} h_{32}\right] \\
& \cdot\left[\left(\frac{\partial \mu_{3}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{3}}{\partial x_{1}}\right) h_{12}+\left(\frac{\partial \mu_{3}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{3}}{\partial x_{2}}\right) h_{22}+\rho_{3} h_{32}\right. \\
& \left.\left.+\left(\frac{\partial \mu_{2}}{\partial x_{1}}+x_{3} \frac{\partial \rho_{2}}{\partial x_{1}}\right) h_{13}+\left(\frac{\partial \mu_{2}}{\partial x_{2}}+x_{3} \frac{\partial \rho_{2}}{\partial x_{2}}\right) h_{23}+\rho_{2} h_{33}\right]\right\}|\operatorname{det} J(\bar{x})| d \bar{x} . \tag{2.30}
\end{align*}
$$

Remark 2.1 It is here that the piecewise $C^{2}(\bar{\omega})$-regularity of $p(\cdot, \cdot)$ is in fact used. However, this assumption may be slightly relaxed using more refined change of variables theorems (see, for instance, Rudin [9], p. 153).

By performing a similar change of variables in the right-hand side of (2.28), the generalized Naghdi model can be expressed directly on the domain Ω. The computations are rather tedious and, for the sake of brevity, we do not give them in detail, here. The reader may get a hint in this direction from the arguments developed in the next section.

We close the second part by stating the main result of this paper:

Theorem 2.1 If $\varepsilon>0$ is sufficiently small, then the generalized Naghdi model (2.28) has a unique solution of the form $\hat{u}(\hat{x})=\bar{u}\left(x_{1}, x_{2}\right)+x_{3} \bar{r}\left(x_{1}, x_{2}\right)$ with $(\bar{u}, \bar{r}) \in$ $V(\omega)^{2}$ and $\bar{x}=F^{-1}(\hat{x})$.

This result will be a consequence of the Lax-Milgram lemma applied to the bilinear form (2.30). To this end, we have to show its coercivity.

3 Proof of coercivity

In what follows, we shall fix $\lambda=0, \mu=\frac{1}{2}$, without loss of generality. The classical Korn's inequality with boundary conditions (cf. Ciarlet [3]) yields that
$B(\hat{u}, \hat{u}) \geq \int_{\hat{\Omega}} \sum_{i, j=1}^{3}\left|\hat{e}_{i j}(\hat{u})\right|^{2} d \hat{x} \geq c\left(\hat{\Omega}, \hat{\Gamma}_{0}\right)\|\hat{u}\|_{H^{1}(\hat{\Omega})}^{2} \quad \forall \hat{u} \in V(\hat{\Omega})$.

Since $\left.\hat{u}\right|_{\hat{\Gamma}_{0}}=0$, we may replace $\|\hat{u}\|_{H^{1}(\hat{\Omega})}$ by the equivalent norm

$$
\begin{equation*}
|\hat{u}|_{H^{1}(\hat{\Omega})}^{2}:=\sum_{i, j=1}^{3} \int_{\hat{\Omega}}\left|\frac{\partial \hat{u}_{i}}{\partial \hat{x}_{j}}\right|^{2} d \hat{x} . \tag{3.2}
\end{equation*}
$$

Lemma 3.1 If \hat{u} has the form (2.7), then

$$
\begin{gather*}
|\hat{u}|_{H^{1}(\hat{\Omega})}^{2}=\int_{\Omega} \sum_{i, j=1}^{3}\left[\left(\frac{\partial u_{i}}{\partial x_{1}}+x_{3} \frac{\partial r_{i}}{\partial x_{1}}\right) h_{1 j}(\bar{x})+\left(\frac{\partial u_{i}}{\partial x_{2}}+x_{3} \frac{\partial r_{i}}{\partial x_{2}}\right) h_{2 j}(\bar{x})\right. \\
 \tag{3.3}\\
\left.+r_{i}(\bar{x}) h_{3 j}(\bar{x})\right]^{2}|\operatorname{det} J(\bar{x})| d \bar{x}
\end{gather*}
$$

Proof. This is the consequence of (3.2) and of the change of variables in the integral, similar to that performed in (2.27), (2.28).

