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Abstract. We consider a nonparametric di�usion process whose drift and di�usion

coe�cients are nonparametric functions of the state variable. The goal is to estimate

the unknown drift coe�cient. We apply a locally linear smoother with a data-driven

bandwidth choice. The procedure is fully adaptive and nearly optimal up to a log log

factor. The results about the quality of estimation are nonasymptotic and do not

require any ergodic or mixing properties of the observed process.

1. Introduction

In this paper, we propose a procedure for adaptive estimation of the drift coe�cient of a

di�usion system described by the Itô equations

dXt = f(Xt) dt+ g(Xt) dwt; X0 = x0; 0 � t � T:(1.1)

Here wt is a standard Wiener process and T is the observation time. The functions

f; g , entering in (1.1), which are usually referred to as drift and di�usion coe�cients, are

unknown. The goal is to recover the unknown drift function f from the observations Xt ,

0 � t � T . We do not discuss here the problem of estimating the di�usion coe�cient g

since in the case of continuous observations, the required information about this function

g can be exactly recovered from the data, Section 3.5 below. We also restrict ourselves to

the problem of pointwise estimation, that is, given a point x , we estimate the value f(x) .

The reader is referred to Lepski, Mammen and Spokoiny (1997) for a discussion of the

relation between pointwise and global estimation. Note that the problem of the pointwise

estimation of the drift function f is closely connected to the problem of forecasting the

process X . Indeed, if we observe the process (Xt) until the time-point T , and if we
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are interested in a behavior of the process in the nearest future after T , then we have to

estimate f(x) for x = Xt .

Statistical inference for stochastic processes and time series has attracted a lot of

attention last years, especially in view of applications to �nance mathematics. The

estimation theory for di�usion type processes is well developed under the parametric

modeling when underlying functions (drift and di�usion) are speci�ed up to a value

of a �nite dimensional parameter (cf. Kutoyants, 1984b). In contrast, nonparametric

estimation is not studied in details. The known results concern only with statistical

inference for ergodic di�usion models with a small noise or for a large observation time T .

Kutoyants (1984a) evaluated the minimax rate of estimation of the drift coe�cient using

a kernel type estimator. Genon-Catalot, Laredo and Picard (1992) applied wavelets.

Locally polynomial estimators are described in Fan and Gijbels (1996). Milstein and

Nussbaum (1994) established the Le Cam equivalence between the di�usion model and

the \white noise model". Some pertinent results for autoregressive models in discrete time

can be found in Doukhan and Ghindes (1980), Collomb and Doukhan (1983), Doukhan

and Tsybakov (1993), Delyon and Juditsky (1997), Neumann (1998). A series of papers

discusses simultaneous estimation of the drift and di�usion functions, among them Hall

and Carroll (1989), H�ardle and Tsybakov (1997), Ruppert et al (1997), Fan and Yao

(1988).

It is worth mentioning that the stationarity assumption could be very restrictive for

practical applications. Typically this assumption is ful�lled only in some local sense, that

is, observed processes are only locally stationary. In other words, for every time point t ,

there is a time interval containing t and such the observed process is stationary or near

stationary within this intervals, see e.g. Dahlhaus (1997) for more discussion. Statistical

inference under local stationary assumption requires to study some nonasymptotic prop-

erties of statistical procedures. The reader is referred to the forthcoming paper by H�ardle

and Spokoiny (1999) for an example of parameter estimation for ARCH- and stochastic

volatility models under local stationarity.

The present paper o�ers another approach to relax the stationarity assumption, so that

neither ergodic property of the slow component nor large observation time T is assumed.

This makes the problem much more complicated. We propose a locally linear estima-

tor of f(x) with a data-driven bandwidth choice and show that this method provides

a nearly optimal accuracy of estimation up to a log log T factor. The idea of proposed

bandwidth selector goes back to Lepski (1990). Lepski, Mammen and Spokoiny (1997)

presented a slightly modi�ed version of the original Lepski's procedure and showed its

optimality in the asymptotic minimax sense (over a wide range of Besov classes) and for

the global Lp -risk in the \white noise model". Lepski and Spokoiny (1997) constructed

an asymptotically sharp optimal pointwise adaptive procedure, again for the \white noise

model". In this paper the procedure is adapted to locally linear smoothing in di�usion
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type model (1.1). The results compare the quality of the adaptive procedure to that of

for an \ideal" estimate de�ned by the optimal choice of the smoothing parameter (band-

width), see Section 4 for more discussion. In particular, it is shown that the accuracy of

the adaptive procedure is worse than the \ideal" one by a factor log log T which can be

viewed as payment for the adaptive property.

The paper is organized as follows. The next section contains the description of a locally

linear estimator. Its properties are discussed in Section 3. The data-driven bandwidth

choice is presented in Section 4. All proofs are gathered in Sections 5.

2. A locally linear estimator

For �xed x, to estimate the value f(x) we apply the locally linear smoother (cf. Katkovnik

(1985), Tsybakov (1986), Fan and Gijbels (1996)).

