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Existence of weak solutions to a dynamic model for smectic-A liquid crystals

under undulations

Etienne Emmrich, Robert Lasarzik

Abstract

A nonlinear model due to Soddemann et al. [37] and Stewart [38] describing incompressible smectic-A

liquid crystals under flow is studied. In comparison to previously considered models, this particular model

takes into account possible undulations of the layers away from equilibrium, which has been observed in

experiments. The emerging decoupling of the director and the layer normal is incorporated by an additional

evolution equation for the director. Global existence of weak solutions to this model is proved via a Galerkin

approximation with eigenfunctions of the associated linear differential operators in the three-dimensional

case.
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1 Introduction

Liquid crystals are materials with remarkable physical and chemical properties. Displays of electronic devices as

those of computers, tablets or smart phones contain and only fulfill their function because of liquid crystals. As

such materials nowadays are an important part of our life, a profound mathematical understanding is more and

more necessary. This necessity resulted in many mathematical publications in recent years. However, different

meso-phases received different amounts of attention. While nematic liquid crystals were in the focus, smectic

liquid crystals were rarely discussed, even though they are at the core of many applications [10].

In this article, we prove global existence of weak solutions to a model describing smectic-A liquid crystals under

flow. The nonequilibrium behaviour results in undulations of the layers leading to a decoupling of the averaged

direction of the molecules, the director, and the layer normal. In comparison to previously considered models

(see for instance [32]), this decoupling is taken into account by an additional evolution equation for the director.

The existence proof relies on a Galerkin approximation with eigenfunctions of an associated differential operator.

To the best knowledge of the authors, the presented result is the first one showing existence of solutions to a

model describing smectic-A liquid crystals under flow away from equilibrium. Before we provide an overview on

the existing literature, we give an introduction into the structure of liquid crystals and their different meso-phases.

1.1 Properties of liquid crystal meso-phases

As their name already suggests, liquid crystals have properties of solid crystals as well as of conventional

liquids. On the one hand, these materials consist of rod-like molecules that form a condensed matter as fluids

do. On the other hand, this substances exhibit orientational ordering as solid crystals do. The regime of liquid

crystals can be subdivided into different meso-phases depending on positional and orientational ordering. The

different meso-phases evolve as a function of temperature (thermotropic liquid crystals) or concentration in a

solvent (lyotropic liquid crystals). In the nematic phase, the rod-like molecules have no positional ordering but

are randomly distributed in space (see Figure 1). They tend to align in the same direction, described by the

Liquid crystal mesophases

isotropic liquid nematic smectic-A smectic-C

ddd ddd dddaaa aaa

Figure 1: Different liquid crystal phases and their molecular structure

so called director ddd, the locally averaged direction of the molecules. In smectic phases, the molecules are also

aligned in the same direction but they obey additional positional ordering. The material density is denoted by φ

and exhibits peaks in one direction. With other words, the molecules are ordered in layers stacked over each

other. The layers can be seen as the isosurfaces of the material density φ to a certain value. The normal vector

aaa of the layers points in the same direction as ∇φ since the gradient is always orthogonal to the isosurfaces.

In the smectic-C phase, there is a fixed angle between the layer normal aaa and the director ddd, which differs from

zero degrees, whereas in smectic-A liquid crystals, the layer normal aaa is parallel to the alignment direction ddd. All

different phases are illustrated in Figure 1.

This article deals with smectic-A liquid crystals.
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1.2 Review of known results

In the mathematical community, many articles dealing with the Ericksen–Leslie model have been published.

This model describes the nematic phase via a Navier–Stokes-like equation that is nonlinearly coupled with

a parabolic equation describing the evolution of the director ddd (see Figure 1). This model was proposed by

Ericksen [16, 17] and Leslie [26, 27] and since then extensively studied, see for instance [15, 24, 25, 28, 29].

A similar model for smectic-A liquid crystals was proposed by E [14]. It couples the Navier–Stokes-like equa-

tion with a fourth-order partial differential equation modelling the evolution of the layer function φ . This model

assumes that the director ddd and the layer normal aaa always coincide. The first result on existence of solutions to

this model was proved by Liu [32] and since then, there have been results proved on the existence [8], long-time

behaviour [36] and numerical approximation [21] of the model. A review can be found in [9].

In the physical community, it has been observed [7, 12] that layered liquids show a coupling between their

internal structure and an applied shear flow. Smectic-A liquid crystals are very sensitive against dilatation of

the layers. Above a critical value of the dilatation, the layers form undulations to diminish the strain locally. In

Undulation effect in smectic-A liquid crystals

equilibrium behaviour
undulation of the

layers

Figure 2: If a shear flow is applied parallel to the layers, orthorgonal to this sheet of paper, the material reduces

the strain by local rotations resulting in undulations with a wave vector orthorgonal to the direction of the shear

force.

the described scenario, the director ddd may not be parallel to the normal of the layers aaa such that ddd and aaa may

decouple. This results in the possible effect of permeation, i.e., motion of the fluid through the layers in direction

of the layer normal (see Stewart [38]).

New theories by Auernhammer et al. [1, 2] and Soddemann et al. [37] include the decoupling of director and layer

normal. They propose a system consisting of a Navier–Stokes-like equation coupled with a parabolic equation

for the director ddd and, additionally, with a fourth-order equation for the description of the layers. In a sense,

these theories combine the Ericksen–Leslie model [26] for nematic liquid crystals with the theory by E [14] for

smectic-A liquid crystals in equilibrium. This description via three partial differential equations includes possible

undulations of the layers and permeation of the fluid through the layers as observed in experiments. The theory

of Auernhammer and Soddemann does not impose the gradient of the layer function ∇φ to be of length one as

it is done in E [14]. In contrast to that, Stewart [38] proposed a similar model, where the coupling of the layer

function with the other two equations occurs via a normalized gradient of the layer function, i.e.,aaa := ∇φ/|∇φ |.
He especially notes that the so-called Oseen constraint ∇×aaa = 0, which holds in the equilibrium situation

(see De Gennes [11, Section 7.2.1.8.] and note that ∇×(∇φ) = 0), does no longer hold. Since the distance

of the layers may vary away from equilibrium and since |∇φ | is no longer a constant, the Oseen constraint

may be violated, i.e., ∇×aaa 6= 0. In the sequel of this article, we consider a model that has features of those

by Soddemann et al. [37] and Stewart [38]. We prove the global existence of weak solutions to the proposed

model in the three-dimensional case. To the best knowledge of the authors, this is the first existence result for

a nonstationary model describing smectic-A liquid crystals under flow that incorporates possible undulations of

the layers, which were observed in experiments.

The paper is organized as follows: In Section 1.3, we introduce some notation. In Section 2, we present the
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equations of motion and a precise definition of a solution to the equations considered. Section 3 provides

certain results that are essential to prove the main Theorem 2.3 in Section 4. There, we introduce a Galerkin

approximation (Section 4.1), which gives rise to a sequence of approximate solutions. For this sequence of

solutions, we derive a priori estimates (Section 4.2) and show the convergence of a subsequence to the desired

solution (Section 4.3). In the last section (see Section 5), we comment on possible adaptations of the model in

regard of the Oseen constraint.

1.3 Notation

We consider a bounded domain Ω ∈ R
3 of class C

4
. Elements of the vector space R

3 are denoted by bold

small letters. Matrices AAA ∈R
3×3 are denoted by bold capital Latin letters. In contrast to that, scalar numbers will

be denoted by small Latin or Greek letters. Capital Latin letters are reserved for potentials.

The Euclidean inner product in R
3 is denoted by a dot, aaa ·bbb := aaaTbbb = ∑3

i=1aaaibbbi for aaa,bbb ∈ R
3. The Frobenius

inner product in the space R
3×3 of matrices is denoted by a colon, AAA : BBB := tr(AAATBBB) = ∑3

i, j=1 AAAi jBBBi j for

AAA,BBB ∈R
3×3. We also employ the corresponding Euclidean norm with |aaa|2 = aaa ·aaa for aaa ∈R

3 and the Frobenius

norm with |AAA|2 = AAA : AAA for AAA ∈ R
3×3. The standard matrix and matrix-vector multiplication, however, is written

without an extra sign for brevity,

AAABBB =

[
3

∑
j=1

AAAi jBBB jk

]3

i,k=1

, AAAaaa =

[
3

∑
j=1

AAAi jaaa j

]3

i=1

, AAA ∈ R
3×3,BBB ∈ R

3×3, aaa ∈ R
3 .

The outer product is denoted by aaa⊗bbb = aaabbbT = [aaaibbb j]
3
i, j=1

for aaa,bbb ∈ R
3. Note that tr(aaa⊗bbb) = aaa ·bbb. The

symmetric and skew-symmetric part of a matrix are denoted by AAAsym := 1
2
(AAA+AAAT ) and AAAskw := 1

2
(AAA−AAAT )

for AAA ∈R
3×3, respectively. For the Frobenius product of two matrices AAA,BBB ∈ R

3×3, we find that

AAA : BBB =AAA : BBBsym if AAAT =AAA , AAA : BBB =AAA : BBBskw if AAAT =−AAA .

Moreover, there holds AAATBBB :CCC =BBB : AAACCC for AAA,BBB,CCC ∈R
3×3 as well as aaa⊗bbb : AAA=aaa·AAAbbb for aaa,bbb∈R

3, AAA∈R
3×3.

This implies aaa⊗aaa : AAA = aaa ·AAAaaa = aaa ·AAAsymaaa.

We use the Nabla symbol ∇ for real-valued functions f : R3 →R, vector-valued functions fff : R3 →R
3 as well

as matrix-valued functions AAA : R3 → R
3×3 denoting

∇ f :=

[
∂ f

∂xxxi

]3

i=1

, ∇ fff :=

[
∂ fff i

∂xxx j

]3

i, j=1

, ∇AAA :=

[
∂AAAi j

∂xxxk

]3

i, j,k=1

.

