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We consider a very general diffusion model for asset prices which allows the description of sto-
chastic and past-dependent volatilities. Since this model typically yields an incomplete market, we 
show that for the purpose of pricing options, a small investor should use 'the minimal equivalent 
martingale measure associated to the underlying stock price process. Then we present stochastic 
numerical methods permitting the explicit computation of option prices and hedging strategies, and 
we illustrate our approach by specific examples. 

1. INTRODUCTION 

Ever since the path-breaking paper by Black and Scholes (1973) on the pricing of options 
and corporate liabilities appeared, there has been concern about the assumptions imposed 
on the behavior of the underlying stock price process. Tue most criticized of these, beside 
the absence of transactions costs, is probably the assumption of a constant volatility. Our 
goal in this paper is to provide an approach to option pricing which allows one to specify 
very general patterns of volatility behavior and which at the same time still permits a· 
computation of option prices and hedging strategies. This is achieved by combining sto-
chastic numerical methods, on one hand, with a high-dimensional Markovian model, on 
the other. Since our models will usually yield an incomplete market, we also provide a 
result on the pricing measure to be used: we prove that a small investor in our model 
should price options by their expected discounted payoffs, where the expectation is taken 
with respect to the minimal equivalent martingale measure associated to the underlying 
stock price process. 

We begin in Section 2 with a brief survey of previous results on models with a noncon-
stant volatility. Basically, there are two directions of generalization in this context; they 
can be summarized by the key words "stochastic volatility" and "past-dependence." 

1 Financial support by Deutsche Forschungsgerneinschaft, Sonderforschungsbereich 303 at the University of 
Bonn, is gratefully acknowledged, 
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After discussing the merits and disadvantages of some important approaches in the exist-
ing literature, we present the general model that we propose to study in this paper. By 
means of a specific example, we show how one can easily incorporate in this framework 
an asset price whose volatility is at the same time stochastic and past-dependent. But of 
course there is a price to pay for the generality of our model. Typically, we are dealing 
with an incomplete market which implies that there is no unique equivalent martingale 
measure or risk-neutral probability for the underlying stock price process. We attack this 
problem in Section 3, where we show that, for the purpose of computing option prices, a 
small investor in our model should use the minimal equivalent martingale measure. To 
this end, we first decompose the space of all those assets compatible with the given stock 
as the direct sum of two subspaces, namely the purely tradable assets and the totally 
nontradable assets. Using this decomposition allows us to prove a new characterization of 
the minimal equivalent martingale measure, which in particular yields the prescription 
given above. 

The very generality and flexibility of our model gives rise to a second problem. In 
addition to incompleteness, we are also faced with the difficulty that our asset prices are 
given by stochastic differential equations which typically have no explicit solution. To 
compute option prices and hedging strategies, we therefore have to resort to numerical 
methods. A survey of the required results and techniques is presented in $ection 4, while 
Section 5 illustrates these methods by means of explicit examples. In particular, our 
approach permits the~ simulation of actual trajectories with a high accuracy, and this en-
ables us to study the performance of our hedging strategies under various possible sce-
narios. The resulting plots of some of our simulations are exhibited and discussed in 
Section 5. 

2. FORMULATION OF THE MODEL 

This section introduces our basic model for the asset prices. We begin with a brief survey 
of some important approaches in the literature before we describe the general class of 
models studied in this paper. We explain the two basic problems arising in this context, 
and we conclude the section with a specific example illustrating how one can easily in-
corporate in our framework an asset price with a stochastic and past-dependent volatility. 

2.1. A Model with Stochastic Volatility 

Hull and White (19~87) consider the following model: 

(2.1) dB, = rB, dt, 
dS, = µ..(S,, er,, t)S, dt + cr,S1 dWj, 
dv, = y(a-1, t)vl dt + o(U'p t)vl dWr. 

where S1 denotes the stock price at time t, v1 = crl its instantaneous variance, and r the 
riskless interest rate, which is assumed to be constant. W1 and W2 are Brownian motions 
under P. Similar models have been studied by Hull and White (1988), Johnson and 
Shanno (1987), Scott (1987), and Wiggins (1987), among others. 

The basic idea to price a call option in this model is to form a riskless portfolio con-
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taining the option, the stock and a second call option with the same strike price, but a 
different expiration date. If we denote by u(t, Sr) the value of the (first) call option at time 
t and stock price S" this approach yields a certain partial differential equation for the 
option pricing function u(t, x). But the solution of this equation is not unique unless one 
already knows the price function for the second call option. 

To recover uniqueness, Hull and White (1987) make the additional assumptions that 
W 1 and W2 are independent, and that the variance v has no systematic risk. This yields a 
unique option price which can be computed as the (conditional) expectation of the dis-
counted terminal payoff under a risk-neutral probability measure P. Put differently, P is 
obtained from P by means of a Girsanov transformation such that 

(2.2) 

under P, where w'l, W2 are independent Brownian motions under P. The option price is 
then given by 

u(t, S,) = E [ :~ (Sr - K) + :!',] = ,-.-<T-t) E[(Sr - K) + I :!',]. 

To obtain a more specific form for u, Hull and White (1987) then use the additional 
assumption contained in (2.1) and the independence of W1' W2 that the instantaneous 
variance v is not influenced by the stock price S. Setting 

T 

vr.T: = T ~ t J vs ds, 
t 

they show that the conditional distribution of STIS, under P, given vr,T• is lognormal with 
parameters r(T - t) and vr,T(T - t). This allows them to reexpress u as 

(2.3) u(t, sf' a}) = f Uss(t, sf' Vr,T) dF(Vt.T I St, a}), 
0 

where Uss denotes the usual Black-Scholes price corresponding to the variance v, T and 
Fis the conditional distribution under P of vr,T• given St and a}. · 

While this result is very pleasant from a theoretical viewpoint, it has the practical 
drawback that F cannot be determined in general. In the very special case of constant 
coefficients y and o, vr.T is an integral over lognormal variables which allows one to 
compute all moments of F. This is used by Hull and White (1988) to give a Taylor 
expansion of (2.3). In the general case, however, (2.3) can only be computed by a nu-
.merical approximation, despite the rather strong assumptions imposed on the model. In 
particular, (2 .1) does not allow a genuine interaction between the stock price S and its 
volatility a-, since v is not allowed to depend on S. 
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2.2. A Model with Past-Dependent Volatility 

Recently, Kind, Liptser, and Runggaldier (1991) attempted to explicitly account for the 
dependence of the volatility on past stock prices. They consider a family (S", v") of 
discrete-time processes, where e denotes the grid size of a partition of the time axis. The 
discrete-time stock price (S()osrsT and the corresponding instantaneous variance 
( v7)oscsT are recursively described in such a way that each v( depends on the past stock 
prices S(-s (0 :$ s :$/)observed on a time interval of fixed length/. Their main result is 
then a diffusion approximation: for e ~ 0, one has 

V" ~ v uniformly on compacts in probability 

and 

S" ~ S weakly in D[O, T], · 

where v satisfies a deterministic delay equation and S is given by a stochastic differential 
equation involving v. Furthermore, v coincides with the quadratic variation process of S. 
Since vis deterministic and can be obtained from the delay equation and the input values 

·vs ( -/ < s !5 0), one has a Black-Scholes type formula for the limit model as soon as v 
is known. By the convergence result, this yields an approximation for the option price in 
the discrete-time model, and this model in turn is a reasonable description of a stock price 
with past-dependent volatility. 