We begin with some heuristic explanations of the method. Imagine for a moment that

the observed process Xt; 0 � t � T satis�es the Itô equation with respect to Wiener

process wt :

dXt = f(Xt) dt+ g(Xt) dwt(2.1)

with a linear function f of the form f(u) = �0+�1(u�x)=h , depending on two parameters

�0; �1, where x and h > 0 are �xed. The values �0 and �1 can be estimated by the least

squares method:

(e�0; e�1) = argmax
�0;�1

(Z T

0

�
�0 + �1

Xt � x

h

�
dXt �

1

2

Z T

0

�
�0 + �1

Xt � x

h

�2
dt

)
:

This quadratic optimization problem can be explicitly solved: with

�k =

Z T

0

�
Xt � x

h

�k
dt; k = 0; 1; 2;

one has

e�0 =

�2
TR
0

dXt � �1
TR
0

Xt�x
h

dXt

�0�2 � �21
;

e�1 =

��1
TR
0

dXt + �0
TR
0

Xt�x
h

dXt

�0�2 � �21
:

Since clearly f(x) = �0 , the value e�0 can be taken for estimating f(x).

The locally linear smoother is de�ned in a similar way. The only di�erence is that

the function f is not assumed to be linear but it is approximated by a linear function

�0 + �1(u � x)=h in a small neighborhood [x � h; x + h] of the point x . Then the

coe�cients �0; �1 of this function can be estimated from the observations of Xt falling
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into the interval [x�h; x+h] . For formal description, let us introduce a kernel function

K(u) which is assumed to be smooth, non-negative, bounded by 1, and vanishing outside

of [�1; 1] . Then the locally linear estimate with the kernel K and a bandwidth h is

de�ned as:

efh(x) = �2;h
TR
0

K
�
Xt�x
h

�
dXt � �1;h

TR
0

Xt�x
h

K
�
Xt�x
h

�
dXt

�0;h�2;h � �21;h
;(2.2)

where

�k;h =

Z T

0

�
Xt � x

h

�k
K

�
Xt � x

h

�
dt; k = 0; 1; 2:(2.3)

The quality of estimate (2.2) essentially depends on the bandwidth h . Some useful

properties of efh(x) for the �xed h are described in Section 3. An adaptive (data-driven)

choice of the bandwidth h is discussed in Section 4.

3. Some properties of the locally linear es-

timate

In this section we study some properties of the locally linear estimate efh(x) from (2.2).

We �rst formulate the required conditions on the coe�cients f; g from (1.1). Then we

present the result and discuss some its corollaries.

3.1. Conditions

In the sequel we suppose that the functions f; g from (1.1) obey the following conditions:

(As) Functions f(u) and g(u) are Lipschitz continuous in u and f(u) is two times con-

tinuously di�erentiable in u . For some positive constants gmin � gmax

gmin � jg(u)j � gmax 8u:

It is worth mentioning that we do not impose any conditions which ensure ergodic or

mixing properties of the process X . Our approach is essentially non-asymptotic and

there is no di�erence between ergodic and non-ergodic cases.

3.2. Accuracy of the locally linear estimate

To state the result, we introduce some additional notations. With �k;h de�ned in (2.3),

set

Dh = �0;h�2;h � �21;h;(3.1)
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and

�2h(x) =
1

D2
h

Z T

0

�
�2;h � �1;h

Xt � x

h

�2
K2

�
Xt � x

h

�
g2(Xt) dt(3.2)

= v22;hV0;h � 2v1;hv2;hV1;h + v21;hV2;h

where

vk;h =
�k;h

Dh

=
�k;h

�0;h�2;h � �21;h
; k = 1; 2;

Vk;h =

Z T

0

�
Xt � x

h

�k
K2

�
Xt � x

h

�
g2(Xt) dt:

Although the expressions for Vk;h , k = 0; 1; 2 , use the unknown di�usion coe�cient

g2(Xt) , these values can be computed on the base of our observations (Xt; 0 � t � T )

only, see Section 3.5.

The value �2h(x) is called the conditional variance of the estimate efh(x) . This termi-

nology is used by analogy with the regression case, where Xt is a deterministic design

process and �2h(x) is really the variance of the least squares estimate efh(x) . Note that
for the regression setup, some design regularity is required to ensure that �2h(x) is not

too large.

In our case, Xt is the observed process which at the same time can be viewed as the

design process. We therefore impose some conditions on the trajectories of the process

Xt which are similar to that of used to describe the design regularity in the regression

setting. Our results are also similar to that of can be obtained in the regression context,

cf. Lepski, Mammen and Spokoiny (1997) or Lepski and Spokoiny (1997). In particular,

we show that under the conditions imposed, the conditional variance �2h(x) helps to

control the stochastic component of the estimate efh(x) .
For some � � 0 , r > 0 , b > 0 and B � 1 we introduce the set

Ah =

8>>><>>>:
b
Th

� v2;h � bB
Th

; b
Th

� �2h(x) � bB
Th

;

�0;h � r�2;h ; V0;h � rV2;h

�21;h � ��0;h�2;h ; V 2
1;h � �V0;hV2;h

9>>>=>>>; :

Since Xt is the random process, the set Ah is random as well. In the sequel we study

the properties of efh(x) restricted to the set Ah , see Section 3.3 for further discussion.

The quality of the approximation of f(u) by a linear in u function in the neighborhood

u 2 [x� h; x+ h] is characterized by the following quantity

�h(x) = sup
ju�xj�h

jf(u)� f(x)� (u� x)f 0(x)j(3.3)

where f 0 denotes the derivative of f . In the next theorem we describe some useful

properties of the estimate (2.2).
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Theorem 3.1. Let (As) be ful�lled, and Th � 1 . Then for every � �
p
2

P
���� efh(x)� f(x)

��� > c�h(x) + ��h(x); Ah

�
(3.4)

� 4e log(4B3)

�
1 + 4r

r
1 + r

1� �
�2
�
� e�

�2

2 ;

where c = (1� �)�1=2 .

