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INTEGRATION

PETER MATH�E

Abstract. We study numerical integration of H�older{type functions with respect

to weights on the real line. Our study extends previous work by F. Curbera, [2] and

relies on a connection between this problem and the approximation of distribution

functions by empirical ones. The analysis is based on a lemma which is important

within the theory of optimal designs for approximating stochastic processes.

As an application we reproduce a variant of the well known result for weighted

integration of Brownian paths, see e.g., [8].

1. Introduction, Problem Formulation

The present study is initiated by work of F. Curbera [2], which was devoted to

asymptotically optimal numerical quadrature of Lipschitz functions with respect to

a Gaussian weight. We generalize this to a broad class of possible weight functions.

To be precise, given 1 � p < 1 let ' : R ! R
+ be an integrable function which

moreover satis�es:

(Ip)
(i) ' is a non vanishing bounded continuous function.

(ii)
R
R
'(x)

p

p+1dx <1.

Remark 1. The integrability of the weight function is certainly necessary to study

integration, since otherwise constant functions would not be integrable. Require-

ment (i) implies that we concentrate on weights, which are regular on bounded

intervals, hence no singularities are allowed there. All we are interested in is the

behavior for jxj ! 1, which is controlled by requirement (ii). In view of H�older's

Inequality this is certainly ful�lled for weights possessing certain moments, i.e., for

which there is " > 0, such that
R
R
jxj 1+"

p '(x)dx <1.

For a given real function f : R ! R we let

I'(f) :=

Z
R

f(x)'(x)dx:

We aim at approximating I'(f) by using a quadrature formula

u(f) :=

nX
j=1

cjf(xj);
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where n is a number of knots, while cj; j = 1; : : : ; n and xj; j = 1; : : : ; n are

weights and knots, respectively. The error of such quadrature rule u at a function

f is given by

e(f; u) := jI'(f)� u(f)j:
We shall apply quadrature rules to the integration of H�older functions f with con-

stant bounded by L, i.e., for 1 < q <1 we denote

Fq(L) := ff : R ! R abs. cont. with derivative f 0 and kf 0kq � Lg :
In case q = 1 this is identi�ed with the space of Lipschitz functions f satisfying

jf(y)� f(x)j � Ljy � xj; x; y 2 R. Thus we are interested in the overall error of

a quadrature rule u given by

e(Fq(L); u) := sup
f2Fq(L)

e(f; u):

The important quantity under consideration is

en(Fq(L); ') := inf
u2Qn

e(Fq(L); u);

where the in�mum is taken over all quadrature rules u using at most n knots.

Without loss of generality we shall assume
R
R
'(x)dx = 1 throughout, although

the formulation of the results does not di�er for other normalization.

We shall prove the following

Theorem 1. Given 1 < q � 1, let the weight function ' satisfy (Ip) for
1

p
= 1� 1

q
.

Then we have

lim
n!1

nen(Fq(L); ') =
L

2

�
1

p+ 1

�1=p�Z
R

'(x)
p

p+1dx

�(p+1)=p

:(1)

A sequence of asymptotically optimal quadrature rules is provided by

un(f) :=

nX
j=1

cj;nf(xj;n); f 2 Fq(L);

with knots determined byZ
xj+1;n

xj;n

'(x)
p

p+1dx =
1

n+ 1

Z
R

'(x)
p

p+1dx; j = 0; : : : ; n;(2)

(where x0;n := �1). Asymptotically optimal weights are given by

c1;n :=

Z
x2;n

x0;n

'(x)dx� 1

2

Z
x2;n

x1;n

'(x)dx;

cj;n :=
1

2

Z
xj+1;n

xj�1;n

'(x)dx; j = 2; : : : ; n� 1;

cn;n :=

Z 1

xn�1;n

'(x)dx� 1

2

Z
xn;n

xn�1;n

'(x)dx:
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Remark 2. The above asymptotically optimal weights may hardly be calculated in

most cases. But we have the following approximation.

cj;n =
'(�j;n)(xj+1;n � xj�1;n)