While the convergence result in itself is certainly of interest, its application to option 
pricing lacks some important features. First of all, the limiting model (which is used to 
compute prices) does not really exhibit past dependence: once we know the volatility v 
on any interval of length/, it is completely determined for all future times and does not 
react to S any more. In particular, v is no longer stochastic. Furthermore, it seems un-
handy to approximate a discrete-time model by its continuous-time limit; since one has to 
fix a particular time partition when setting up the model, it will probably become quite 
difficult to control the quality of the approximation. 

2.3. A General Markovian Model 

Let us now present a general model which can include volatilities both stochastic and 
past dependent. This kind of model goes back to Merton (1969; 1971; 1973) who studied 
various problems in this framework; see Merton (1990). We consider the following multi.:. 
dimensional diffusion process: 

(2.4) 
ll 

dX~ = ai(t, Xr) dt + L bij(t, X,) dW{ 
j=l 

for i = 0, ... , m, where ai (i = 0, ... , m) and bij (i = 0, ... , m,· j = I, ... , n) 
are measurable functions from [O, T] x [Rm+ 1 into IR. The process W = (Wl, ... , 
W11 )* (with * denoting ·transposition) is· an n-dimensional Brownian motion on a proba-
bility space (fl,<!; Q), and IF = (<!;r)osrsT is the Q-augmentation of the filtration generated 
by W. We assume that the coefficients ai and bij satisfy appropriate growth and Lipschitz 
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conditions so that the solution of (2.4) is a Markov process. We also remark that under 
suitable continuity and nondegeneracy conditions on the coefficients, !F coincides with the 
natural filtration [FX of X; see Harrison and Kreps (1979). This model will be interpreted 
in the following way. The component x0 describes the riskless asset; setting B : = x0 , 

we shall take bOj = 0 for j = 1, ... , n and a0(t, x) = r(t, x)x 0 , so 

dB, = r(t, X,)B, dt, 

and we assume that 

r 

J lr(s, Xs)I ds :5 L < oo Q-a.s. . for some L > 0. 
0 

For notational simplicity, we shall work with only one stock. The component xi describes 
its price process and is denoted by S. The other components of X can then be used to 
model the additional structure of the market in which Sis embedded. For instance, they 
could include a specification of a stochastic volatility and of its dependence on the past. 
We shall give a concrete example in the next subsection, but at present we refrain quite 
deliberately from specifying X any further. 

In this general framework, an option or contingent claim will be a random variable of 
the form g(Xr). The classical exampJe is provided by a European call option with strike 
price K which corresponds to the claim (Sr - K) +. Since the process X will usually 
contaiffmore components than just the bond B = xo and the stock price S = xi, a claim 
can depend on many things other than just the terminal stock price Sr. In fact, the only 
serious restriction is that the underlying process X-but not ·necessarily S-should be 
Markovian. This implies that (subject to some integrability conditions) we can associate to 
any contingent claim g(Xr) an option pricing function u: [O, T] x [Rm+ i ~ IR defined by 

(2.5) 

where (X~·x),ss:sr denotes the solution of (2.4) starting from x at time t, i.e., with X~·x = 
xE\Rm+I. 

At this point, we are faced with the first basic problem in our general model: Why 
should u in (2.5) be called an option pricing function? We shall answer this question in 
Section 3 by showing that for a suitable choice of the probability measure Q, the process 

(2.6) V, : = u(t, X,) 

can be interpreted as the value or price of the claim g(Xr) at time t. Furthermore, the 
process 

(2.7) 0 :5 t :5 T, 
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defines a hedging strategy i'n the following way: If we. set 

(2.8) 0 < t < T, 

and interpret g, and YJr as the numbers of shares of stock and unit bonds to be held at time 
t, respectively, the value of this dynamic portfolio cg' YJ) at any time tis given by 

In particular, the terminal value of the portfolio will be 

VT = u(T, XT) = g(XT) Q-a.s., 

which means that the hedging strategy duplicates the claim's payoff at the terminal time T. 
Except in special cases, however, the strategy (g, YJ) defined by C2.7) and (2.8) will not 

be riskless. This means that the process 

t 

c, : = v, - f g u dS u 

0 

t 

f 11u dBu, 0 < t !ST, 
0 

of cumulative costs (current value minus cumulative gains from trade) will not be con-
stant, but fluctuate randomly. Thus, the strategy will in general not be self-financing. But 
it turns out that for the above-mentioned judicious choice of Q, cg' YJ) will still possess a 
certain local optimality property; in particular, the cost process C then becomes a martin-
gale; i.e., the strategy is mean-self-financing. This choice of measure will be discussed 
in more detail in Section 3. For a more precise description of the optimality properties of 
(g, 77), we refer to Schweizer (1991a). 

The second basic problem is the actual computation of the option pricing function u. It 
is clear that there can be no hope of obtaining a closed-form expression in general. We 
shall therefore concentrate on a numerical approach, with special emphasis on precise 
statements about the accuracy and speed of convergence of this approximation. General 
results will be presented in Section 4 and illustrated in detail by examples in Section 5. 

REMARK. It is worth pointing out that the entire discussion in this subsection is for-
mulated in terms of the probability measure Q. The usual approach is somewhat different. 
One begins with a probability measure P and a process satisfying some stochastic differ-
ential equation under P. Optimization or minimization problems are then also formulated 
with respect to this basic measure P. The computation of option pric:es or optimal hedging 
strategies, however, is often considerably simplified by switching to a suitably chosen 
equivalent measure Q. We have decided to start here directly with Q for two reasons. 
First of all, there is no general agreement about the choice of Q except in the special case 
of so-called complete markets or, more generally, for the pricing of attainable claims. We 
shall explain the reasons for our choice of Q in Section 3, but we should pref er to avoid 
this discussion here. However-and this is the second reason-it should also be empha-
sized that the approximation techniques presented in Section 4 can be applied to any 



OPTION PRICING UNDER INCOMPLETENESS 

diffusion model of the form (2.4). In particular, they do not depend at all on the economic 
significance of the measure Q. 

2.4. Two Examples 

EXAMPLE 2.1. Let us first illustrate by a specific example of the model (2.4) how we 
can incorporate in our framework a stochastic and past-dependent volatility. We consider 
the process X = (XU, X1, X2, X3)* = (B, S, a-, n* satisfying the following stochastic 
differential equation: 

(2.9) dB, = r(t, X,)B, dt, 
dSt = r(t, X,)Sr dt + o-,St dWJ, 
da, = - q(a-t - st) dt + pa-, dWr, 

1 
d~t = - (a, - s,) dt, 

Ct: 

with p > 0, q > 0, a::> 0, where wi, w2 are independent Brownian motions under Q. 
Let us explain and comment on the features of this model. 