Our aim is to obtain an estimate directly involving the norms of $\bar{u}, \bar{r} \in V(\omega)$. While Korn's inequality estimates the symmetrized gradients $\bar{e}_{i j}$ in terms of the $H^{1}(\hat{\Omega})$ - norm, our task is more complicated owing to the presence of the nonconstant coefficients $h_{i j}$ appearing in (3.3). In the literature, such inequalities are called Korn's inequalities in curvilinear coordinates, see Ciarlet [4]. Here we indicate a direct approach based on a special approximation of the coefficients $h_{i j}$.
To this end, recall (2.2) and the fact that $\left\langle\bar{n}, \frac{\partial \bar{n}}{\partial x_{i}}\right\rangle_{\mathbb{R}^{3}}=0$ for $i=1,2$. Hence, we can conclude by a direct calculation that
$J(\bar{x})=\left[\begin{array}{ccc}1 & 0 & n_{1} \\ 0 & 1 & n_{2} \\ p_{1} & p_{2} & n_{3}\end{array}\right]\left[\begin{array}{ccc}1+x_{3} \frac{\partial n_{1}}{\partial x_{1}} & x_{3} \frac{\partial n_{1}}{\partial x_{2}} & 0 \\ x_{3} \frac{\partial n_{2}}{\partial x_{1}} & 1+x_{3} \frac{\partial n_{2}}{\partial x_{2}} & 0 \\ 0 & 0 & 1\end{array}\right]$.
Apparently, the first matrix does not depend on x_{3}, while the second matrix is a perturbation of the identity matrix for small values of $\left|x_{3}\right|$. By virtue of the relations (2.9), we also have

$$
\left[\begin{array}{ccc}
1 & 0 & n_{1} \tag{3.5}\\
0 & 1 & n_{2} \\
p_{1} & p_{2} & n_{3}
\end{array}\right]^{-1}=\frac{1}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}\left[\begin{array}{ccc}
n_{3}-n_{2} p_{2} & n_{1} p_{2} & -n_{1} \\
n_{2} p_{1} & n_{3}-n_{1} p_{1} & -n_{2} \\
-p_{1} & -p_{2} & 1
\end{array}\right]
$$

We now approximate the coefficients $h_{i j}, i, j=\overline{1,3}$ by the elements of the matrix $H=\left(h_{i j}^{0}\right)_{i, j=\overline{1,3}}$ which is defined by the right-hand side of equation (3.5). From
(2.2) and (3.5), we obtain

$$
H=\frac{1}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}\left[\begin{array}{ccc}
\frac{1+p_{2}^{2}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} & \frac{-p_{1} p_{2}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} & \frac{p_{1}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} \tag{3.6}\\
\frac{-p_{1} p_{2}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} & \frac{1+p_{1}^{2}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} & \frac{p_{2}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} \\
-p_{1} & -p_{2} & 1
\end{array}\right] .
$$

Obviously, $\operatorname{det} H=\sqrt{1+p_{1}^{2}+p_{2}^{2}}$, and therefore the quadratic form

$$
\begin{gather*}
\mathcal{K}(\bar{u}, \bar{r}):=\int_{\Omega} \sum_{i, j=1}^{3}\left[\left(\frac{\partial u_{i}}{\partial x_{i}}+x_{3} \frac{\partial r_{i}}{\partial x_{1}}\right) h_{i j}^{0}+\left(\frac{\partial u_{i}}{\partial x_{2}}+x_{3} \frac{\partial r_{i}}{\partial x_{2}}\right) h_{2 j}^{0}+r_{i} h_{3 j}^{0}\right]^{2} \\
\cdot \sqrt{1+p_{1}^{2}+p_{2}^{2}} d \bar{x} \tag{3.7}
\end{gather*}
$$

where $(\bar{u}, \bar{r}) \in V(\omega)^{2}$, constitutes an approximation to the one given in (3.3). It thus makes sense to study this form instead of (3.3) first.
Taking into account that all the functions appearing in (3.7) are independent of x_{3}, we can perform the integration with respect to x_{3} to obtain

$$
\begin{align*}
\mathcal{K}(\bar{u}, \bar{r})= & 2 \varepsilon \int_{\omega} \sum_{i, j=1}^{3}\left(\frac{\partial u_{i}}{\partial x_{1}} h_{1 j}^{0}+\frac{\partial u_{i}}{\partial x_{2}} h_{2 j}^{0}+r_{i} h_{3 j}^{0}\right)^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d x_{1} d x_{2} \\
& +\frac{2 \varepsilon^{3}}{3} \int_{\omega} \sum_{i, j=1}^{3}\left(\frac{\partial r_{i}}{\partial x_{1}} h_{1 j}^{0}+\frac{\partial r_{i}}{\partial x_{2}} h_{2 j}^{0}\right)^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d x_{1} d x_{2} \tag{3.8}
\end{align*}
$$

Lemma 3.2 The quadratic form \mathcal{K} defines a norm on $V(\omega)^{2}$ through the identity $\|(\bar{u}, \bar{r})\|:=\sqrt{\mathcal{K}(\bar{u}, \bar{r})}$, for $(\bar{u}, \bar{r}) \in V(\omega)^{2}$.