For brevity, we write ∇ fff T instead of (∇ fff )T . The symmetric and skew-symmetric part of the gradient of a

vector-valued function fff are denoted by (∇ fff )sym and (∇ fff )skw, respectively. The divergence of a vector-valued

function fff : R3 → R
3 and a matrix-valued function AAA : R3 → R

3×3 is defined by

∇· fff :=
3

∑
i=1

∂ fff i

∂xxxi

= tr(∇ fff ) , ∇·AAA :=

[
3

∑
j=1

∂AAAi j

∂xxx j

]3

i=1

.

Note that (vvv ·∇) fff = (∇ fff )vvv = ∇ fff vvv for vector-valued functions vvv, fff : R3 →R
3. We abbreviate ∇∇ by ∇2. The

double divergence is denoted by ∇2 : and defined via

∇2 : AAA =
3

∑
i, j=1

∂ 2AAAi j

∂xxxi∂xxx j

for matrix-valued functions AAA : R3 → R
3×3. The Laplacian is defined as usual by ∆ := ∑3

i=1 ∂ 2
xxxi

and the curl by

∇×·. We abbreviate the bi-Laplacien by ∆2 = ∆∆.

DOI 10.20347/WIAS.PREPRINT.2567 Berlin 2019
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Spaces of vector-valued functions are emphasized by bold letters, for example LLLp(Ω) := Lp(Ω;R3). If it is clear

from the context, we also use this bold notation for spaces of matrix-valued functions. Additionally, the indication

of the domain Ω is often omitted for the brevity of notation. In the same way, we denote the appropriate Sobolev

spaces, i.e.,WWW k,p(Ω) := W k,p(Ω;R3). The special Hilbert space cases for p = 2 are as usual denoted by

HHHk(Ω) :=WWW k,2(Ω). The appropriate spaces for homogeneous Dirichlet boundary conditions are defined as

the closure HHHk
0(Ω) = clos‖·‖

HHHk (Ω)
C

∞
c (Ω;R3), where C

∞
c (Ω;R3) denotes the space of infinitely many times

differentiable functions with compact support in Ω. The space of smooth solenoidal functions with compact

support is denoted by C ∞
c,σ (Ω;R3). By LLL

p
σ (Ω), HHH1

0,σ (Ω), andWWW
1,p
0,σ (Ω), we denote the closure of C ∞

c,σ (Ω;R3)

with respect to the norm of LLLp(Ω), HHH1(Ω), and WWW 1,p(Ω), respectively (1 ≤ p < ∞).

The dual space of a vector space V is always denoted by V ∗ and equipped with the standard norm; the duality

pairing is denoted by 〈·, ·〉. The inner product in L2(Ω;R3) is denoted by (·, ·) and in L2(Ω;R3×3) by (·; ·).
The duality pairing between LLLp(Ω) and LLLq(Ω), for conjugated exponents p and q, i.e., 1/p+1/q = 1, is also

denoted by (·, ·) and (·; ·), respectively. We equip H2
0 with the norm ‖ · ‖H2

0
:= ‖∆ · ‖L2 , which is equivalent

to the full H2-norm (see [19, Corollary 2.21]). Another important space is H4 ∩H2
0 which is equipped with the

norm (‖∆2 · ‖2
L2 + ‖∆ · ‖2

L2)
1/2 (see [19, Corollary 2.21] for the equivalence to the standard norm). The trace

operator is denoted by γγγ0.

The Bochner spaces for a Banach space V are as usual denoted by Lp(0,T ;V ) (1 ≤ p ≤ ∞) or W 1,s(0,T ;V )
(s > 0) for the case that the time derivative is also integrable to the exponent s (see also Diestel and Uhl [13,

Section II.2] or Roubíček [35, Section 1.5]). To abbreviate, we often omit the time interval (0,T ) and the domain

Ω and write for example Lp(WWW k,p). By A C ([0,T ];V ) and C w([0,T ];V ), we denote the spaces of abstract

functions mapping [0,T ] into V , which are absolutely continuous on [0,T ] and continuous on [0,T ] with respect

to the weak topology on V , respectively.

By c > 0, we denote a generic positive constant.

2 Model and main result

In this section, we introduce the system of the equations of motion and state the main result.

We consider the model

d̊dd+λ (∇vvv)symddd +2κ1γ(∇vvv)symaaa+ γqqq = 0 , (2.1a)

∂tφ +(vvv ·∇)φ +λp j = 0 , (2.1b)

∂tvvv+(vvv ·∇)vvv+∇π +∇·TTT E −∇·TTTV = ggg , (2.1c)

∇·vvv = 0 . (2.1d)

The vector ddd : Ω× [0,T ]→R
3 represents the orientation of the rod-like molecules, vvv : Ω× [0,T ]→R

3 denotes

the velocity of the fluid and φ : Ω× [0,T ]→R denotes the layer function. In this context, φ is not supposed

to resemble the material density but to exhibit the same layers as isosurfaces. The pressure is denoted by

π : Ω× [0,T ]→R. We do not consider the existence of the pressure. The variables λ , κ1, γ , and λp are

prescribed constants of the system.

The smectic layer normal is usually denoted by aaa and is given by the gradient of φ , aaa := ∇φ .

Remark 2.1. With the previous definition of aaa, we follow Soddemann et al. [37]. The proof of this paper is also

valid for other choices of aaa, for example the one introduced in Section 5. In the proof, we keep the extra variable

aaa to include other connections between ∇φ and aaa such that aaa is a continuously differentiable function in ∇φ .

See Section 5 for more details.

Remark that Stewart [38] proposed to take aaa = ∇φ/|∇φ |. With this choice, aaa is not a continuous function in

∇φ , which would deprive us of establishing existence of solutions to the approximate system by Carathéodory’s
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theorem and identifying the limit of these solutions with Lebesgue’s theorem on dominated convergence. Hence,

the present proof would not work. Nevertheless, we propose a possible relaxation in Section 5.

The material derivative of the director is denoted by d̊dd and given by

d̊dd := ∂tddd +(vvv ·∇)ddd− (∇vvv)skwddd . (2.2)

The free energy potential F describes the elastic forces in the liquid crystal. It is assumed to depend only on the

director ddd, the gradient of the layer function φ as well as their spatial derivatives, F = F(ddd,∇ddd,∇φ ,∇2φ). The

free energy functional F is then given by

F : HHH1×H2→R, F (ddd,φ) :=

∫

Ω
F(ddd,∇ddd,∇φ ,∇2φ)dxxx .

The variational derivative of F with respect to ddd and φ is abbreviated by qqq and j, respectively (see Furihata

and Matsuo [18, Section 2.1]):

qqq :=
δF

δddd
=

∂F

∂ddd
(ddd,∇ddd,∇φ ,∇2φ)−∇· ∂F

∂∇ddd
(ddd,∇ddd,∇φ ,∇2φ) , (2.3a)

j :=
δF

δφ
=−∇· ∂F

∂∇φ
(ddd,∇ddd,∇φ ,∇2φ)+∇2 :

∂F

∂∇2φ
(ddd,∇ddd,∇φ ,∇2φ) . (2.3b)

Since F only depends on ∇φ , we may consider another functional F̃ , where ∇φ is replaced by bbb:

F̃ : HHH1×HHH1→R, F̃ (ddd,bbb) :=
∫

Ω
F(ddd,∇ddd,bbb,∇bbb)dxxx .

This allows us to compute the variational derivative of F with respect to ∇φ . Since the free energy F does

not depend on the layer function φ itself, but rather on its spatial derivatives, we can express the variational

derivative of F with respect to φ via

j =
δF

δφ
=−∇· δF̃

δbbb
with

δF̃

δbbb
=

∂F

∂∇φ
(ddd,∇ddd,∇φ ,∇2φ)−∇· ∂F

∂∇2φ
(ddd,∇ddd,∇φ ,∇2φ) . (2.4)

The stress tensor πI +TTT E −TTTV of equation (2.1c) is divided into two parts, an elastic part πI +TTT E and a

viscous part TTTV . The elastic part is given by the pressure πI and

TTT E := ∇dddT ∂F

∂∇ddd
+∇φ ⊗ δF̃

δbbb
+∇2φ

∂F

∂∇2φ
, (2.5a)

and the viscous part by

TTTV := α1(ddd · (∇vvv)symddd)ddd ⊗ddd+
λ

γ
(ddd ⊗ d̊dd)sym +

1

γ
(ddd ⊗ d̊dd)skw +α4(∇vvv)sym +2α5(ddd ⊗ (∇vvv)symddd)sym

+
λ

γ
(ddd ⊗ (∇vvv)symddd)+ τ1(aaa · (∇vvv)symaaa)aaa⊗aaa+2τ2(aaa⊗ (∇vvv)symaaa)sym

+2κ1((aaa⊗ d̊dd)sym +(ddd⊗ (∇vvv)symaaa)skw)+2κ2(ddd · (∇vvv)symaaa)(ddd ⊗aaa)sym

+κ3

(
(ddd · (∇vvv)symddd)aaa⊗aaa+(aaa · (∇vvv)symaaa)ddd ⊗ddd

)

+2κ4

(
(ddd · (∇vvv)symaaa)ddd ⊗ddd+(ddd · (∇vvv)symddd)(ddd ⊗aaa)sym

)

+2κ5

(
(ddd · (∇vvv)symaaa)aaa⊗aaa+(aaa · (∇vvv)symaaa)(aaa⊗ddd)sym

)

+2κ6

(
(ddd ⊗ (∇vvv)symaaa)sym +(aaa⊗ (∇vvv)symddd)sym

)
.