2
; j = 2; : : : ; n� 1;

where the �j;n were obtained using the Mean Value Theorem. Further we haveZ
xj+1;n

xj�1;n

'(x)
p

p+1dx =
2

n+ 1

Z
R

'(x)
p

p+1dx;

which leads to

(xj+1;n � xj�1;n)'(�j;n)
p

p+1 =
2

n+ 1

Z
R

'(x)
p

p+1dx;

again by the Mean Value Theorem, such that we derived the asymptotic expression

cj;n �
'(xj;n)

1
p+1

n+ 1

Z
R

'(x)
p

p+1dx; j = 1; : : : ; n:

Thus in practice the optimal weights may be replaced by

~cj;n :=
'(xj;n)

1
p+1

n + 1

Z
R

'(x)
p

p+1dx; j = 1; : : : ; n:

Although formally these weights do not obey the necessary condition
P

n

j=1
~cj;n = 1,

they work well in many cases as reported in [2].

Example. As an example we exhibit the result proven in [2]. We let

'�(x) :=
1p
2��2

e�
x
2

2�2 ; x 2 R;

for some � > 0. Theorem 1 with p = 1 yields

lim
n!1

nen(Fq(L); '�) = L�

r
�

2
;

which corresponds to [2, page 16], by noting that n there corresponds to 2n+1 here.

We also obtain asymptotically optimal quadrature rules. As a special instance we

recover the asymptotic quadrature rule provided in [2, Thm. 3]. However we do

not pay attention to results concerning additional properties, although the regular

sequence of knots described above in (2) will be distributed symmetrically for odd n.

For a recent publication concerning rigorous results on existence and uniqueness

of optimal knots we refer to [1].

The proof of this theorem will follow from a result on optimal approximation of

probability distribution functions by empirical ones. This problem of convergence

of probability distributions is made precise now.

Suppose we are given two distribution functions F and G on the real line possess-

ing pth absolute moments. In this case the distance between these distributions can
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be measured in the Lp{sense, see [6, Ch. 3.2] for more details, by letting

�p(F;G) :=

�Z
R

jF (x)�G(x)jpdx
�1=p

:

So we may ask for approximating a given distribution function F by an empirical

one, i.e., a step function

Q(x) :=

nX
j=1

cj�(�1;x)(xj); x 2 R;

for a �nite number n of steps. Thus we ask for

en(F; p) := inf f�p(F;Q); Q has at most n stepsg :(3)

Though there is vast literature concerning probability metrics, see [6] for further

references, this speci�c type of questions does not seem to be settled. We shall

prove the following

Theorem 2. Let F be a probability distribution function possessing a density func-

tion satisfying (Ip). Then we have

lim
n!1

nen(F; p) =
1

2

�
1

p+ 1

�1=p�Z
R

'(x)
p

p+1dx

�(p+1)=p

:(4)

An asymptotically optimal sequence xj;n; j = 1; : : : ; n and corresponding jump

heights cj;n are provided as stated in Theorem 1.

The proof of Theorem 2 relies on a general lemma, see the Basic Lemma below,

which turned out to be important within a di�erent area, the optimal design problem

for the approximation of stochastic processes, studied by [7] and many others. We

refer to [4, 5] for further information. Most of the arguments required to prove the

Basic Lemma can be found there.

Suppose we were able to prove Theorem 2. Then it is an easy task to complete

the

Proof of Theorem 1. We �rst observe that any quadrature rule u =
P

n

j=1
cj�xj with

�nite error has to integrate constant functions exactly, which amounts to
P

n

j=1
cj =

1. Thus every quadrature rule can be assigned a distribution function Q via

Q(x) :=

nX
j=1

cj�(�1;x)(xj); x 2 R:

Moreover we may rewrite for any function f 2 Fq(L) and quadrature rule u the

respective error by

e(f; u) = j
Z
R

fdF �
Z
R

fdQj;

where F is the distribution function corresponding to the weight '. This yields,

using integration by parts,

sup
f2Fq(L)

e(f; u) = L sup
f2Fq(1)

e(f; u) = L�p(F;Q);
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for the last equality see [6, Ex. 4.3.2]. This means en(Fq(L); ') = Len(F; p), com-

pleting the proof of Theorem 1.

Below we are �rst going to discuss the Basic Lemma and proceed by proving Theo-

rem 2.

Finally we establish a further (equivalent for p=2) problem, the approximate

computation of weighted integrals of paths of stochastic processes, as initiated in

[7], see the compound discussion in [8].