Proof. Due to the quadratic structure of \mathcal{K}, we only need to show that $\mathcal{K}(\bar{u}, \bar{r})=0$ implies that $(\bar{u}, \bar{r})=(0,0)$ almost everywhere in ω.
We just prove that $\bar{r}=0$; the argument for \bar{u} is similar. We have

$$
\begin{equation*}
\frac{\partial r_{i}}{\partial x_{1}} h_{1 j}^{0}+\frac{\partial r_{i}}{\partial x_{2}} h_{2 j}^{0}=0, \quad i, j=\overline{1,3}, \quad \text { a.e. in } \quad \omega . \tag{3.9}
\end{equation*}
$$

Let i be fixed. Multiplying (3.9) by $-p_{1}$ for $j=3$, and adding the result to relation (3.9) for $j=1$, we obtain from (3.6) that $\frac{\partial r_{i}}{\partial x_{1}}=0$ a.e. in ω. Likewise, multiplication of (3.9) by $-p_{2}$ for $j=3$, and addition to relation (3.9) for $j=2$, yield that $\frac{\partial r_{i}}{\partial x_{2}}=0$ a.e. in ω. Since $\left.r_{i}\right|_{\gamma_{o}}=0$, we conclude that $r_{i}=0$ a.e. in ω.

Lemma 3.3 There is some $\hat{c}>0$ such that

$$
\begin{equation*}
\int_{\omega} \sum_{i, j=1}^{3}\left(\frac{\partial v_{i}}{\partial x_{1}} h_{1 j}^{0}+\frac{\partial v_{i}}{\partial x_{2}} h_{2 j}^{0}\right)^{2} d x_{1} d x_{2} \geq \hat{c}|\bar{v}|_{H^{1}(\omega)^{3}}^{2}, \quad \forall \bar{v} \in V(\omega) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
|\bar{v}|_{H^{1}(\omega)^{3}}^{2}:=\sum_{i=1}^{3} \int_{\omega}\left|\nabla v_{i}\right|^{2} d x_{1} d x_{2} \tag{3.11}
\end{equation*}
$$

Proof. Notice at first that, owing to the zero boundary conditions on γ_{0}, the norm $|\cdot|_{H^{1}(\omega)^{3}}$ is equivalent on $V(\omega)$ to the usual norm of $H^{1}(\omega)^{3}$.
We consider the linear space

$$
\begin{equation*}
W:=\left\{\bar{v} \in L^{2}(\omega)^{3} ; \frac{\partial v_{i}}{\partial x_{1}} h_{1 j}^{0}+\frac{\partial v_{i}}{\partial x_{2}} h_{2 j}^{0} \in L^{2}(\omega), \quad i, j=\overline{1,3}, \quad \bar{v} \mid \gamma_{0}=0\right\} \tag{3.12}
\end{equation*}
$$

Arguing as in the proof of Lemma 3.2, we can infer that

$$
\begin{equation*}
\|\bar{v}\|_{W}:=\left(\int_{\omega} \sum_{i, j=1}^{3}\left(\frac{\partial v_{i}}{\partial x_{1}} h_{1 j}^{0}+\frac{\partial v_{i}}{\partial x_{2}} h_{2 j}^{0}\right)^{2} d x_{1} d x_{2}\right)^{1 / 2} \tag{3.13}
\end{equation*}
$$

defines a norm on W. Clearly, we have $V(\omega) \subset W$, and for any $\bar{v} \in V(\omega)$ it holds

$$
\begin{equation*}
\|\bar{v}\|_{W} \leq M|\bar{v}|_{H^{1}(\omega)^{3}}, \tag{3.14}
\end{equation*}
$$

with some fixed $M>0$. We now show that also $W \subset V(\omega)$, i.e. that $W=V(\omega)$. To this end, suppose that $\bar{v} \in W$, and let

$$
\begin{equation*}
f_{i j}:=\frac{\partial v_{i}}{\partial x_{1}} h_{1 j}^{0}+\frac{\partial v_{i}}{\partial x_{2}} h_{2 j}^{0}, \quad i, j=\overline{1,3} . \tag{3.15}
\end{equation*}
$$

Then $f_{i j} \in L^{2}(\omega), i, j=\overline{1,3}$. Now let i be fixed. As in the proof of Lemma 3.2, we multiply (3.15) by $-p_{1}$ for $j=3$ and add the result to (3.15) for $j=1$, to find that