The bond price B is of the usual structure with a Markovian instantaneous interest rate 
r. The stock price S follows a generalized geometric Brownian moti.on since drift and 
volatility are not constant. Taking the drift to be r(t, X,) means that the discounted stock 
price process SIB is a martingale under the measure Q which we use for pricing; this is 
also quite standard. 

The processes O" and s should be interpreted as the instantaneous and the weighted 
average volatility of the stock, respectively. The equation for a- shows that the instanta-
neous volatility a-, is disturbed by some external noise (with an intensity parameter p) and 
at the same time continuously pulled back toward the average volatility St· The parameter 
q measures the strength of this restoring force or speed of adjustment. 

The equation for the average volatility scan be solved explicitly_to give 

f 

{, = <o exp(-~) + ;; J exp( - t : s)CT, ds, 
0 

0 < t < T. 

This shows that St is an average of the values O"s (0:::;; s:::;; t), weighted with an exponential 
factor. For very large a::, we obtain Sr= {0 , while a very small value of a:: yields St= a-,. 
Thus, the parameter a:: measures the strength of the past dependence of the average 
volatility. 

EXAMPLE 2.2. As. a second example, we briefly indicate how (2.4) can be adapted to 
give a generalized form of the Hull and White model (2.2). For this purpose, we consider 
the process X = (B, S, v)* given by 

(2. 10) dB, = r(t, X,)B, dt, 
dSt = r(t, X1)S1 dt + VvrS1 dWJ, 
dv, = y(t, X,)v, dt + o(t, X,)v,(p(t, X,) dWJ + Vl - (p(t, X,))2 dWr), 
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with independent Brownian motions W1, W2 under Q. Here, p explicitly accounts for the 
correlation between the stock price S, and its instantaneous variance v,. A particular case 
of this model was studied by Johnson and Shanno (1987). 

3. INCOMPLETE MARKETS AND THE MINIMAL 
EQUIVALENT MARTINGALE MEASURE 

In this section, we present an argument for the choice of a particular probability measure 
Q to be used for computing option prices in an incomplete market. Our starting point is 
a very general diffusion model for a multidimensional stock price process S under an 
initial measure P. Under some integrability conditions, there exists a unique minimal 
equivalent martingale measure P for S. We prove that P is characterized among all equiva-
lent martingale measures f> for S by the property that it leaves the returns of all nontraded 
assets unchanged. This result is then used to provide an argument why a small investor 
should work with P instead of P for the purpose of pricing options. The measure P will 
be our choice for Q. 

In contrast to the rest of the paper, the result of this section do not require a Markovian 
structure of our price process. We shall therefore work with a model considerably more 
general than (2.4). It contains one riskless asset Band m risky assets S~, i = 1, ... , m. 
The bond price B and the stock prices Si are given by the stochastic differential equation 

(3.1) dB, = r /3i dt, 

n 

dS~ = S~µ.~ dt + S~ 2: <Yf dW{. 
j=l 

Here, W = (W1, ••• , wn)* is an n-dimensional Brownian motion on a probability space 
(D, <JF, P), and IF = (<!:F,)osisT denotes the ?-augmentation of the filtration generated by 
W. We take n > m so that there are at least as many sources of uncertainty as there are 
stocks available for trading. All processes will be defined on [O, T], where the constant 
T > 0 denotes the terminal time for our problem. We assume that the interest rate r = 
(r,)osr:sT• the vectorµ. = (µ.r)osrsT = (µ.f ... , µ.~n)osrsT of stock appreciation rates, 
and the volatility matrix <J = (o-t)osrsT = (<Yf)osrsT;i- l , ... ,m;j= l, ... ,n are progressively 
measurable with respect to IF. The interest rate r satisfies 

T f lrul du < L < co P-a.s. 
0 

for some L > 0, 

which implies that the bond price process Bis bounded above and away from 0, uniformly 
in t and w. We also assume that the matrix o-, has full rank m for every t so that the matrix 
(<Y,<Yi)- 1 is well defined. Essentially, this means that the basic assets, namely the stock 
prices, have been chosen in such a way that they are all nonredundant. 

This generalization of the Merton model (2.4) used in Section 2.3 was introduced by 
Bensoussan (1984) and studied in great detail in a series of papers by several authors. 
Problems solved in this framework include maximization of expected utility-both in the 
case m = n. of complete markets (see Cox and Huang 1989; Karatzas et al. 1986; Kara-
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tzas, Lehoczky and Shreve 1987) and in the case m < n of incomplete markets (see He 
and Pearson 1990; Karatzas et al. 1991; Pages 1989)-existence and uniqueness of equi-
librium (see Karatzas et al. 1990), and for the case of complete markets also pricing and 
hedging of options (see Bensoussan 1984; Karatzas and Shi-eve 1988). An excellent sur-
vey of the results for complete markets is given by Karatzas (1989). Here, we want to add 
some new results about the valuation of options in the incomplete case. 

Consider a "small investor," i.e., an economic agent whose actions do not influence 
prices, who trades in the stocks and the bond. His trading strategy can be described at 
any time t by his total wealth Vr. and by the amounts 1T~ invested in the ith stock for i = 
1, . . . , m. The amount invested in the bond is then given by V, - 2~tf.. 1 7T~. We shall call 
1T = (7r,)oscsr = (1TJ, •.• , 7f,"){)srsT aporifolio process if 7T is progressively measurable 
with respect to IF and satisfies 

and 

T 

T I ll<T~7T ull2 du < x P-a.s. 
0 

f 17T~(µ,u - rul)I du < co P-a.s., 
0 

where 1 = (1, ... , 1)* E 1Rm. A trading strategy is called self-financing if all changes 
in the wealth process are entirely due to gains or losses from trading in stocks and bond .. 
For such a strategy, the wealth process V must satisfy the equation 

(3.2) dVt = £ 7T~ (µ,~ dt + ± cry dW{) + (vr - £ 7T~) rt dt 
1=1 rl 1=1 

0 :::; t :::;; T. 

The discounted wealth process V' = VIE is then given by 

with 1T; = 7T,IB,. Thus, any portfolio process 1T uniquely determines a wealth process V 
such that 1T and V together constitute a self-financing strategy. If we now interpret such a 
wealth process V as the price process of some financial asset, this motivates the following 

DEFINITION. A purely tradable asset is any asset whose value process V is given by 
(3.2) for some portfolio process 1T. , 

Note that this definition involves the underlying stocks sr, ... , sm in a crucial way; 
hence it would be more accurate to say "purely tradable with respect to S." Clearly, a 
purely tradable asset is a particular case of a general asset in the sense of the following 
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DEFINITION. A general asset is any asset whose value process A is a semimartingale 
with respect to P and IF. 

