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Abstract

A solution of dumbbell in a Newtonian solvent is a convenient molecular model for a non-Newtonian
or visco-elastic fluid. The distribution of Hookean dumbbells obeys a continuity equation on which a
hierarchy of moment equations may be erected. The closure of this hierarchy is effected by the observation
that the dumbbell solution attempts to minimize its free energy, a combination of elastic energy, potential
energy of the Stokes friction and entropy. The minimization provides an expression for the equilibrium
distribution.

In this paper the hierarchy is closed after the second moment - the dumbbell stress tensor - by use of
the equilibrium distribution. A rheological equation of state results from the closed system of equations.
That rheological equation of state is simultaneously of "rate-type” and of ”grade-type”, in the jargon of
continuum mechanics, and it satisfies all natural stability criteria.

If the rheological equation of state is forcefitted into an equation of grade-type the stability is lost.
The conclusion from these considerations is that constitutive equations of grade-type do not represent

viscoelastic properties of fluids well.

1 Introduction

Dunn & Fosdick [1] have made an important discovery in thermodynamics of rheological
fluids. They were considering grade-type fluids when they found that thermodynamic
stability required the wrong sign of the first normal stress coefficient, i.e. a sign that
contradicted all rheological measurements. This result was not immediately fully appre-
ciated by the community of mechanicians and thermodynamicists; indeed for some time
it seemed that there was only one unattractive alternative: thermodynamics or rheology,
one or the other had to be wrong. But then, as the dust settled, it became clear that
both theories were right. What was wrong — as it so frequently is — was our intuition.
Intuition had suggested that grade-type equations provided a good constitutive class for
rheological fluids, but in reality they do not! Joseph [2] made that point most forcefully.
Miiller & Wilmanski [3], Wilmanski [4], and Miiller [5] suggested that the constitutive
equation for the stress should be replaced by a balance law, so that the rate of stress was
involved. Thus they were able to get all the correct results: A minimum of the free energy
and the correct sign of the first normal stress coeflicient.

Actually in thermodynamics proper — the theory of heat and temperature — there
exists a very similar problem with the Cattaneo equation [6] and its grade-type approx-
imation. That problem presented itself as the so-called paradox of infinite speeds. In
this field the problem has been fully resolved; and in the process the satisfactory rational
structure of extended thermodynamics has been erected in which no infinite speed occurs
and where stability is assured, see Miiller & Ruggeri [7]. The latter reference also pro-
vides a discussion of the similarity between the Cattaneo paradox and Dunn & Fosdick’s
dilemma.

In both cases — rheology and thermodynamics — the view to the root of the matter
was obstructed by the fact that ordinary thermodynamics does not easily accommodate
"rate-type constitutive equations” in which the rates of stress or heat flux appear. Ther-
modynamics had the edge, however, in finding the solution, because it could develop
along the lines laid down by the fully specific structure of the kinetic theory of gases.



Thus extended thermodynamics could be formulated as a rational theory and that theory
has now progressed far beyond Cattaneo and the resolution of his paradox.

Now then, rheology also has a kinetic theory of sorts — rudimentary in comparison
with gases, but nevertheless - and that theory is used in the present paper to explain the
instability of grade-type constitutive equations and the stability of the corresponding rate-
type ones. Basically we take the kinetic theory of rheological fluids from the review paper
(8] by Bird, Warner & Evans, but we make some alterations for which those authors should
not be held responsible. Those alterations result from long experience with statistical
thermodynamics which permits us a shortcut at some places. We also refer the reader
to Miiller [9], who made a systematic study of the kinetic theory of dumbbells along the
lines of Bird, Warner & Evans.

2 Motion of a dumbbell in solution

2.1 Equation of motion

A Hookean dumbbell consists of two masses % with the distance vector 2R; which are

connected by a linearly elastic spring, so that the elastic force between the masses equals
AR;, see Fig. 1. %)\ > 0 is the spring constant. The center of mass of the dumbbell lies

at position r;.

Fig. 1 Position of the masses of a dumbbell.