Informally the result of the theorem means that the losses j efh(x)�f(x)j of the estimateefh(x) , being restricted to Ah , are bounded by the sum of two terms: c�h(x) and

��h(x) . The �rst one mimics the accuracy of approximating the function f(u) by a

linear in u function in the small vicinity [x � h; x + h] of x . The second term is in

proportion to the \stochastic standard deviation" �h(x) .

3.3. Some remarks related to the random set Ah

The result of Theorem 3.1 describes the accuracy of the estimate efh(x) on the random

set Ah only. Here we briey discuss some related questions.

3.3.1. Reason for restricting to Ah

It was mentioned previously that restricting to Ah allows to eliminate irregular cases

when, for instance, the trajectory X[0;T ] does not pass through the interval [x�h; x+h]

and �0;h = �1;h = �2;h = Dh = 0 . Note that for typical applications to forecasting, we

have to estimate f(x) with x = Xt , and the trajectory X[0;T ] obviously passes through

x .

3.3.2. Verifying the condition X[0;T ] 2 Ah

Clearly the event Ah is completely determined by the known values �k;h and Vk;h ,

k = 0; 1; 2 . It is therefore always possible to check whether the observed trajectory

X[0;T ] belongs to Ah or not. If the trajectory X[0;T ] does not belong to Ah, we are not

able to guarantee a reasonable quality for the estimate efh(x) .
3.3.3. The conditions entering into the de�nition of Ah

The conditions 0 � K(u) � 1 and K(u) = 0 for juj � 1 imply �2;h � �0;h and

V2;h � V0;h . Further, by the Cauchy-Schwarz inequality, it holds �21;h � �0;h�2;h and

V 2
1;h � V0;hV2;h . The conditions �0;h � r�2;h , V0;h � rV2;h , �21;h � ��0;h�2;h and

V 2
1;h � �V0;hV2;h with � < 1 and r � 1 ensure that the local linear estimate is well

de�ned. Note that these conditions are not completely independent. In particular, if
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g(x) is a constant function and if K(u) = 1(juj � 1) , then �k;h = Vk;h for k = 0; 1; 2

and �2h(x) = v2;h = �2;h=(�0;h�2;h � �21;h) .

3.3.4. The choice of the constants � , b , B , r

The choice of constants � , b , B , r , entering in the de�nition of the set Ah , is optional

and they even may depend on T . Note that the upper bound (3.4) from Theorem 3.1

does not depends on b and it depends on B (which determines the range of di�erent

values for the conditional variance �2h(x) ) only via the log-factor log(4B3) .

3.3.5. Unconditional result under ergodicity

If the coe�cients f and g obey some additional conditions which ensure ergodicity of the

process Xt , see e.g. Veretennikov (1991), then, at least with growing T the normalized

integrals (Th)�1�k;h and (Th)�1Vk;h ( k = 0; 1; 2 ) converge to some �xed values which

depend only on the stationary distribution of the process Xt . Moreover, one can usually

select �xed constants b;B and �; r in such a way that 1 � P (Ah) converges to zero

exponentially fast as T !1 . Since obviously

P
���� efh(x)� f(x)

��� > c�h(x) + ��h(x)
�

� P
���� efh(x)� f(x)

��� > c�h(x) + ��h(x); Ah

�
+ P (Ah)

we obtain in this situation an unconditional asymptotic bound for the risk of the estimateefh(x) .
3.4. Quality of estimation under smoothness assumptions

Due to the assumptions (As) from Section 3, the function f is twice continuously dif-

ferentiable. Assume also that for every u from a small vicinity of x, the second derivative

f 00 is bounded by some �xed constant L :��f 00(u)�� � L:(3.5)

Then the value �h(x) de�ned in (3.3), is bounded above by Lh2=2. On the other hand,

on the set Ah the stochastic variance �2h(x) is of order (Th)�1 . Therefore, following to

the standard approach in nonparametric estimation, the bandwidth h can be chosen by

balancing the accuracy of approximation and the stochastic error:

Lh2 � 1p
T h

:

This leads to the choice h � (T L2)�1=5 and hence to the rate of the estimation

L1=5T�2=5 which is optimal in the minimax sense under the smoothness assumptions

(3.5), see e.g. Ibragimov and Khasmiskii (1981). Unfortunately this approach hardly



8 SPOKOINY, V.

applies in practice, since the constant L in (3.5) is typically unknown. An adaptive

(data-driven) choice of the bandwidth is discussed in the next section.

3.5. Computation of �2
h
(x)

Recall that with �xed h, the value �2h(x) is de�ned by the formula

�2h(x) =
1

D2
h

Z T

0

K2

�
Xt � x

h

��
�2;h � �1;h

Xt � x

h

�2
g2(Xt) dt

= v22;hV0;h � 2v1;hv2;hV1;h + v21;hV2;h

with

�k;h =

Z T

0

�
Xt � x

h

�k
K

�
Xt � x

h

�
dt;

Dh = �0;h�2;h � �21;h;

vk;h =
�k;h

Dh

=
�k;h

�0;h�2;h � �21;h
;

Vk;h =

Z T

0

�
Xt � x

h

�k
K2

�
Xt � x

h

�
g2(Xt) dt; k = 0; 1; 2:

The formula for �2h(x) includes the unknown di�usion coe�cient g2(Xt) . We now show

that despite of this fact, the value �2h(x) can be computed via the observations X[0;T ]

only.