REMARK. Any general asset in our model has the form 

(3.3) dA, = Y1 dW, + dF,, 0 < t < T, 

where F is an IF-adapted process with paths of finite variation and the process y = 
(y1, ... , yn)* is progressively measurable with respect to IF and satisfies 

T 

f llY ull2 du < 00 

0 

P-a.s. 

This follows immediately from the fact that every local martingale over a Brownian filtra-
tion is a stochastic integral of the underlying Brownian motion. Note that F and y are not 
necessarily unique unless A is a special semimartingale. 

For our purposes, general assets in this wide sense are too general. In order to explain 
why, we first recall the concept of an equivalent martingale measure for S. 

DEFINITION. A probability measure f> on (!1, ?:F) is called an equivalent martingale 
measure for S if 

1. f> and P have the same null sets; i.e., f> = P. In particular, this implies P = P 
on ?:F0 • 

2. The discounted price process S' = SIB is a (vector) martingale under P. 

Any probability measure Pon (il, ?:F) induces a certain price system on random variables 
in the following way: if Ur+h is a payoff to be made or received at time t + h, then the 
price of U1+1z at time t under Pis computed as 

provided that Ur+hlB,+h E :£1(P). If we assume that the observed stock pric-e process S 
is in equilibrium under the price system P, then the price of Sr+h at time t must be S,. 
This implies 

?:F]. 
t ' 

i.e., S' is a martingale under P. Thus, an equivalent martingale measure can be inter-
preted as a price system which is consistent with having S as an equilibrium stock price. 

DEFINITION. An equivalent martingale measure P for S is called minimal if any local 
?-martingale L which is orthogonal to Si for i = 1, ... , m (in the sense that (L, Si) = 
0) remains a local martingale under P. 
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REMARKS. (1) The concept of a minimal equivalent martingale measure in the above 
sense was introduced by Follmer and Schweizer (1991) and used there and in Schweizer 
(1990) and Schweizer (1991a) to compute certain optimal hedging strategies; see also He 
and Pearson (1990) and Pages (1989) for related work. As a matter of fact, the preceding 
definition is slightly different from.the one given in Follmer and Schweizer (1991), where 
it was required that all square-integrable P-martingales L orthogonal to S should also be 
ft-martingales. But since we are working here with a Brownian filtration, we know that 
every local martingale must be continuous, and this will .enable us to use localized ver-
sions of the results in Follmer and Schweizer (1991). 

(2) Intuitively, P is that equivalent martingale measure which is closest to P in acer-
tain sense. This is made more precise in Follmer and Schweizer (1991), where the dis-
tance between P and P is measured in terms of a relative entropy. Nevertheless, the 
definition of P is rather technical and lacks a clear economic interpretation. The main 
purpose of this section is therefore to provide a more intuitive characterization of P. 

We begin by describing more precisely the equivalent martingale measures for S. If P 
is any equivalent martingale measure for S and 

- [dP z, := Ep dP C!Ji] = dP 
' dP '!fl 

0 s t < T, 

denotes a continuous version of the density process of P with respect to P, then i can be 
written as 

t r 

(3.4) i, = exp (-f !\~ dWu - ~ f ll.\ulf2 du), 
0 0 

0 < t < T, 

where 'A. = (~ 1, ••• , 'A_n)* is adapted to IF and satisfies 

(3.5) 

and 

(3.6) 

T 

J ll~ull2 du < 00 P-a.s. 
0 

0 < ts T. 

In fact, (3.4) and (3.5) follow from Ito's representation theorem and the fact that Z is 
strictly positive, and the martingale property under P of i S' implies (3.6). Note that 
(3.6) does in general not determine A. uniquely unless each o-, is invertible; i.e., m = n. 

Using the results of Follmer and Schweizer (1991), we next proceed to describe the 
minimal equivalent martingale measure P in more detail. First of all, P is unique if it 
exists. Furthermore, there is only one natural candidate: if we set 

(3.7) 0 st< T, 
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and 

t t 

(3.8) Z, : ~ exp ( - J ~ t dW" - i J 11~.ll2 du) , 
0 0 

where we assume that 

(3.9) 

T 

J !l;\u!l2 du < co P-a.s., 
0 

0 <ts T, 

then the minimal equivalent martingale measure exists if and only if 

defines an equivalent martingale measure P for S. This is the case if and only if Z is a 
martingale, which is equivalent to the condition E[Zr] = 1. For instance, it would be 
sufficient to impose a Novikov condition on ;\. 

ASSUMPTION. For the rest of this section, we shall suppose that (3.9) and the condi-
tion E[Zr] = 1 are satisfied, so that the minimal equivalent martingale measure P exists. 

REMARKS. (1) The structure of equivalent martingale measures has been studied by 
several authors in frameworks of varying generality. We refer to Ansel and Stricker 
(1991), El Karoui and Quenez (1991), He and Pearson (1990), Karatzas et al. (1991), 
and Schweizer (1991b) for results similar to (3.4)-(3.6). A construction of the minimal 
equivalent martingale measure P in a general semimartinghle model can be found in 
Schweizer ( 1991 b). 

(2) Assuming the existence of P (which in particular implies the standard assumption 
that the set of equivalent martingale measures for S is nonempty) is not really crucial for 
the subsequent arguments. From a technical point of view, it is an integrability condition 
which could be considerably weakened by recasting the discussion below in terms of 
martingale densities instead of equivalent martingale measures; see Schweizer ( 1991 b). 
On the other hand, the slight loss of generality incurred by this assumption is amply 
compensated by the fact that the interpretation of our results is much easier to express in 
terms of martingale measures. 

Now consider a general asset with value process A. If A is an equilibrium price under 
some pricing measure f>, then A' = AIB should be a martingale under this measure; i.e., 
f> should be an equivalent martingale measure for A. But of course we only want to 
consider those pricing measures under which the given stock price S can occur as an 
equilibrium price. Hence, f> shotild also be an equivalent martingale measure for S, and 
this motivates the following 

DEFINITION. A compatible asset is any general asset whose discounted value process 
A' = AIB is a local martingale under some equivalent martingale measure for S. 
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Note that this definition also involves S; again it would be more precise to say ''com-
patible with S." 

REMARKS. (1) One could also define a compatible asset by the stipulation that A' 
should be a true martingale under some equivalent martingale measure for S. To avoid 
integrability conditions, however, it is more convenient to work with local martingales. 

(2) The idea behind the definition of a compatible asset is that an incompatible asset 
should not exist in an equilibrium situation with stock prices given by S. As pointed out 
by D. Sondermann, one can therefore ask if an incompatible asset gives rise to an arbi-
trage opportunity in some sense. We have. been unable to answer this question so far. 