(2.5b)
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To guarantee the dissipative character of the system, we assume appropriate restrictions for the appearing

constants λp, γ , λ , αi, τ j, and κk with i ∈ {1,4,5}, j ∈ {1,2}, and k ∈ {1, . . . ,6}. Certain constants need to

be positive,

λp, γ , α1, α4, 2α5 +λ/γ −λ 2/γ , τ1, τ2 −2κ2
1 γ , κ2 > 0 . (2.6a)

Other terms have to be small enough to preserve the dissipative character of the system,

4κ2
3 < α1τ1 , 8κ2

4 < α1κ2 , 8κ2
5 < κ2τ1 , 4(κ6 −κ1λ )2 < (2τ2 −4κ2

1 γ)(2α5 +λ/γ −λ 2/γ) .

(2.6b)

We further assume that ggg ∈ L2(0,T ;(HHH1
0,σ )

*). Finally, we impose boundary and initial conditions:

ddd(xxx,0) = ddd0(xxx) for xxx ∈ Ω, ddd(xxx, t) = ddd1(xxx) for (xxx, t) ∈ ∂Ω× [0,T ] , (2.7a)

φ(xxx,0) = φ0(xxx) for xxx ∈ Ω, ∇φ(xxx, t) ·nnn(xxx) = 0 = φ(xxx, t) for (xxx, t) ∈ ∂Ω× [0,T ] , (2.7b)

vvv(xxx,0) = vvv0(xxx) for xxx ∈ Ω, vvv(xxx, t) = 000 for (xxx, t) ∈ ∂Ω× [0,T ] . (2.7c)

We always assume that ddd1 = ddd0 on ∂Ω, which is a compatibility condition providing regularity, see Lemma 3.4.

For the initial conditions, we assume that ddd0 ∈HHH1 with ddd1

∣∣∣
∂Ω

∈HHH3/2(∂Ω), φ0 ∈ H2
0 , and vvv0 ∈ LLL2

σ .

We assume homogeneous Dirichlet boundary data for the layer function. However, since system (2.1) only

depends on derivatives of φ , the system is equally fulfilled if φ is shifted by a constant.

2.1 Free energy potential

For the free energy potential modeling the interaction of molecules and layers, we choose a modified form of the

energy introduced by Stewart [38],

W (ddd,∇ddd,∇φ ,∇2φ) :=
k1

2
(∇·ddd)2 +

k3

2
|∇×ddd|2 + k5

2
(∆φ)2

(2.8a)

+
B0

2
(|∇φ |2 +ddd ·aaa−2)2 +

B1

2
|ddd ×aaa|2 . (2.8b)

In comparison to the model postulated in Stewart [38], we added the term k3|∇×ddd|2, which was left out be-

cause the constant k3 is assumed to be small (see [23]). Additionally, we take the term (∆φ)2 as given by

Auernhammer et al. [1] instead of (∇·aaa)2, which was proposed by Stewart. In the equilibrium case, where |∇φ |
is constant, both formulations coincide. We do these adjustments since they are essential for our analysis, es-

pecially to derive suitable a priori estimates. In comparison to Stewart [38], we replaced the term |∇φ | by |∇φ |2
in line (2.8b). This ensures that (2.9) remains a continuously differentiable function in ∇φ . All constants are

assumed to be strictly positive, k1,k3,k5,B0,B1 > 0.

The terms in line(2.8a) model the distortion energy in the liquid crystal, especially the splay and bend defor-

mation of the director and the bending of the smectic layers, respectively. The terms in the second line (2.8b)

represent the coupling between the layers and the director, respectively.

Following a standard relaxation technique, we obtain the free energy by adding penalisation terms to W ,

F :=W +
1

4ε1

(
|ddd|2 −1

)2
+

1

4ε2

(
|∇φ |2 −1

)2
. (2.9)

This relaxation technique allows us to omit the Lagrangian multipliers added to the model by Stewart but, never-

theless, takes into account the algebraic restrictions |ddd|= 1 and |∇φ |= 1. We consider ε1 and ε2 to be small.

In this paper, however, we do not consider the limit case ε1 ,ε2 →0.

We refer to [15] for generalized assumptions on the free energy in the case of the Ericksen–Leslie model

such that the system admits weak solutions. Additionally, we refer to [24, 25] for the singular limit of vanishing

penalization, ε →0, in the case of the Ericksen–Leslie system equipped with the Oseen–Frank energy resulting

in measure-valued solutions.
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2.2 Existence of weak solutions

Since the aim of this article is to prove the existence of generalized solutions, we start with a precise definition of

a solution. Therefore, we derive a reformulation of the elastic stress tensor. For brevity, we omit the arguments

of F and its partial derivatives. Since the free energy potential F depends on the four arguments ddd, ∇ddd, ∇φ ,

and ∇2φ , the spatial derivative of F can be expressed as

(vvv ·∇)F = (vvv ·∇)F(ddd,∇ddd,∇φ ,∇2φ) =
∂F

∂ddd
· (vvv ·∇)ddd+

∂F

∂∇ddd
: (vvv ·∇)∇ddd

+
∂F

∂∇φ
· (vvv ·∇)∇φ +

∂F

∂∇2φ
: (vvv ·∇)∇2φ .

(2.10)

In the following calculation, we insert (2.5a), (2.3a) and (2.4), and differentiate by parts, where the boundary

terms vanish since vvv ∈HHH1
0,σ . Using the standard tools of vector analysis (see Section 1.3) yields

(
TTT E ;∇vvv

)
−
〈
∇dddTqqq,vvv

〉
−〈∇φ j,vvv〉

=

(
∇dddT ∂F

∂∇ddd
;∇vvv

)
+

(
∇φ ⊗ δF̃

δbbb
;∇vvv

)
+

(
∇2φ

∂F

∂∇2φ
;∇vvv

)

−
(

∇dddT

(
∂F

∂ddd
−∇· ∂F

∂∇ddd

)
,vvv

)
+

(
∇φ ∇· δF̃

δbbb
,vvv

)

=−
(
(vvv ·∇)∇ddd;

∂F

∂∇ddd

)
−
(

∇dddT ∇· ∂F

∂∇ddd
,vvv

)
−
(
(vvv ·∇)∇φ ,

(
∂F

∂∇φ
−∇· ∂F

∂∇2φ

))

−
(

∇φ ∇· δF̃

δbbb
,vvv

)
−
(
(vvv ·∇)∇2φ ;

∂F

∂∇2φ

)
−
(

∇2φ ∇· ∂F

∂∇2φ
,vvv

)

−
(
(vvv ·∇)ddd,

∂F

∂ddd

)
+

(
∇dddT ∇· ∂F

∂∇ddd
,vvv

)
+

(
∇φ ∇· δF̃

δbbb
,vvv

)

=−
∫

Ω

(
(vvv ·∇)ddd · ∂F

∂ddd
+(vvv ·∇)∇ddd :

∂F

∂∇ddd
+(vvv ·∇)∇φ · ∂F

∂∇φ
+(vvv ·∇)∇2φ :

∂F

∂∇2φ

)
dxxx

+

(
∇2φ ∇· ∂F

∂∇2φ
,vvv

)
−
(

∇2φ ∇· ∂F

∂∇2φ
,vvv

)

=−
∫

Ω
(vvv ·∇)F dxxx = 0 . (2.11)

The last equality holds since vvv is solenoidal and the second to the last equality is granted by (2.10). For-

mula (2.11) allows us to reformulate equation (2.1) by incorporating F in a reformulation of the pressure,

π̃ := π +F , and replacing ∇·TTT E by −∇dddTqqq−∇φ j.

Definition 2.2 (Weak solution). The triple (ddd,φ ,vvv) is said to be a solution to (2.1) if

ddd ∈ L∞(0,T ;HHH1)∩L2(0,T ;HHH2)∩W 1,4/3(0,T ;LLL2) ,

φ ∈ L∞(0,T ;H2
0 )∩L2(0,T ;H4)∩L2(0,T ;L2) ,

vvv ∈ L∞(0,T ;LLL2
σ )∩L2(0,T ;HHH1

0,σ )∩W 1,2(0,T ;(HHH2 ∩HHH1
0,σ )

∗) ,

(2.12)

if
∫ T

0

(
(∂tddd +(vvv ·∇)ddd− (∇vvv)skwddd +λ (∇vvv)symddd,ψψψ)+ γ

(
2κ1(∇vvv)symaaa+qqq,ψψψ

))
dt = 0, (2.13a)

∫ T

0
((∂tφ +(vvv ·∇)φ ,ζ )+λp ( j,ζ ))dt = 0, (2.13b)

∫ T

0

((
∂tvvv+(vvv ·∇)vvv−∇dddTqqq−∇φ j,ϕϕϕ

)
+(TTTV ;∇ϕϕϕ)−〈ggg,ϕϕϕ〉

)
dt = 0 (2.13c)

DOI 10.20347/WIAS.PREPRINT.2567 Berlin 2019



Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations 9

hold for all ψψψ ∈ C ∞
c (Ω× (0,T );R3), ζ ∈ C

∞
c (Ω× (0,T )), and solenoidal ϕϕϕ ∈ C ∞

c (Ω× (0,T );R3) and if the

initial conditions are satisfied as well as γγγ0(ddd) = ddd1.

To be precise, our concept of solution is a weak solution concept with respect to the Navier–Stokes-like equa-

tion (2.13c) but rather a strong solution concept with respect to the equations (2.13a) and (2.13b) for the inner

variables. Note that the trace operator is denoted by γγγ0 (see Section 1.3). In Corollary 3.8, we prove that all

terms of (2.13) are well-defined under the regularity assumptions of Definition 2.2. We remark that the initial

values are attained in a weak sense since ddd ∈ C w([0,T ];HHH1), φ ∈ C w([0,T ];H2
0 ), and vvv ∈ C w(0,T ;LLL2

σ )
(compare (2.12) as well as Lions and Magenes [31, Ch. 3, Lemma 8.1]).

