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1. Introduction: Ising spins with a rotation symmetry

In this paper we will illustrate the notions of chaotic size dependence, metastates and

their dispersal, and the chaotic pairs of states scenario, introduced as a possible description

of the low temperature spin glass phase [N,NS2,NS3,NS4,NS6], on a simple model which is

similar to the two-state Hop�eld model. The fact that the model has site disorder makes it

more tractable than the commonly considered bond-disorder spin glass models. The main

di�erence with the standard Hop�eld model of neural networks, is that instead of two i.i.d.

Bernoulli random variables the disorder is described by two i.i.d. Gaussian random variables

at every site. As a consequence, in the thermodynamic limit we obtain the existence, for a

\two-pattern" model, of uncountably many (instead of two times two) pure states for this

model, due to the existence of a continuous (rotation) symmetry of the distribution of the

random variables describing the disorder. In any �nite volume, however, this symmetry is

necessarily randomly broken in a given realization. Intuitively, this means that there are

only two pure ground states, and the low temperature Gibbs state is close to the symmetric

mixture of two, out of a possible continuum, of pure Gibbs states, due to the uctuations in

the disorder.

The concepts we want to illustrate have their origin in the theory of spin-glasses. However,

the most often considered spin-glass models, which have bond disorder, both in �nite dimen-

sion (the Edwards-Anderson models) and the equivalent neighbour (Sherrington-Kirkpatrick)

model, have turned out to be so complicated to analyze, that up till now it has not been

possible to check which of the possible scenarios for the spin-glass phase applies to them.

We remind the reader that in the debate within the physics literature on the extreme sides

there are the proposals of Fisher and Huse, [FH1,FH2,FH3,FH4] predicting the existence of

only two pure states in any dimension higher or equal than 3, versus the proposal of Parisi

and coworkers, in which an in�nity of pure states is predicted [MPV, MPR]. This scenario has

been claimed to apply down to the 3-dimensional Edwards-Anderson model. Intermediate

scenarios have been discussed by [BF,NS1,NS2,NS3,NS4,NS5,NS6,N,vE].

Although of course lattice models with two pure states are common, our experience with

models having an in�nite number of pure states is a lot more limited. Therefore we hope that

our discussion will be useful in illustrating various concepts, mostly introduced and studied

in a systematic way by Newman and Stein (see in particular [N,NS2,NS3,NS4,NS6]), which

have been introduced either in an abstract setting or via (in)formal arguments, by applying

them to a concrete model.
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The main idea in the approach of Newman and Stein is to classify the possible scenarios

on the basis of �rst principles, using only general ergodic properties using the concept of

\metastates", i.e. probability distributions on the space of Gibbs measures (�rst introduced

apparently in [AW]; see [N,NS2,NS3,Ku1,Ku2,BG3] for more details, as well as applications

of these concepts and extensions to equivalent neighbour or mean-�eld type models{to which

our model also belongs).

In this context, in one of their most recent papers [NS6], they conjectured that in a

disordered lattice system, in any approximate decomposition of a �nite volume Gibbs states

into \pure states", the weights in this decomposition should be mostly concentrated on a

single subset of states that are related by an exact symmetry of the system, while other states

would appear with a weight that tends to zero as the volume tends to in�nity. The particular

subset chosen could of course be random and could depend strongly on the volume. Applied

to the Ising spin glass situation, this argument would predict the chaotic pairs picture.

Although a similar situation has been shown to occur in the usual Hop�eld model with

M = �N patterns if � is small in [BG3], we found it worthwhile to construct a simple model

showing these features in order to see what is involved.

Let us state the de�nitions of our variant of the Hop�eld model and the main quantities

of interest. Let S
N
= f�1;+1gN denote the set of functions � : f1; : : : ; Ng ! f�1;+1g, and

the set S = f�1;+1gN. We call � a spin con�guration and denote by �
i
the value of � at i.

Let (
;F ;P) be an abstract probability space and let �
�

i
[!], i 2 N, � = 1; 2, denote a family

of i.i.d. standard Gaussian variables. We will write ��[!] for the N -dimensional vector whose

ith component is given by �
�

i
[!]; such a vector is called a pattern. On the other hand, we will

write �
i
[!] for the two dimensional vector with the same components. When we write �[!]

without indices, we consider it as a 2�N matrix (its transpose will be denoted by �t).

Throughout the paper, (�; �) denotes the scalar product, without indication of the space

where its arguments lie.

We de�ne random maps m
�

N
[!](�) : S

N
! [�1;+1] (conventionally called overlap param-

eters) through

m
�

N
[!](�) � 1

N

NX
i=1

�
�

i
[!]�

i
: (1:1)
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The Hamiltonian is now de�ned as

H
N
[!](�) � �N

2

X
�=1;2

�
m
�

N
[!](�)

�2
= �N

2
km

N
[!](�)k22;

(1:2)

where k � k2 denotes the l2-norm in R2 .

Note that if we rewrite �01
i
= ��1

i
= �1

i
cos(�)+�2

i
sin(�) and �02

i
= �0�

i
= �1

i
sin(�)��2

i
cos(�)

the Hamiltonian has the same form in the primed variables. However, this transformation is

a statistical symmetry, mapping one disorder realization of the model to another one, drawn

from the same distribution, as opposed to for example the spin-ip symmetry which is an

exact symmetry for any given realization of the disorder.

Through this Hamiltonian, �nite volume Gibbs measures on S
N
are de�ned by

�
N;�

[!](�) � 2�N
e��HN [!](�)

Z
N;�

[!]
; (1:3)

and the induced distribution of the overlap parameters

Q
N;�

[!] � �
N;�

[!] �m
N
[!]�1: (1:4)

The normalizing factor in (1.3), called the partition function, is explicitly given by

Z
N;�

[!] � 2�N
X
�2SN

e��HN [!](�) � E
�
e��HN [!](�): (1:5)

We are mainly interested in the concentration behaviour of Q
N;�

as N !1. It will be con-

venient to do this by considering the auxiliary measure eQ
N;�

� Q
N;�

?N2(0;
1
�N

1I) obtained

by a convolution with a Gaussian measure, its so-called Hubbard-Stratonovich transform.

Since, for N large, N2(0;
1
�N

1I) converges rapidly to the Dirac measure at zero, the two mea-

sures have asymptotically the same properties. For details see e.g. [BGP]. eQ
N;�

is absolutely

continuous with respect to Lebesgue measure on R2 and has the density

e��N�N;�[!](z)

Z
N;�

[!]
; (1:6)

where �
N;�

is given by

�
N;�

[!](�) =
1

2
kzk22 �

1

�N

NX
i=1

ln cosh �(�
i
[!]; z): (1:7)
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As usual in mean-�eld models, we construct the extremal Gibbs measures by tilting the

Hamiltonian (1.2) with an external magnetic �eld (for a general discussion on the issue of

limiting Gibbs states in mean �eld models, see [BG1], Sect. 2.4 or [BG3], Sect. 2). That is,

we de�ne a more general Hamiltonian

Hh

N
[!](�) � �N

2
km

N
[!](�)k22 �N(h;m); (1:8)

where h = (b cos(#); b sin(#)) 2 R2 . The corresponding measures on the spins and on R2 are

denoted by �h
N;�

[!] and Qh

N;�
[!], respectively. We then take the limits lim

b!0 limN!1, for

all values of # 2 [0; 2�). We distinguish the measures constructed from this Hamiltonian by

an additional superscript h.

We are now able to give a precise formulation of our main results.