Let us now examine the structure of a compatible asset more closely. To this end, we 
consider the space L~[O, T] of all IF-adapted IR11-valued process v satisfying 

T f Jlvull2 du < 00 P-a.s. 
0 

Following Karatzas et al. (1991), we decompose L~[O, T] into the orthogonal subspaces 

K(a') : = {v E L~[O, T] I <T,v, = 0 for 0 :$ t < T, P-a.s.} 

and 

KJ_(<T) := {v E L~[O, T] I vt E Range(<T~) for 0 $ t < T, P-a.s.}. 

If i.. E L~[O, T] satisfies (3.6), then f:.. can be written as 

(3.10) for some (} E K(<T). 

Indeed, decomposing i as i = -{} + <T*1T with-{} E K(<T) yields by (3.6) 

µ, - r 1 = <TX. = <T<T*1T, 

and therefore by (3. 7) 

rl) = 1J + 'i... 

This allows us to prove the following result. 

LEMMA 3 .1. Every compatible asset has a value process A of the form 

for some portfolio process 1T and some processes v, 1J E K(<T). 

Proof First We observe that A or, equivalently, A' must be continuous. In fact, let P 
be an equivalent martingale measure for S such that A' is a local fa-martingale. Then A'Z 
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is a local ?-martingale and therefore continuous, since IF is a Brownian filtration. Strict 
positivity and continuity of t then imply the continuity of A'. 

Now denote by 'A. the process corresponding to f> by (3.4). Under P, A' = AIR has the 
form 

dA , l dF A' d 'Yt dW r = - r - ,r, t + - c• B1 B, 

where we have used (3.3). If we decompose y E L~[O, T] as 

'}' = V + CT*1T with v E K(a-), 

then applying Girsanov's theorem to W shows that A' can be written under Pas 

for some P-Brownian motion W. But since A' is a continuous local P-martingale, we 
conclude that 

dF1 = (Arrt + Yt~,) dt 
= (A1r 1 + (vt + 7Ttcr,)(~, + 1J-1)) dt 
= (A 1r 1 + vt~r + vt1J-, + 1T1{µ..1 - r 11)) dt 

by (3.10) and (3.7). Since v*~ = 0 by (3.7), this yields the assertion by (3.3). D 

REMARK. Lemma 3.1 is closely related to a result of Ansel and Stricker (1991) on the 
structure of continuous asset prices admitting an equivalent martingale measure; see also 
Schweizer (1991b). However, the representation (3.11) gives us more information about 
the drift term of A than in Ansel and Stricker (1991) since we only consider those mea-
sures P which are at the same time equivalent martingale measures for S. 

DEFINITION. A totally nontradable asset is any general asset with a value process A 
of the form 

(3.12) dA 1 = vt dWt + vt 1J-1 dt, 0 < t ::;; T, 

for some processes v, {} E K(cr). 

Note that this definition involves a- (but not the driftµ..) and therefore again the under-
lying stock S; "totally nontradable with respect to S" would thus be more accurate. 
Intuitively, a totally nontradable asset should be an asset which cannot be generated in a 
self-financing way by tr~ding only in the available stocks and the bond. The next result 
shows that, up to constants, the space of all compatible assets is the direct sum of the 
space of purely tractable assets and the space of totally nontradable assets. In particular, 
this justifies the terminology of the preceding definition. 
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PROPOSITION 3 .1. (1) Any compatible asset admits a decomposition as the sum of a 
purely tradable asset and a totally nontradable asset. This decomposition is unique up to 
a constant. 

(2) A compatible asset with nonconstant value process A is totally nontradable if and 
only if there exists no portfolio process 77' whose corresponding wealth process V coin-
cides with A. · 

Proof. (1) Th~ existence of the decomposition is obvious from Lemma 3.1 and the 
definitions. To prove uniqueness, suppose we have A = V with 

and 

This implies v = (]"*1T and therefore 1T = 0, since v E K((j) and O"(J"* is invertible. Thus 
we obtain v = 0, so A must be constant. . 

Statement (2) follows immediately from (1). D 

The central result of this section now provides a new characterization of the minimal 
equivalent martingale measure P. 

THEOREM 3.1. Among all equivalent martingale measures P for S, Pis characterized 
by the property that every totally nontradable asset satisfies the same stochastic differen-
tial equation under P as under P. Jn other words, P is the only equivalent martingale 
measure P for S with the property that for every totally nontradable asset with value 
process A we have 

under P 

for some ?-Brownian motion W if and only-if 

under P 

for some ft-Brownian motion W, with the same coefficients v, 1J. 

Proof. (I) Take any totally nontradable asset with value process A. Then by 
definition 

under P. 

Applying Girsanov's theorem to Wand P yields 

d.Ar = v1 dWr - v1 ~r dt + v~ 19-r dt 
= v* dW + v* 19- dt under P, t t t t 

since v E K((J") implies v*'A. = Oby (3.7), 
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(2) Conversely, let P be any equivalent martingale measure associated with 'A. by (3 .4). 
Due to Girsanov's theorem and (3.10), a totally nontradable asset with value process 

is then given by 

dA, = v~ dWr + v~iJr dt under P 

dAr = v~ dW1 - v~i\.r dt + v~ iJt dt 
= vi dW, - v1J., dt + vf11r dt under P, 

since v* ;\ = 0 by (3. 7). But if P has the property that every totally nontradable asset 
satisfies the same stochastic differential equation under P as under P, then we must have 

v*J = 0 for all v E K(a'), 

and this implies J = 0, so i\. = ;\. by (3. 10) and therefore P = ft. D 

Interpretation. Let us explain how Theorem 3.1 may be used to justify in a certain 
sense the choice of P for the purpose of pricing options. First we note that as in Karatzas 
et al. (1991), our incomplete model for the stock prices S 1, ... , sm can be embedded in 
a larger complete model by adding n - m suitably chosen assets. In fact, it is sufficient 
to take any n - m totally nontradable assets whose coefficients v(l), ... , v(n - m) in 
(3.12) form a basis of K(a'); if one wants to avoid redundancies in the embedding, this 
choice is essentially also necessary. In particular, we lose no generality in assuming these 
completing assets to be totally nontradable with respect to S1, ... , sm. 

Now consider again a small investor who wants to price options, but who only has the 
possibility to trade in S and B. From his subjective point of view, he is therefore dealing 
with an incomplete market. If he assumes 51, ... , sm to be equilibrium prices, the 
pricing measure he is eventually going to use must certainly be an equivalent martingale 
measure for S. In addition to S and B, there are also assets in the (large) market which 
are totally nontradable from his own perspective. He may have formed an opinion about 
these assets, and this opinion is modeled by the probability measure P. But if he believes_ 
that the market as a whole is in equilibrium, then he must in particular accept the prices 
of the nontradable assets such as they are. By Theorem 3.1, this implies that he should 
use the minimal equivalent martingale measure ft for pricing. 