Theorem 2.3 (Existence of generalized solutions). Let Ω be a domain of class C
4

and assume (2.6). For given

initial data (ddd0,φ0,vvv0) ∈HHH1 ×H2
0 ×LLL2

σ , boundary data ddd1 ∈HHH3/2(∂Ω) such that γγγ0(ddd0) = ddd1 and right-hand

side ggg ∈ L2(0,T ;(HHH1
0,σ )

*), there exists a weak solution to system (2.1)–(2.9) in the sense of Definition 2.2.

Before we give the proof in Section 4, Section 3 collects some important inequalities that will be of use later on.

3 Preliminaries

3.1 Important inequalities

Lemma 3.1 (Gagliardo–Nirenberg). Let the domain Ω be of class C
4
, let p ∈ [2,10/3], q ∈ [6,10] and let θ1,

θ2 ∈ [0,2] be such that

1 =
p

2
− θ1

3
and 1 =

q

6
− θ2

3
.

Then there exists a constant c > 0 such that the estimates

‖∇ddd‖Lp(LLLp) ≤ c‖ddd‖θ1/p

L2(HHH2)
‖ddd‖1−θ1/p

L∞(HHH1)
, ‖ddd‖Lq(LLLq) ≤ c‖ddd‖θ2/q

L2(HHH2)
‖ddd‖1−θ2/q

L∞(HHH1)

hold for all functions ddd ∈ L∞(HHH1)∩L2(HHH2).

See Emmrich and Lasarzik [15, Lemma 2.1] for the proof of this time dependent version of the Gagliardo–

Nirenberg inequality. Note that the Lebesgue exponents in time and space are chosen to be equal for the norm

on the left-hand side of the inequality.

Corollary 3.2. Let the domain Ω be of class C
4
, k ∈ {1,2} and let p ∈ [6,14] in the case k = 1 as well as

p ∈ [2,14/3] in the case k = 2 with θ ∈ [0,2] fulfilling the relation

1 ≥ p(2k−1)

6
− 4θ

3
, k ∈ {1,2} .

Then there exists a constant c > 0 such that the estimate

‖φ‖Lp(W k,p) ≤ c‖φ‖θ/p

L2(H4)
‖φ‖1−θ/p

L∞(H2)

is fulfilled for all φ ∈ L∞(0,T ;H2)∩L2(0,T ;H4).

Corollary 3.3. Let the domain Ω be of class C
4

and the relation 1/p = 1/2− 2/3r be fulfilled for p ∈ [2,6]
and for r ∈ [1,∞]. Then there exists a constant c > 0 such that the estimate

‖vvv‖Lr(LLLp) ≤ c‖vvv‖2/r

L2(HHH1)
‖vvv‖(r−2)/r

L∞(LLL2)

holds for all vvv ∈ L∞(0,T ;LLL2
σ )∩L2(0,T ;HHH1

0,σ ).
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Lemma 3.4 (Extension operator). Let Ω be of class C
4. Then there exists a linear continuous extension

operator E : HHH3/2(∂Ω)→HHH2(Ω) such that γγγ0(Eddd1) = ddd1 and k1∇(∇·Eddd1)− k3 ∇×∇×Eddd1 = 0 for all

ddd1 ∈HHH3/2(∂Ω). Additionally, there exists a constant c > 0 such that

‖Eddd1‖HHH1 ≤ c‖ddd1‖HHH1/2(∂Ω) and ‖Eddd1‖HHH2 ≤ c‖ddd1‖HHH3/2(∂Ω) (3.1)

for all ddd1 ∈HHH3/2(∂Ω).

Proof. The extension operator is chosen as the solution operator of the problem

−(k1∇(∇·hhh)− k3 ∇×∇×hhh) =−∇·ΛΛΛ : ∇hhh = 0 in Ω , hhh = ddd1 on ∂Ω .

Here ΛΛΛ is a constant tensor of order four with ΛΛΛi jkl = k1δi jδkl + k3(δikδ jl −δilδ jk). This tensor is symmetric,

i.e.,ΛΛΛi jkl = ΛΛΛkli j , and strongly elliptic, i.e., (aaa⊗bbb) : ΛΛΛ : (aaa⊗bbb) ≥ min{k1,k3}|aaa|2|bbb|2 for k1, k3 > 0. There

exists a unique solution for every ddd1 ∈HHH3/2(∂Ω) (see [34, Theorem 4.10]). A standard regularity result reveals

the estimates (3.1) (see [34, Theorem 4.21]). By construction, the image of the associated operator E lies in the

kernel of the operator −∇·ΛΛΛ : ∇.

Corollary 3.5. There exists a constant c > 0 such that the estimates

‖ddd‖HHH2 ≤ c
(
‖∆ddd‖LLL2 +‖ddd1‖HHH3/2(∂Ω)

)
and ‖ddd‖HHH1 ≤ c

(
‖∇ddd‖LLL2 +‖ddd1‖HHH1/2(∂Ω

)
(3.2)

hold for every function ddd ∈HHH2 with γγγ0(ddd) = ddd1 ∈HHH3/2(∂Ω).

Proof. With Lemma 3.4, we observe that ddd −Eddd1 ∈ HHH2∩HHH1
0. For ∂Ω ∈ C

4
, the norm ‖∆ · ‖LLL2 is equivalent

to the ‖ · ‖HHH2 -norm (see Gilbarg and Trudinger [20, Theorem 9.15]) on HHH2∩HHH1
0. The full HHH2-norm can be

estimated by

‖ddd‖HHH2 ≤ ‖ddd −Eddd1‖HHH2 +‖Eddd1‖HHH2 ≤ c‖∆(ddd −Eddd1)‖LLL2 +‖Eddd1‖HHH2 ≤ c
(
‖∆ddd‖LLL2 +‖ddd1‖HHH3/2(∂Ω

)
.

The last inequality follows from (3.1). Similarly, we find with Poincaré’s inequality

‖ddd‖HHH1 ≤ ‖ddd −Eddd1‖HHH1 +‖Eddd1‖HHH1 ≤ c‖∇(ddd −Eddd1)‖LLL2 +‖Eddd1‖HHH1 ≤ c
(
‖∇ddd‖LLL2 +‖ddd1‖HHH1/2(∂Ω

)
,

where again the last inequality follows from (3.1).

3.2 Free energy

We present two lemmata capturing important properties of the free energy potential (2.8)–(2.9), which are

essential for our analysis. These lemmata provide the well-posedness of Definition 2.2 in Corollary 3.8, the

essential a priori estimates in Lemma 4.4 and the estimates in order to pass to the limit in the nonlinear terms

in Lemma 4.8.

Lemma 3.6 (Coerciveness). There exists a possibly large constant c > 0 and a possibly small constant η > 0

such that the free energy F and its variational derivatives fulfill the estimates

F (ddd,φ)≥ η(‖∇ddd‖2
LLL2 +‖φ‖2

H2
0
)− c‖ddd1‖2

HHH3/2(∂Ω)
, (3.3)

‖qqq‖2
L2(LLL2) ≥

2η

γ
‖∆ddd‖2

L2(LLL2)− c(‖∇ddd‖6
L∞(LLL2)+‖φ‖6

L∞(H2
0 )
+‖ddd1‖6

HHH3/2(∂Ω)
+1) , (3.4)

‖ j‖2
L2(L2) ≥

η

λp

‖∆2φ‖2
L2(L2)−

η

λp

‖∆ddd‖2
L2(LLL2)− c(‖∇ddd‖78

L∞(LLL2)+‖φ‖42
L∞(H2

0 )
+‖ddd1‖78

HHH3/2(∂Ω)
+1) (3.5)

for every ddd ∈ L∞(0,T ;HHH1)∩L2(0,T ;HHH2)with γγγ0(ddd)=ddd1 ∈HHH3/2(∂Ω) and φ ∈ L∞(0,T ;H2
0 )∩L2(0,T ;H4).
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Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations 11

Proof. Considering the term tr(∇ddd2)− (∇·ddd)2, we observe with some vector calculus (see Section 1.3) that

|∇ddd|2 = tr(∇dddT ∇ddd) = tr(∇ddd∇ddd+2(∇ddd)T
skw∇ddd)

= tr(∇ddd∇ddd)+2tr((∇ddd)T
skw(∇ddd)skw) = tr(∇ddd2)+2|(∇ddd)skw|2

= (∇·ddd)2 + |∇×ddd|2 + tr(∇ddd2)− (∇·ddd)2 .

(3.6)

We used that 2|(∇ddd)skw|2 = |∇×ddd|2. The last two terms on the right-hand side of (3.6) can be interpreted as

the divergence of a vectorfield. By Gauß’ formula, it is already determined by the prescribed boundary data,

∫

Ω

(
tr(∇ddd2)− (∇·ddd)2

)
dxxx =

∫

Ω
(∇·(∇dddddd − (∇·ddd)ddd)dxxx =

∫

∂Ω
(nnn ·∇dddddd − (∇·ddd)nnn ·ddd)dS ≤ c‖ddd‖2

HHH3/2(∂Ω)
.

Additionally, we recognize that all terms in line (2.8b) and (2.9) are positive. Thus, they can be estimated from

below by zero. We define k := min{k1,k3,k5} and can estimate the free energy by

F (ddd,φ)≥ k

∫

Ω

(
(∇·ddd)2 + |∇×ddd|2 + tr(∇ddd2)− (∇·ddd)2 +(∆φ)2 −

(
tr(∇ddd2)− (∇·ddd)2

))
dxxx

≥ k

∫

Ω

(
|∇ddd|2 +(∆φ)2

)
dxxx− k

∫

Ω

(
tr(∇ddd2)− (∇·ddd)2

)
dxxx

≥ k
(
‖∇ddd‖2

LLL2 +‖φ‖2
H2

0

)
− c‖ddd0‖2

HHH3/2(∂Ω)
.