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial x_{1}}=\frac{-p_{1} f_{i 3}+f_{i 1}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} \in L^{2}(\omega) \tag{3.16}
\end{equation*}
$$

Similarly, we prove that also $\frac{\partial v_{i}}{\partial x_{2}} \in L^{2}(\omega)$. In conclusion, $v_{i} \in H^{1}(\omega)$ (which also makes the boundary condition $\bar{v}_{\mid \gamma_{0}}=0$ meaningful), and thus $\bar{v} \in V(\omega)$.
We now consider the identity mapping I acting between the Banach space $(V(\omega)$, $\left.|\cdot|_{H^{1}(\omega)^{3}}\right)$ and the normed space $\left(W,\|\cdot\|_{W}\right)$. Clearly, I is linear and injective, and
we have just shown its surjectivity. Besides, (3.14) implies that I is continuous. Therefore, if $\left(W,\|\cdot\|_{W}\right)$ is also complete, i.e. a Banach space, then it follows from the open mapping theorem that also the inverse I^{-1} is continuous which then proves (3.10).

To prove the completeness, take any $\|\cdot\|_{W}$ - Cauchy sequence $\left\{\bar{v}^{n}\right\} \subset W$. Then, for $i, j=\overline{1,3}$,

$$
\begin{equation*}
q_{i j}^{n, m}:=\left(\frac{\partial v_{i}^{n}}{\partial x_{1}}-\frac{\partial v_{i}^{m}}{\partial x_{1}}\right) h_{1 j}^{0}+\left(\frac{\partial v_{i}^{n}}{\partial x_{2}}-\frac{\partial v_{i}^{m}}{\partial x_{2}}\right) h_{2 j}^{0} \rightarrow 0, \quad n, m \rightarrow \infty,(\tag{3.17}
\end{equation*}
$$

in $L^{2}(\omega)$. Using the same argument as in the derivation of (3.15), we have, for $i=\overline{1,3}$,

$$
\begin{equation*}
\frac{\partial\left(v_{i}^{n}-v_{i}^{m}\right)}{\partial x_{1}}=\frac{-p_{1} q_{i 3}^{n, m}+q_{i 1}^{n, m}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} \tag{3.18}
\end{equation*}
$$

which converges to 0 in $L^{2}(\omega)$ as $n, m \rightarrow \infty$. Arguing similarly for $\frac{\partial\left(v_{i}^{n}-v_{i}^{m}\right)}{\partial x_{2}}$, we conclude that $\left\{\bar{v}^{n}\right\}$ is a Cauchy sequence in $\left(V(\omega),|\cdot|_{H^{1}(\omega)^{3}}\right)$, hence convergent to some $\bar{v} \in V(\omega)$. By (3.14), $\left\|\bar{v}_{n}-\bar{v}\right\|_{W} \rightarrow 0$, which concludes the proof of the assertion.

Lemma 3.4 \mathcal{K} is coercive on $V(\omega)^{2}$ equipped with the usual $H_{0}^{1}(\omega)^{6}$ - norm.
Proof Let $(\bar{u}, \bar{r}) \in V(\omega)$. Using Young's inequality and Lemma 3.3, we have with some $\hat{C}>0$,

$$
\begin{align*}
\mathcal{K}(\bar{u}, \bar{r}) \geq & \varepsilon \int_{\omega} \sum_{i, j=1}^{3}\left(\frac{\partial u_{i}}{\partial x_{i}} h_{1 j}^{0}+\frac{\partial u_{i}}{\partial x_{2}} h_{2 j}^{0}\right)^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d x_{1} d x_{2} \\
& -\hat{C} \varepsilon \int_{\omega} \sum_{i, j=1}^{3} r_{i}^{2}\left(h_{3 j}^{0}\right)^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d x_{1} d x_{2} \\
& +\frac{2 \varepsilon^{3}}{3} \int_{\omega} \sum_{i, j=1}^{3}\left(\frac{\partial r_{i}}{\partial x_{i}} h_{1 j}^{0}+\frac{\partial r_{i}}{\partial x_{2}} h_{2 j}^{0}\right)^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d x_{1} d x_{2} \\
\geq & \hat{c} \varepsilon \int_{\omega} \sum_{i=1}^{3}\left\{\left|\frac{\partial u_{i}}{\partial x_{1}}\right|^{2}+\left|\frac{\partial u_{i}}{\partial x_{2}}\right|^{2}\right\} d x_{1} d x_{2} \\
& +\frac{2 \hat{c} \varepsilon^{3}}{3} \int_{\omega} \sum_{i=1}^{3}\left\{\left|\frac{\partial r_{i}}{\partial x_{1}}\right|^{2}+\left|\frac{\partial r_{i}}{\partial x_{2}}\right|^{2}\right\} d x_{1} d x_{2} \\
& -\hat{C} \varepsilon \int_{\omega} \sum_{i, j=1}^{3} r_{i}^{2}\left(h_{3 j}^{0}\right)^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d x_{1} d x_{2} \tag{3.19}
\end{align*}
$$