Theorem 1: Let h = (b cos#; b sin#). Then

lim
b!0

lim
N!1

Qh

N;�
= �(r� cos#;r� sin#); (1:9)

where r� is the largest solution of the equation

r� =
1p
2�

Z
dx e�

x2

2 x tanh(�xr�): (1:10)

Theorem 1 shows that there is an uncountable number of extremal limiting induced mea-

sures, indexed by the circle. The following Corollary shows that to each of them corresponds

a distinct limiting Gibbs measure on the spins.

Corollary 2: For any �nite set I � N, and P-almost all !,

�h1;�
[!]
�
f�

I
= s

I
g
�
� lim

b!0
lim
N!1

�h
N;�

[!]
�
f�

I
= s

I
g
�
=
Y
i2I

e�si(�i[!];m)

2 cosh(�(�
i
[!];m))

; (1:11)

where m = (r� cos(#); r� sin(#)), and r� as in (1.10).

In Theorem 1 and Corollary 2 convergence is almost sure due to the presence of the tilting

�eld. The situation changes if we set b = 0 �rst and take the in�nite volume limit later.

Theorem 3: Let Q
N;�

as in (1.4) and m = m(#) = (r� cos#; r� sin#), where # 2 [0; �) is

a uniformly distributed random variable. Then

Q
N;�

D! 1

2
�
m(#) +

1

2
��m(#) � Q1;�

[m]: (1:12)



6 Gaussian Hop�eld

Furthermore, the (induced) AW-metastate is the image of the uniform distribution of # under

the measure-valued map # 7! Q1;�
[m(#)].

Corollary 4: Let I � N be �nite. Then the following holds:

(i) Let fg
i
g
i2I be a family of i.i.d. random variables, distributed as N (0; r�). Then

lim
N"1

�
N;�

(�
I
= s

I
)
D! 1

2

Y
i2I

e�sigi

2 cosh �g
i

+
1

2

Y
i2I

e��sigi

2 cosh �g
i

: (1:13)

(ii) The AW-metastate is the image of the uniform distribution on # under the measure-valued

map # 7! �1;m(#)[!] where

�1;�;m
[!] =

1

2

Y
i2I

e�si(�i[!];m)

2 cosh�(�
i
[!];m)

+
1

2

Y
i2I

e��si(�i[!];m)

2 cosh �(�
i
[!];m)

: (1:14)

Statement (ii) of Corollary 4 motivates the notion of metastates. Whereas on the level of

the induced measures Q
N;�

one cannot see any inuence by the conditioning, this is clearly

the case on the level of the Gibbs measures on the spins.

The remainder of this paper is mainly devoted to the proofs of the two theorems (the

corollaries are standard consequences (see e.g. [BGP1] or [BG3] for proofs of analogous

statements in more complicated situation) and will not be given) is organized as follows. In

Section 2 we prove the necessary concentration estimates on the measures Q
N;�

. This will

yield immediately Theorem 1. In the case h = 0 we will show that the measure concentrates

near the absolute minima of some random process, and in Section 3 we will analyse the

properties of these minima. In particular we will prove that these converge in distribution to

one-point sets. This will allow us to prove Theorem 3. In Section 4 we discuss some further

consequences on the chaotic volume dependence, the empirical metastate and the superstate.

Remark: We consider the case of two patterns here in order to keep technicalities to a

minimum. All our results can be extended without any novel di�culties to the case of any

�xed �nite number,M , of Gaussian patterns. In that case the set of extremal Gibbs measures

will be indexed by the sphere in RM and the metastate will be supported on pairs of mirror

images on this sphere, with the position being uniformly distributed. Thus nothing really

new will happen. The situation when the number of patterns grows with the volume may be

more interesting and work in this direction is in progress.
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2. Concentration

In this section we show the concentration properties of the measures eQ
N
for large �. These

imply the same concentration results for the measures Q
N
by standard arguments that have

been developed in much more complicated situations, see e.g. [BG2]. The estimates presented

here are mostly similar, and often much simpler, to those that can be found e.g. in [BG2],

but we decided to present some parts in detail where some care is required.

We start with the more delicate case h = 0 that will be relevant for the proof of Theorem 3

(which will be given at the end of Section 3). We are interested in the concentration behaviour

of the measures eQ
N;�

. The following two lemmata each give a partial answer. The �rst one

asserts that eQ
N;�

is concentrated exponentially about a circle around the origin, whereas the

second one tells us that even on this circle, only a small part really contributes to the total

mass.

Lemma 2.1: Let f��
i
g
i2N;�=1;2 be i.i.d. standard Gaussian variables, and de�ne �

N;�
(z)

as

�
N
(z) � 1

2
kzk22 �

1

�N

NX
i=1

ln cosh�(�
i
; z): (2:1)

Let furthermore �
N

= N�1=10. Then there exist strictly positive constants K;K 0, m;m0

such that (r� is the largest solution in (1.10))R
j kzk�r�j��N e��N�N (z) dzR
j kzk�r�j<�N e��N�N (z) dz

� Ke�KN
m

; (2:2)

on a set of P-measure at least 1�K 0e�K
0
N
m0

.

The second result needs an additional de�nition. Let

g
N
(#) � 1p

N

NX
i=1

ln cosh(�r��
i
cos(#� '

i
)); (2:3)

where (�
i
; '

i
) are the polar coordinates of the two dimensional vector �

i
.

Lemma 2.2: Assume the hypotheses of Lemma 2.1. Let a
N
= N�1=25. Then there exist

strictly positive constants K1;K2; C1; C2 such that on a set of P-measure at least

1�K1e
�N�1=25

(2:4)
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the following bound holds, R
A
0

N

e��N�N (z) dzR
AN

e��N�N (z) dz
� C1e

�N2=5

; (2:5)

where

A
N
=
n
(r; #) 2 R+

0 � [0; 2�)
��jr � r�j < �

N
; g

N
(#)�min

#

g
N
(#) < a

N

o
;

A0
N
=
n
(r; #) 2 R+

0 � [0; 2�)
��jr � r�j < �

N
; g

N
(#)�min

#

g
N
(#) � a

N

o
:

(2:6)

Combining these two lemmata and using the Borel-Cantelli lemma, we get immediately the

following result.

Proposition 2.3: Assume the hypotheses of Lemma 2.1. Then there exist strictly positive

constants K;K 0;m, such that

P

"R
A
c
N

e��N�N (z) dzR
AN

e��N�N (z) dz
> Ke�K

0
N
m

; i:o: in N

#
= 0; (2:7)

where A
N

is as in Lemma 2.2.

To see why the preceding results should be expected, we must consider the function �
N;�

.

Note that the expectation of this function,

E �
N
(z) =

1

2
kzk22 �

1

�
E ln cosh �(�1; z): (2:8)

depends only on the modulus of its argument. It is useful to observe that if z = (r cos �; r sin �),

we can represent E �
N
(z) as

E �
N
(z) =

1

2
r2 � E

'
E
�
ln cosh(�r� cos(')) d' (2:9)

where �; � are the representation of the polar decomposition of a two dimensional normal

vector, i.e. � is distributed with density xe�x
2
=2 on R+ , and ' uniformly on the circle [0; 2�).

From this it follows that E �
N
(z) takes its minimum on the circle with radius r�(�), where

r� is de�ned in Theorem 1. It is easy to verify that there is 0 < �� <1, such that r�(�) > 0

if and only if � > ��.