We emphasize that this argument hinges on two points. The first is the assumption of 
equilibrium for the large complete market, and the second is the interpretation of P as our 
small agent's subjective assessment of the various assets in the market. Thus, one cannot 
say that "the minimal equivalent martingale measure is the correct pricing measure" in 
any absolute sense; this is only true from the perspective of an agent with beliefs given 
by P. Furthermore, P will in general not be a martingale measure for the nontradable 
assets; this reflects the fact that the subjective assessment P of these assets may well differ 
from their actual equilibrium prices. Note, however, that this discrepancy will not give 
rise to arbitrage opportunities since our agent cannot trade in the seemingly mispriced 
assets. 

What is now the actual effect of using Q = P instead of P? If we start from any model 
of the type (3 .1) under P, then switching to ft changes the appreciation rates of all traded 
stocks Si fromµ./ to the riskless interest rate r. All other (nontraded) assets are left com-
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pletely unchanged. Examples are given by (2.9), where we start directly with Q, and 
more explicitly by the change from (2.1) to (2.2). 

REMARK. There is an alternative interpretation of the minimal equivalent martingale 
measure: using P for the purpose of pricing options is equivalent to assuming that all 
nontraded risks can be diversified away and thus are unpriced. This approach is taken in . 
Hull and White (1987) and Scott ( 1987) for a model of the type (2.1). As Wiggins ( 1987) 
has pointed out, however, such an assumption may be rather questionable from an em-
pirical point of view. The results of this section grew out of an attempt to provide a more 
systematic method for choosing a pricing measure Q, given an a priori measure P. 

4. NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS 

This section gives a short review of numerical methods for solving stochastic differential 
equations. They will be applied in Section 5 to compute the option pricing function u and 
the hedging strategy gin two specific examples. 

4.1. General Remarks 

The classical Black-Scholes model 

dS, = µ,S, dt + <rS, dW, 

is one of the rare cases where one knows the explicit solution for a stochastic differential 
equation. In more realistic situations, one is usually less fortunate and therefore has to 
use approximations. The following numerical methods are also applicable for other prob-
lems than option pricing, and they work equally well for different choices of the under-
lying probability measure Q. To explain the basic approach, we consider the [Rm+ 1-valued 
diffusion process 

t t 

(4.1) X, = X0 + f a(s, X5 ) ds + t. J bi(s, X) dW{ 
0 1-I 0 

as defined in (2.4). For a basic monograph on numerical methods for stochastic differen-
tial equations, we refer to Kloeden and Platen (1991). 

Before one starts to solve (4.1) numerically, one has to answer an important question 
concerning the purpose of this approximation: Does one need strong or weak approxi-
mations? If one wants to simulate approximate sample paths yti. of the solution X of (4.1), 
then one requires strong approximations which converge at every given time insta.nt T 
with a given strong order y > 0 as the step size ~ of the time discretization tends to 0. 
That is, there exist constants Kand o0 < T not depending on~ such that for all~ E (0, 
o0), we have the estimate 

Milstein (1974) was one of the first who developed strong approximation schemes. Platen 
(1981) and Wagner and Platen (1978) proved general results which allow to construct 



NORBERT HOFMANN, ECKHARD PLATEN AND MARTIN SCHWEIZER 

approximations of any desired strong order y > 0. Clark ( 1982), Newton ( 1986), Pardoux 
and Talay (1985), Ri.imelin (1982), and Talay (1983), among others, also studied strong 
approximations. In our context, we shall use strong approximations to simulate an ap-
proximate trajectory of an asset price. This allows us to test the theoretically obtained 
hedging strategies and option prices. 

A completely different situation occurs if one is only interested in computing the value 
of a functional of a diffusion process, for example an option price. Then it is no longer 
necessary to have pathwise (i.e., strong) approximations. One only needs a stochastic 
model which yields a functional with the same expected value as the desired functional. 
In other words, one only has to approximate the underlying probability law of the diffu-
sion, and this weak approximation is a much easier task than the approximation of trajec-
tories. We say that an approximation ya converges with weak order {3 > 0 as the grid size 
Ll tends to 0 if there exist constants K > 0 and o0 < T for every function g: [Rm+ 1 ~ IR 
from a given class CP of test functions such that for all Ll E (0, o0) we have 

As class C P of test functions one can use for instance the class of smooth functions which 
together with their derivatives have at most polynomial growth. This choice allows a clear 
classification of a wide range of numerical schemes and also includes the convergence of 
all the moments of ya. Weak approximations were proposed and studied in Milstein 
(1978, 1988), Pardoux and Talay (1985), Platen (1984), and Talay (1984), among others. 
Mikulevicius and Platen (1988) show how to construct convergence schemes of any de-
sired weak order {3 > 0. 

4.2. Strong Approximations, 

For simplicity, we shall consider throughout the paper an equidistant time discretization 

o = To < T1 < · · · < TN = T 

of the interval [O, T] with step size 

Ll = TIN, N = 1, 2, .... 

The simplest heuristic time-discrete approximation is the stochastic generalization of the 
Euler approximation. It has the form 

(4.2) 
n 

YZ+ I = YZ + a(Tk, YZ)Ll + L M(Tk, YZ)Ll W{ 
j= l 

fork = 0, 1, ... , N - 1 with initial value Y8 = X0 and increments 

of the }th component of the driving Wiener process. Thus, the L1W{ are independent 
Gaussian random variables with expectation 0 und variance Ll. Now it is easy to generate 
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by standard methods such normally distributed random numbers and thus to simulate the 
values of the Euler approximation. It turns out that the Euler approximation converges 
with strong order y = 0.5, which is often too slow for practical investigations. At the 
cost of assuming more smoothness of the coefficient functions a and b, the stochastic 
Taylor formula (see Kloeden and Platen 1991; Platen 1982; and Wagner and Platen 1978) 
provides a general systematic means of deriving higher-order numerical schemes for sto-
chastic differential equations. The Euler scheme (4.2) results from the simplest useful 
truncation of a stochastic Taylor expansion. Taking more terms from this expansion, one 
obtains the Milstein scheme in the form 

n 

(4.3) Y~+1 = fA + a(Tk, YZ)Li + L bi(Tk, YVLi W{ k 
j-1 

n n m . . abh· 
+ 2: 2: 2: b1.11(Tk, YV axi (Tk, YZ)I(}i.}i) 

}1=1 }i=l i=O 

with 

"k+ I Sz 

(4.4) 1u ·v · = l·l' . f f dWit dWh s1 s2· 
"k "k 

Under sufficient regularity conditions on a and b, this scheme converges with strong order 
'Y = 1.0. One problem to be overcome here is the simulation of the double Wiener 
integrals in ( 4.4) arising for h 7': h. The numerical approximation of these and several 
further multiple stochastic integrals is considered in Kloeden et al. and Wright (1991). 
For j 1 =hone has 

In the case h 7': h, one can use instead of IuiJz) the approximation 

(4.5) 101.h) : = (! gi1gh + °\fP;(µ,Ji,pgh - l-lh,pgJ1))Li 

Here, 

Li p 1 
+ -2 L - (sJi,rcY2gh + T/Jz,r) - Sh,rcY2git + T/Ji,r)). 

