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Abstract

We �nd the e�ective importance sampling procedures for the simulation

of large and moderate large deviations of tests and estimators. The compu-

tational burden of these e�ective procedures has no exponential rate as in

the direct simulation. The results are applied to the simulation of large and

moderate large deviations of L,M,R-statistics and omega-square tests.

Introduction. For the analysis of large and moderate large deviations of tests and

estimators the Monte-Carlo technique usually is applied in the more subtle form

then the direct simulation of such rare events. The direct simulation requires both

a large volume of computations and an investigation of a random number quality

since the small uctuations of random number distributions may cause serious

deviations in estimation of small probabilities. There exist convenient approaches

to the minimization of computational work and usually one of these approaches

is applied in a simulation. The most widespread method for the large deviation

simulation is the importance sampling. In the importance sampling procedure

the data are generated using a probability distribution di�erent from the true

underlying distribution. After that the observed events are weighted to reect

their true relative frequency.

On the base of large deviation theory the problem of the choice of optimal

weights in the importance sampling has been solved for a wide range of applications

(see Siegmund, 1976; Bucklew, 1990; Bucklew, Ney and Sadowsky, 1990; Sadowsky

and Bucklew, 1990; Chen, Lu, Sadowsky and Yao (1993); Sadowsky, 1991, 1996;

Lehtonen and Nyhrinen, 1992; Barone, Gigli and Piccioni, 1995). The optimal

weights were found using the standard approach of the analysis of large deviations of

sums of random variables. The most part of statistical procedures has usually only

approximately linear or even nonlinear character and, as a consequence, can not be

reduced directly to such an approach. Thus, so far, these results in statistics were

applied only for the special models (see Siegmund, 1976; Sadowsky and Bucklew,

1990; Barone, Gigli and Piccioni, 1995). The e�ective simulation of large and

moderate large deviations in this area requires the additional investigation of the

problem.

As wellknown the statistical functionals usually can be represented as the func-

tionals of empirical probability measures. Using this fact we develop a similar

approach of e�ective importance sampling based on the theorems about the large

and moderate large deviations of empirical measures (see Groeneboom, Oosterho�

and Ruymgaart (GOR), 1979; Ermakov, 1995). The results on e�cient simulation

of large deviations are obtained in an evident form expressed in terms of Kullback{

Leibler information numbers and admits the clear interpretation: the e�ective im-

portance sampling measures are the solutions of extremal problem of minimization

of Kullback-Leibler information numbers on the set of large deviations. Although

the straightforward calculations of Kullback-Leibler information numbers and the

corresponding probability measures for the e�cient simulation represent essential

di�culties we can make use these results for the obtaining approximate solutions.

1



The di�culties arising in the e�cient simulation of large deviations were the

main reason to investigate a similar problem in the moderate large deviation set-

ting. The domains of moderate large deviations of statistics usually admit the

approximations by half-spaces or convex sets in the space of all probability mea-

sures. As a consequence, in practice, the testing assumptions of theorems about

the e�cient moderate large deviation simulation does not represent such serious

di�culties as for the large ones. Naturally, the moderate large deviation simulation

has also an independent interest for the applications. The results, in this problem,

are expressed in terms of the Hellinger metric and the functional admitting the

interpretation as the Fisher information. The densities of measures for the e�cient

simulation of the most of widespread statistics, in particular, L,M and R statistics,

are given in a direct form based on their inuence functions.

2. Importance sampling for large deviations. Let = be the �-�eld of Borel

sets in Hausdor� space S, � the space of all probability measures (pms) in (S;=)

and X1; : : : ; Xn i.i.d.r.v.'s with pm P 2 �. Denote P̂n the empirical measure of

X1; : : : ; Xn. For any P;Q 2 � de�ne the Kullback-Leibler information number

K(Q;P ) =

Z
S

q log q dP; q =
dQ

dP
;

ifQ absolutely continuous w.r.t. P andK(Q;P ) =1 otherwise. DenoteK(
; P ) =

inffK(Q;P ) : Q 2 
g for any P 2 � and 
 � �.

Introduce on the space � the � -topology of weak convergence. In � -topology a

sequence of pms Qn 2 � converges to pm Q 2 � i�

lim
n!1

Z
S

f dQn =

Z
S

f dQ

for each bounded measurable function f : S ! R1. In what follows all topological

properties in � (convergence, closeness, compactness and so on) will be considered

w.r.t. � -topology. The closure and the interior of a set 
 � � in the � -topology

will be denoted by cl (
) and int (
) respectively.

Let T : � ! R1 be a �xed functional. For any b > 0 denote 
(b) = fQ :

T (Q) > b; Q 2 �g.

Our arguments are based on the following theorems (see Lemma 2.3, Theorems

3.1 and 3.2 in GOR, 1979).