It is also straightforward to check that E � is su�ciently smooth to guarantee that it is

bounded from above by a quadratic function (of kzk) in some neighbourhood containing r�.
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Proof of 2.1: We start with the numerator. We decompose the domain of integration into

an \inner" part I,and an \outer" part O:�
z 2 R2 : jkzk � r�j � �

	
=
�
z 2 R2 : kzk � r� � �

	
[ �z 2 R2 : kzk � r� � ��	 = O [ I:

(2:10)

Consider the integral on O. We write it asZ
O
e�N�N(z) dz =

Z
O
e��NE �N (z)e��N(�N (z)�E �N (z)) dz; (2:11)

and observe that E �
N

can be bounded below by a quadratic function C(kzk � r�)2. We

are left with the task of estimating the term �
N
(z)� E �

N
(z). This is accomplished by the

following Lemma.

Lemma 2.4: Let f
N
(z) = 1

�N

P
N

i=1 ln cosh�(�
i
; z) and

O =
�
z 2 R2 : kzk > r� + �

	
: (2:12)

Then, for � small enough, such that �2=16 � �=2
p
2, there exist strictly positive constants

C1; C2;K1;K2 such that

P

�
sup
z2O

jf
N
(z) � Ef

N
(z)j � C

2
(kzk � r�)2

�
� K1e

�K2N + C1�
�2e�C2�

4
NN� 1

2 : (2:13)

Proof: De�ne �f
N
(z) = f

N
(z)�E f

N
(z). The left-hand side of (2.13) is bounded from above

by

� P

�
sup

z
02Wr\O

�� �f
N
(z0)

�� � C

4
(kz0k � r�)

2

�

+ P

"
sup

z
02Wr\A

sup
z2Br(z0)

�� �f
N
(z)� �f

N
(z0)

�� � C

4
(kz0k � r�)

2

#
;

(2:14)

where W
r
is the grid with spacing r in R2 , and z0 2 W

r
is chosen such that 0 � kzk�kz0k <p

2 r.

The argument of the second term can be uniformly bounded. Using e.g. Lemma 6.10 of

[BG1], we get that

jf
N
(z)� f

N
(z0)j � kz � z0k2kAk1=2; (2:15)

where A is the matrix (1=N)�T �. Similarly,

jE f
N
(z)� E f

N
(z0)j � kz � z0k2(EkAk)1=2 : (2:16)
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Now, a trivial computation shows that

E kAk � 1 + C=
p
N (2:17)

and using (for instance) the same argument as in Section 4 of [BG1], but replacing Talagrand's

concentration estimate for bounded r.v.'s by the standard Gaussian concentration inequality

(see e.g. [LT], Ch. 1), one shows easily that

P [jkAk � 1j � x] � Ce�Nx
2
=C : (2:18)

Therefore,

P

"
sup

z
02Wr\A

sup
z2Br(z0)

j �f
N
(z) � �f

N
(z0)j � C

4
(kz0k � r�)2]

#

� P

�
r(kAk1=2 + (EkAk)1=2) � C

4
(kz0k � r�)2

�
� P

�
(kAk1=2 + 2) � C�2

4r

�
;

(2:19)

Choosing the grid parameter r such that r � C�2=16 the right-hand side of (2.19) is bounded

by P [kAk > 4] � Ce�9N=C This takes care of the second term in (2.14). Let us now treat

the �rst term. The probability that the supremum over all lattice points of some function

exceeds some given value is transformed into a summable series of probabilities that at each

lattice point the function is greater than this value. More precisely, we have

P

�
sup

z
02Wr\O

�� �f
N
(z0)

�� � C

4
(kz0k � r�)

2

�
�

X
z
02Wr\O

P

��� �f
N
(z0)

�� � C

4
(kz0k � r�)

2

�
�

X
z
02Wr\O

e�KC
2(kz0k�r�)4N ;

(2:20)

by Chebyshev's inequality. ThenX
z
02Wr\O

e�KC
2(kz0k�r�)4N = r�2

X
z
02Wr\O

r2e�KC
2(kz0k�r�)4N

� r�2

Z
R2nB0(r�+��

p
2 r)

e�KC
2(kz0k�r�)4N dz

� r�2e�K
C2

16
�
4
N

Z
R2nB0(r�+�=2)

e�K
C2

16 (kz
0k�r�)4N dz

� r�22�e�K
C2

16
�
4
NN� 1

2

Z 1

�=2

ze�eKz
4

dz

� K 0r�2e�K
C2

2
�
4
NN� 1

2 ;

(2:21)
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where K 0 stands for an upper bound for the integral, which is independent of N (assuming

� > 2
p
2r). Combining this and (2.19), and choosing � small enough such that C�2=16 �

�=(2
p
2) concludes the proof of Lemma 2.4. }

Therefore, on a set of measure at least 1�C1e
�C2N�

4

, the integral (2.11) can be bounded

by Z
O
e��NE �N (z)e��N(�N (z)�E �N (z)) dz �

Z
O
e��N

C
2
(kzk�r�)2 dz

� 2�

Z 1

r
�+�

re��NC(r�r�)2 dz

� 2�e�N
C
4
�
2

Z 1

0

re��N
C
4
r
2

dr

= 2�
2

�NC
e��N

C
4
�
2

:

(2:22)

We now turn to the integral on the \inner" part I. Again, we have to control the term

�
N
(z)� E �

N
(z): (2:23)

Since I is compact, we can do this uniformly by using the following lemma.

Lemma 2.5: Let f
N
(z) = 1=(�N)

P
N

i=1 ln cosh�(�
i
; z) and A � R2 a bounded set. Then

there exist strictly positive constants K1;K2; C1; C2 such that

P

�
sup
z2A

jf
N
(z)� E f

N
(z)j > "

�
� K1e

�K2N + C1"
�2e�C2"

2
N : (2:24)

The proof is similar (if not simpler) to the proof of Lemma 2.4 and is left to the reader.}

Lemma 2.5 implies thatZ
I
e��N�N (z) dz � e"Ne��NE �(r

�)

Z
I
e��NE �N (z) dz

� e" bNe��
2
C�N�r�2;

(2:25)

using the fact that E �
N
(kzk) � E �(r�) can be bounded uniformly on I by its value for

kzk = r� � �.

Finally, the denominator in (2.2) can be bounded from below, using the second order

Taylor expansion with remainder of E �
N
(kzk)Z

j kzk�r�j<�
e��N�N (z) dz

� e��NE �(r
�)

Z
j kzk�r�j<�

e�NC(kzk�r�)2�NC
0(k~zk�r�)3�N" dz

� 2�
1

�NC
e�"�Ne��NC

0
�
3

e��NE �(r
�)
�
1� �e��NC�

2
�
;

(2:26)
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on a set of measure at least 1�Ke�KN �C"�2e�CN"
2

(this error term can be estimated by

Lemma 2.5). Collecting (2.22), (2.25) and (2.26), we get that on a set of measure exponentially

close to one,R
jkzk�r�j�� e

��N�N (z) dzR
jkzk�r�j<� e

��N�N (z) dz
�Me"�N e�NC

0
�
3

(2�)�1�NC
�
1� �e��NC�

2
��1

�
�
e"�Ne��NC�

2

�r�2 + 2�e��N
C
4
�
2 2

�NC

�
=MKe��N(C�2�2"�C0�3)�N

�
1� �e�NC�

2
��1

+MK 0e��N(C
4
�
2�"�C0�3)N

�
1� �e��NC�

2
��1

:

(2:27)

Now let us choose �
N
= N� 1

10 , "
N
= N� 1

4 ; then (2.27) givesR
j kzk�r�j��N e��N�N (z) dzR
j kzk�r�j<�N e��N�N (z) dz

�M eKNe��N
4
5 (C�2N

�
1
20�C0N�

1
10 )

+M eKNe�N
4
5 (C

4
�N�

1
20�C0N�

1
10 );

(2:28)

on a set which is exponentially close (in N) to 1. This concludes the proof of Lemma 2.1. }

We now turn to the proof of Lemma 2.2 which is a little more delicate than the previous

one.