Now assume that \mathcal{K} is not coercive in the $H_{0}^{1}(\omega)^{6}$ - norm. Then there exists a sequence $\left\{\left(\bar{u}^{n}, \bar{r}^{n}\right)\right\} \subset V(\omega)^{2}$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{3} \int_{\omega}\left(\left|\frac{\partial u_{1}^{n}}{\partial x_{1}}\right|^{2}+\left|\frac{\partial u_{1}^{n}}{\partial x_{2}}\right|^{2}+\cdots+\left|\frac{\partial r_{3}^{n}}{\partial x_{1}}\right|^{2}+\left|\frac{\partial r_{3}^{n}}{\partial x_{2}}\right|^{2}\right) d x_{1} d x_{2}=1 \quad \forall n \in \mathbb{N} \tag{3.20}
\end{equation*}
$$

such that

$$
\begin{equation*}
\mathcal{K}\left(\bar{u}^{n}, \bar{r}^{n}\right) \rightarrow 0 \quad \text { for } \quad n \rightarrow \infty \tag{3.21}
\end{equation*}
$$

In view of (3.20), we can assume without loss of generality that $\bar{u}^{n} \rightarrow \bar{u}$ and $\bar{r}^{n} \rightarrow \bar{r}$ weakly in $V(\omega)$ and, by compact imbedding, strongly in $L^{2}(\omega)^{3}$. The weak lower semicontinuity of the quadratic form yields that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{K}\left(\bar{u}^{n}, \bar{r}^{n}\right) \geq \mathcal{K}(\bar{u}, \bar{r}) \geq 0 \tag{3.22}
\end{equation*}
$$

and we can infer from (3.22), (3.21) and Lemma 3.2 that $u_{i}=0, r_{i}=0$, a.e. in $\omega, i=\overline{1,3}$.

However, from (3.19) and (3.20), and since $0<\varepsilon<1$, we can infer that

$$
\begin{align*}
\mathcal{K}\left(\bar{u}^{n}, \bar{r}^{n}\right) \geq & \frac{2 \hat{c} \varepsilon^{3}}{3} \int_{\omega} \sum_{i=1}^{3}\left\{\left|\frac{\partial u_{i}^{n}}{\partial x_{1}}\right|^{2}+\left|\frac{\partial u_{i}^{n}}{\partial x_{2}}\right|^{2}+\left|\frac{\partial r_{i}^{n}}{\partial x_{1}}\right|^{2}+\left|\frac{\partial r_{i}^{n}}{\partial x_{2}}\right|^{2}\right\} d x_{1} d x_{2} \\
& -\hat{C} \varepsilon \int_{\omega} \sum_{i, j=1}^{3}\left(r_{3 j}^{n}\right)^{2}\left(h_{3 j}^{0}\right)^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d x_{1} d x_{2} \\
= & \frac{2 \hat{c} \varepsilon^{3}}{3}-\hat{C} \varepsilon \int \sum_{\omega}\left(r_{i, j=1}^{n}\right)^{2}\left(h_{3 j}^{0}\right)^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d x_{1} d x_{2} \tag{3.23}
\end{align*}
$$

The strong convergence of \bar{r}^{n} in $L^{2}(\omega)^{3}$ allows to pass to the limit as $n \rightarrow \infty$ in (3.23), whence we arrive at a contradiction. This concludes the proof of the lemma.

Remark 3.1 The coercivity constants of \mathcal{K} have the form from (3.19), with the last term (containing the $r_{i}, i=\overline{1,3}$) just neglected.
Proof. of Theorem 2.1 We use the form (2.30) of $B(\hat{u}, \hat{v})$ and (3.1), (3.3). We estimate the expression

$$
\begin{aligned}
A:= & \int_{\Omega}\left[\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) h_{11}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) h_{21}+r_{1} h_{31}\right]^{2}|\operatorname{det} J(\bar{x})| d \bar{x} \\
& -\int_{\Omega}\left[\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) h_{11}^{0}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) h_{21}^{0}+r_{1} h_{31}^{0}\right]^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d \bar{x} .
\end{aligned}
$$