Theorem 2.1. Let P 2 � and let 
 � �. Suppose thatK(cl(
); P ) = K(int(
); P ).

Then

lim
n!1

n�1 logP (P̂n 2 
) = �K(
; P ): (2:1)

There exists a pm Q 2 cl (
) such that Q is absolutely continuous w.r.t. P and

K(Q;P ) = K(
; P ).

Theorem 2.2. Let the functional T : � ! R1 be continuous in � -topology and let

T (P ) 6= b. Then

lim
n!1

n�1 logP (T (P̂n) > b) = �K(
(b); P ): (2:2)
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There exists a pm Qb 2 
(b) such that K(
(b); P ) = K(Qb; P ).

As wellknown (see Bucklew, 1990; Hammersley and Handscomb, 1964; Sadowsky

and Bucklew, 1990), the importance sampling approach allows to de�ne easily the

trivial procedure for the explicit calulation of the true probability P (T (P̂n) > b).

However this procedure can not be applied directly since its application requires the

explicit knowledge of this probability P (T (P̂n) > b). Moreover, in this procedure

the simulated random variables Y1; : : : ; Yn are usually essentially dependent. In

the paper we shall be considering essentially more narrow class of procedures. We

shall �nd the e�ective importance sampling procedures in the class of all procedures

simulating independent random variables Y1; : : : ; Yn:

Let pms Qn1; : : : ; Qnl 2 � be absolutely continuous w.r.t. pm P and let

p1; : : : ; pl be nonnegative real numbers such that p1 + : : : + pm = 1. Let us, by

simulation procedure, we get t-independent samples Y
(i)
1 ; : : : ; Y (i)

n
, 1 � i � t of

i.i.d.r.v.'s with pm Qn�i
2 � where �i is a random index, P (�i = j) = pj, 1 � j � l.

Denote Q̂(i)
n

the empirical measure of Y
(i)
1 ; : : : ; Y (i)

n
, 1 � i � l. We shall study the

importance sampling estimators of P (T (P̂n) > b) which is de�ned as follows

V̂nt = t�1
tX

i=1

�(T (Q̂(i)
n
) > b)w�1

ni
: (2:3)

where

wni =
mX
j=1

pjunij; unij =
nY

s=1

qnj(Y
(i)
s
)

with qnj = dQnj=dP , 1 � j � l. The using importance sampling simulation

based on the mixtures of pms Qnj, 1 � j � m, and the corresponding additional

randomization by the random index � allow to de�ne the e�ective procedures for

the essentially more wide class of statistical problems.

By straightforward calculations we get

EQ[V̂nt] = EQ[V̂n1] = P (T (P̂n) > b) (2:4)

and

V arQ[V̂nt] = t�1(EQ[Ûn]� (EQ[V̂n1])
2) (2:5)

where Ûn = �(T (Q̂(1)
n
) > b)w�2n1 .

By Theorem 2.2 and (2.4), we have

EQ[V̂n1] = expf�nK(
(b); P )(1 + o(1))g (2:6)

as n!1. Here Q denotes the probability measure of simulation.

Therefore we get the following assertion.

Lemma 2.1. Let the functional T : � ! R1 be continuous in � -topology and

let T (P ) 6= a. Then for any sequences Qn1; : : : ; Qnl 2 � and nonnegative numbers

p1; : : : ; pl, p1 + : : :+ pl = 1,

lim inf
n!1

n�1 logE [Ûn] � �2K(
(b); P ): (2:7)

3



Lemma 2.1 allows to introduce naturally the notion of asymptotic e�ciency of

importance sampling procedures. We say that the importance sampling procedure

V̂nt is asymptotically e�cient if

lim
n!1

n�1 logE [Ûn] = �2K(
(b); P ): (2:8)

A similar notion of asymptotic e�ciency in the other terms has been introduced in

Bucklew (1990) and Bucklew and Sadowsky (1990). Roughly speaking, an impor-

tance sampling procedure is asymptotically e�cient if the computational burden

grows less than exponentially fast.

For the problem of large deviation estimation of P (P̂n 2 
) with a given set


 � � the importance sampling procedure is de�ned similarly

V̂nt = t�1
tX

i=1

�(Q̂(i)
n
2 
)w�1

ni
: (2:9)

Here the analog of Lemma 2.1 holds also in the notation Ûn = �(Q̂(1)
n
2 
)w�2n1

and 
(b) = 
. Therefore the same de�nition of asymptotic e�ciency can be

introduced for this problem as well. Naturally the importance sampling procedures

for the estimation of large deviation probabilities P (T (P̂n) > b) can be considered

as a particular case of the more general procedure (2.9). It su�ces to put only


 = 
(b).

Let the pmR 2 � be absolutely continuous w.r.t. pm P 2 � and let r = dR=dP .