Proof of 2.2: Let us write I(B) for the integral
R
B

e��N�N (z) dz. We will prove the

concentration behaviour by a strategy similar to the one used in Lemma 2.1. Namely we

replace the function �
N
by its expectation E �

N
and control the error.

Write the uctuation term �
N
� E �

N
as

�
N
(z)� E �

N
(z) =

1

�N

NX
i=1

fln cosh �(�
i
; z) � E ln cosh�(�

i
; z)g

=
1

�N

NX
i=1

fln cosh �(�
i
; z) � ln cosh�(�

i
; z0)

� E ln cosh�(�
i
; z) + E ln cosh �(�

i
; z0)g

+
1

�N

NX
i=1

fln cosh �(�
i
; z0)� E ln cosh�(�

i
; z0)g:

(2:29)

Now choose z0 such that z0 = z0(z) = �z, � > 0, and kz0k = r� (i.e. z0 is the projection of z
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onto S1(r�)). De�ne the two functions

h
N
(z) � 1p

N

NX
i=1

fln cosh�(�
i
; z)� ln cosh �(�

i
; z0)

� E ln cosh �(�
i
; z) + E ln cosh �(�

i
; z0)g;

(2:30)

with z0 de�ned as above, and

g
N
(z) � 1p

N

NX
i=1

fln cosh�(�
i
; z)� E ln cosh�(�

i
; z)g: (2:31)

Then the uctuation term takes the form

N(�
N
(z)� E �

N
(z)) =

p
N

�
(h

N
(z)� g

N
(z0)): (2:32)

It is the term g
N
that determines the concentration behaviour of the measure. To see this

we �rst bound the term h
N
uniformly on the \annulus of concentration" A

N
[A0

N
. We have

the following result.

Lemma 2.6: Let f�
i
g
i2N be i.i.d. Gaussian variables with mean zero and variance one.

Let h
N

be as in (2.30), and A
N
; A0

N
as in (2.6). Then for any " > 0,

P

"
sup

z2AN[A0N
jh
N
(z)j � "

#
� KN2e�N

1=10("�KN
�1=10): (2:33)

Proof: Let us write

f
i
(z) � ln cosh �(�

i
; z); (2:34)

and

�f
i
� ln cosh �(�

i
; z)� E ln cosh �(�

i
; z): (2:35)

We also keep the notation z0 = z0(z) de�ned above. Introduce a polar grid W
N

in R2 , i.e. a

discrete set of points x
i;j

whose polar coordinates are given by (�
i
; �

j
) 2 R+ � [0; 2�), such

that �
N
� � j�

i
� �

j
j = KN�1=2 and �

N
� � j�

i
� �

j
j = KN�1=2, for some appropriate

constant K. Note that for any point z in a bounded domain A � R2 , the distance to the

closest grid point is less than K 0N�1=2.

For any z 2 R2 , de�ne x = x(z) 2 W
N
to be the grid point closest to z, and y = y(z) 2 W

N

the grid point closest to z0 = z0(z). One can easily convince oneself, that x0 = y0, i.e. the
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two points x and y lie on the same ray starting at the origin. Then we can decompose the

function h
N
(z) as

h
N
(z) =

1p
N

NX
i=1

f �f
i
(z)� �f

i
(z0)g

=
1p
N

NX
i=1

f �f
i
(z)� �f

i
(x)g+ 1p

N

NX
i=1

f �f
i
(x)� �f

i
(y)g

+
1p
N

NX
i=1

f �f
i
(y)� �f

i
(z0)g:

(2:36)

Denote by I1(z; x), I2(x; y), I3(y; z
0) respectively the �rst, second and third sum on the right-

hand side of (2.36). We can then write (let A
N
= A

N
[A0

N
, the \annulus of concentration")

P

�
sup
z2AN

jh
N
(z)j � "

�
= P

�
sup
z2AN

jI1(z; x) + I2(x; y) + I3(y; z
0)j � "

�

� P

"
sup

x2WN\AN

sup
z2B

KN�1=2
(x)

jI1(z; x)j �
"

3

#

+ P

24 sup
x2WN\AN

sup
y2WN\AN

y0=x0

jI2(x; y)j � "

3

35
+ P

"
sup

y2WN\AN

sup
z
02B

KN�1=2
(y)

jI3(y; z0)j �
"

3

#
:

(2:37)

The �rst and the third term (they are equal) can be uniformly bounded by an estimate

analogous to the proof of Lemma 2.2. In fact, for any u; v, we have����� 1p
N

NX
i=1

f �f
i
(u)� �f

i
(v)g

����� � p
N�(kAk1=2 + (E kAk)1=2)ku� vk2: (2:38)

Now, if ku� vk2 � 4"0N�1=2=�, we have the following exponential bound.

P

"
j 1p

N

NX
i=1

f �f
i
(u)� �f

i
(v)gj � "0

#
� P

�
kAk1=2 + (E kAk)1=2 � "0N�1=2

�ku� vk2

�
� P [kAk � 4] � Ke�KN :

(2:39)

Thus we get for the �rst term in (2.37),

P

"
sup

x2WN\AN

sup
z2B

KN�1=2
(x)

jI1(z; x)j �
"

3

#

�
X

x2WN\AN

P

"
sup

z2B
KN�1=2

(x)

jI1(z; x)j �
"

3

#
�

X
x2WN\AN

P [kAk � 4] � KN1=10N�1e�KN ;

(2:40)
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since we know that kx� zk = K 0N�1=2, by the remark preceding (2.36), and the number of

grid points in A
N
is bounded by N1��1

N
times some constant. The same estimate is valid for

the term containing I3 (since they are equal).

Let us now consider the term containing I2. We know that kx�yk � 2�
N
, since those two

points are supposed to lie on the same \ray". Again, we can turn the supremum into a sum,

P

24 sup
x2WN\AN

sup
y2WN\AN

y0=x0

jI3(x; y)j � "

3

35 �X
x;y

P

h
jI3(y; z0)j � "

3

i
; (2:41)

where x; y on the right-hand side satisfy the same conditions as on the left-hand side. By

Chebyshev's inequality, we get that for any u, v

P

"
NX
i=1

f �f
i
(u)� �f

i
(v)g �

p
N"0

#
� inf

s>0
e�s"

0
p
NE

�
e
s

P
N

i=1
f �fi(u)� �

fi(v)g
�

= inf
s>0

e�s"
0
p
N

NY
i=1

Eesf
�
fi (u)� �

fi(v)g:

(2:42)

Now we use the series expansion of the exponential function, the fact that the exponent in

the right-hand side of (2.42) is a centered random variable, and some obvious inequalities for

each term of the expansion, to get

Eesf
�
fi (u)� �

fi(v)g �
�
1 +

s2

2
E

h
( �f
i
(u)� �f

i
(v))2esj

�
fi(u)� �

fi(v)j
i�

: (2:43)

To evaluate the expectation term, we use the inequality

jf
i
(u)� f

i
(v)j � �j(�

i
; u� v)j: (2:44)

Then the expectation term in (2.42) is bounded by

E

h
( �f
i
(u)� �f

i
(v))2esj

�
fi(u)� �

fi(v)j
i
� �

E
�
( �f
i
(u)� �f

i
(v))4

�� 1
2

�
E e2sj

�
fi (u)� �

fi(v)j
� 1
2

� 4
�
E
�
(f
i
(u)� f

i
(v))4

�� 1
2

�
E e2sjfi (u)�fi(v)j

� 1

2

� esE jfi(u)�fi(v)j ;