To prove the two remaining inequalities, we need to calculate the variational derivatives of the free energy

explicitly. The variational derivative qqq is given by

qqq =
δF

δddd
=−k1∇(∇·ddd)+ k3 ∇×∇×ddd +B0(|∇φ |2 +ddd ·aaa−2)aaa+B1(|aaa|2ddd − (ddd ·aaa)aaa)+ 1

ε1
(|ddd|2 −1)ddd

=−k1∇(∇·ddd)+ k3 ∇×∇×ddd +Rddd .

(3.7)

Estimating the LLL2-norm of the variational derivative qqq while using a consequence of Young’s inequality,

2|bbb1 −bbb2|2 ≥ |bbb1|2 −2|bbb2|2 for all bbb1,bbb2 ∈ R
3 , (3.8)

gives

‖qqq‖2
LLL2 ≥ 1

2
‖k1∇(∇·ddd)− k3 ∇×∇×ddd‖2

LLL2 −‖Rddd‖2
LLL2 . (3.9)

In view of (3.7) and aaa = ∇φ , the second part of (3.9) can be estimated using Hölder’s and Young’s inequality,

‖Rddd‖2
LLL2 ≤

∫

Ω

(
B0

∣∣|∇φ |3 + |ddd||∇φ |2 −2|∇φ |
∣∣+2B1|∇φ |2|ddd|+ 1

ε1

(
|ddd|3 + |ddd|

))2

dxxx

≤ c(‖∇φ‖6
LLL6 +‖ddd‖6

LLL6 +1) . (3.10)

This first part of (3.9) can be calculated using the Hilbert space structure,

‖k1∇(∇·ddd)− k3 ∇×∇×ddd‖2
LLL2 = k2

1‖∇(∇·ddd)‖2
LLL2 −2k1k3(∇(∇·ddd),∇×∇×ddd)+ k2

3‖∇×∇×ddd‖2
LLL2 . (3.11)

Note that the mixed term (∇(∇·ddd),∇×∇×ddd) can be estimated by the prescribed boundary conditions, which

becomes evident after performing an integration by parts and using that the divergence of the ∇×-operator is

zero,

(∇(∇·ddd),∇×∇×ddd) =−〈∇·ddd,∇·∇×∇×ddd〉+ 〈γγγnnn(∇×∇×ddd),γγγ0(∇·ddd)〉
≤ ‖∇×∇×ddd‖HHH−1/2(∂Ω)‖∇·ddd‖HHH1/2(∂Ω) ≤ c‖ddd‖2

HHH3/2(∂Ω)
. (3.12)
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The integration-by-parts formula we just used has to be interpreted in a weak sense (compare [34, p. 99 ff.]).

The vector identity ∆ddd = ∇(∇·ddd)−∇×∇×ddd leads similarly to (3.8) to the estimate

k2
1‖∇(∇·ddd)‖2

LLL2 + k2
3‖∇×∇×ddd‖2

LLL2 ≥
1

2
min{k2

1,k
2
3}‖∆ddd‖2

LLL2 +max{k2
1 − k2

3,0}‖∇(∇·ddd)‖2
LLL2 +max{k2

3 − k2
1,0}‖∇×∇×ddd‖2

LLL2 . (3.13)

Since all terms on the right-hand side of the previous inequality (3.13) are positive, we can estimate the LLL2-norm

of qqq by (3.9), (3.11), and (3.12) such that

‖qqq‖2
LLL2 ≥ 1

4
min{k2

1,k
2
3}‖∆ddd‖2

LLL2 − c(‖∇φ‖6
LLL6 +‖ddd‖6

LLL6 +1)− c‖ddd0‖2
HHH3/2(∂Ω) .

With the embedding in three dimensions HHH1 →֒ LLL6 and Corollary 3.5 the claimed inequality (3.4) becomes

evident.

As a last step, we prove inequality (3.5). The variational derivative j is given by (see (2.3b), (2.8), and (2.9))

j =
δF

δφ
= k5∆2φ −B0 ∇·((|∇φ |2 +ddd ·aaa−2)(2∇φ +ddd))

−B1 ∇·(|ddd|2aaa− (ddd ·aaa)ddd)− 1

ε2
∇·((|∇φ |2 −1)∇φ)

= k5∆2φ −B0(2∇φ +ddd) · (2∇2φ∇φ +∇ddd∇φ +∇2φddd)−B0(|∇φ |2 +ddd ·∇φ −2)(2∆φ +∇·ddd)
(3.14)

−B1(2∇φ∇dddTddd +∆φ |ddd|2 − ((∇·ddd)ddd ·∇φ +ddd ·∇2φddd +ddd ·∇ddd∇φ))

− 1

ε2
(∆φ(|∇φ |2 −1)+2∇φ ·∇2φ∇φ)

=: k5∆2φ +Rφ .

In the calculation of the variational derivative, we explicitly used the choice aaa = ∇φ (see Remark 2.1). To

estimate this variational derivative from below, we use inequality (3.8) such that

‖ j‖2
L2 ≥

k2
5

2
‖∆2φ‖2

L2 −‖Rφ‖2
L2 . (3.15)

In regard of the calculation (3.14), we estimate ‖Rφ‖2
L2 (for ε2 fixed) by

‖Rφ‖2
L2 ≤ c

∥∥B0

(
|∇2φ ||∇φ |2 + |∇2φ ||ddd|2 + |∇2φ |+ |∇ddd||∇φ |2 + |∇ddd||ddd||∇φ |+ |∇ddd|

)∥∥2

LLL2

+ c

∥∥∥∥B1

(
|∇2φ ||ddd|2 + |∇ddd||ddd||∇φ |

)
+

1

ε2

(
|∇2φ |(|∇φ |2 +1)

)∥∥∥∥
2

LLL2

≤ c

∫

Ω

(
|∇2φ |2|∇φ |4 + |∇2φ |2|ddd|4 + |∇2φ |2 + |∇ddd|2|∇φ |4 + |∇ddd|2|ddd|2|∇φ |2 + |∇ddd|2

)
dxxx .

In the following, we apply Young’s inequality so that the norms of the director emerge with certain exponents,

i.e., 16/5 in the case of |∇ddd| and 48/5 in the case of |ddd|. Other choices for the exponents are possible. Nev-

ertheless, the exponents have to be chosen very carefully so that all terms appearing can be absorbed into the

leading order terms, i.e.,‖∆ddd‖2
LLL2 and ‖∆2φ‖2

LLL2 . Applying Young’s inequality in this way yields

‖Rφ‖2
L2 ≤ c

∫

Ω

(
|∇ddd|16/5 + |ddd|48/5

)
dxxx

+ c

∫

Ω

(
|∇2φ |2|∇φ |4 + |∇2φ |24/7 + |∇2φ |2 + |∇φ |32/3 + |∇φ |12 +1

)
dxxx

≤ c

∫

Ω

(
|∇ddd|16/5 + |ddd|48/5 + |∇2φ |24/7 + |∇φ |12 +1

)
dxxx
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Thus, the remainder Rφ is bounded by

‖Rφ‖2
L2(L2) ≤ c

(
‖∇ddd‖16/5

L16/5(L16/5)
+‖ddd‖48/5

L48/5(LLL48/5)

)
+ c
(
‖∇2φ‖24/7

L24/7(LLL24/7)
+‖∇φ‖12

L12(L12)+1
)
. (3.16)

The Gagliardo–Nirenberg inequalities of Lemma 3.1 and Corollary 3.2 yield

‖Rφ‖2
L2(L2) ≤ c

(
‖ddd‖9/5

L2(HHH2)
‖ddd‖7/5

L∞(HHH1)
+‖ddd‖9/5

L2(HHH2)
‖ddd‖39/5

L∞(HHH1)

)

+ c
(
‖∆2φ‖15/14

L2(L2)
‖φ‖33/14

L∞(H2
0 )
+‖∆2φ‖3/2

L2(L2)
‖φ‖21/2

L∞(H2
0 )
+1
)
. (3.17)

These terms are estimated again with Young’s inequality. We apply it so that the leading order terms, i.e.,‖∆ddd‖LLL2

and ‖∆2φ‖L2 , remain squared and multiplied with a small constant. This small constant is defined by

η := min

{
1

8
γ min{k2

1,k
2
3},

1

4
λpk2

5,min{k1,k3,k5}
}
. (3.18)

With this newly defined parameter, we estimate (3.17) further on with Corollary 3.5 and Young’s inequality

‖Rφ‖2
L2(L2) ≤

η

λp

(
‖∆ddd‖2

L2(LLL2)+‖∆2φ‖2
L2(L2)+‖ddd1‖2

HHH3/2(∂Ω)

)

+ c
(
‖ddd‖14

L∞(HHH1)+‖ddd‖78
L∞(HHH1)+‖φ‖66/13

L∞(H2
0 )
+‖φ‖42

L∞(H2
0 )
+1
)

≤ η

λp

(
‖∆ddd‖2

L2(LLL2)+‖∆2φ‖2
L2(L2)

)
+ c
(
‖∇ddd‖78

L∞(LLL2)+‖φ‖42
L∞(H2

0 )
+‖ddd1‖78

HHH3/2(∂Ω)
+1
)
.

(3.19)

This estimate can be inserted into (3.15), which gives the coercivity estimate claimed for the variational derivative

of F with respect to φ (see (3.5)).

Lemma 3.7 (Boundedness). There exists a constant c > 0 such that the free energy F (see (2.8) and (2.9))

and its variational derivatives (2.3) can be estimated by

F (ddd0,φ0)≤ c(‖ddd0‖4
HHH1 +‖φ0‖4

H2 +1) , (3.20)

‖qqq‖2
L2(LLL2) ≤ c(‖ddd‖2

L2(HHH2)+‖ddd‖6
L∞(HHH1)+‖φ‖6

L∞(H2)) , (3.21)

‖ j‖2
L2(L2) ≤ c(‖φ‖2

L2(H4)+‖ddd‖2
L2(HHH2)+‖ddd‖78

L∞(HHH1)+‖φ‖42
L∞(H2)+1) (3.22)

for every ddd0 ∈ HHH1, ddd ∈ L∞(0,T ;HHH1)∩ L2(0,T ;HHH2) fulfilling γγγ0(ddd0) = γγγ0(ddd) = ddd1 ∈ HHH3/2(∂Ω) as well as

φ0 ∈ H2
0 , φ ∈ L∞(0,T ;H2

0 )∩L2(0,T ;H4).