From the way we will prove an advantageous estimate for A it will become clear that similar estimates can be obtained for all the other terms occurring in $B(\hat{u}, \hat{u})$, and therefore we will be able to employ Lemma 3.4 to get the desired coercivity conclusion for $B(\hat{u}, \hat{u})$. Now let

$$
\begin{align*}
M & :=\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) h_{11}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) h_{21}+r_{1} h_{31} \\
\tilde{M} & :=\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) \tilde{h}_{11}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) \tilde{h}_{21}+r_{1} \tilde{h}_{31} \\
M_{0} & :=\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right) h_{11}^{0}+\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right) h_{21}^{0}+r_{1} h_{31}^{0} . \tag{3.24}
\end{align*}
$$

Then

$$
\begin{align*}
A= & \int_{\Omega} M^{2}|\operatorname{det} J(\bar{x})| d \bar{x}-\int_{\Omega} M_{0}^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d \bar{x} \\
= & \left(\int_{\Omega} M^{2}|\operatorname{det} J(\bar{x})| d \bar{x}-\int_{\Omega} \frac{\tilde{M}^{2}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} d \bar{x}\right) \\
& +\left(\int_{\Omega} \frac{\tilde{M}^{2}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}} d \bar{x}-\int_{\Omega} M_{0}^{2} \sqrt{1+p_{1}^{2}+p_{2}^{2}} d \bar{x}\right) \\
= & A_{1}+A_{2}, \tag{3.25}
\end{align*}
$$

with obvious meaning of A_{1}, A_{2}. We have, by (2.17) - (2.20),

$$
\begin{align*}
\frac{\tilde{h}_{11}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}-h_{11}^{0}= & \frac{x_{3}}{1+p_{1}^{2}+p_{2}^{2}}\left(\frac{\partial n_{2}}{\partial x_{2}}+p_{2} \frac{\partial n_{3}}{\partial x_{2}}\right), \\
\frac{\tilde{h}_{21}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}-h_{21}^{0}= & \frac{-x_{3}}{1+p_{1}^{2}+p_{2}^{2}}\left(\frac{\partial n_{2}}{\partial x_{1}}+p_{2} \frac{\partial n_{3}}{\partial x_{1}}\right), \\
\frac{\tilde{h}_{31}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}-h_{31}^{0}= & \frac{x_{3}}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}\left[\frac{\partial n_{2}}{\partial x_{1}}\left(p_{2}+x_{3} \frac{\partial n_{3}}{\partial x_{2}}\right)\right. \\
& \left.-\frac{\partial n_{2}}{\partial x_{2}}\left(p_{1}+x_{3} \frac{\partial n_{3}}{\partial x_{1}}\right)-\frac{\partial n_{3}}{\partial x_{1}}\right] . \tag{3.26}
\end{align*}
$$

Using (3.24) and (3.26), we find that

$$
\begin{align*}
& A_{2}=\int_{\Omega}\left\{\left(\frac{\partial u_{1}}{\partial x_{1}}+x_{3} \frac{\partial r_{1}}{\partial x_{1}}\right)\left(\frac{\partial n_{2}}{\partial x_{2}}+p_{2} \frac{\partial n_{3}}{\partial x_{2}}\right)-\left(\frac{\partial u_{1}}{\partial x_{2}}+x_{3} \frac{\partial r_{1}}{\partial x_{2}}\right)\left(p_{2} \frac{\partial n_{3}}{\partial x_{1}}+\frac{\partial n_{2}}{\partial x_{1}}\right)\right. \\
&+\left.r_{1} \sqrt{1+p_{1}^{2}+p_{2}^{2}}\left[\frac{\partial n_{2}}{\partial x_{1}}\left(p_{2}+x_{3} \frac{\partial n_{3}}{\partial x_{2}}\right)-\frac{\partial n_{2}}{\partial x_{2}}\left(p_{1}+x_{3} \frac{\partial n_{3}}{\partial x_{1}}\right)-\frac{\partial n_{3}}{\partial x_{1}}\right]\right\} \\
& \cdot \frac{x_{3}}{1+p_{1}^{2}+p_{2}^{2}}\left(\tilde{M}+M_{0} \sqrt{1+p_{1}^{2}+p_{2}^{2}}\right) d \bar{x} . \tag{3.27}
\end{align*}
$$