(2:45)

where the �rst inequality follows by Cauchy-Schwarz, and the second one is a consequence of

the inequality (a+ b)2 � 2(a2 + b2) (applied twice to the �rst factor), respectively the trivial

fact that ja� bj � jaj+ jbj. All quantities in (2.45) can be bounded easily using (2.44). One

gets (by calculating explicit Gaussian integrals)

E
�
(f
i
(u)� f

i
(v))4

�
= 3ku� vk42; (2:46)
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E e2sjfi (u)�fi(v)j � 2e2s
2ku�vk22 ; (2:47)

esE jfi(u)�fi(v)j � es
p

2=�ku�vk2 : (2:48)

Inserting (2.46){(2.48) into (2.45), gives

s2

2
E

h
( �f
i
(u)� �f

i
(v))2esj

�
fi(u)� �

fi(v)j
i
� 2

p
6s2ku� vk22e2s

2ku�vk22+s
p

2=�ku�vk2 : (2:49)

We use the above bound (2.49) in (2.42), together with the inequality 1 + x � ex, and the

fact that kx� yk2 � �
N
= KN�1=10. We thus get the following estimate

P

"
NX
i=1

f �f
i
(u)� �f

i
(v)g �

p
N"0

#
� inf

s>0
e�s"

0
p
N+Ks

2
N
4=5

e
2s2N�1=5+

p
2=�N�1=10

: (2:50)

Choosing s = N�2=5, this gives

P

"
NX
i=1

f �f
i
(u)� �f

i
(v)g �

p
N"0

#
� eKe�N

1=10("0�KN
�1=10): (2:51)

The same bound applies to

P

"
NX
i=1

f �f
i
(u)� �f

i
(v)g � �

p
N"0

#
: (2:52)

Inserting (2.51) and (2.52) into the left-hand side of (2.41) gives

P

24 sup
x2WN\AN

sup
y2WN\AN

y0=x0

jI2(x; y)j � "0

35 � KN1=2N1=10e�N
1=10("0�K0

N
�1=10); (2:53)

since the number of terms in the sum does not exceed a constant times N1=2 (the number of

allowed x) times N1=10 (the number of allowed y). Using (2.40) and (2.53), (2.37) gives

P

�
sup
z2AN

jh
N
(z)j � "

�
� KN2e�K

0
N
1=10

": (2:54)

This concludes the proof of Lemma 2.6. }

Note that we can choose " as a function of N , and still get an exponential bound. For

example, choose " = "
N
� (lnN)2N�1=20. Lemma 2.6 then reads

Lemma 2.7: Let f�
i
g
i2N be i.i.d. Gaussian variables with mean zero and variance one.

Let h
N

be as in (2.30), and A
N
; A0

N
as in (2.6). Then,

P

"
sup

z2AN[A0N
jh
N
(z)j � N�1=20(lnN)2

#
� KN2e�N

1=20((lnN)2�K0
N
�1=20): (2:55)



Section 2 17

Furthermore,

P

"
sup

z2AN[A0N
jh
N
(z)j � N�1=20(lnN)2; i:o: in N

#
= 0: (2:56)

Proof: The �rst statement (equation (2.55)) is a straightforward consequence of Lemma

2.6. Equation (2.56) then follows by the �rst Borel-Cantelli Lemma. }

Let us now estimate the integral I(A0
N
). We get explicitly, using the bound on h

N
from

Lemma 2.6, Z
A
0
N

e��N�N (z) dz =

Z
A
0
N

e��NE �N (z)e�
p
NhN (z)e�

p
NgN (z0(z)) dz

�
Z
jr�r�j<�N

re��NE �N (r�)e
p
N" dr

�
Z
gN (#)�min gN>aN

e�
p
NgN (#) d#

= 2e��NE �N (r�)e
p
N"

Z
jr�r�j<�N

r dr

�
Z
gN (#)�min gN>aN

e�
p
NgN (#) d#

� 4e��NE �N (r�)e
p
N"r��

N

� 2�e�
p
NaN e�

p
N min gN :

(2:57)

Thus, Z
A
0
N

e��N�N (z) dz � Ke��NE �N (r�)e
p
N"�

N
r�e�

p
NaN : (2:58)

We now turn to the integral I(A
N
). Using standard estimates for Gaussian integrals, a

quadratic upper bound of g
N

about its minima, and the fact that E �(kzk) can be bounded

from above by a quadratic function in some neighbourhood containing r�, we getZ
AN

e��N�N (z) dz � e��NE �N (r�)e�
p
N"

Z
jr�r�j<�N

re��NC
0(r�r�)2 dr

�
Z
gN (#)�min gN�aN

e�
p
NgN (#) d#

� Ke��NE �N (r�)e�
p
N"(r� � �

N
)
� �

NC 0

�1=2
(1� e�NC

0
�N )

�
�

K
p
N

�1=2

(1� e�
p
NK

0
aN ):

(2:59)

We get �nally for the ratio I(A0
N
)=I(A

N
)

I(A0
N
)

I(A
N
)
� K

r�

r� � �
N

N3=4e�
p
N(aN�2"): (2:60)
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Lemma 2.7 allows us to choose " = "(N) = N�1=20(lnN)2. Inserting this choice, together

with a
N
= N�1=25, into (2.60), gives

I(A0
N
)

I(A
N
)
� KN3=4e�N

23=50(1�K0(lnN)2N�1=100): (2:61)

This statement is true for all ! 2 
, for which Lemma 2.6 respectively 2.7 holds, that is on

a set of P-measure at least KN2e�N
1=20((lnN)2�K0

N
�1=20). This proves Lemma 2.2. }

Let us now turn to the proof of Theorem 1. We again state �rst a result about the

concentration of the induced measure eQh

N;�
.

Proposition 2.8: Let f��
i
g
i2N;�=1;2 be i.i.d. standard Gaussian variables, and de�ne

�h

N;�
(z) � 1

2
kzk22 �

1

�N

NX
i=1

ln cosh�(�
i
; z + h): (2:62)

Let furthermore �
N
= N�1=5. Then there exist strictly positive constants K;K 0;m such that

P

(R
kz�~rhk��N e��N�hN;�(z) dzR
kz�~rhk<�N e

��N�h
N;�

(z)
dz

� Ke�K
0
N
m

; i:o: in N

)
= 0; (2:63)

where ~rh is the unique minimum of the function

E �h

N;�
(z) =

1

2
kzk22 �

1

�
E ln cosh �(�1; z + h): (2:64)

Proof: Let us decompose �h

N;�
in the usual way

�h

N;�
(z) = E�h

N;�
(z) + �h

N;�
(z)� E�h

N;�
(z): (2:65)

We �rst treat the denominator appearing in (2.63). E�h

N;�
can be bounded from below by

some quadratic function Ckz� ~rhk22 on the set kz� ~rhk � �
N
> 0. The uctuation term can

be controlled by the following analogue of Lemma 2.4.