Let us introduce two random processes

Z 0

t =

Z t

0

K

�
Xs � x

h

�
dXs and Z 00

t =

Z t

0

K

�
Xs � x

h

�
Xs � x

h
dXs

which are completely determined on the time interval [0; T ] by X[0;T ]. Applying the Itô

formula we get

(Z 0

T )
2 = 2

Z T

0

Z 0

t dZ
0

t + V0;h

(Z 00

T )
2 = 2

Z T

0

Z 00

t dZ
00

t + V2;h

Z 0

TZ
00

T =

Z T

0

Z 0

t dZ
00

t +

Z T

0

Z 00

t dZ
0

t + V1;h:

Hence V0;h = (Z 0

T )
2�2

TR
0

Z 0

t dZ
0

t , so that V0;h is completely determined byX[0;T ]. Similar

arguments apply for V1;h and V2;h and hence for �2h(x) as required.

4. Data-driven bandwidth selection

In this section we consider the problem of bandwidth selection for the locally linear

estimator described in Section 2. It is assumed here that the method of estimation, that
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is, the locally linear smoother with the kernel K , is �xed and only the bandwidth h

has to be chosen. The adaptive procedure originates from Lepski (1990), see also Lepski,

Mammen and Spokoiny (1997) and Lepski and Spokoiny (1997).

4.1. An \ideal" bandwidth

First we introduce the notion of an \ideal" bandwidth. Let a set H , of all admissible

bandwidths h , be �xed. For technical reasons, we assume that this set is �nite and

denote by #H the number of its elements. Usually H is taken as a geometric grid of

the form

H = fh = hmina
k; k = 0; 1; 2; : : : : h � hmaxg;

where hmin � hmax and a > 1 are some prescribed constants. As in Section 3, we restrict

ourselves only to those h from H for which the observed trajectory X[0;T ] belongs to

Ah . Our goal is to select h from H providing the minimal in some sense error of

estimation for the corresponding estimate efh(x) .
We begin with some heuristic explanations. Recall �rst, that the values �2h(x) can

be exactly computed on the base of observations X[0;T ] , see Subsection 3.5. Note also

that �2h(x) typically decreases in h. Indeed, an increase of h makes the estimation

window [x�h; x+h] larger and hence more observations can be used for estimating the

underlying function f at the point x . This results in a smaller variance of the estimate.

To simplify the exposition, we suppose that �2h(x) strongly decreases in h 2 H. (If this
assumption is not ful�lled for the original set H , i.e. if there is h0 < h 2 H with the

property �2h(x) � �2h0(x) , then we simply exclude h from H.)
The behavior of the bias term �h(x) is just opposite. Namely, for a regular function

f , the value �h(x) is small when h is small, and it typically increases in h . Therefore,

the minimization of the sum of the form c�h(x) + ��h(x) with some constants c; �

leads to the balance relation �h(x) � �h(x) and we de�ne a \good" bandwidth hid

as the largest h from H such that c�h(x) is still not larger than D�h(x) with some

prescribed constant D :

hid = maxfh 2 H : c�h(x) � D�h(x)g:(4.1)

Since �h(x) is unknown, the bandwidth hid is unknown as well. In the sequel, following

to Donoho and Johnstone (1994), hid is referred to as an \ideal" bandwidth or \oracle".

Due to Theorem 3.1, the losses of the \ideal" estimate efhid are bounded (with probability

closed to one) by (D + �)�hid(x) provided that � is su�ciently large.

4.2. An adaptive bandwidth choice

Now we present our adaptive procedure and show that the corresponding accuracy of

the estimation is essentially the same as if the \ideal" bandwidth applies. The procedure
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involves two positive parameters �1 and D . The last one is already mentioned in the

de�nition of the \ideal" bandwidth. We discuss the choice of �1 and D at the end of

this section.

The data-driven bandwidth bh is de�ned by the following rule:

bh = max
n
h 2 H :

�� efh(x)� ef�(x)�� � �1

�
�h(x) + ��(x)

�
+ 2D�h(x);(4.2)

8� 2 H; � < h
o
:

In words, the rule prescribes to take the largest value h 2 H for which the corresponding

estimate efh(x) does not di�er essentially from every estimate ef�(x) with a smaller

bandwidth value � 2 H . The arguments for this choice are quite simple: if both � and

h are not larger than hid , then the \bias" terms ��(x) and �h(x) in the di�erence�� efh(x) � ef�(x)�� are bounded by 2D�hid(x) � 2D�h(x) and therefore, the probability of

the event n�� efh(x)� ef�(x)�� > �1

�
�h(x) + ��(x)

�
+ 2D�h(x)

o
is small provided that �1 is large enough (see Theorem 3.1). Hence, if we meet the

opposite inequality for some � < h , this means that the bias �h(x) is already too large

and the bandwidth h is not a good one.