Proof. The free energy is estimated by inserting the definitions (2.8) and (2.9):

F (ddd0,φ0)≤ c(‖ddd0‖2
HHH1 +‖ddd0‖4

LLL4 +‖φ0‖2
H2

0
+‖φ0‖4

W 1,4 +1) .

The continuous embeddings HHH1 →֒ LLL4 and H2 →֒W 1,4 yield

F (ddd0,φ0)≤ c(‖ddd0‖4
HHH1 +‖φ0‖4

H2 +1) (3.23)

In the same way, we estimate both variational derivatives from above. Using (3.7) and (3.10), we bound qqq by

‖qqq‖2
L2(LLL2) ≤ 2‖k1∇(∇·ddd)− k3 ∇×∇×ddd‖2

L2(LLL2)+2‖Rddd‖2
L2(LLL2)

≤ c(‖ddd‖2
L2(HHH2)+‖ddd‖6

L∞(HHH1)+‖φ‖6
L∞(H2)+1)

and with (3.14) and (3.19) the variational derivative j by

‖ j‖2
L2(LLL2) ≤ 2k5‖∆2φ‖2

L2(L2)+2‖Rφ‖2
L2(L2) ≤ c(‖φ‖2

L2(H4)+‖ddd‖2
L2(HHH2)+‖ddd‖78

L∞(HHH1)+‖φ‖42
L∞(H2)+1) .
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The following corollary proves that our notion of a solution (2.2) makes sense.

Corollary 3.8. All terms in (2.13) are well-defined.

Proof. In regard of the assumed regularity (2.12) for ddd, φ , and vvv as well as the boundedness of the variational

derivatives (Lemma 3.4), every term appearing in the equations (2.13a) and (2.13b) is finite, which follows from

Hölder’s inequality.

The Navier–Stokes-like equation can be considered in a similar fashion. However, in order to handle the viscous

stress tensor TTTV (see (2.5b)), the material derivative d̊dd given in (2.2) needs to be bounded in an appropriate

norm. This can be observed by

‖d̊dd‖L4/3(LLL2) ≤ ‖∂tddd‖L4/3(LLL2)+‖vvv‖L2(LLL6)‖ddd‖L4(WWW1,3)+‖vvv‖L2(HHH1)‖ddd‖L4(LLL∞) . (3.24)

4 Galerkin approximation and proof of the main result

In this section, we prove the main result Theorem 2.3 via convergence of a Galerkin approximation. The proof

is divided into the following steps: We first introduce the Galerkin scheme and deduce the local existence of a

solution to the approximate problem (see p. 14). Then, we derive a priori estimates (Section 4.2) and we show

that the solutions of the approximate problems exist on the whole time interval [0,T ].

The crucial part is carried out in Section 4.3, in which we use the a priori estimates to extract a weakly con-

vergent subsequence. We conclude the convergence of the time derivatives which allows us to deduce strong

convergence (see Lemma 4.6). This enables us to prove the convergence for the nonlinear variational deriva-

tive of the free energy (see Lemma 4.8) and, therewith, we can pass to the limit in the director equation, the

layer equation, and the Navier–Stokes-like equation to obtain in the limit the weak formulation in the sense of

Definition 2.2.

4.1 Galerkin approximation and local existence

We are going to use a Galerkin scheme to discretize the system of interest in space. For the approximation of

the director equation, we use an LLL2-orthonormal Galerkin basis consisting of eigenfunctions yyy1, yyy2, . . . of the

differential operator corresponding to the boundary value problem

−k1∇(∇·yyy)+ k3 ∇×∇×yyy =−∇·(ΛΛΛ : ∇yyy) = hhh in Ω ,

zzz = 0 on ∂Ω .
(4.1)

Here, the constant symmetric strongly elliptic tensor ΛΛΛ is defined in the proof of Lemma 3.4. The above problem

is a symmetric strongly elliptic system that possesses a unique weak solution zzz ∈ HHH1
0 for any hhh ∈ HHH−1 (see,

e.g., Chipot [6, Thm. 13.3]). Its solution operator is thus a compact selfadjoint operator in LLL2. Hence there exists

an orthogonal basis of eigenfunctions yyy1, yyy2, . . . in LLL2. A regularity result (see McLean [34, Theorem 4.21]) pro-

vides regularity of the eigenfunctions such that Yn := span{yyy1, . . . ,yyyn} ⊂HHH2 ∩HHH1
0. The associated orthogonal

LLL2-projection is denoted by Rn : LLL2 −→Yn. Note that the projection Rn is HHH1
0-stable, i.e., there exists a constant

c > 0 such that ‖Rnyyy‖HHH1
0
≤ c‖yyy‖HHH1

0
for all yyy ∈HHH1

0 (see [15, Section 4.1]).

For the approximation of the layer equation, we consider a Galerkin basis consisting of eigenfunctions of the

biharmonic operator. Consider the boundary value problem

∆2zn = h, in Ω , nnn ·∇zn = zn = 0 on ∂Ω .

This boundary value problem possesses a unique weak solution for every h ∈ (H2
0 )

∗ and the solution operator

is a compact selfadjoint operator as a mapping in L2. Thus, we can find a sequence of eigenfunctions {zn} that
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are orthonormal in L2 (see [5]). A standard regularity result shows zn ∈ H4 ∩H2
0 for all n ∈ N (see [19, Corol-

lary 2.21]). Then the approximation space is denoted by Zn := span{z1, . . . ,zn} with the associated orthogonal

projection Qn : L2→Zn. Note that the projection Qn is H2
0 -stable, i.e., there exists a constant c > 0 such that

‖Qnz‖H2
0
≤ c‖z‖H2

0
for all z ∈ H2

0 (see [4, Section 9.8]). The high regularity ∂Ω ∈ C
4

of the considered domain

is essential to apply the regularity result. This regularity is indeed the only reason, why we have to choose such

a regular domain.

For the approximation of the Navier–Stokes-like equation, we follow Temam [39, p. 27f.] and use a Galerkin

basis consisting of eigenfunctions www1,www2, . . . ∈HHH2 ∩HHH1
0,σ of the Stokes operator (with homogeneous Dirichlet

boundary conditions). As is well known, the eigenfunctions form an orthogonal basis in LLL2
σ as well as in HHH1

0,σ

and in HHH2 ∩HHH1
0,σ . Let Wn = span{www1, . . . ,wwwn} (n ∈ N) and let Pn : LLL2

σ −→ Wn denote the LLL2
σ -orthogonal

projection onto Wn. Since Ω is of class C
4, there exists c > 0 such that ‖Pnvvv‖HHH2 ≤ c‖vvv‖HHH2 for all n ∈ N and

vvv ∈ HHH2 ∩HHH1
0,σ , see, e.g., Málek et al. [33, Appendix, Thm. 4.11 and Lemma 4.26] together with Boyer and

Fabrie [3, Prop. III.3.17].

The approximate problem is the following: Find a solution (dddn,φn,vvvn) with (dddn −Eddd1) ∈ A C ([0,T ])⊗Yn,

φn ∈ A C ([0,T ])⊗Zn, and vvvn ∈ A C ([0,T ])⊗Wn solving the problem

(d̊ddn +λ (∇vvvn)symdddn +2κ1γ(∇vvvn)symaaan + γqqqn,yyy) = 0, dddn(0) = Eddd1 +Rn(ddd0 −Eddd1) , (4.2a)

(∂tφn +(vvvn ·∇)φn +λp jn,z) = 0, φn(0) = Qnφ0 , (4.2b)

(∂tvvvn +(vvvn ·∇)vvvn −∇dddT
n qqqn −∇φn jn,www)+

(
TTTV

n ;∇www
)
= 〈ggg,www〉 , vvvn(0) = Pnvvv0 (4.2c)

for all yyy∈Yn, z∈ Zn, www∈Wn, and for a possibly short time interval [0,Tn). In the above equations, the variational

derivatives and the material derivative are given by

qqqn := Rn

(
δF

δddd
(dddn,φn)

)
= Rn

(
∂F

∂ddd
(dddn,∇dddn,∇φn,∇

2φn)−∇· ∂F

∂∇ddd
(dddn,∇dddn,∇φn,∇

2φn)

)
, (4.2d)

jn := Qn

(
δF

δφ
(dddn,φn)

)
= Qn

(
∇2 :

∂F

∂∇2φ
(dddn,∇dddn,∇φn,∇

2φn)−∇· ∂F

∂∇φ
(dddn,∇dddn,∇φn,∇

2φn)

)
,

(4.2e)

d̊ddn := ∂tdddn +(vvvn ·∇)dddn − (∇vvvn)skwdddn , (4.2f)

and the viscous stress by

TTTV
n := α1(dddn · (∇vvvn)symdddn)dddn ⊗dddn +

(
2α5 +

λ

γ
− λ 2

γ

)
(dddn ⊗ (∇vvvn)symdddn)sym

+2(κ6 −λκ1)
(
((∇vvvn)symaaan ⊗dddn)sym +((∇vvvn)symdddn ⊗aaan)sym

)
−λ (qqqn ⊗dddn)sym +(qqqn ⊗dddn)skw

+α4(∇vvvn)sym + τ1(aaan · (∇vvvn)symaaan)(aaan ⊗aaan)

+ (2τ2 −4κ2
1 γ)(aaan ⊗ (∇vvvn)symaaan)sym −2κ1γ(aaan ⊗qqqn)sym

+2κ2(dddn · (∇vvvn)symaaan)(dddn ⊗aaan)sym +κ3

(
(dddn · (∇vvvn)symdddn)(aaan ⊗aaan)+ (aaan · (∇vvvn)symaaan)(dddn ⊗dddn)

)

+2κ4

((
dddn · (∇vvvn)symaaan

)
(dddn ⊗dddn)+ (dddn · (∇vvvn)symdddn)(dddn ⊗aaan)sym

)

+2κ5

(
(dddn · (∇vvvn)symaaan)(aaan ⊗aaan)+ (aaan · (∇vvvn)symaaan)(dddn ⊗aaan)sym

)
,

(4.2g)

which follows from (2.5b) by inserting (4.2a) for d̊ddn. This definition avoids that the time derivative of dddn appears

in the viscous stress.