2. The Basic Lemma

Notion and notation within this section is close to [5]. Let � : (0; 1) ! R
+ be

continuous satisfyingZ 1

0

�(t)
1=(p+1)

dt <1 and

Z 1

0

1

�(t)
p=(p+1)

dt <1:(IIp)

Each design (t1; : : : ; tn) of knots in (0; 1) with tj � tj+1; j = 0; : : : ; n, where t0 := 0

and tn+1 = 1, we assign a partition

� := f�j = [tj; tj+1); j = 0; : : : ; ng
of (0; 1). A sequence of partitions (�n)n2N is said to be uniformly �ne if for every

0 < a < b < 1

inf
n2N

max
0�j�n

j�j;n \ [a; b]j = 0:

The aim of this section is to prove the following

Basic Lemma. (i) For any continuous function � satisfying (IIp), uniformly �ne

sequence �n of partitions and choice of �j;n 2 �j;n we have

lim inf
n!1

n
p

nX
j=0

�(�j;n)j�j;njp+1 �
�Z 1

0

�(t)
1=(p+1)

dt

�p+1

:

(ii) Moreover, if partitions �n are chosen such that

n max
0�j�n

Z
�j;n

�(t)
1=(p+1)

dt �!
Z 1

0

�(t)
1=(p+1)

dt;(5)

then we even have

lim
n!1

n
p

nX
j=0

�(�j;n)j�j;njp+1 =
�Z 1

0

�(t)
1=(p+1)

dt

�p+1

:(6)

Proof. As mentioned above the statements of the Basic Lemma are essentially con-

tained in [5, Lemma 3 and Thm. 1]. We briey sketch the arguments for the

convenience of the reader.

First notice, that (i) is certainly true for subsequences, say nk; k 2 N along

which max0�j�nk j�j;n\[a; b]j > 0. Hence we assume that limn!1 j�j;n\[a; b]j = 0.
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To prove (i) �x any interval [a; b] � (0; 1). For n 2 N let In := fj; �j;n � [a; b]g.
H�older's Inequality yields

n
p

nX
j=0

�(�j;n)j�j;njp+1 �
 X

j2In

�(�j;n)
1=(p+1)j�j;nj

!p+1

:

The right{hand side sum is the Darboux sum for the integral
R
b

a
�(t)

1=(p+1)
dt, which

is the only possible limit. Thus

lim inf
n!1

n
p

nX
j=0

�(�j;n)j�j;njp+1 �
�Z

b

a

�(t)
1=(p+1)

dt

�p+1

:

Since this is valid for every choice of [a; b] the proof of (i) is complete.

The proof of (ii) is also based on H�older's Inequality, which provides under as-

sumption (IIp) for any interval � � [0; 1]

j�jp+1 �
�Z

�

�(t)
1=(p+1)

dt

�p�Z
�

1

�(t)p=(p+1)
dt

�
:

We use this to derive

n
p

nX
j=0

�(�j;n)j�j;njp+1 �
nX

j=0

 
n

Z
�j;n

�(t)
1=(p+1)

dt

!p Z
�j;n

�(�j;n)

�(t)p=(p+1)
dt

!

�
 
n max

0�j�n

Z
�j;n

�(t)
1=(p+1)

dt

!p Z 1

0

nX
j=0

�(�j;n)

�(t)p=(p+1)
��j;n

(t)dt

!
:(7)

The right{hand side integral in (7) converges to
R 1

0
�(t)

1=(p+1)
dt by our assump-

tion (IIp). Moreover the assumption (5) �nally ensures

lim sup
n!1

n
p

nX
j=0

�(�j;n)j�j;njp+1 �
�Z 1

0

�(t)
1=(p+1)

dt

�p+1

:

Together with (i) this completes the proof of the lemma.

3. Proof of Theorem 2

In this section we turn to the proof of Theorem 2.

Let Q(x) :=
P

n

j=1
cj�(�1;x)(xj); x 2 R be any empirical distribution function.