Denote �R = fQ :
R
S
log r dQ > K(
; P ), Q 2 �g.

Theorem 2.3. Let 
 � � and let P 2 �. Let K( cl (
); P ) = K( int (
); P ).

Suppose there exists only a �nite number of pms R1; : : : ; Rm such that Ri 2 cl

(
) and K(Ri; P ) = K(
; P ) for all 1 � i � m. Denote ri = dRi=dP and

suppose E[r�1i (X1)] < 1 for all 1 � i � m. Suppose also 
 � [m

i=1�Ri
. Then

the importance sampling procedures (2.9) are asymptotically e�cient with given

pms Qn1 = Q1; : : : ; Qnl = Ql i� the set of pms Q1; : : : ; Ql contains the set of pms

R1; : : : ; Rm and pi 6= 0 for all i such that Qi = Ri.

Let the functional T :�! R1 be continuous in � -topology. ThenK( cl (
(b)); P ) =

K(int (
(b)); P ). Therefore, if the set 
 = 
(b) satis�es all the other assumptions

of the theorem, then the same statement holds also for the importance sampling pro-

cedure (2.3).

The proof of Theorem 2.3 will be omitted. Similar arguments are given below in

the proof of Theorem 3.3 about the e�ective importance sampling simulation of

moderate large deviations. The proof of these theorems unites the technique for

the analysis of large deviations of empirical measures (see GOR, 1979; Ermakov,

1993,1995) with the reasonings utilized in the proof of the e�ciency of importance

sampling procedures (see Sadowsky and Bucklew, 1990; Sadowsky, 1996 and refer-

ences in these papers).

3. Importance sampling for the moderate large deviations. Let T : � !

R1 be a functional continuous in � -topology and let P be a limit point of a sequence
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of sets 
n � �. Let T (P ) = 0 and bn ! 0, nb2
n
! 1 as n ! 1. In section we

�nd the e�ective importance sampling procedures for the estimation of moderate

large deviation probabilities P (T (P̂n) > bn) and P (P̂n 2 
n).

For any P;Q 2 � de�ne the Hellinger distance

�(Q;P ) =

0
B@Z

S

0
@
 
dQ

dR

!1=2

�

 
dP

dR

!1=2
1
A
2

dR

1
CA
1=2

; R =
1

2
(P +Q):

For any 
 � � denote �(
; P ) = inff�(Q;P ) : Q 2 
g:

Introduce the space �0 of all charges G on (S;=) having the bounded variation

and such that G(S) = 0. De�ne the � -topology in �0 similarly to that on �. All

topological properties in �0 will be considered w.r.t. � -topology.

For any G 2 �0 and P 2 � de�ne the functional

�0(G : P ) =

�Z
S

g2dP

�1=2
; g =

dG

dP
(3:1)

if G is absolutely continuous w.r.t. P and �0(G : P ) = 1 otherwise. For any


0 � �0 denote �0(
0 : P ) = inff�0(G : P ); G 2 
0g. From the viewpoint of

statistical applications, the functional �0 can be considered as a natural analog of

the Fisher information.

Let P be a limit point of sets 
n.

Make the following Assumptions.

A. There exist an open set 
0 � �0 and a function !(t), !(t)=t! 0 as t! 0 such

that

1. for any sequence of charges Gn 2 
0 there exists a sequence of pms Qn 2 
n

such that �(Qn; P + bnGn) < !(�(P; P + bnGn)).

2. for any sequence of pms Qn 2 
n there exists a sequence of charges Gn 2 
0

such that �(Qn; P + bnGn) < !(�(Qn; P )).

Thus the sets P+bn
0 can be interpreted as the "linear approximations" of the sets


n in the Hellinger metric. It is easily seen that �(
n; P ) =
1
2
bn�0(
0 : P )(1+o(1))

as n!1.

B. There exists a homogeneous functional T0 : �0 ! R1 having the order one of

homogeneity and a function ! : !(t)=t! 0 as t! 0 such that the functional T0 is

continuous in � -topology and

jT (Q)� T (P )� T0(Q� P )j < !(T0(Q� P )) (3:2)

for any Q 2 �.

Let B hold. Then, denote 
0 = fG : T0(G) > 1; G 2 �0g.

Theorems 3.1 and 3.2 below follow easily from Theorem 3.2 in Borovkov and

Mogulskii (1980) and Theorem 3.1 in Ermakov (1995).
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Theorem 3.1. Assume A. Let bn ! 0, nb2
n
!1 as n!1. Then

lim
n!1

(2n�2(
n; P ))
�1 logP (P̂n 2 
n) = �1: (3:3)

There exists a charge G 2 cl (
0) such that �(
n; P ) = �(P + bnG;P )(1 + o(1)) =
1
2
bn�0(
0 : P )(1 + o(1)) = 1

2
bn�0(G : P )(1 + o(1)) as n!1.