From this expression, and from the definitions of \tilde{M}, M_{0}, it is clear that A_{2} is of the form
$A_{2}=\int_{\Omega}\left[x_{3} X\left(x_{1}, x_{2}\right)+x_{3}^{2} Y\left(x_{1}, x_{2}\right)+x_{3}^{3} Z\left(x_{1}, x_{2}\right)\right] d \bar{x}$,
where X, Y, Z are quadratic polynomials of the variables $\frac{\partial u_{1}}{\partial x_{1}}, \frac{\partial u_{1}}{\partial x_{2}}, \frac{\partial r_{1}}{\partial x_{1}}, \frac{\partial r_{1}}{\partial x_{2}}$, and r_{1}, whose coefficients all belong to $L^{\infty}(\omega)$ since $p \in W^{2, \infty}(\omega)$. The terms with odd powers of x_{3} vanish after integration with respect to x_{3}, and thus we only have to examine the expression

$$
\begin{equation*}
L:=\int_{\Omega} x_{3}^{2} Y\left(x_{1}, x_{2}\right) d \bar{x}=\frac{2 \varepsilon^{3}}{3} \int_{\omega} Y\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \tag{3.29}
\end{equation*}
$$

It is clear that $Y\left(x_{1}, x_{2}\right)$ is formed from the summation of terms that appear when terms in A_{2} without the factor x_{3} are multiplied by terms having the factor x_{3}. From the definition of \tilde{M} and M_{0}, and from inspecting (3.27), we find that

$$
\begin{align*}
L=\frac{2 \varepsilon^{3}}{3} & \int_{\omega}
\end{align*}\left\{r_{1}^{2} y^{(1)}\left(x_{1}, x_{2}\right)+\sum_{i, j=1}^{2} \frac{\partial u_{1}}{\partial x_{i}} \frac{\partial r_{1}}{\partial x_{j}} y_{i j}^{(2)}\left(x_{1}, x_{2}\right)\right\}
$$

where all the coefficient functions $y^{(1)}, y_{i j}^{(2)}, y_{i}^{(3)}$, and $y_{i}^{(4)}$, respectively, are known to be bounded in $L^{\infty}(\omega)$, since $p \in W^{2, \infty}(\omega)$. We thus can estimate, using Young's
inequality and the fact that $0<\varepsilon<1$,

$$
\begin{align*}
|L| \leq & \frac{2 \hat{C}_{1} \varepsilon^{3}}{3} \int_{\omega}\left\{r_{1}^{2}+\sum_{i, j=1}^{2}\left|\frac{\partial u_{1}}{\partial x_{i}}\right|\left|\frac{\partial r_{1}}{\partial x_{j}}\right|\right. \\
& \left.+\sum_{i=1}^{2}\left|r_{1}\right|\left(\left|\frac{\partial u_{1}}{\partial x_{i}}\right|+\left|\frac{\partial r_{1}}{\partial x_{i}}\right|\right)\right\} d x_{1} d x_{2} \\
\leq & \hat{C}_{2} \varepsilon^{2} \sum_{i=1}^{3}\left|u_{i}\right|_{H^{1}(\omega)}^{2}+\hat{C}_{2} \varepsilon^{4} \sum_{i=1}^{3}\left|r_{i}\right|_{H^{1}(\omega)}^{2}+\hat{C}_{2} \varepsilon^{2} \sum_{i=1}^{3}\left|r_{i}\right|_{L^{2}(\omega)}^{2}, \tag{3.31}
\end{align*}
$$

with constants $\hat{C}_{1}>0, \hat{C}_{2}>0$ that only depend on the $L^{\infty}(\omega)$-norms of the functions $y^{(1)}, y_{i j}^{(2)}, y_{i}^{(3)}$, and $y_{i}^{(4)}$.
By comparing this inequality with (3.19) and Remark 3.1, we see that L is dominated by $\mathcal{K}(\bar{u}, \bar{r})$, provided that $\varepsilon>0$ is sufficiently small in comparison with the (a priori known) constant \hat{C}_{2}.
It remains to estimate A_{1}. Note that, owing to (3.24), and in view of (2.17) to (2.20), we have $\tilde{M}=M \cdot \operatorname{det} J(\bar{x})$, and hence it follows from (2.14), (2.15) that

$$
\begin{align*}
A_{1} & =\int_{\Omega} \tilde{M}^{2}\left(\frac{1}{\operatorname{det} J(\bar{x})}-\frac{1}{\sqrt{1+p_{1}^{2}+p_{2}^{2}}}\right) d \bar{x} \\
& =-\int_{\Omega} \tilde{M}^{2} x_{3} \frac{\frac{\partial n_{1}}{\partial x_{1}}+\frac{\partial n_{2}}{\partial x_{2}}+x_{3}\left(\frac{\partial n_{1}}{\partial x_{1}} \frac{\partial n_{2}}{\partial x_{2}}-\frac{\partial n_{1}}{\partial x_{2}} \frac{\partial n_{2}}{\partial x_{1}}\right)}{\operatorname{det} J(\bar{x})} d \bar{x} . \tag{3.32}
\end{align*}
$$