Note that the approximate variational derivative (4.2d) is the variational derivative of the approximate free energy

function. Indeed, defining F n(ddd,φ) := F (Rnddd,Qnφ), we find that

〈
δ F n

δddd
(ddd,φ),ψψψ

〉
=

〈
Rn

δ F

δddd
(Rnddd,Qnφ),ψψψ

〉
for all ψψψ ∈ LLL2 . (4.3)
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The same holds true for the variational derivative of F with respect to φ . Note that the nonlinear terms depend-

ing on ddd or φ and appearing in the Navier–Stokes-like equation (2.1c) have been projected appropriately. This

ensures that the important energy inequality is valid in the approximate setting.

A classical existence theorem (see Hale [22, Chapter I, Theorem 5.2]) provides, for every n∈N, the existence of

a maximal solution to the above approximate problem (4.2) on an interval [0,Tn) in the sense of Carathéodory.

This theorem grants a solution on [0,T ] if the solution undergoes no blow-up. With the a priori estimates of the

next section, we can exclude blow-ups and thus prove global-in-time existence.

4.2 Energy inequality and a priori estimates

An essential tool for the analysis in this work is the energy inequality proved in the following.

Lemma 4.1. Let the assumptions of Theorem 2.3 be fulfilled and let (dddn,φn,vvvn) be a solution to (4.2). Then the

energy equality

1

2
‖vvvn(t)‖2

LLL2 +F (dddn(t),φn(t))+

∫ t

0

(
γ‖qqqn‖2

LLL2 +λp ‖ jn‖2
L2 +α1‖dddn · (∇vvvn)symdddn‖2

L2

)
ds

+
∫ t

0

(
α4‖(∇vvvn)sym‖2

LLL2 +

(
2α5 +

λ

γ
− λ 2

γ

)
‖(∇vvvn)symdddn‖2

LLL2 + τ1‖aaan · (∇vvvn)symaaan‖2
L2

)
ds

+

∫ t

0

(
(2τ2 −4κ2

1 γ)‖(∇vvvn)symaaan‖2
LLL2 +2κ2‖dddn · (∇vvvn)symaaan‖2

L2

)
ds

=
1

2
‖vvvn(0)‖2

LLL2 +F (dddn(0),φn(0))+
∫ t

0
〈ggg,vvvn〉ds

−2κ3

∫ t

0
(dddn · (∇vvvn)symdddn,aaan · (∇vvvn)symaaan)d s−4κ4

∫ t

0
(dddn · (∇vvvn)symaaan,dddn · (∇vvvn)symdddn)ds

−4κ5

∫ t

0
(dddn · (∇vvvn)symaaan,aaan · (∇vvvn)symaaan)ds−4(κ6 −κ1λ )

∫ t

0
((∇vvvn)symdddn,(∇vvvn)symaaan)ds

(4.4)

holds for all t in any compact subinterval of [0,Tn).

Proof. In order to derive (4.4), we test the Navier–Stokes-like equation (4.2c) with the approximate solutions vvvn

of the velocity field and obtain

1

2

d

d t
‖vvvn‖2

LLL2 −〈∇dddT
n qqqn +∇φn jn,vvvn〉+(TTTV

n ;∇vvvn) = 〈ggg,vvvn〉 . (4.5)

Here, we employed that the convection term vanishes since vvvn is solenoidal. The director equation (4.2a) is

tested with the variational derivative qqqn (see (4.2d)),

(∂tdddn,qqqn)+ ((vvvn ·∇)dddn,qqqn)− ((∇vvvn)skwdddn,qqqn)+λ ((∇vvvn)symdddn,qqqn)

+2κ1γ((∇vvvn)symaaan,qqqn)+ γ‖qqqn‖2
LLL2 = 0 . (4.6)

Note that the projection Rn is well-defined as a mapping Rn : LLL2→Yn. This assures that the test function qqqn is

in the appropriate test space. The layer equation is tested with the approximate variational derivative jn,

(∂tφn, jn)+ ((vvvn ·∇)φn, jn)+λp‖ jn‖2
L2 = 0 . (4.7)

Note that Qn is the L2-projection onto Zn and jn is an appropriate test function.

DOI 10.20347/WIAS.PREPRINT.2567 Berlin 2019



Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations 17

The derivative with respect to time of the free energy is given by (compare with (2.10))

d

d t
F (dddn,φn) =

∫

Ω
∂tF(dddn,∇dddn,∇φn,∇

2φn)dxxx

=

∫

Ω

(
∂F

∂ddd
·∂tdddn +

∂F

∂∇ddd
: ∂t∇dddn +

∂F

∂∇φ
·∂t∇φn +

∂F

∂∇2φ
: ∂t∇

2φn

)
dxxx

=
∫

Ω

(
∂tdddn ·

(
∂F

∂hhh
−∇· ∂F

∂∇ddd

)
+∂tφn

(
∇2 :

∂F

∂∇2φ
−∇· ∂F

∂∇φ

))
dxxx

=
∫

Ω

(
∂tdddn ·Rn

(
∂F

∂hhh
−∇· ∂F

∂∇ddd

)
+∂tφnQn

(
∇2 :

∂F

∂∇2φ
−∇· ∂F

∂∇φ

))
dxxx

= (∂tdddn,qqqn)+ (∂tφn, jn) . (4.8)

The boundary terms arising due to the integration by parts formula are zero since the boundary value pre-

scribed for the director is constant in time. Moreover, ∂tφn(t) ∈ H2
0 . The second to the last equality in the above

calculation is valid since ∂tdddn(t) ∈ Yn and ∂tφn(t) ∈ Zn.

Summing up the equations (4.5), (4.6), and (4.7) while simultaneously using (4.8) leads to

d

d t

(1

2
‖vvvn‖2

LLL2 +F (dddn,φn)
)
+ γ‖qqqn‖2

LLL2 +λp ‖ jn‖2
L2 (4.9a)

−〈∇dddT
n qqqn,vvvn〉− 〈∇φn jn,vvvn〉+((vvvn ·∇)dddn,qqqn)+ ((vvvn ·∇)φn, jn) (4.9b)

+λ ((∇vvvn)symdddn,qqqn)+2κ1γ((∇vvvn)symaaan,qqqn)− ((∇vvvn)skwdddn,qqqn) (4.9c)

+(TTTV
n ;∇vvvn) = 〈ggg,vvvn〉 .

Line (4.9b) vanishes (see also Section 1.3). We calculate the last term on the left-hand side, i.e., the viscous

stress tested with the gradient of the approximate solution vvvn:

(TTTV
n ;∇vvvn) := α1‖dddn · (∇vvvn)symdddn‖2

L2 +α4‖(∇vvvn)sym‖2
LLL2 +

(
2α5 +

λ

γ
− λ 2

γ

)
‖(∇vvvn)symdddn‖2

LLL2

+ τ1‖aaan · (∇vvvn)symaaan‖2
L2 +(2τ2 −4κ2

1 γ)‖(∇vvvn)symaaan‖2
LLL2 +2κ2‖dddn · (∇vvvn)symaaan‖2

L2

(4.10a)

−λ ((∇vvvn)symdddn,qqqn)+ (qqqn,(∇vvvn)skwdddn)−2κ1γ((∇vvvn)symaaan,qqqn) (4.10b)

+2κ3(dddn · (∇vvvn)symdddn,aaan · (∇vvvn)symaaan) +4κ4(dddn · (∇vvvn)symaaan,dddn · (∇vvvn)symdddn)

+4κ5(dddn · (∇vvvn)symaaan,aaan · (∇vvvn)symaaan)+4(κ6 −λκ1)((∇vvvn)symdddn,(∇vvvn)symaaan) .

The sum of the terms in line (4.10b) and the terms in line (4.9c) is zero.

Inserting the last equation (4.10) into (4.9), putting the terms which are not necessarily of positive sign on the

right-hand side, and integrating in time yields the energy identity (4.4).

Corollary 4.2. Let the assumptions of Theorem 2.3 be fulfilled. Then there exist positive constants βi > 0,

i ∈ {1, . . . ,6}, and c > 0 such that

1

2
‖vvvn(t)‖2

LLL2 +F (dddn(t),φn(t))+
∫ t

0

(
γ‖qqqn‖2

LLL2 +λp‖ jn‖2
L2 +β1‖(∇vvvn)sym‖2

LLL2

)
ds

+
∫ t

0

(
β2‖dddn · (∇vvvn)symdddn‖2

L2 +β3‖(∇vvvn)symdddn‖2
LLL2 +β4‖aaan · (∇vvvn)symaaan‖2

L2 +β5‖(∇vvvn)symaaan‖2
LLL2

)
ds

+

∫ t

0
β6‖dddn · (∇vvvn)symaaan‖2

L2 ds ≤ 1

2
‖vvvn(0)‖2

LLL2 +F (dddn(0),φn(0))+ c

∫ t

0
‖ggg‖2

(HHH1
0,σ )

*ds (4.11)

for all t in any compact subinterval of [0,Tn).
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Proof. Starting from equation (4.4), we have to estimate the terms on the right-hand side. Since we assume the

strict inequalities (2.6b), we can find ζ ∈ (0,1) such that

|2κ3| ≤ ζ
√

α1

√
τ1 , |4κ4| ≤ ζ

√
α1

√
2κ2 ,

|4κ5| ≤ ζ
√

2κ2

√
τ1 , 4|κ6 −κ1λ | ≤ 2ζ

√
2τ2 −4κ2

1 γ
√

2α5 +λ/γ −λ 2/γ .