1T r= 1 r 

1 p 1 
Pp = 2 2 L 2• 

1T r= 1 r 

and µ..J,p• Y/j,r• and SJ,r have to be chosen such that the random variables 

1 . t:..·= -LiWl SJ. \/K k 



NORBERT HOFMANN, ECKHARD PLATEN AND MARTIN SCHWEIZER 

and fJ-J,p• 11).r• and ,J,r are independent and .N(O, !)-distributed for j = 1, ... , n. To 
ensure the strong order y = 1.0, one has to choose 

K' 
P = p(A) > -

A 

for some constant K'. 
We mention another explicit scheme of strong order y = 1. 0 which has the form 

(4.6) 
II 

YZ+1 = rz + a(rk, YZ)A + L bl(rk, YZ)AW{ 
j=l 

with supporting points 

This scheme converges with strong order y = 1.0 under analogous conditions as the 
Milstein scheme, but its implementation is more convenient since it avoids the computa-
tion of the derivatives of b. The multiple stochastic integrals can be approximated as 
above. Fu~rther details and strong schemes of higher order can be found in Kloeden and 
Platen (1991). 

4.3. Weak Approximations 

It turns out that the Euler scheme (4.2) converges under sufficient regularity of a and b 
with weak order f3 = 1.0. This also holds if we replace AW{ by another, much simpler 
random variable, for example the two-point random variable AW{ with 

P[AW{ = ±\IE] = 112. 

To construct higher-order weak approximations, one can include multiple stochastic in-
tegrals from the stochastic Taylor expansiOn. Using all double multiple stochastic inte-
grals leads for example to the Taylor scheme 

n 

+ L (bi(rk, YVAW{ + L 0bJ(rk, YZ)l(O,J) + Lla(rk, YZ)l<J,O)) 
j= 1 

n 

+ . ~ U1bh(rk, Y~)Iui.Jz) 
}J.}2= 1 

of weak order /3 = 2.0, with the operators 
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(4.8) 
a m a 1 m . n a2 

Lo = - + 2: ai -. + - 2: 2: bi,jbe,j -; -e, at i=O ax1 2 i,C=O j= l ax ax 
and 

m a 
Lkj = 2: be.j -

e=o axe 

for j = 1, ... , n, and the multiple stochastic integrals 

Tk+ 1 s.2 

/( . . ) = J J dWh dWh 11,12 s1 s2 (Ji,jz=O,l, ... ,n), 
Tk Tk 

where we write dW? fords. . 
This scheme is due to Milstein (1978) and Talay (1984). Its convergence of weak order 

(3 = 2.0 still holds if one replaces the involved random variables by simpler ones. For 
instance one can choose AW{ (instead of AW{) as three-point random variables with 

(4.9) P[A. W{ = ± '\/3K] = 1/6 and P[iiW{ = o] = 213 

and replace the multiple stochastic integrals by 

(4.10) fu.o) = /(O,j) = tA · AW{ 

and. 

(4.11) for Ji, h = 1, . . . , n, 

where Vh .h are two-point random variables with 

( 4.12) for h = 1, . . . , j 1 - I , 
v . . = -A, 

11 .11 

vh ,h = - vh.ji for h = Ji + I, ... , n, 

and where all random variables are independent. Actually, these simpler random variables 
only need to have the same moments as AW{ and IU1>h)' respectively, up to some order 
depending on (3 = 2.0. Apart from that requirement, they can be chosen quite arbitrarily. 

Unfortunately the implementation of a scheme like ( 4. 7) is rather cumbersome because 
of the derivatives involved. Platen (1984) therefqre proposed a derivative free method of 
weak order (3 = 2.0 which has the form 
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(4.13) 

with supporting points 

n ] + 1~1 (bi( V':r) + bi( ur_) - 2bi(Yt)) A W{A -112 

r .. i 

11 

+ 2: (bi( U':r) 
r= I 
r""i 

n 

Y= yt1 + 
k a(YZ)A + 2: biCYZ)AW{, 

i= 1 

R.i= - yt1 + a(YZ)A ± bi(YZ)\/'K, k 

Ui= = yt1 + 
k - bi(Yt)\/'K, 

where the random variables AW{ and vr.j are as in (4.9)-(4.12). As a matter of fact, 
(4.13) gives the scheme for the autonomous version of the diffusion (4.1), but the non--
autonomous case is easily covered if one interprets one component of the diffusion as the 
time t. In Kloeden and Platen (1991), one can find further weak Taylor schemes of higher 
order and other derivative free Runge-Kutta type schemes. 

4.4. A Variance Reduction Technique 

One can use the schemes (4.7) or (4.13) to simulate directly functionals of the type 
E[g(XT)] as needed for the computation of the option pricing function (2.5). But in many 
cases, it turns out that the variances of the random variable g(XT) and also of the approxi-
mating random variable g(Y~) can be rather large. Thus we may need an enormous 
amount of computer time to obtain reliable results. However, a measure transformation 
method proposed by Milstein (1988) allows us to consider another diffusion process X 
which provides us with a functional with the same expectation as g(XT), but with a much 
smaller variance. Thus it will be more efficient to simulate the process X and to estimate 
from its outcomes the corresponding expectation. 

To be more precise, let us denote by (X~·x)rsssT the diffusion process fulfilling the 
stochastic differential equation ( 4 .1) starting from x E [Rm+ 1 at time t E [0, T]. Our aim 
is to approximate the functional 

for a given function g: jRm+ 1 ~ [R and time t = 0. If u is sufficiently smooth, then it 
solves the Kolmogorov backward equation 

LDu(t,x) = 0 

for (t, x) E (0, T) x [Rm+ 1 with 
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u(T, y) = g(y) 

for all y E [Rm+ 1, where Lo is defined in (4.8). Now consider a diffusion process X 
satisfying 

i, = X0 + J (a(s, i,) 
0 

n 

+~ 
j= l 

t 

J bj(s, Xs) dW{ 
0 

and a correction process 

n 

e, = 1 + ~ 
j= l 

t 

I eshj(s, XS) dW{, 
0 

where hi: [0, T] x [Rm+ 1 ~. IR (j = l, . , , n) are sufficiently regular functions. It 
turns out by the Girsanov transformation that independently of the choice of the functions 
hj, one obtains 

(4.14) 

Now it is a question of experience to find functions M such that the variance of g(Xr)8r 
is considerably smaller than that of g(Xr). If we knew u already, then the optimal choice 
for hj would be . 

(4.15) 
m 

1 "" . . au L; b1·l(t, x) -. (t, x), 
u(t, x) i=O ax1 

leading to g(Xr)8r = u(O, x) whose variance is 0. In general, one can take sonie ap-
proximation a for u and then use (4.15) with u replaced by a. Finally one has to simulate 
a weak approximation ofthe process (X, 8) to estimate the functional (4.14). 