We substitute t := F (x) and rewrite

�p(F;Q)
p =

Z 1

0

jt�Q(F�1(t))jp dt

'(F�1(t))
:

Letting

�(t) :=
�
'(F�1(t))

��1
; t 2 (0; 1)(8)
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and observing that R(t) := Q(F�1(t)); t 2 (0; 1) is also an empirical distribution

function (for the uniform distribution on (0; 1)) this transfers to

�p(F;Q)
p =

Z 1

0

jt� R(t)jp�(t)dt:(9)

We let tj := F (xj); j = 1; : : : ; n and t0 := 0; tn+1 := 1 and �j := [tj; tj+1) and

write

R(t) =

nX
j=1

cj�(0;tj )(t); t 2 (0; 1):

First we are going to prove the following

Lemma 1. For any sequence Qn of empirical distribution functions with �p(F;Qn)!
0 the corresponding sequence �n of partitions �n := f�j;n; j = 0; : : : ; ng must be

uniformly �ne.

Proof. Suppose not. Then there exists an interval [a; b] � (0; 1), a constant 0 <

c <
1

4
, where we assume a � c � 1 � c � b for technical reasons, and a sequence

�j(n);n with j�j(n);n \ [a; b]j � c. Let ��j(n);n denote the corresponding intervals
��j(n);n := [xj(n);n; xj(n)+1;n).

First suppose that j(n) 2 f0; ng in�nitely often. Identifying the corresponding

subsequence with j(n) again and assuming without loss of generality that j(n) = 0; n 2
N , we conclude that x1;n � F

�1(c). Since there are no knots before x1;n we obtain

�p(F;Qn)
p �

Z
F
�1(c)

�1

F (x)pdx > 0;

such that this is not converging to 0. Consequently, possible limit points of j(n) can

only be in f1; : : : ; n� 1g. In this case ��j(n);n � [F�1(a); F�1(b)] and we infer

�p(F;Qn)
p � min

c

Z
xj(n)+1;n

xj(n);n

jF (x)� cjpdx

� j ��j(n);njp+1
2p(p + 1)

min
x2[F�1(a);F�1(b)]

'(x)

� c
p+1

2p(p+ 1)
min

x2[F�1(a);F�1(b)]
'(x) > 0;

which also contradicts �p(F;Qn) ! 0. Thus the sequence �n must be uniformly

�ne.

We next check that the function � satis�es (IIp), if the weight function ' was to

satisfy (Ip). Indeed, employing representation (8) we con�rm thatZ 1

0

�(t)
1=(p+1)

dt =

Z
R

'(x)

'(x)
1=(p+1)

dx =

Z
R

'(x)
p

p+1 <1

and also Z 1

0

1

�(t)p=(p+1)
dt =

Z
R

'(x)1+p=(p+1)
dx � max

x2R

'(x)
p

p+1 <1:
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Now, let Qn be any sequence of empirical distribution functions and Rn the respec-

tive transformed one. Returning to the representation (9) and applying the Mean

Value Theorem we �nd a sequence �j;n 2 �j;n; j = 0; : : : ; n; n 2 N for which

�p(F;Qn)
p �

nX
j=0

�(�j;n)min
c

Z
�j;n

jt� cjpdt

� 1

2p(p+ 1)

nX
j=0

�(�j;n)j�j;njp+1:

By Lemma 1 and the Basic Lemma we conclude that

lim inf
n!1

n
p
e
p

n
(F; p) � 1

2p(p+ 1)

�Z 1

0

�(t)
1=(p+1)

dt

�p+1

;

establishing the right hand side in (4) as a lower bound.

Next suppose the sequence Qn of empirical distributions be chosen with knots

and weights as given in Theorem 1, especially the knots xj;n satisfy (2). Arguing as

above and remembering tj;n = F (xj;n), this transfers toZ
�j;n

�(t)
1=(p+1)

dt =
1

n + 1

Z 1

0

�(t)
1=(p+1)

dt; j = 0; : : : ; n:

Next we use the representation of the corresponding Rn to deriveZ 1

0

jt� Rn(t)jp�(t)dt =
Z

t1;n

0

t
p
�(t)dt+

n�1X
j=1

�(�j;n)
j�j;njp+1
2p(p+ 1)

+

Z 1

tn;n

j1� tjp�(t)dt:

Since the �rst and last summands above tend to 0 faster than n
�p, as can be seen

from calculations similar to the ones in (7), they may be replaced by

�(�0;n)
t
p+1

1;n

2p(p+ 1)
and �(�n;n)

j1� tn;njp+1
2p(p+ 1)