Finally, to de�ne our adaptive estimate, we plug the data-driven bandwidth bh in the

estimate efh(x) :
bf(x) � ef

bh
(x):(4.3)

In the next theorem we describe some properties of the adaptive estimate bf(x) re-
stricted to the set

A� =
\
h2H

Ah:

Theorem 4.1. Let hid be de�ned in (4.1) with �1 �
p
2 . Then the estimate bf(x) ful�lls

the following property: for any � with
p
2 � � � �1

P
���� bf(x)� f(x)

��� > (�+ ��)�hid(x);A�

�
(4.4)

� 4e log(4B3)

�
1 + 4r

r
1 + r

1� �
�21

�
�1

�
(#H)2e�

�2
1
2 + e�

�2

2

�
;

where

�� = 2�1 + 3D:(4.5)
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4.3. The choice of parameters �1 , D

The choice of parameters �1 , D , entering in (4.2), plays the important role. The bound

in (4.4) shows that the probability for
��� bf(x)�f(x)

��� of being large is small, provided that

the value (#H)2�21e��
2
1
=2 is su�ciently small. This leads to the choice

�1 �
p
4 log(#H) + �2

so that

(#H)2�1e��
2
1
=2 � e��

2=2:

If H is taken in the form of the geometric grid, then we get #H � loga(hmax=hmin).

Therefore, taking hmax � T and hmin � 1 , we arrive at

�1 �
p
4 log log T + �2:

There is much more degree of freedom in the choice of D . This parameter controls

the balance between the accuracy of approximating the function f by a linear one and

the stochastic error (see the de�nition (4.1) of the \ideal" bandwidth hid ). The results

from Lepski and Spokoiny (1997) lead to the choice D = Const�1 (see also the next

section). At the same time, Lepski and Levit (1997) argued that for a smooth function

f , the relevant choice is D = 0 . Simulation results show a reasonable performance of

the presented procedure with �1 � 3 and D = 0 .

4.4. The rate of adaptive estimation

We now compare the accuracy of the adaptive procedure (4.2) with the \optimal" one

designed for the case of known smoothness properties of the underlying function f (see

Section 3.4).

Assume jf 00(u)j � L , see (3.5). Then �h(x) � Lh2=2 and the constraints c�h(x) �
D�h(x) and b(hT )�1 � �2h(x) � bB(hT )�1 yield for hid from (4.1)

hid � C1

�
D2

TL2

�1=5
with C1 = (2bc�2)1=5 , so that

�hid(x) �
�

bB

Thid

�1=2
� C2L

1=5(T 2D)�1=5

with C2 = (bB=C1)
1=2 . Hence, the above-mentioned choice �1 � 2

p
log log T and

D = C�1 , leads due to Theorem 4.1 to the following accuracy of the adaptive estimation

(�+ 2�1 + 3D)�hid(x) � C3L
1=5

�
2 log log T

T

�2=5
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with C3 = 3C2(1 + C)C�1=5 . At the same time, the \ideal" choice of the bandwidth

leads to the rate L1=5T�2=5, see Section 3.4. Thus, the accuracy of adaptive estimation

is worse than the \ideal" one within a loglogT -factor only.

The origin of the log log T -factor in the rate of adaptive estimation can be easily ex-

plained. The total number #H of considered estimates is logarithmic in the observation

time T and the adaptive choice of the bandwidth leads to a worse accuracy by factor

log(#H) at some power.

The notion of \payment for adaptation" is now well understood in nonparametric

estimation: if we have too many estimates to select between, we have to \pay" for the

adaptive choice some additional factor in the risk of estimation. In particular, it is shown

in Lepski (1990) and Brown and Low (1996) (see also Lepski and Spokoiny (1997)) that

for the problem of pointwise adaptive estimation, the optimal adaptive rate has to be

worse than the optimal one by a log-factor.

In our results a log log -factor appears. This fact is not in the contradiction with earlier

issues, since the above-mentioned results correspond to the case of the power loss function

`(x) = jxjp, p > 0 , while we consider the bounded loss function. It can be also shown

that the rate achieved by our estimate is optimal for pointwise adaptive estimation with

a bounded loss function (see Spokoiny (1997) for similar results in the adaptive testing

problem).

5. Proofs

In this section we prove Theorems 3.1 and 4.1.

5.1. Decomposition of efh(x)

We use two obvious identities characterizing the local linear smoother: for v1;h =
�1;h
Dh

and v2;h =
�2;h
Dh Z T

0

K

�
Xs � x

h

��
v2;h � v1;h

Xs � x

h

�
ds = 1Z T

0

K

�
Xs � x

h

��
v2;h

Xs � x

h
� v1;h

(Xs � x)2

h2

�
ds = 0

and hence Z T

0

K

�
Xs � x

h

��
v2;h � v1;h

Xs � x

h

�
f(x) ds = f(x)(5.1) Z T

0

K

�
Xs � x

h

��
v2;h

Xs � x

h
� v1;h

(Xs � x)2

h2

�
f 0(x) ds = 0:(5.2)

Due to (2.2) and (1.1), the estimate efh(x) can be represented as follows:
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efh(x) = v2;h

Z T

0

K

�
Xs � x

h

�
dXs � v1;h

Z T

0

K

�
Xs � x

h

�
Xs � x

h
dXs

=

Z T

0

K

�
Xs � x

h

��
v2;h � v1;h

Xs � x

h

�
f(Xs) ds

+ v2;h

Z T

0

K

�
Xs � x

h

�
g(Xs) dws

� v1;h

Z T

0

K

�
Xs � x

h

�
Xs � x

h
g(Xs) dws:

Now (5.1) and (5.2) imply the following decomposition

efh(x) = f(x) + �h + rh(5.3)

where, with �(Xs; x) = f(Xs)� f(x)� Xs � x

h
f 0(x) ,

rh =

Z T

0

K

�
Xs � x

h

� �
v2;h � v1;h

Xs � x

h

�
�(Xs; x) ds;

�h = v2;h

Z T

0

K

�
Xs � x

h

�
g(Xs) dws

� v1;h

Z T

0

K

�
Xs � x

h

�
Xs � x

h
g(Xs) dws:

Below we evaluate separately each term in this decomposition.