Next, we perform a Taylor expansion of the function $\varphi\left(x_{3}\right):=1 / \operatorname{det} J\left(x_{1}, x_{2}, x_{3}\right)$ around $x_{3}=0$. We easily find that
$\frac{1}{\operatorname{det} J\left(x_{1}, x_{2}, x_{3}\right)}=\frac{1-x_{3}\left(\frac{\partial n_{1}}{\partial x_{1}}\left(x_{1}, x_{2}\right)+\frac{\partial n_{2}}{\partial x_{2}}\left(x_{1}, x_{2}\right)\right)+x_{3}^{2} \alpha\left(x_{1}, x_{2}, x_{3}\right)}{\sqrt{1+p_{1}^{2}\left(x_{1}, x_{2}\right)+p_{2}^{2}\left(x_{1}, x_{2}\right)}}$
with some function $\alpha \in L^{\infty}(\Omega)$ whose $L^{\infty}(\Omega)$ - norm is bounded from above by a constant that only depends on $\|p\|_{W^{2, \infty}(\omega)}$.
We now can argue as follows: the first two terms in (3.33) can be combined with the remaining ones occurring in A_{1}, and we can explicitly integrate and estimate them as in the case of L. Again, they are dominated by $\mathcal{K}(\bar{u}, \bar{r})$ provided that $\varepsilon>0$ is small enough. The remaining term from (3.33), which depends in a complicated way on x_{1}, x_{2}, x_{3}, is of order x_{3}^{2}, and direct estimates can be performed in combination with the other factors in A_{1} to see that it is also dominated by $\mathcal{K}(\bar{u}, \bar{r})$.

We are now in the position to conclude the proof of the assertion: indeed, from the method of estimation used above for A it is apparent that similar computations and estimates can be carried out for all the other terms occurring in $B(\hat{u}, \hat{u})$. Since these estimations are straightforward (while quite lengthy), we do not present them in detail, here. It turns out that all the occurring differences are dominated by $\mathcal{K}(\bar{u}, \bar{r})$ provided that $\varepsilon>0$ is sufficiently small. Consequently, $B(\hat{u}, \hat{u})$ inherits the coercivity of \mathcal{K}. This ends the proof of the theorem.
Remark 3.2 Theorem 2.1 and its proof remain valid if the shell $\hat{\Omega}$ is of nonconstant thickness, as long as the thickness remains bounded from below by $\varepsilon>0$. Adequate regularity assumptions on $\partial \hat{\Omega}$ have to be imposed.

Remark 3.3 It is obvious from the proof of Theorem 2.1 that the coercivity constant of the bilinear form B is of the order ε^{3}, and ε must be small for its validity. This explains the well-known instability appearing in numerical computations for shells.

References

[1] A. BlouZa, Existence et unicité pour le modèle de Naghdi pour une coque peu régulière, CRAS Paris, t. 324, Série I (1997), pp. 839-844.
[2] H. Cartan, Formes différentielles, Hermann, Paris, 1967.
[3] Ph. Ciarlet, Mathematical elasticity. Vol II: Theory of plates, NorthHolland, Amsterdam, 1997.
[4] Ph. Ciarlet, Mathematical elasticity. Vol III: Theory of shells, NorthHolland, Amsterdam, 2000.
[5] H. Le Dret and A. Blouza, Existence et unicité pour le modèle de Koiter pour une coque peu régulière, CRAS Paris, t. 319, Série I (1994), pp. 1127-1132.
[6] G. Geymonat and E. Sanchez-Palencia, On the rigidity of certain surfaces with folds and applications to shell theory, Arch. Rational Mech. Anal., 129 (1995), pp. 11-45.
[7] A. Ignat, J. Sprekels and D. Tiba, Analysis and optimization of nonsmooth mechanical structures, Weierstrass Institute for Applied Analysis and Stochastics, Preprint No. 581, Berlin, 2000 (submitted to SIAM J. Control Optimiz.)
[8] A. Ignat, J. Sprekels and D. Tiba, A model of a general elastic curved rod, Weierstrass Institute for Applied Analysis and Stochastics, Preprint No. 613, Berlin, 2000 (submitted to Math. Meth. Appl. Sci.)
[9] W. Rudin, Real and complex analysis, McGraw-Hill, New York (1987).
[10] J. Sprekels and D. Tiba, Sur les arches lipschitziennes, CRAS Paris, t. 331, Série I (2000), pp. 179-184.