Theorem 3.2. Assume B. Let bn ! 0, nb2
n
!1 as n!1. Then

lim
n!1

�
1

2
nb2

n
�20(
0; P )

��1
logP (T (P̂n) > bn) = �1: (3:4)

There exists a charge G 2 cl (
0) such that �(
(bn); P ) = �(P+bnG;P )(1+o(1)) =
1
2
bn�0(
0 : P )(1 + o(1)) = 1

2
bn�0(G : P )(1 + o(1)) as n!1.

The importance sampling procedures are de�ned similarly to that in section 2. It

su�ces only to replace b by bn in the de�nition (2.3) and 
 by 
n in the corre-

sponding de�nition (2.9).

Denote 
n = 
(bn) if B holds. Lemma 3.1 below represents a direct analog of

Lemma 2.1.

Lemma 3.1. Assume A or B. Let bn ! 0, nb2
n
! 1 as n ! 1. Then for any

sequence of importance sampling procedures

lim inf
n!1

(2n�2(
n; P ))
�1 logE[Ûn] � �2 (3:5)

or, in the other terms,

lim inf
n!1

(nb2
n
)�1 logE[Ûn] � ��20(
0 : P ): (3:6)

Lemma 3.1 follows immediately from Theorems 3.1 and 3.2.

We say that sequences of pms Qn1; : : : ; Qnm and nonnegative real numbers

p1; : : : ; pm, p1 + : : : + pm = 1, generate asymptotically e�ective procedures of im-

portance sampling if the equality is attained in (3.5) and (3.6).

Make the following additional assumptions.

C1. There exists only a �nite number of charges G1; : : : ; Gm 2 cl (
0) such that

�0(Gj : P ) = �0(
0 : P ), 1 � j � m.

Denote gj = dGj=dP , 1 � j � m. De�ne the sets 	j = 	Gj
= fG : �0(G + Gj :

P ) < 2�0(
0 : P ); G 2 �0g for all 1 � j � m. The set 	j is the set of all charges

G with the densities from the ball in L2(P ) having the center �gj and the radius

2�0(
0 : P ). We put 	 = \m

j=1	j.

C2. 
0 \ 	 = ;.

For each j, 1 � j � m, de�ne the set ��Gj
= fH :

R
S
gjdH < �20(
0 : P ); H 2 �0g.

It is clear that ��Gj
� 	j. Thus C2 can be replaced by the stronger assumption.

C3. 
0 � �0n cl (\
m

j=1
��Gj

).
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The assumption of a type C3 was made in Theorem 2.3 and is a traditional in

the problem of large deviation simulation (see Sadowsy and Bucklew, 1990). This

assumption does not ful�lled for the sets 
0 generated by nonlinear statistical

functionals, in particular omega-square test statistics. The assumption C2, in some

extent, allows to avoid this di�culty.

Theorem 3.3. Assume A, C1 and C2 or B, C1 and C2. Let bn ! 0, nb2
n
!1 as

n!1. Then the sequence of pms Qnj, 1 � j � l, having the densities

qnj = �nj + bnhj�(hj > �cnb
�1
n
) (3:7)

with cnb
�1
n
! 1 as n ! 1, 0 < cn < c < 1 and �nj ! 1 as n ! 1 generates

asymptotically e�cient importance sampling procedures V̂nt (see (2.3),(2.9)) i� the

set of all hj, 1 � j � l, contains the set of all densities gi, 1 � i � m and pj 6= 0

for all j such that hj = gi.

The same statement is also valid for the sequences of pms Q
(1)
nj having the den-

sities

q
(1)
nj = c(bn) expfbnhjg�(hj > �cnb

�1
n
) (3:8)

with cnb
�1
n
!1 as n!1, 0 < cn < c < 1. Here c(bn) is a normalizing constant.

The proof of Theorem 3.3 will be given in section 5.

Remark 3.1. If the functional T is nonlinear, it can turn out that C2 does not

hold. In this case the following modi�cation of the procedure can be usefull. Sup-

pose there exists a �nite number of charges Gm+1; : : : ; Gm+a 2 cl (
0) such that

\m+a
j=1 	Gj

\ 
0 = ;. Consider the importance sampling procedure for the pm Qnj

having the densities qnj or q
(1)
nj with hj = gj =

dGj

dP
, 1 � j � m + a. Then the

analysis of the proof of Theorem 3.3 shows that such a procedure is asymptotically

e�cient. The corresponding likelihood ratios unij, j > m, can have the same or

the larger order than the likelihood ratios unij, j � m, with the essentially smaller

probability. Thus unij, j > m, can be considered as the regularization addendums.