Lemma 2.9: Let f
N
= 1

�N

P
N

i=1 ln cosh�(�
i
; z+ h). Then for � small enough, sucht that

C�2=80 < �=2, there exist strictly positive constants C1; C2;K1;K2 such that

p
N
� P

h
sup

z:kz�~rhk2��
jf
N
(z)� Ef

N
(z)j � C

2
kz � ~rhk22

i
� K1e

�K2N + C1N
1=2��2e�C2N :

(2:66)
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Proof: The proof is completely analogous to the proof of Lemma 2.4, and is left to the

reader. }

Therefore, with probability greater than 1 � p
N
, sup(�h

N;�
� E�h

N;�
(z) does not exceed

one half of the lower bound of the deterministic part, which implies thatZ
kz�~rhk��N

e��N�hN;�(z) dz � e��NE�
h
N;� (~r

h)

Z
kz�~rhk��N

e��N
C
2
kz�~rhk22 dz

� e��NE�
h
N;� (~r

h)e��N
C
4
�
2
NK :

(2:67)

We now turn to the denominator in (2.63). The probability that the uctuation term

exceeds an " > 0 is bounded by Lemma 2.5:

q
N
� P

h
sup

kz�~rhk<�N
jf
N
(z)� Ef

N
(z)j � "

i
� K1e

�K2N + C1"
�2e�C2"

2
N : (2:68)

Using the Taylor expansion of E�h

N;�
(z) about ~rh up to order 2, with an error term of order

3, we get that with probability higher than 1� q
N
,Z

kz�~rhk<�N
e��N�hN;�(z) dz � e��N(�hN;�(~r

h+C00�3N+"))

Z
kz�~rhk<�N

e��NC
0kz�~rhk22 dz

� e��N(�hN;�(~r
h+C00�3N+"))KN�1=2(1� e��N

C0

2
�
2
N ):

(2:69)

Combining (2.67) and (2.69) givesR
kz�~rhk��N e��N�hN;�(z) dzR
kz�~rhk<�N e

��N�h
N;�

(z)
dz

� eKe��N(C
2
�
2
N�"�C00�3N ) (2:70)

with probability greater than 1 � (q
N
+ p

N
). Choosing �

N
= N�1=5, " = N�1=5, implies

that
P

N
(p
N
+ q

N
) < 1. Applying the Borel-Cantelli Lemma then gives the statement of

Proposition 2.8. }

Theorem 1 is now obvious:

Proof of Theorem 1: Let f be a bounded continuous function. Then

Qh

N;�
(f) = f(~rhQh

N;�
(1Ifkz�~rhk��Ng) +Qh

N;�
((f(~rh � f)1Ifkz�~rhk��Ng)

+Qh

N;�
(f1Ifkz�~rhk>�Ng):

(2:71)

Taking the limit N " 1, we can replace Qh

N;�
by eQh

N;�
and use Proposition 2.8. Since f is

bounded, the third term on the right-hand side of (2.71) converges to zero, and since it is

continuous, the second term also vanishes too. These statements are true P-a.s. Finally we

let b = khk2 ! 0. Again by continuity of f , f(~rh) ! f(r�(cos#; sin#)). This proves the

Theorem.}}
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3. Uniqueness of extrema of certain gaussian processes.

In the previous chapter we have seen that the measures eQ
N;�

concentrate on a circle of

radius r� at the places where the random function g
N
(#) takes its minimum. In this section

we will show that these sets degenerate to a single point, a.s. in the limit N " 1. To do so

we �rst prove a uniqueness theorem for the absolute minimum of a certain class of strongly

correlated Gaussian processes. Then we show convergence in distribution of g
N
(#) to such a

process and �nally we show that this implies also the desired convergence in distribution of

our measures. We begin with the following general result.

Proposition 3.1: Suppose �(t) is a real stationary Gaussian process which is periodic

with period T . Suppose furthermore that its covariance function r(s; t) = r(s� t) is even, 2
C1[0; T ], and r(�) is less than r(0) for all � 2 (0; T ). Then there exists an equivalent process

�(t) having almost surely in�nitely di�erentiable sample paths. Moreover, the probability that

there exist two or more maxima with equal height in [0; T ) is zero.

Proof: Without restricting the generality, we can assume that E [�(t)] = 0 and � =

E [�(t)2 ] = 1.

By its continuity properties, r(�) can be expanded about the origin as

r(�) = 1� �2

2!
�2 +O(�4): (3:1)

The �rst assertion then follows from the following result due to Cram�er and Leadbetter (see

[CL]), chapter 9.2).

Lemma 3.2: Suppose that for some a > 3,

r(�) = 1� �2

2
�2 +O

�
�2

j ln j� jja
�
; (3:2)

where �2 is a constant. Then there exists a process �(t) equivalent to �(t) and possessing,

with probability one, a continuous derivative �0(t).

Proof: See Cram�er/Leadbetter [CL].

It is easily checked that by (3.1), r(�) satis�es the condition (3.2) in Theorem 3.2, which

proves the statements about continuity and existence of a continuous derivative.

Consider now the process �0(t). Its covariance function ~r(�) is given by ~r(�) = �r00(�)
(see for example Leadbetter et al. [LLR], p. 161, chapter 7.6). Then it can be expanded
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about the origin as

~r(�) = �2 � �4

2
�2 +O(�4): (3:3)

Then ~r(�) also veri�es condition (3.2) in Theorem 3.2. Repeating this argument implies,

together with the Borel-Cantelli Lemma, that there exists an equivalent process �(t) having,

with probability one, in�nitely di�erentiable sample paths.

From now on, we assume that �(t) itself has the above continuity properties. We want to

�nd the probability that there are not two maxima with equal height in [0; T ), i.e.

P [9s; t 2 T � T : js� tj 6= kT; j�(t)� �(s)j = 0; j�0(t)j = j�0(s)j = 0] = 0: (3:4)

We �rst show that for any # > 0,

P

h
9s; t 2 T � T :

���kT � js� tj
��� � #; j�(t)� �(s)j = 0; j�0(t)j = j�0(s)j = 0

i
= 0 (3:5)

Let us choose a collection of grid points t
i
2 T , separated by some distance " > 0. By the

continuity properties, � and �0 are Lipschitz-continuous with a.s.-�nite constants C0, C1.

Consider the set ~

C
�
 such that C0 and C1 are bounded by some number C > 0. Then, by

Lipschitz-continuity, �0(t) = 0, t 2 [t
i
; t
i+1) implies that (for some x 2 [t

i
; t])

j�0(t
i
)j � C": (3:6)

Similarly, j�(t)� �(s)j = 0 implies

j�(t
i
)� �(t

j
)j � 2C" (3:7)

where t� t
i
< ", s� t

j
< ". Then we can estimate the probability of the event in (3.5) (on

~
) by

P

h
9s; t 2 T � T :

���kT � js� tj
��� � #; j�(t)� �(s)j = 0; j�0(t)j = j�0(s)j = 0

i
� P

h
9t

i
; t
j
:
��kT � js� tj

�� � #; j�(t
i
)� �(t

j
)j � 2C"; j�0(t

i
)j � C";

j�0(t
j
)j � C"

i
:

(3:8)

Let us denote the event appearing on the left-hand side of (3.8) by A
#
, and the event appear-

ing on the right-hand side by B
#;"

. The probability P[B
#;"

] can be estimated by the standard

bound

P [B
#;"

] �
X

jkT�jti�tj jj�#
P [j�(t

i
)� �(t

j
)j � 2C"; j�0(t

i
)j � C"; j�0(t

j
)j � C"] : (3:9)
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Now, for any �xed i; j,

(�(t
i
)� �(t

j
); �0(t

i
); �0(t

j
)) (3:10)

is a Gaussian vector, and due to the condition on jt
i
� t

j
j and the assumption concerning

r(�), its distribution is non-degenerate. Therefore, each term in the sum on the right-hand

side of (3.9) can be bounded by

P [j�(t
i
)� �(t

j
)j � 2C"; j�0(t

i
)j � C"; j�0(t

j
)j � C"] � K"3C3(2��

i;j
)�1; (3:11)

where �
i;j

is the determinant of the non-degenerate covariance matrix of the random vector

(3.10). Since the t
i
; t
j
are chosen in a compact set, this quantity can be bounded uniformly

in i; j. We thus get

P [j�(t
i
)� �(t

j
)j � 2C"; j�0(t

i
)j � C"; j�0(t

j
)j � C"] � K(#)"3C3: (3:12)

Finally, the number of allowed pairs (i; j) in the sum in equation (3.9) does not exceed T 2"�2,

which implies that

P [A
#
] �P [B

#;"
] + P

h
~
c

C

i
�K(#)T 2"�2"3 + P

h
~
c

C

i
;

(3:13)

keeping track of the set ~
c

C
on which the above estimates are not valid. Now choose C =

C(") = o("�1=3), and observe that due to the continuity properties

lim
"!0

P

h
~
c

C(")

i
= P

"\
n2N

fC � ng
#

= 0:

(3:14)

Finally, letting " tend to zero in (3.13) gives that the probability (3.6) is zero.