5. NUMERICAL EXAMPLES 

In this section, we illustrate by two examples how the methods of Section 4 can be applied 
to compute numerical approximations for the option pricing function u and the hedging 
strategy r 

EXAMPLE 5.1. As our first example, we consider the model (2.9) with its stochastic 
and past-dependent volatility, For simplicity, we take the interest rate r(t, x)"to be identi-
cally 0. The other parameters are assigned the following values: p = 0.3, q = 1.0, 
expiration time T = 1, and past-dependence parameter a = 0 .1 in the first run and a = 
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1.0 in the second run. Thus we have to consider (for the first run) the three-dimensional 
stochastic differential equation 

(5.1) dS1 = cr,Sr dW}, 
dcr, = -(u, - ,,) dt + 0.3cr, dW'f, 
d,, = 10(<Tt - 't) dt. 

As starting values, we take S0 = 1.0, cr0 = 0.1, and 'o = 0.1. The claim to be consid-
ered will be a European call option; i.e., 

with strike price K = 1.0. 
First of all, we simulate a trajectory of the process X = (X,)osrst. The corresponding 

trajectories of the instantaneous volatility (<Tr) and the average volatility ('1) are plotted 
in Figure 5. I, while Figure 5. 2 shows the corresponding trajectory (labelled with 
"price") of the asset price (Sr). We observe that the instantaneous volatility er fluctuates 
quite considerably around the average volatility ,, where both <T and ' start at 0.1. We 
also note in Figure 5 .2 that in this realization, the simulated trajectory of the asset price 
S yields a terminal stock price ST higher than the strike price K = 1.0, so that the option 
ends up in the money. All these trajectories are obtained by an application of the scheme 
(4.6) (with strong order y = 1.0) to the nonlinear stochastic differential equation (5.1). 
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FIGURE 5.1. 



OPTION PRICING UNDER INCOMPLETENESS 

1. 2 

1 

j 
~~ I~ / 

..,A.," l \ ..,., 1 ~ """' ,.. ~¥'' rJ 
.• /''"'- '/V\,../y \f",.'r'"',/\/' "'J"' '-' 

,...,, . -~~· ....... -
"' ~- ·V" 

~ ~ ~ I 
~tiMJ 

l\'il<- al"lount in the risky asset 

0 

1 t 0.75 0 0.25 
0.375 

0.5 
0.8?5 0.125 0.625 

FIGURE 5.2. 

We have used a step size Ll = 2-9 and a number p = 10 of terms in the approximation 
(4.5) of the double Wiener integrals. We emphasize thatthis simulation requires a strong 
approximation scheme because we are interested in the simulated paths themselves. 

In contrast, only a weak approximation is needed for the computation of the option 
price V0 , since this is given by the expectation 

V0 = E[(ST - K)+]. 

This approximation is achieved by the simulation of 20 batches containing 50 approximate 
trajectories each. The trajectories are generated by the derivative free method (4.13) of 
weak order /3 = 2.0, with step size Ll = 2-2 . Within each batch, we first form an average 
from the 50 simulated realizations of the contingent claim (ST _: K)+. By the central 
limit theorem, these 20 batch averages can be treated as approximately Gaussian distrib-
uted random variables. This allows us to form approximate confidence intervals for the 
option price on the basis of the Student t-distribution. Figure 5.3 shows the 90% confi-
dence intervals formed using 5, 10, 15, and 20 batches, respectively. The estimate for the 
option price V0 is given by 0.041414. Observe in Figure 5.3 that increasing the compu-
tational effort by a factor of four (by generating 20 instead of 5 batches) halves the length 
of the corresponding confidence interval. This illustrates a well-known effect in stochastic 
numerical methods. As an aside, we remark that forming batches is of course not neces-
sary if we only want to obtain one confidence interval; we should then treat all 1000 
trajectories as one single batch. 
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In Figure 5 .4, we have plotted the values (V,) of the hedging portfolio held along the 
trajectory of S shown in Figure 5.2. Figure 5.4 is obtained by simulating the values VTk 

at the discretization points rk (situated on a grid with step size 2-9) in the same way as 
V0 and then interpolating linearly. For comparison purposes, we also show in Figure 5.4 
the inner value (St - K)+ of the option along the trajectory of S. As expected, the value 
of the hedging portfolio approaches the inner value of the option from above as the time 
to expiration goes to 0. 

Finally, the stock component (gr) (labeled as "amount in the risky asset") of our hedg-
ing strategy is shown in Figure 5.2, again along the same trajectory of S (labeled as 
"price") as before. The value of gt is given by (2.7); and we approximate the derivative 
of u in (2.7) by the spatial difference quotient of u. As the time to expiration grows 
shorter, we observe that gt approaches l; this is just what we expect to happen in this 
case, since the option ends up in the money. Note also that at the beginning of the time 
interval, gt fluctuates around the value 0.5 whenever Sr is close to the strike price K = 
1.0, just like in the case of a constant volatility. 

Figures 5.5-5.8 show the corresponding results for the same example with a larger 
past-dependence parameter of a = 1.0. The increase of a is reflected by the fact that the 
average volatility ~tin Figure 5.5 is much smoother. This time, we have chosen a trajec-
tory of Sending below K (see Figure 5 .6), so that the option terminates out of the money. 
Again, our hedging strategy performs very well: Figures 5.6 and 5.8 show that both g, 
and the value Vt of the hedging portfolio tend to 0 as the expiration date approaches. · 
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EXAMPLE 5.2. As a second example, we exhibit the results of some simulations for 
the generalization (2.10) of the Hull-White model (2.2). For simplicity, we again take the 
interest rate r(t, x) to be identically 0. The other parameters are given by y(t, x) = 1, 8(t, 
x) = 1, correlation p(t, x) = -0.5, time to expiration T = 1, and strike price K = 1.0. 
Thus we consider the two-dimensional stochastic differential equation 

(5.2) 

and we start again with S0 = 1.0 and v0 = 0.01 (note that v0 = 0-5). For the simulation 
of the trajectories and the computation of the portfolio values, we use the same schemes 
and step sizes as in the first example. Figures 5.9-5.12 show the results for a trajectory 
of the asset price S which ends up above the strike price at the expiration date, while 
Figures 5.13-5.16 illustrate the case of landing below K. As in the first example, we 
observe a very good performance of our hedging strategy. 

In this example, we also tried to apply the measure transformation technique discussed 
in Section 4 in an attempt to reduce the variance of the simulated random variable, despite 
the fact that the required smoothness assumptions are not fulfilled by the payoff function 
g(x) = (x - K)+. Unfortunately, it turned out that this smoothness is not only a technical 
condition; the measure transformation method is therefore not applicable in the case of a 
call option. 
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Summarizing the preceding numerical results obtained on a 386 PC, we conclude that 
the proposed strong and weak approximation schemes are very well suited to the problem 
of numerically handling option pricing problems of the given form, even in cases of 
stochastic and past-dependent volatilities. 
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