Example. Let T (P̂n) be the test statistic of omega-square type, with the functional

T (Q) =

Z 1

0
(F (x)� x)2r(x)dx

where F (x) stands for the distribution function of Q, S = [0; 1] and r a weight func-

tion continuous in [0; 1]. Naturally we suppose that P is the uniform distribution

in [0; 1].

The set 
0 equals


0 =

�
G :

Z 1

0
H2(x)r(x) dx � 1; H(x) = G((0; x]); G 2 �0

�
:

The charges G satisfying �0(G : P ) = �0(
0 : P ), G 2 cl 
0 are set by the equation

(see Anderson and Darling, 1952)

H 00 + �1rH = 0; H(0) = H(1) = 0 (3:9)
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where H(x) = G(0; x), x 2 (0; 1) and �1 is the largest eigenvalue of (3.9).

Let �1 > �2 > : : : be the eigenvalues of (3.9) and let k = maxfi : 4�i � �1g.

Suppose that for each �j, 1 � j � k, there exists the unique eigenfunction Hj.

Then the charges Gj, Gj((0; x)) = Hj(x) and Gk+j((0; x)) = �Hj(x), 1 � j � k,

satisfy the assumptions of Theorem 3.3. The charges G2; : : : ; Gk; Gk+2; : : : ; G2k,

here, play the same part as in Remark 3.1.

4. Importance sampling for the moderate large deviations. The func-

tionals admitting the linear approximation. In section we shall be assuming

that the functional T : � ! R1 is approximately linear, that is, satis�es the fol-

lowing assumptions.

D1. There exist a function g : S ! R1 and a function !, !(t)=t ! 0 as t ! 0,

such that for any Q 2 �����T (Q)� T (P )�
Z
S

g d(Q� P )

���� < !(N(Q� P )): (4:1)

Here N : �0 ! R1 stands for a norm in �0 continuous in � - topology.

By Theorem 3.2, if the norm N is continuous in � - topology, then for any sequence

dn, dn ! 0, nd2
n
!1 as n!1 it holds

P (N(P̂n � P ) > dn) � expf�cnd2
n
(1 + o(1))g: (4:2)

D2. There exists c > 0 such that E[expfc g(X1)g] <1.

D1 can be considered as a version of the condition of Hadamard di�erentiability of

functional T . Such a type of assumptions usually is utilized for the proof of asymp-

totic normality of L;M and R statistics (see Sering, 1980; Denker, 1985) and, in

implicit form, the same technique was applied also for the study of their large de-

viations (see Jureckowa, Kallenberg and Veraverbeke, 1988; Inglot, Kallenberg and

Ledwina,1992; Ermakov, 1994). Note that the � - continuiuty of the norm N can

be replaced by the weaker assumption (4.2) (see Inglot, Kallenberg and Ledwina,

1992). Thus D1 and D2 allow to investigate the problem of the moderate large de-

viation simulation for the statistical functionals having the Hadamard derivative,

in particular, L;M and R statistics.

For any function h 2 L2(P ) denote �
2
h
= E[h2(X1)]. We put �2 = �2

g
.

Lemma 4.1. Assume D1 and D2. Let bn ! 0; nb2
n
!1 as n!1. Then for any

sequence of importance sampling procedures

lim inf
n!1

(nb2
n
)�1 logE[Ûn] � ���2: (4:3)

Therefore, if D1,D2 hold, one can get the lower bound for the asymptotic e�ciency

of importance sampling procedures in the more evident form.

Theorem 4.1. Assume D1 and D2. Let bn ! 0, nb2
n
! 1 as n ! 1 and let

h 2 L2(P ). Then the sequences of pms Qn having the densities

qn = �nj + bn h�(h > �cnb
�1
n
) (4:4)
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and pms Q(1)
n

having the densities

q(1)
n

= c(bn) expfbnhg�(h > �cnb
�1
n
) (4:5)

with cnb
�1
n

! 1 as n ! 1, 0 < cn < c < 1 generate asymptotically e�cient

importance sampling procedures V̂nt i� h = ��2g.

Proof of Lemma 4.1. Without loss of generality we shall assume that !(t) is strictly

monotone function. De�ne the inverse function � for the function ! such that

�(s) = t implies !(t) = s. By the Cramer Theorem (see Saulis and Statulevichius,

1989) and (4.2), we have

P (T (P̂n)�T (P ) > bn) � P

 
nX

s=1

g(Xs) > nbn(1� �n)

!
�P (N(P̂n�P ) > �(bn�n)) �

exp

�
�

1

2�2
nb2

n
(1� �n)

2(1 + o(1))

�
� expf�cn�2(bn�n)g (4:6)

for any sequence �n > 0, �n ! 0 as n!1 and, in particular, a sequence �n such

that �(bn�n)=bn !1 as n!1. Therefore (4.6) implies (4.3).