This shows that local maxima are separated with probablity one. In particular, constant

pieces and no accumulation points of maxima. This concludes its proof. }

Corollary 3.3: Suppose �(t) satis�es the conditions in Proposition 3.1. Then �(t) has

a.s. only one global maximum in any interval [s; s+ t], t < T .

To see that Proposition 3.1 is relevant for our problem, we will next show that the process

g
N
(#) converges to a process of the type covered by this proposition. In fact we have

Proposition 3.4: Let g : R ! R+ , g 2 C1 be an aperiodic even function. Suppose also

that �
i
(#), # 2 [0; 2�] is the stochastic process given by

�
i
(#) = g (r�

i
cos(#� �

i
)) ; (3:15)



Section 3 23

where r is a positive constant, f�
i
g
i2N, f�igi2N are two mutually independent families of i.i.d.

random variables, distributed as cxe�x
2

(�
i
), and uniformly (�

i
). Then the process �

N
given

by

�
N
(#) � 1p

N

NX
i=1

f�
i
(#)� E �

i
(#)g (3:16)

converges in distribution to a strictly stationary Gaussian process �(#) having a.s. continu-

ously di�erentiable sample paths. Furthermore, �(#) has a.s. only one global maximum on

any interval [s; s+ t], t < �

Remark: We will use this proposition of course with g(�) = ln cosh(��). Then the proposition
implies that the process g

N
(#) � E g

N
(#) converges to a Gaussian process with the above

properties.

Proof: As �
i
(#) are i.i.d. stationary processes on the circle which are in�nitely di�erentiable,

the convergence of the process to a stationary Gaussian process on the circle is a simple

application of the central limit theorem in Banach spaces (see e.g. [LT]). A computation

shows that the covariance of the limiting process is given by

f(s; t) = E [(�1(s)� E �1 (s)) (�1(t)� E �1 (t))]

= E [g (r�1 cos('1)) g (r�1 cos(t� s� '1))]� (E [g (r�1 cos('1))])
2

(3:17)

We see that this function is even, and is in C1 as a function of � = t � s. Moreover, it

is easily checked that the covariance function f(�) is strictly smaller than f(0), whenever

� 6= k�. Proposition 3.1 and Corollary 3.3 then imply the assertions about continuity and

non-existence of more than one global maximum. This concludes the proof of Proposition

3.4. }

We now check some intuitive properties of the position of the minimum of the Gaussian

process from Proposition 3.1 (for those ! such that the minimum exists and is unique).

Proposition 3.5: Suppose that the conditions of Proposition 3.1 are satis�ed. De�ne

(
0;F 0;P0) to be the restriction of (
;F ;P) to all ! such that the conclusions of Proposition

3.1 are true. Then the position of the minimum

#�[!] � arg min
#2[0;�)

�[!](#) (3:18)

of the sample path �[!] is a random variable with uniform distribution on [0; �).

Proof: To prove that #�[!] is a random variable, it is enough to show that for all intervals

U = (a; b) � [0; �), the set #��1(U) is in F 0. We note that by the continuity of � on [0; �)
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for all ! 2 
0,

#��1(U) � f! 2 
 : �[!](�) assumes its minimum in Ug
= f! 2 
0 : 9t 2 U \ Q such that 8s 2 Uc \ Q ; �(t) < �(s)g:

(3:19)

The second line can be written as[
t2U\Q

\
s2Uc\Q

f! 2 
0 : �(t) < �(s)g; (3:20)

which clearly is in F 0.

Equation (3.20), together with the strict stationarity (since it is a real stationary process)

of the process �, implies the uniformity of the distribution. This proves Proposition 3.5. }

Finally, to get some information about the convergence of functions of the position of the

minimum, we use the following two results.

Lemma 3.6: Let P([0; �)) be the space of T -periodic, continuous functions, having only

one global minimum, together with the supremum norm. Then the position #� of the global

minimum is a continuous function from P([0; �)) to [0; �).

Proof: Suppose that there exists a sequence of functions ff
n
g converging to f 2 P([0; �)),

such that the sequence of the global minima #�
n
does not converge to #�, the global minimum

of f . Then there exists an " > 0 and a subsequence ff
nk
g, such that for all n

k
, j#�

nk
�#�j > ".

Now, since #� is the unique global minimum of f , 9�
"
> 0 such that

f(#�
nk
) > f(#�) + �

"
: (3:21)

Similarly, since #�
nk

is the unique minimum of f
nk
, 9�0

";nk
> 0 such that

f
nk
(#�) > f

nk
(#�

nk
) + �0

";nk
: (3:22)

Furthermore, since f
nk

converges in the supremum norm, 8� > 0, 9K
�
2 N such that

8# 2 [0; �);8k > K
�
; jf

nk
(#)� f(#)j < �: (3:23)

For any k > K
�
one can therefore write

f
nk
(#�)� f(#�) = f

nk
(#�)� f

nk
(#�

nk
) + f

nk
(#�

nk
)� f(#�

nk
) + f(#�

nk
)� f(#�)

> �0
";nk

� � + �
"

> �
"
� �:

(3:24)
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Now choose � = 1
3
�
"
. Then for all k > K 1

3
�
,

f
nk
(#�)� f(#�) >

2

3
�
"
> �; (3:25)

which contradicts the assumption of uniform convergence. }

The following result is crucial to link the weak convergence of the process g
N
(#) to the

weak convergence of the measures Q
N;�

.

Proposition 3.7: De�ne the random sets

L
N
[!] =

�
# 2 [0; �) : �

N
[!](#)�min

#
0

�
N
[!](#0) � "

N

	
(3:26)

with "
N

some sequence converging to zero. Then

L
N

D! #� (3:27)

Proof: Using the method of a single probability space (see [Shi], Chapter 3, Section 8,

Theorem 1) one can construct a probability space (
�;F�;P�) and random processes ��
N
, ��,

such that

��
N
! ��; P� � a:s:; (3:28)

and

��
D
= �; ��

N

D
= �

N
: (3:29)

Now introduce the random level sets

L�
N
[!�] =

�
# 2 [0; �) : ��

N
[!�](#)�min

#
0

��
N
[!�](#0) � "

N

	
;

Then L
N

and L�
N

have the same distribution. But since ��
N
[!] converges almost surely to

��[!] 2 P([0; �)), one sees that due to Lemma 3.6 L�
N
[!] converges P�-a.s. to the position

of the unique absolute minimum of ��[!�]. But this minimum has the same distribution as

that of �, which is the uniform distribution by Proposition 3.5. Therefore, L
N

converges in

distribution to a uniformly distributed point on [0; �). }

We have �nally all tools available to prove Theorem 3.

Proof of Theorem 3: We have to check convergence on the following type of functions

F :M(R2 )! R

F (�) = eF (�(f1); : : : ; �(fk)); (3:30)
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where eF is a polynomial function, and f1; : : : ; fk are bounded continuous functions from

R2 ! R. Convergence in law then means that

lim
N"1

E

�
F (Q

N;�
[!])