5.2. An upper bound for jrhj

Since K
�
u�x
h

�
vanishes for any u 62 [x�h; x+h] and j�(Xs; x)j � �h(x) for jXs�xj � h ,

we get

jrhj �
Z T

0

K

�
Xs � x

h

� �
v2;h � v1;h

Xs � x

h

�
j�(Xs; x)j ds(5.4)

� �h(x)

Z T

0

K

�
Xs � x

h

� ����v2;h � v1;h
Xs � x

h

���� ds:
The properties jK(u)j � 1 and K(u) = 0; juj � 1 imply the inequality �2;h � �0;h . In

addition we know that it holds on Ah

�21;h � ��0;h�2;h:(5.5)

We now show that

jrhj � (1� �)�1=2�h(x) on Ah:(5.6)

The Cauchy-Schwarz inequality applied to (5.4) gives

jrhj � �h(x)

(Z T

0

K

�
Xs � x

h

�
ds

Z T

0

K

�
Xs � x

h

��
v2;h � v1;h

Xs � x

h

�2
ds

)1=2

:
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Next, Z T

0

K

�
Xs � x

h

�
ds = �0;h;

and using vk;h = �k;h=Dh , with Dh = �2;h�0;h � �21;h , k = 0; 1; 2 , we get

Z T

0

K

�
Xs � x

h

��
v2;h � v1;h

Xs � x

h

�2
ds

=
1

D2
h

Z T

0

K

�
Xs � x

h

��
�2;h � �1;h

Xs � x

h

�2
ds

=
�22;h

D2
h

Z T

0

K

�
Xs � x

h

�
ds+

�21;h

D2
h

Z T

0

K

�
Xs � x

h

�
(Xs � x)2

h2
ds

� 2�1;h�2;h

D2
h

Z T

0

K

�
Xs � x

h

�
Xs � x

h
ds

=
�22;h�0;h � �2;h�

2
1;h

D2
h

= �2;h=Dh:

Hence, in view of (5.5),

jrhj � �h(x)

�
�0;h �2;h

Dh

�1=2
= �h(x)

 
�0;h �2;h

�0;h�2;h � �21;h

!1=2

� �h(x)

�
1

1� �

�1=2
as required.

5.3. An upper bound for �h

We study here some properties of the \stochastic term"

�h = v2;h

Z T

0

K

�
Xs � x

h

�
g(Xs) dws

� v1;h

Z T

0

K

�
Xs � x

h

�
Xs � x

h
g(Xs) dws:

Namely, we intend to show that the probability of the event f�h > ��h(x)g with �h(x)

from (3.2) is small provided that � is large enough. Set for t � T

M0;t =

Z t

0

K

�
Xs � x

h

�
g(Xs) dws;

M1;t =

Z t

0

K

�
Xs � x

h

�
Xs � x

h
g(Xs) dws:
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The Itô integrals M0;t and M1;t are continuous local martingales with the predictable

quadratic variations (see e.g. Liptser and Shiryayev (1989))

hM0it =

Z t

0

K2

�
Xs � x

h

�
g2(Xs) ds;

hM0;M1it =

Z t

0

K2

�
Xs � x

h

�
Xs � x

h
g2(Xs) ds;

hM1it =

Z t

0

K2

�
Xs � x

h

� �
Xs � x

h

�2
g2(Xs) ds;

so that hM0iT = V0;h , hM0;M1iT = V1;h and hM1iT = V2;h . This yields

�h(x) = v2;hM0;T � v1;hM1;T ;

�2h(x) = v22;hhM0iT � 2v1;hv2;hhM0;M1iT + v21;hhM1iT :

Denote

uh =
v1;h

v2;h
=

�1;h

�2;h
:

Obviously

P (j�hj > ��h(x);Ah)

= P

�
jM0;T � uhM1;T j > �

q
hM0iT � 2uhhM0;M1iT + u2

h
hM1iT ; Ah

�
:

To evaluate from above the right side of this equality, we apply the general result from

Proposition 6.2, see Appendix. First we check the required conditions. The value juhj,
being restricted to Ah , can be bounded as:

juhj �
����p��0;h �2;h�2;h

���� � p
�r:

Note now that

hM1iT
hM0iT � 2uhhM0;M1iT + u2

h
hM1iT

=
V2;h

V0;h � 2uhV1;h + u2
h
V2;h

=
V 2
2;h

V0;hV2;h � V 2
1;h + (V1;h � uhV2;h)2

;

and it holds on Ah in view of V2;h � V0;h

hM1iT
hM0iT � 2uhhM0;M1iT + u2hhM1iT

�
V 2
2;h

(1� �)V0;hV2;h
� 1

1� �
:
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In addition, the de�nition of Ah provides the following bounds for �2h(x) on this set

�2h(x)

Th v22;h
=

Th�2h(x)

(Th v2;h)2
� bB

b2
=

B

b
;

�2h(x)

Th v22;h
=

Th�2h(x)

(Th v2;h)2
� b

(bB)2
=

1

bB2
:

Applying now Proposition 6.2 we get

P (j�hj > ��h(x);Ah) � 4e log(4B3)

�
1 + 4r

r
1 + r

1� �
�2
�
�e�

�
2

2 :(5.7)

5.4. Proof of Theorem 3.1

Summing up the decomposition (5.3) and the bounds (5.6), (5.7), we get

P
���� efh(x)� f(x)

��� > c�h(x) + ��h(x); Ah

�
� 4e log(4B3)

�
1 + 4r

r
1 + r

1� �
�2
�
� exp

�
��2

2

�
:

This leads to the required bound from Theorem 3.1.