The proof of Theorem 4.1 makes use the asymptotic of moderate large deviation

probabilities of empirical measures for the more general setting than in Theorems

3.1 and 3.2. This proof is based on the asymptotic of logPn(P̂n 2 
n) with a

sequence of pms Pn converging to P . Such an asymptotic was obtained in Ermakov

(1995), Theorem 3.1.

Make the following Assumption.

E. There exists a sequence of charges Hn 2 �0 such that Hn are absolutely contin-

uous w.r.t. P , �(Pn; P + bnHn) = o(�(Pn; P )) as n!1 and

lim
n!1

Z
S

 
dHn

dP

!2
�

 �����dHn

dP

����� > Cn

!
dP = 0 (4:7)

for any sequence Cn !1 as n!1.

Theorem 4.2. Let Pn converge to P in the � - topology, let bn ! 0, nb2
n
!1 as

n!1 and let A and E hold . Then

lim
n!1

(2n�2(
n; Pn))
�1 logPn(P̂n 2 
n) = �1: (4:8)

Proof of Theorem 4.1. The reasoning will be given for the sequences of pms Qn.

The case of pms Q(1)
n

is similar.

De�ne the sequence of pms Rn having the densities

rn(x) =
dRn

dP
(x) = c�1(bn)(�n + bnh(x))

�1�(h(x) > �cnb
�1
n
��1
h
):

Here

c(bn) = E[(�n + bnh(X1))
�1�(h(X1) > �cnb

�1
n
��1
h
)] = 1 + b2

n
�2
h
(1 + o(1)): (4:9)
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We have

E[Ûn] = cn(bn)PRn
(T (P̂n)� T (P ) > bn) � In1 + In2 (4:10)

where

In1 = cn(bn)PRn

�Z
S

g d(P̂n � Rn) + T (Rn)� T (P ) > (1� �n)bn

�
;

In2 = cn(bn)PRn

�
T (P̂n)� T (Rn)�

Z
S

g d(P̂n �Rn) � bn�n

�

with bn�n=!(bn) ! 1 as n ! 1. Hereafter PRn
(A) denotes the probability of

event A with respect to pm Rn.

Since N is continuous in the � - topology and the � - topology is weaker then the

topology of convergence on variation then we have (see Ermakov, 1995)

N(Rn � P ) < C

Z
S

jrn � 1j dP < Cbn:

Hence

jT (Rn)� T (P )�
Z
S

g d(Rn � P )j < !(N(Rn � P )) < !(Cbn) (4:11)

By D2 and Theorem 4.2, we have

In2 = cn(bn)PRn

�
T (P̂n)� T (Rn)�

Z
S

g d(P̂n �Rn) > bn�n

�
<

cn(bn)PRn
(N(P̂n �Rn) > �(bn�n)) � expfnb2

n
�2
h
(1 + o(1))� c1n�

2(bn�n)g: (4:12)

Since 0 < C1 < rn(x) < C2 < 1, the assumptions of Theorem 3.2 in Saulis and

Statulevichius (1989) ful�lled, and, using (4.11), we have

In1 � cn(bn)PRn

�Z
S

g d(P̂n �Rn) > (1� C�n)bn �
Z
S

g d(Rn � P )

�
=

cn(bn)PRn

�Z
S

g d(P̂n �Rn) > (1� C�n)bn + bn

Z
S

gh dP + o(bn)

�
=

exp

(
nb2

n
�2
h
�

1

2
nb2

n
��2

�
1� C�n +

Z
S

gh dP

�2
+ o(nb2

n
)

)
: (4:13)

It is easy to see that the in�mum of the right-hand side of (4.13) is attained if

h = ��2g. Hence

In1 < expf�nb2
n
��2(1 + o(1))g:

This completes the proof of Theorem 4.1.

5. Proof of Theorem 3.3.. The reasoning is based on a standard technique

for the analysis of large deviations of empirical measures (see GOR, 1979) and its

modi�cation on the case of moderate large deviations (see Ermakov 1993,1995).

Naturally, the preceding ideas (see Sadowsky and Buklew (1990), Buklew, Ney
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and Sadowsky (1990)) developed for e�ective simulation by importance sampling

procedure play the essential part as well.

We begin with the proof of su�ciency of the theorem statement.

Denote � = �k = fSig
k

1 a partition of S consisting of a �nite number of Borel

sets Si, 1 � i � k.

For any Q 2 �, G 2 �0 and a partition � = fSig
k

1 of S denote

�2(Q;P j�) =
kX

i=1

(P 1=2(Si)�Q1=2(Si))
2;

�0(G;P j�) =
kX

i=1

G2(Si)

P (Si)
:

Here we suppose that P (Si) 6= 0 for all 1 � i � k.