We assume that the dumbbell is immersed in a Newtonian fluid which flows past the
masses % with the velocity u(x) and exerts a Stokes drag force on them, proportional to
the relative velocity. Therefore the equations of motion of the two masses read

%(f:{:f{):—g (f'ZF]::{—u(rIFR)):I:)\R. (2.1)

¢ > 0 is the drag coeflicient. Adding and subtracting these two equations we obtain
equations for the motion of the center of mass and for the relative motion of the masses,
viz.

mr, = —2((?:',' — u,(r))
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u(x) has been expanded about x = r to within first order terms in R. Hencewith 2%
J IX=r
du;

will simply be written as 3.
J



In rheology we may usually ignore the inertial terms mi and mR. Thus we obtain !

A A Bug
7 =ui(r) and  Ri= —-R;+ ll

R;, (2.3)

Ou [’] R; is the rate of change of I; as seen by an observer who locally

A i
where R,— R; —
rotates with the angular Veloc1ty a of the fluid.

We may rewrite (2.3) in the forrn
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A
which lends itself to the following interpretation: The rate of change R; is proportional,
but opposite to the gradient of the energy

A

9
B(R) = SR~ < R, 8”(”

R, (2.5)

that consists of the elastic energy of the spring and the potential energy of the Stokes
friction force.

Obviously the gradient vanishes at R = 0 so that the dumbbell relaxes to that state
of rest.

This would indeed be the case, were it not for the stochastic character of the Stokes
forces. While these forces are given by the Stokes assumption in the mean, there is
considerable fluctuation in them.

2.2 Stochasticity. Short Version?

The fluctuation of the Stokes forces keeps the masses of the dumbbell in permanent ran-
dom motion and the best way to characterize that motion is by introducing an ensemble of
N dumbbells in which Ny of them have the distance vector R. Ng is called a distribution
function. By common consent the ergodic hypothesis holds by which a mean value for
the ensemble equals the expectation value for a single dumbbell.?

The thermodynamicists attends to the stochasticity by assuming that the energy
E = %: E(R)Ng of the ensemble must be supplemented by its entropy S = kIn N!/ 1;[ Ng!

Thus, by (2.5), he forms a free energy,

du N
R, + kT In N; 2.6
oo Ry KT SR ) N (2:6)

F=E-TS= Z(RZ——R

'Round and square brackets indicate symmetric and antisymmetric tensors respectively.

2The longer — and perhaps more satisfactory — version is relegated to the appendix. It leads to the
same results.

3The motion of the center of mass is also stochastic but we ignore this fact for simplicity and assume

(2.3); to hold for 7.



where the Stirling formula has been used. The summation extends over all R from —oo
to oo . Equation (2.6) suggests that

A 1 Oy Nr
FR)= R~ ¢ R, " om, — R +KTIn =% (2.7)

is the free energy of a dumbbell with R and this quantity has to replace E(R) in (2.5) in

A
order to provide R; under stochastic forces. We obtain
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2.3 Continuity equation and equation of transfer

The conservation of particles in the ” R-space” requires a continuity equation to hold in
the form
ONw OR;Ng
ot OR;

= 0. (2.10)

An alternative form of this equation results by elimination of R; between (2.9) and (2.10).
We obtain

ONgr 0 A Ou; kT ONg

— —— R;N, R;N 2.11

ot ' R, { R 5z, R T T 3R } (2.11)
Multiplication of this continuity equation by a generic function Q(R) and summation

over R provides an equation of transfer for the mean value (Q) = Z QR)AE | viz.
. 0Q (A _ Ou; KT | 62Q
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Two choices for ) are appropriate for us to consider: Q@ = R, and @Q = R,R,. We
obtain

A ou
(Rp)® = —< (Ra) ﬁ (R;) and (2.13)
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where (R,R,)* = (R,R,)" — ‘Z%E_’]’ (R,R;j) — au[q (R R;) is the corotational derivative of
the tensor (R, R,).



Comparison of (2.13) with (2.3); shows that the two equations are essentially identi-

cal. }A{,- in (2.3), which does not account for stochasticity, obeys the same law as the mean
value (R;)" of the stochastic motion. This is as it should be, of course.

We shall be interested in incompressible solutions with incompressible solvents. In
that case we have g—;‘z = 0 and it will turn out that only the deviatioric part of (2.14) is
of interest?, viz.