5.5. Proof of Theorem 4.1

Let hid be shown in the theorem. Recall that A� =
T
h2H

Ah. We use an obvious inequality

P
���� bf(x)� f(x)

��� > (�+ ��)�hid(x); A�

�
� P

���� bf(x)� f(x)
��� > (�+ ��)�hid(x);

bh � hid; A�

�
+ P

�bh < hid; A�

�
:

Since �h(x) decreases in h, we have on the set fbh � hidg \A� in view of the de�nition

of bh
j ef
bh
(x)� efhid(x)j � �1

�
�
bh
(x) + �hid(x)

�
+ 2D�

bh
(x) � 2(�1 +D)�hid(x):

Further, using the inequality c�hid(x) � D�hid(x) and Theorem 3.1, we get

P
�
j efhid(x)� f(x)j > (D + �)�hid(x);A�

�
� P

�
j efhid(x)� f(x)j > ��hid(x) + c�hid(x) ; A�

�
�
�
C1�+ C2�

3
�
e�

�2

2 ;

where

C1 = 4e log(4B3);

C2 = 4e log(4B3) 4r

r
1 + r

1� �
:
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Hence

P
�
j bf(x)� f(x)j > (�+ ��)�hid(x); A�;bh � hid

�
�
�
C1�+ C2�

3
�
e�

�
2

2(5.8)

and it only remains to evaluate P (bh < hid; A�). Due to the de�nition of bh , we have
fbh < hid; A�g
�

[
h2H :h<hid

[
�2H : �<h

n
j bfh(x)� bf�(x)j > �1

�
�h(x) + ��(x)

�
+ 2D�h(x); A�

o
:

We now use that for every �; h 2 H with � < h < hid

c�h(x) � c�hid(x) � D�hid(x) � D�h(x);

c��(x) � c�hid(x) � D�hid(x) � D�h(x):

Therefore by Theorem 3.1

P
�
j efh(x)� ef�(x)j > �1

�
�h(x) + ��(x)

�
+ 2D�h(x) ; A�

�
� P

�
j efh(x)� f(x)j > �1�h(x) + c�h(x) ; Ah

�
+P

�
j ef�(x)� f(x)j > �1��(x) + c��(x) ; A�

�
� 2

�
C1�1 + C2�

3
1

�
e�

�2
1
2 :

Clearly the total number of pairs �; h 2 H , satisfying � < h < hid , is at most (#H)2=2 .
Therefore

P
�bh < hid

�
� (#H)2

�
C1�1 + C2�

3
1

�
e�

�2
1
2 :

This bound coupled with (5.8) implies the desired assertion.

6. Appendix. Deviation probabilities for

martingales

In the Appendix we present two general results for continuous martingales. The �rst

result describes some properties of real-valued martingales, while the second one deals

with martingales valued in R
2 .

6.1. The scalar case

Let Mt be a continuous martingale with M0 = 0 and with the predictable quadratic

variation hMit .
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Proposition 6.1. For every T > 0, # > 0 , S � 1 and � � 1

P
�
jMT j > �

p
hMiT ; # �

p
hMiT � #S

�
� 4�

p
e (1 + logS) e�

�2

2 :

Proof. We use

P
�
jMT j > �

p
hMiT ; # �

p
hMiT � #S

�
� P

�
MT > �

p
hMiT ; # �

p
hMiT � #S

�
+P

�
MT < ��

p
hMiT ; # �

p
hMiT � #S

�
:

We estimate separately each term in the right side of this inequality.

Given a > 1 , introduce the geometric series #k = #ak and de�ne the sequence of

random events Ck = f#k �
p
hMiT < #k+1g , k = 0; 1; : : : . Then clearly

P
�
MT > �

p
hMiT ; # �

p
hMiT � #S

�
(6.1)

�
KX
k�0

P
�
MT > �

p
hMiT ; # �

p
hMiT � #S; Ck

�
:

where K is the integer part of loga S . We now bound each term in this sum. Let, with

 2 R,

Zt() = exp
�
Mt �

2

2
hMit

�
:

The random process Zt() is the continuous local martingale and, being positive, it is

the supermartingale (see Problem 1.4.4 in Liptser and Shiryayev (1986)). Therefore for

every T > 0,

EZT () � 1:(6.2)

For �xed k, we pick k =
�
#k

and use (6.2) for the inequality

1 � EZT (k)I
�
MT > �

p
hMiT ; Ck

�
which implies

1 � E exp

�
�

#k
MT �

�2

2#k
hMiT

�
I
�
MT > �

p
hMiT ; Ck

�
� E exp

�
�2

#k

p
hMiT �

�2

2#k
hMiT

�
I
�
MT > �

p
hMiT ; Ck

�
� E exp

�
inf

#k�v�#k+1

�
�2v

#k
� �2v2

2#2k

��
I
�
MT > �

p
hMiT ; Ck

�
:

It is easy to check that \inf#k�v�#k+1" is attained at the point v = #k+1 = a#k so that

P
�
MT > �

p
hMiT ; Ck

�
� exp

�
��2

�
a� a2

2

��
:
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Combining this bound with (6.1) and the use of K � loga S yields

P
�
MT > �

p
hMiT ; # �

p
hMiT � #S

�
� (1 + loga S) exp

�
��2

�
a� a2

2

��
:

Since the left hand side of this inequality does not depend on a, its right side can be

optimized w.r.t. a . This leads to the choice a = 1 + 1=�. Then

�2
�
a� a2

2

�
= �2

(
1 +

1

�
� 1

2

�
1 +

1

�

�2)
=

1

2
(�2 � 1)

and, since log(1 + 1=�) � 1=(2�) for � � 1 , it also holds loga S � 2� log S . Hence

P
�
MT > �

p
hMiT ; # �

p
hMiT � #S

�
� 2

p
e� (1 + log S) e�

�
2

2 :

In the similar way we obtain

P
�
MT < ��

p
hMiT ; # �

p
hMiT � #S

�
� 2

p
e� (1 + log S) e�

�
2

2

and the assertion follows.