It is known that (see, for example, Borovkov and Mogulskii, 1980; Ermakov,

1993,1995)

�(Q;P ) = sup
�

�(Q;P j�); �0(G;P ) = sup
�

�0(G;P j�) (5:1)

where the supremum is taken over all partitions � of S.

For any � > 0, C1 > 0 de�ne a partition � = �C1;�
= fSig

k

1 such that pi =

P (Si) > 0 for all 1 � i � k,

min
y2Sk

max
1�j�m

jgj(y)j > C1

and for each 1 � j � m, 1 � i � k � 1 for all y 2 Si

max
x2Si

gj(x) � gj(y) � min
x2Si

gj(x) + �

Lemma 5.1. Let the assumptions of Theorem 3.3 be satis�ed. Then

lim
�!0

C1!1

min
1�j�k

(2�(
n; P ))
�1�(
n : P � bnGjj�C1�

) =

lim
�!0

C1!1

min
1�j�k

(2�0(
0; P ))
�1�0(
0 +Gj : P j�C1�

) = 1:

The proof of Lemma 5.1 follows the line of that of Lemma 2.4 in GOR (1979) (see

also Ermakov (1995)) and will be omitted.

For all 1 � j � m denote �nj = E[gj(X)�(gj(X) < �cnb
�1
n
)]. Since cnb

�1
n
!

1 as n ! 1, ee get �nj = o(1) as n ! 1. Therefore the events [n

s=1 [
m

j=1

fXs : gj(Xs) < �cnb
�1
n
g will inuence in the proof only on the remainder terms of

estimates.

For all i; 1 � i � k, and j, 1 � j � m denote qnji = Qnj(Si), gji = Gj(Si). We

put �nj = 1+bn
R
S
gj�(gj > �cnb

�1
n
) dP . It is clear that �nj = 1�bn�nj = 1+o(bn).

In what follows, in order to simplify the estimates, we consider the case m = 1.

The case of arbitrary m will be later reduced to this one. For all i, 1 � i � k, we

put ri =
R
Si
g21dP , dni =

R
Si
q�1n1 dP . Denote 

2
n
= 1

4
b2
n

P
k

i=1 g
2
1i=pi.

11



Expanding in the Taylor series, we get

qnji = �njpi + bng1i + o(bn) = pi + bng1i + o(bn); (5:2)

dni = �n1pi � bng1i + b2
n
ri(1 + o(1)); 1 � i � k: (5:3)

By Lemma 5.1, there exists � = �(�; C1), �(�; C1) ! 1 as � ! 0, C1 ! 1 such

that

E[Ûn] = E[w�1
n1 �(P̂n 2 
n)] �

E[w�1
n1 �(�

2(P̂n; P � bnG1j��;C1
) > 4�2

n
)
:
= �In(��;C1

): (5:4)

Applying the Stirling formula, we get

�In(��;C1
) <

0X n!

(nzn1)! : : : (nznk)!

kY
i=1

dnznini �

C
0X
exp

( 
1

2
�
k

2

!
logn�

1

2

kX
i=1

log zni�

n
kX

i=1

zni log
zni

pi
+ n

kX
i=1

zni log
dni

pi

)
:
= I(Zn1): (5:5)

Here the summation
P
0 is taken over the set Zn1 of all z = (zn1; : : : ; znk) such that

nzn1; : : : ; nznk are nonnegative whole numbers, zn1 + : : :+ znk = 1 and

Jn1(z) =
1

4

kX
i=1

(z
1=2
ni � (pi � bng1i)

1=2)2 > �2
n
: (5:6)

Introduce also the set Zn2 of all z = (zn1; : : : ; znk) such that nzn1; : : : ; nznk are

nonnegative whole numbers, zn1 + : : :+ znk = 1 and

Jn2(z) =
kX

i=1

(z
1=2
ni � p

1=2
i )2 > �2

n
: (5:7)

It is clear that Zn1 � Zn2 for all n > n0(�; C1) and therefore I(Zn1) � I(Zn2).

Fix � > 0, and, for s = 0; 1; 2; : : : de�ne the sets Zns2 = fz : (1 + �s)2
n
< Jn2 �

(1+ �(s+1))2
n
; z 2 Zn2g. The asymptotic of number of elements Zns2 presents the

asymptotic of the number of elements between two ellipsoids and has the following

expression

C�

 
�

 
k

2

!!�1
(2�)��1(nn)

2�(1 + �s)��1
kY

i=1

p
1=2
i (1 + o(1)) (5:8)

as n ! 1. Here � = (k � 1)=2 and �(k
2
) stands for the value of gamma function

at the point k

2
.