�
=

1

�

Z
�

0

F (
1

2
�(m� cos#;m� sin#) +

1

2
�(m� cos#+�;m� sin#+�)) d#: (3:31)

The left-hand side of (3.31) is explicitly written as

lim
N"1

E

� eF (Q
N;�

[!](f1); : : : ;QN;�
[!](f

k
))

�
: (3:32)

We now treat the individual arguments of eF in (3.32). Let A
N
[!] (the level sets in the previous

lemmata) be decomposed into its 2l0 connected components A
N;jN

[!]. As a consequence of

Lemma 3.7, there exists N [!] which is �nite a.s. such that for all N � N(!), l = 1, and

the two corresponding connected components are symmetric with respect to the origin. Now

choose arbitrary points x
N;jN

[!] 2 A
N;jN

[!]. Then we can decompose

eQ
N;�

[!](f
i
) =

X
jN

f
i
(x

N;jN
) eQ

N;�
[!](1I

AN;jN
) +

X
jN

eQ
N;�

(1I
AN;jN

(f
i
(x

N;jN
)� f

i
))

+ eQ
N;�

(1I
A
c
N
f
i
):

(3:33)

Expanding eF using the decomposition (3.33), we get a sum consisting of two di�erent types

of terms: (i), summands that are products of the �rst sum on the right-hand side of (3.33)

only, and (ii), summands where at least one of the second and third term from the right-hand

side of (3.33) enter. Proposition 2.3 and Proposition 3.7, and the continuity and boundedness

of the f
i
's imply that the terms of type (ii) vanish P-a.s., as N " 1. In the limit, the only

terms left are of type (i), which together sum up to

eF
0@X

jN

f1(xN;jN )
eQ
N;�

[!](1I
AN;jN

); : : : ;
X
jN

f
k
(x

N;jN
) eQ

N;�
[!](1I

AN;jN
)) (3:34)

All arguments of eF in (3.34) converge in distribution to

1

2
f
i
((m� cos#;m� sin#)) +

1

2
f
i
((m� cos#+ �;m� sin#+ �)); 8i = 1; : : : ; k (3:35)

where # is a uniformly distributed r.v. on [0; �), by Proposition 3.7. But convergence in

distribution means by de�nition that

lim
N"1

E

� eF (X
jN

f1(xN;jN )
eQ
N;�

[!](A
N;jN

); : : : ;
X
jN

f2(xN;jN )
eQ
N;�

[!](A
N;jN

))

�

=
1

�

Z
�

0

eF (1
2
f
i
((m� cos#;m� sin#)) +

1

2
f
i
((m� cos#+ �;m� sin#+ �)) d#;

(3:36)
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which in turn is by de�nition equal to

1

�

Z
�

0

F (
1

2
�(m� cos#;m� sin#) +

1

2
�(m� cos#+�;m� sin#+�)) d#: (3:37)

This proves the convergence in law (1.13) in Theorem 3. To obtain the identi�cation of

the metastate, just note that the process �
N
(#)[!] actually converges to the same Gaussian

process under any of the conditional laws P[�jF
n
], where F

n
is the sigma-algebra generated

by the random variables �
i
; i � n. }}

4. Volume dependence, empirical metastates, superstates

We conclude this paper with the discussion of some more sophisticated concepts that have

been proposed by Newman and Stein [NS2] and Bovier and Gayrard [BG3] and that should

capture in more detail the actual asymptotic volume dependence of the Gibbs measures. In

fact, the �rst question one may ask is whether for a �xed realization as the volume grows the

�nite volume Gibbs states really explore all the possibilities in the support of the metastate.

One way of stating that this is the case is the following

Theorem 4.1: There exist (deterministic) sequences N
k
" 1 such that the empirical

metastate

1

k

kX
`=1

�QNk;�
; (4:1)

converges almost surely to the law of Q1;�
.

Proof: We have seen that the measure Q
Nk;�

is sharply concentrated on the circle of radius

r� and at the angle where the process g
Nk

(#) (de�ned in (2.3) takes its absolute minimum.

The idea is to choose N
k
in such a way that these angles will be virtually independent for

di�erent k. Now note that we can write

g
Nk

(#) = eg
k
(#) +R

k
(#); (4:2)

where

eg
k
(#) =

1

N
k

NkX
i=Nk�1+1

ln cosh(�(r��
i
cos(#� '

i
))); (4:3)
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are independent for di�erent k by construction and

R
k
(#) =

1

N
k

Nk�1X
i=1

ln cosh(�(r��
i
cos(#� '

i
))): (4:4)

Now by standard estimates identical to those presented in Section 3, one shows easily that

there is a constant C <1 such that

P

�
sup

#2[0;�)jRk
(#)� ER

k
(#)j � x

N
k�1

N
k

�
� C exp

��x2=C� : (4:5)

Thus we can always choose N
k
growing su�ciently rapidly (e.g. N

k
= k!) such that R

k
is

totally negligible compared to eg
k
for large k, and the position of the absolute minimum of

g
Nk

(#) is asymptotically equal to that of eg
k
(#). This allows us to approximate for large k the

random measures �QNk;�
by independent measures and from this the asserted result follows

from the law of large numbers. }

Remark: Theorem 4.1 says that that the empirical metastate constructed with sparse sub-

sequences converges to the Aizenman-Wehr metastate, a.s.. This is a special example of

a general theorem due to Newman and Stein [NS2] (where however they require possibly

subsequences `
i
in the de�nition (4.1)).

Rather than considering the empirical metastate with sparse subsequences one may be

interested in the volume dependence as the volume grows at its natural pace. To capture

this, the idea put forward in [BG3] is to construct a measure valued stochastic process

�t
�
� lim

N"1
�
�;[tN ]; (4:6)

with t 2 (0; 1] and to consider either the (conditional) probability distribution of this pro-

cess (the \superstate" [BG3]) or the (conditional) empirical distribution of the process (the

\empirical metastate" [NS2]). Let us see what this entails in our context. The reader who

has been following the exposition of the last two chapters will easily be convinced that this

problem amounts to study the quantity

#(t) � arg min
�2[0;�)

(�
t
(�)) ; (4:7)

where �
t
(�) is the distributional limit of the process

�t
N
(#) � g[tN ](#)� Eg[tN ](#): (4:8)
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where g
N
(�) is de�ned in (2.3). By completely standard arguments one shows that the

following invariance principle holds:

Lemma 4.2: The process �t
N
(#) converges in distribution, as N " 1 to the Gaussian

process �
t
(#), t 2 (0; 1]; # 2 [0; �) with mean zero and covariance

C(#; #0; t; t0) � t ^ t0p
tt0

f(#; #0); (4:9)

where

f(#; #0) = E [ln cosh (�r�1 cos(')) ln cosh (�r�1 cos ('� (#� #0)))] : (4:10)

�
t
(�) is a rather curious Gaussian process: as a function of t, to �xed # it is (normalized)

Brownian motion, while for �xed t as a function of # it is the C1 process discussed in the

previous section. The question is then what can be said about the process #
t
, de�ned by

(4.7)?

Some facts follow easily. For instance, the process is almost surely single valued for all

t 2 (0; 1] except possibly on some Cantor set of zero Lebesgue measure. On the other hand,

it seems natural that such an exceptional set will exist and that a typical realization will have

continuous pieces and \jumps". Also, for t going to zero, the process \circles" around rapidly

since �
t
and �

s
become uncorrelated as s # 0. But otherwise we do not see any immediate

more speci�c characterization of the process or its path-properties.
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