2 ou ou
(RepRys)® = e (RepRg>) + 8:1:<;p <R<q>Rj>> + 8:1:<: <R<p>Rj>> +
2 ou
+= (R?) =2, 2.15
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We abbreviate that equation by introducing the Oldroyd derivative % :

d A 2 ) o\ Ougy
57 (Reply>) = =22 (R Rps) + 2 (1) o (2.16)

2.4 Equilibrium distribution function

We refer back to the free energy F in (2.6). The free energy must assume a minimum
in equilibrium and this requirement determines the form of the equilibrium distribution
function N§. A short calculation provides

1 (Ap2 1 dug
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We shall need this for the calculation of (R?), the expectation value of R2.

Nr 0 _L(ARZ_L;R du<pr p )
R =Y R*— = —2kT— |1 RT\2T 2oy T ) 2.18
() = = (3 =
The result reads to within terms of second order in the shear rate g—i:
kT
2 — JR—
(R*) =5 . (2.19)

3 Rheological equation of state

3.1 Dumbbell contribution to stress

The Hookean dumbbells contribute to the stress of the solution, because of the ”"long-

range”, "non-local” force of the springs between the dumbbell masses. The contribution

is well-known to rheologists and it has been derived in detail by Bird, Warner & Evans

4 Angular brackets denote trace-less tensors.



[8]. (See also Miiller [9].) We quote their results for the deviatoric dumbbell stress which
reads

thy = n(RopRes) (3.1)
n is the number density of dumbbells.

Elimination of (R.,R,~) between (2.16) and (3.1) provides a rate-type constitutive
equation for t” in terms of the deviatoric velocity gradient, viz.

1¢ 6
(1+5xa)

or, with (R?) from (2.19)
1¢ 9
(1+5x&)

3.2 Total deviatoric stress

1 ou
th, = s (R?) 2, (3.2)

5 S Ouc
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(pa) 3" A Oz,

(3.3)

We denote the deviatoric stress of the solvent by ti)q>' It is given by the Navier-Stokes
equation, so that we have

s o Oucp
(pq) Saxq> )

/ (3.4)

where 7, is the viscosity of the solvent. The total stress of the solution will be denoted
by t and it is the sum of the stresses t° and t”, i.e. we have

_ 4D s
Lpg) = bipgy T Lipg) - (35)

Between (3.3) through (3.5) we may eliminate t” and t° and obtain a viscoelastic consti-
tutive relation for 1, viz.

1¢ 0 Ns1¢ 0\ Oucy
1+ ——— |ty = 1+ ———— ) — 3.6
( +2)\6t> v "°< T 02Ast) Bz, (3.6)
where 1y = 0, + %nkT§ has been introduced. 7y plays the role of a quasistatic viscosity.

Equation (3.6) agrees formally with the result of Bird, Warner & Evans [8], even though we are not
quite in agreement with all aspects of those author’s argument about the dumbbell stress. In the present

case of incompressibility our difference is reduced to a slight difference in the definition of 7.

4 Consideration of Stability

4.1 Rbheological equation of state

In the terminology of rheology equation (3.6) is called a rheological equation of state and
that is how we shall refer to it. We investigate the stability of a solution that satisfies
this equation and we proceed to do that in the simplest conceivable manner.

There are two simple criteria of stability.



i.) If the velocity gradient vanishes, we expect the deviatoric stress to relax to zero.
Obviously by (3.6) this will be happen for

<

— > 0. 4.1

: (41)

ii.) If the deviatoric stress vanishes, we expect the deviatoric velocity gradient to relax
to zero. This requires

LA (4.2)

Mo A

It is clear that both conditions are satisfied, since ¢, A, 1, and 7, are all positive.

4.2 Grade-type constitutive relation

In continuum mechanics and thermodynamics of rheological fluids it is common to assume
constitutive functions of grade-type. Thus in a fluid of n** grade the stress is postulated
to be a function of the velocity gradient and of up to n of its time derivatives®. It is clear
that the rheological equation of state (3.6), which, after a fashion, is derived from first
principles, — and is therefore more reliable than a mere postulate — does not support
this postulate, since it contains the rate of the stress. We may say that our analysis
has produced an equation that is simultaneously of rate-type and grade-type. However,
equation (3.6) can be forcefitted into a grade-type form in the following manner.