Expanding zni log
zni

pi
and zni log

dni

pi
in the Taylor series by the powers (z

1=2
ni �

p
1=2
i )p

�1=2
i , we get

�
kX

i=1

zni log
zni

pi
= �2

kX
i=1

(z
1=2
ni � p

1=2
i )2(1 + o(1)); (5:9)
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kX
i=1

zni log
dni

pi
=

kX
i=1

pi(1 + 2(z
1=2
ni � p

1=2
i )p

�1=2
i + (z

1=2
ni � p

1=2
i )2p�1

i
)�

log

 
1 + (�n � 1)� bn

g1i

pi
+ b2

n

ri

pi
(1 + o(1))

!
=

�2bn

kX
i=1

g1i(z
1=2
ni � p

1=2
i )p

�1=2
i �

1

2
b2
n

kX
i=1

g21i
pi

+ b2
n

kX
i=1

ri

pi
+ o(b2

n
) =

�4
kX
i=1

(z
1=2
ni � p

1=2
i )(q

1=2
n1i � p

1=2
i ) + 2

kX
i=1

(q
1=2
n1i � p

1=2
i )2 +O(�b2

n
) + o(b2

n
): (5:10)

Hence, by straightforward calculations, we get

�
kX

i=1

zni log
zni

pi
+

kX
i=1

zni log
dni

pi
=

�4
kX
i=1

(z
1=2
ni � p

1=2
i )2 + 2

kX
i=1

(z
1=2
ni � q

1=2
n1i )

2 +O(�b2
n
) + o(b2

n
) =

�2
kX

i=1

(z
1=2
ni + q

1=2
n1i � 2p

1=2
i )2 + 4

kX
i=1

(q
1=2
n1i � p

1=2
i )2 +O(�b2

n
) + o(b2

n
): (5:11)

Now, (5.4) - (5.8),(5.11), C2 together imply

I(Zn1) �
1X
s=0

I(Zns2 \ Zn1) � C
1X
s=0

(1 + �s)��1�(n2
n
)��

expf�4n(1 + 2�s)2
n
(1 + o(1))g: (5:12)

Choose a sequence � = �n = o(1) such that n�n
2
n
! 1 as n ! 1. Then, (5.12)

implies

In(Zn) < expf�4n2
n
(1 + o(1))g (5:13)

as n!1.

Suppose that m is arbitrary. Then, we have

E[Ûn] =

Z
S

0
@ mX
j=1

pjunj

1
A
�1

�(P̂n 2 
n) dP �

mX
t=1

Z
S

0
@ mX
j=1

pjunj

1
A
�1

�(min
t
�(P̂n; P � bnGtj�) � 2�bn�(
0 +Gt : P )) �

mX
j=1

p�1
j

Z
S

u�1
nj
�(�(P̂n; P � bnGjj�) � 2�bn�(
0 +Gj : P )): (5:14)

Therefore the problem was reduced to the case of m = 1 considered above.

In the proof of necessity we follow to Sadowsky and Bucklew (1990). Suppose

p1 = 0 (if pj = 0 for any j, 2 � j � m, the arguments are similar). Then for any
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�, 0 < � < �0 there exist �1, 0 < � < �1, and �0 > 0, C1 > 0 such that the set

W� = W�(�C�) = fG : �0(G� (1 + �)G1 : P j�C�) < �n; G 2 �0g is contained in


0 for any C > C1 and any 0 < � < �(C1) < �0. Thus we have

E[Ûn] � E

2
64
0
@ kX
j=2

pjunj

1
A
�1

�(P̂n 2 P + bnW�)

3
75 �

k�1 min
2�j�k

E[u�1
nj
�(P̂n 2 P + bnW�)] � CI(Dn) (5:15)

where Dn is the set of all z = (zn1; : : : ; znk) such that nzn1; : : : ; nznk are nonnegative

whole numbers, zn1 + : : :+ znm = 1 and

Jn3(z) =
kX

i=1

(z
1=2
ni � (pi + (1 + �)bngn1i)

1=2)2 < �21
2
n
: (5:16)

Then the number of elements Dn does not exceed C(nn�)
2� Qk

i=1 p
1=2
i . Hence, by

(5.14),(5.15), arguing similarly to (5.4) - (5.12), we get

I(Dn) > C(n2
n
)� min

2�j�k
exp

(
�2(1 + �)2

kX
i=1

(q
1=2
n1i + q

1=2
nji � 2p

1=2
i )2 + 4

kX
i=1

(q
1=2
n1i � p

1=2
i )2

)
=

C(n2
n
)� min

2�j�k
exp

�
�
1

2
nb2

n

Z
S

(g1 + gj)
2 dP (1 + o(1))+

nb2
n

Z
S

g21dP + o(nb2
n
)

�
(5:17)

under the corresponding choice of � = �(n)! 0, � = �(n)! 0, C1 = C1(n)!1

as n!1. This completes the proof of Theorem 3.3.
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