6.2. The vector case

Here, we consider continuous vector martingale Mt valued in R
2 with components M0;t

and M1;t. De�ne

V0;t = hM0it
V1;t = hM0;M1it
V2;t = hM1it:

Let u be a random variable and

�2t = V0;t � 2uV1;t + u2V2;t:

For a �xed time moment T and constants # > 0 , S � 1 , � � 0 and � 2 (0; 1) , introduce

the event

AT =

8>>><>>>:
# � �2T � #S

V 2
1;T � �V0;TV2;T

juj � �

9>>>=>>>; :(6.3)

Proposition 6.2. Let Mt be a martingale with values in R
2 such that V0;T � V2;T .

Then, with AT from (6.3), it holds for every � �
p
2,

P (jM0;T � uM1;T j > ��T ; AT ) � 4e log(4S)

 
1 + 4�

s
1 + �

1� �
�2

!
�e�

�2

2 :
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Proof. For �xed �, �, and � de�ne � by the equality

2�(1 + �)

1� �
= ��2(6.4)

and denote by D� = f�k = k� : k 2 N; j�j � �g the discrete grid with the step � in the

interval [��; �] .
Let �+ (respectively �� ) be the random variable valued in D� which is closest to u

from above (respectively from below). Then clearly

j�� � uj � �:(6.5)

jM0;T � uM1;T j � max fjM0;T � ��M1;T j ; jM0;T � �+M1;T jg :(6.6)

Let now � be one of �� and �+ . Then by the construction j� � uj � � . The next step

is to show that on the set AT it holds

1� ��2 � V0;T � 2�V1;T + �2V2;T

�2T
� 1 + ��2(6.7)

Indeed

�2T = V0;T � 2uV1;T + u2V2;T

= V0;T �
V 2
1;T

V2;T
+ V2;T

�
u� V1;T

V2;T

�2
�

V0;TV2;T � V 2
1;T

V2;T

� (1� �)V0;T

and the use of V2;T � V0;T leads to the bound

jV1;T j
�2T

�
p
�V0;TV2;T

(1� �)V0;T
�

p
�

1� �
� (1� �)�1;

V2;T

�2T
� V2;T

(1� �)V0;T
� (1� �)�1:

Since on the set A it holds juj � � and by construction � � � we obtain, using the

de�nition (6.4) of � ,��V0;T � 2uV1;T + u2V2;T � (V0;T � 2�V1;T + �2V2;T )
��

� 2jV1;T jju� �j+ V2;T
��u2 � �2

��
� 2�(1 � �)�1�2T + 2��(1 � �)�1�2T

= �2T�
�2

and (6.7) follows.

Since on the set AT the value �2T is between # and #S , we also get for � = ��

(1� ��2)# � V0;T � 2�V1;T + �2V2;T � (1 + ��2)#S:(6.8)
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Now (6.6), (6.7) and (6.8) imply

fM0;T � uM1;T j > ��T ; AT g

�
�
M0;T � ��M1;T j >

�p
1 + �2

q
V0;T � 2��V1;T + �2

�
V2;T ; AT

�
[
�
M0;T � �+M1;T j >

�p
1 + �2

q
V0;T � 2�+V1;T + �2+V2;T ; AT

�
�
[

�2D�

�
jM0;T � �M1;T j >

�p
1 + �2

q
V0;T � 2�V1;T + �2V2;T ; A�;T

�
;

where

A�;T =
�
(1� ��2)# � V0;T � 2�V1;T + �2V2;T � (1 + ��2)#S

	
:

Now, for every � 2 D� , the process M0;t��M1;t is the continuous local martingale with

hM0 � �M1iT = V0;T � 2�V1;T + �2V2;T . Proposition 6.1 and the inequalities �2 � 2

and

�2

1 + ��2
� �2(1� ��2) = �2 � 1;

yield

P

�
jM0;T � �M1;T j >

�p
1 + �2

q
V0;T � 2�V1;T + �2V2;T ; A�;T

�
� 4

�p
1 + ��2

�
1 + log

(1 + ��2)#S

(1� ��2)#

�
exp

�
� �2

2(1 + ��2)
+
1

2

�
� 4�

�
1 + log

3S

2

�
exp

�
��2

2
+ 1

�
:

Since the number of di�erent elements in D� is at most 1 + 2���1 and since � from

(6.4) ful�lls ��1 =
2�2(1+�)

1��
, it follows

P (jM0;T � uM1;T j > ��T ; AT ) � 4e

�
1 + log

3S

2

��
1 + 2���1

�
�e�

�2

2

� 4e log(4S)

 
1 + 4�

s
1 + �

1� �
�2

!
�e�

�2

2

as required.
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