Purely formally we invert the operator (1 + %%%) in (3.6) and ”expand it” to give

1ed\ " Ns1¢ Y\ Oucy

tow = o1t oae) (14250
(pa) "°< +2)\6t> ( +7702)\6t> Dz,
1¢ 9 Ns1¢ 0\ Oucy
1- S0 (1420 TP
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Ns 1g 6\ Ouep
~ 1 ——1) === . 4.3
o < + (170 ) 2)\(5t> Oy (4.3)

The two last steps neglect second order derivatives.

Q

Thus we have obtained a rate-type constitutive equation for the stress. It is clear that
the chain of equations leading to (4.3) is quite rough®. But it has produced an equation
that exhibits unstable solutions just as the grade-type constitutive equation of continuum
mechanics do, according to Dunn & Fosdick [1] and Joseph [2]. Let us consider:

If £,y is zero, we should expect g’;—f to relax to zero. For this to happen we must
. q
require

(&—4>%§>0. (4.4)

5Such is the case in Rivlin-Ericksen fluids of grade 2.
6Incidentally this is equivalent to Cattaneo’s argument on heat conduction. See Cattaneo [6] and
Miiller & Ruggeri [7], p. 12 ff and p. 367 ff for a discussion.




However, with g = 1, + SnkT% , the left-hand side of the inequality (4.4) reads

2
ms V1< _ 5 nkT (5) (4.5)
Mo 2\ 12 np \\

so that the stability condition is violated.

5 Conclusion

We repeat that the arguments leading from the rheological equation of state (3.6) to the
grade-type equation (4.3) are purely heuristic. On that ground they will most certainly
be flatly rejected by people in rational mechanics. Such people are most careful about
their analysis but, alas, they are often less than careful about physical motivation of
assumptions.

In the present case, they have ignored the proper form of the rheological equation
and assumed the stress as given by the history of the velocity gradient. This was not
acceptable and has led to instability.

6 Appendix

In the appendix we provide a more careful derivation of the equation (2.11) for the benefit
of those who may be unhappy with the arguments of Sections 2.2 and 2.3.

The distribution Ngg of the dumbbells with R and R is a more detailed description
of the ensemble that the previously used distribution Ng. The new distribution satisfies
a continuity equation in the (R, R)-space

ONgi OR; Ng g N OR; Ny
With R; as given by (2.2), we obtain

ONgg ORiNggp 2 0 o Ou 2X , ONgg
ot | oR, m OR; oz; ') RR) m™" BR, (6:2)

=0. (6.1)

Multiplication of this equation by a generic function g(R, R, t) and summation over R
results in an equation of transfer of the form

o 4 D 4 2 (R GiRy) 2] Nat BR8] N (6.3)

(5 + R V=

where [g] Ngr stands for 3° gNgyg, i.e. [g] is the mean value of g(RR) taken over all R.
R;

For our purposes it is sufficient to choose ¢ = 1 and g = Rp. In the first case we
obtain

5t T OR

=0 . (6.4)



and the second case provides the equation

S |- ou
2-R,Ng = —2— |R, — —2
ot OR; + m PR ml P

ox;

J

&Mﬁ (6.5)

In order to convert (6.5) into an algebraic equation for [R,] we use the first step of a
formal iterative scheme that is known as the Maxwellian iteration in the kinetic theory”:
In the present case the scheme reduces to a calculation of the mean values [R,] and [R, R;]
on the left-hand side of (6.5) in equilibrium so as to obtain the first iterate [R,]' on the
right-hand side. Equilibrium is characterized by the Maxwell distribution

2

m __m P2
A B (6.6)
so that we obtain
. 1E . . 1E  2kT
(R]" =0, [RR]| = by (6.7)
Insertion into (6.5) provides the equation
.11 A ou kT O0ln Ng
R =-2R,+ %R 2 . 6.8
|: P] S P + 8.’17]' J S aRp ( )
We may use this first iterate to eliminate [R] from (6.4) and obtain
— —=R;,Ng + —RjNg — — =0, 6.9
&+%ig “%%]Rgam} (6.9)

which is identical with (2.11).

Actually the Mawellian iterative scheme may be used to determine refinements in the
equation (6.9). However, it seems that there is not much interest in those in the field of
rheology.
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