; resp.

without spoiling the asymptotics. We conclude

lim
n!1

n
p

Z 1

0

jt�Rn(t)jp�(t)dt = lim
n!1

n
p

1

2p(p+ 1)

nX
j=0

�(�j;n)j�j;njp+1:

An application of the Basic Lemma yields

lim
n!1

nen(F; p) = lim
n!1

ne(F;Qn) =
1

2

�
1

p+ 1

�1=p�Z
R

'(x)
p

p+1dx

�(p+1)=p

;

which completes the proof of Theorem 2.

Remark 3. The previous results extend in a natural way to weights which live on

bounded or one{sided intervals in R, which means that they have to satisfy appro-

priate versions of (Ip).

The situation of weighted integration on a �nite interval has (implicitly) been

treated in [8]. There the authors indicate a correspondence between the integration
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problem and the approximate computation of stochastic integrals, which we also

stress below in Section 4.

Remark 4. Also one might include additional weights g : R ! R
+ which satisfy (i)

in (Ip) and consider

�p(F;G; g) :=

�Z
R

jF (x)�G(x)jpg(x)dx
�1=p

:

In this case the functions ' in the statements of the results have to be replaced by
'

g
.

4. Application to weighted integration of Brownian paths

Below we are going to exploit a general principle relating the worst case error of

integration to an average case one, which probably goes back to [8]. We will not

use much details and refer the reader to [3], where further information as well as

references are given.

Suppose we are given a Brownian motionX := (Xt)t�0 ; X0 = 0, on a probability

space (
;F ; P ), which has almost surely continuous paths and has covariance kernel

EPXsXt = minfs; tg ; s; t � 0:

Given a weight as introduced above we aim at approximating

I'(X(!)) :=

Z
1

0

Xt(!)'(t)dt; ! 2 
;

by a quadrature formula

u(X(!)) :=

nX
j=1

cjXtj
(!); ! 2 
:

Observe that both I'(X) as well as u(X) are real random variables. The corre-

sponding error is measured in mean square sense, hence

e
avg(I'; u) :=

�
EP jI'(X)� u(X)j2

�1=2
and we let

e
avg

n
(I') := inf

u2Qn

e
avg(I'; u)

denote the nth minimal error on the average (with respect to the Wiener measure).

As before we denote by F and Q the distribution functions corresponding to the

weight ' and the quadrature formula u, respectively. The main observation is as

follows. For any Borel measure, say �, on [0;1) we let hX; �i! :=
R
1

0
Xt(!)d�(t).
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Then we obtain the following equalities.

EP jhX; �ij2 = EP

Z
1

0

Z
1

0

Xs(!)Xt(!)d�(t)d�(s)

=

Z
1

0

Z
1

0

min fs; tg d�(t)d�(s)

=

Z
1

0

j�([s;1))j2ds

=

Z
1

0

j�([0; s))� �([0;1))j2ds:(10)

Within our context �([0; s)) = F (s) � Q(s). First note that 1 = F (1) = Q(1) is

required to make (10) �nite, which amounts to

EP jI'(X)� u(X)j2 =
Z
1

0

jF (s)�Q(s)j2ds:

Thus Theorem 2 immediately implies

Corollary 1. If the weight obeys (I2) (with integral extending from 0 to 1) then

lim
n!1

ne
avg

n
(I') =

1p
12

�Z
1

0

'(x)2=3dx

�3=2

:

Corresponding sequences of asymptotically optimal knots and weights are given as

in Theorem 1 (for p = 2).

Remark 5. As mentioned above such result (on a bounded interval) is discussed in

the running example in [8], see e.g., equation (3.16) there. As indicated there the

condition on the weight function ' can be relaxed. The authors also establish the

relation between average case integration error for a measure with given covariance

and the worst case integration error over functions from the unit ball in the repro-

ducing kernel Hilbert space. Here this relation of worst and average case errors is

provided by relating Theorems 1, 2 and Corollary 1 and reads

en(F2(1); ') = e
avg

n
(I');

after mentioning that F2(1) is the unit ball of the reproducing kernel Hilbert space

W
1
2 of the Brownian motion X.
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