Every term in the last two lines on the right-hand side of (4.4) is estimated by Young’s inequality such that

|2κ3‖(dddn · (∇vvvn)symdddn,aaan · (∇vvvn)symaaan)|+ |4κ4||(dddn · (∇vvvn)symaaan,dddn · (∇vvvn)symdddn)|
+ |4κ5||(dddn · (∇vvvn)symaaan,aaan · (∇vvvn)symaaan)|+4|κ6 −κ1λ ||((∇vvvn)symdddn,(∇vvvn)symaaan)|

≤
∣∣ζ (√α1dddn · (∇vvvn)symdddn,

√
τ1aaan · (∇vvvn)symaaan)

∣∣+
∣∣∣ζ (
√

2κ2dddn · (∇vvvn)symaaan,
√

α1dddn · (∇vvvn)symdddn)
∣∣∣

+
∣∣∣ζ (
√

2κ2dddn · (∇vvvn)symaaan,
√

τ1aaan · (∇vvvn)symaaan)
∣∣∣

+2

∣∣∣∣ζ (
√

2α5 +λ/γ −λ 2/γ(∇vvvn)symdddn,
√

2τ2 −4κ2
1 γ(∇vvvn)symaaan)

∣∣∣∣
≤ ζα1‖dddn · (∇vvvn)symdddn‖2

L2 +ζ2κ2‖dddn · (∇vvvn)symaaan‖2
L2 +ζτ1‖aaan · (∇vvvn)symaaan‖2

L2

+ζ (2τ2 −4κ2
1 γ)‖(∇vvvn)symaaan‖2

LLL2 +ζ (2α5 +λ/γ −λ 2/γ)‖(∇vvvn)symdddn‖2
LLL2 .

(4.12)

As a second step, we estimate the last term in the first line on the right-hand side of (4.4). Therefore, we use

the definition of the norm of the dual space (HHH1
0,σ )

∗ as well as Korn’s first inequality (see McLean [34, Theorem

10.1]) and again Young’s inequality such that

〈ggg,vvvn〉 ≤ ‖ggg‖(HHH1
0,σ )

*‖vvvn‖HHH1
0,σ

≤ c‖ggg‖(HHH1
0,σ )

*‖(∇vvvn)sym‖LLL2 ≤ c2

2α4
‖ggg‖2

(HHH1
0,σ )

* +
α4

2
‖(∇vvvn)sym‖2

LLL2 . (4.13)

Inserting the inequalities (4.12) and (4.13) into the energy equation (4.4) and choosing the constants βi appro-

priately gives the claimed energy inequality (4.11).

All results achieved up to this point are proved for general free energies. We have only assumed differentiability,

which is important for the calculation in (4.8). In the following, we use the specific form of the free energy given

in (2.8) and (2.9).

Lemma 4.3 (A priori estimate I). Let the assumptions of Theorem 2.3 be fulfilled. Then the following a priori

estimate holds for the solutions (dddn,φn,vvvn) (n ∈ N) to the approximate problem (4.2):

1

2
‖vvvn‖2

L∞(LLL2)+ sup
t∈[0,T ]

F (dddn(t),φn(t))+ γ‖qqqn‖2
L2(LLL2)+λp‖ jn‖2

L2(L2)

+β1‖(∇vvvn)sym‖2
L2(LLL2)+β2‖dddn · (∇vvvn)symdddn‖2

L2(L2)+β3‖(∇vvvn)symdddn‖2
L2(LLL2)

+β4‖aaan · (∇vvvn)symaaan‖2
L2(L2)+β5‖(∇vvvn)symaaan‖2

L2(LLL2)+β6‖dddn · (∇vvvn)symaaan‖2
L2(L2)

≤ c
(
‖vvv0‖2

LLL2 +‖ggg‖2
L2((HHH1

0,σ )
*)+‖∇ddd0‖4

LLL2 +‖φ0‖4
H2 +‖ddd1‖4

HHH3/2(∂Ω)
+1
)
,

(4.14)

where the positive constants βi > 0 (i ∈ {1, . . . ,6}) are given in Corollary 4.2.

Proof. Let us show that the terms on the right-hand side of (4.11) depending on the initial values can be esti-

mated independently of n. We recall that Pn is the LLL2
σ -orthogonal projection such that ‖vvvn(0)‖LLL2 = ‖Pnvvv0‖LLL2 ≤

‖vvv0‖LLL2 . The required estimate for the free energy is proved in Lemma 3.7 such that

F (dddn(0),φn(0)) = F (Eddd1 +Rn(ddd0 −Eddd1),Qnφ0)≤ c(‖Eddd1 +Rn(ddd0 −Eddd1)‖4
HHH1 +‖Qnφ0‖4

H2 +1) .
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Since Rn and Qn are orthogonal projections (see Section 4.1), we observe that

‖Eddd1 +Rn(ddd0 −Eddd1)‖HHH1 ≤ ‖Rn(ddd0 −Eddd1)‖HHH1 +‖Eddd1‖HHH1

≤ c‖ddd0 −Eddd1‖HHH1 +‖Eddd1‖HHH1 ≤ c‖∇ddd0‖LLL2 + c‖ddd1‖HHH3/2(∂Ω)

as well as

‖Qnφo‖H2 ≤ c‖φo‖H2 .

This shows that the right-hand side of (4.11) can be estimated from above by a constant that depends on ddd0,

ddd1, φ0, vvv0, and ggg but not on n. Therefore, the estimate (4.11) holds for all t ∈ [0,Tn). This finally shows that

there is no blow-up for the approximate solution and thus we obtain global-in-time existence of a solution, which

more over satisfies (4.14).

Lemma 4.4 (A priori estimate II). Let the assumptions of Theorem 2.3 be fulfilled. Then there exists a constant

c > 0 such that

‖vvvn‖2
L∞(LLL2)+‖dddn‖2

L∞(HHH1)+‖φn‖2
L∞(H2

0 )
+‖vvvn‖2

L2(HHH1
0,σ )

+‖dddn · (∇vvvn)symdddn‖2
L2(L2)

+‖(∇vvvn)symdddn‖2
L2(LLL2)+‖aaan · (∇vvvn)symaaan‖2

L2(L2)+‖(∇vvvn)symaaan‖2
L2(LLL2)

+‖dddn · (∇vvvn)symaaan‖2
L2(L2)+‖∆dddn‖2

L2(LLL2)+‖∆2φn‖2
L2(L2) ≤ c

(4.15)

holds for the solutions (dddn,φn,vvvn) (n ∈ N) of the approximate system (4.2).

Proof. The estimate follows from Lemma 3.6 due to the structure of the free energy potential. Indeed, inequal-

ity (3.3) inserted in estimate (4.14) implies

1

2
‖vvvn‖2

L∞(LLL2)+η(‖∇dddn‖2
L∞(LLL2)+‖φn‖2

L∞(H2
0 )
)+ γ‖qqqn‖2

L2(LLL2)+λp ‖ jn‖2
L2(L2)

+β1‖(∇vvvn)sym‖2
L2(LLL2)+β2‖dddn · (∇vvvn)symdddn‖2

L2(L2)+β3‖(∇vvvn)symdddn‖2
L2(LLL2)

+β4‖aaan · (∇vvvn)symaaan‖2
L2(L2)+β5‖(∇vvvn)symaaan‖2

L2(LLL2)+β6‖dddn · (∇vvvn)symaaan‖2
L2(L2)

≤c
(
‖vvv0‖2

LLL2 +‖ggg‖2
L2((HHH1

0,σ )
*)+‖∇ddd0‖4

LLL2 +‖φ0‖4
H2

0
+‖ddd1‖4

HHH3/2(∂Ω)
+1
)
=: c1 .

(4.16)

The above inequality shows the boundedness of the L∞(HHH1)-norm of the director (see Corollary 3.5) and the

boundedness of the L∞(H2
0 )-norm of the layer function. Estimate (4.16) allows us to prove bounds for the

L2-norm of ∆dddn and ∆2φn, respectively. Indeed, with (3.7) we observe that—analogously to (3.9)—

‖qqqn‖2
LLL2 ≥

1

2
‖Rn ∇·(ΛΛΛ : ∇dddn)‖2

LLL2 −‖RnRdddn
‖2

LLL2 .

Since Rn is the LLL2-orthogonal projection onto Yn, which is spanned by the eigenfunctions to the operator defined

in (4.1), we find that

‖qqqn‖2
LLL2 ≥

1

2
‖∇·(ΛΛΛ : ∇dddn)‖2

LLL2 −‖Rdddn
‖2

LLL2 ,

and we can follow the same argumentation as in the proof of Lemma 3.6 obtaining an estimate analogously

to (3.4). Similarly, we observe with (3.14) that—analogously to (3.15)—

‖ jn‖2
L2 ≥

k2
5

2
‖Qn∆2φn‖2

L2 −‖QnRφn
‖2

L2 ≥
k2

5

2
‖∆2φn‖2

L2 −‖Rφn
‖2

L2 ,

and we finally obtain an estimate analogous to (3.5).
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Inserting the coercivity-like estimates for qqqn and jn into (4.16) and using (4.16) again to estimate the L∞(HHH1)-
norm of dddn and the L∞(H2

0 )-norm of φn shows that

1

2
‖vvvn‖2

L∞(LLL2)+η(‖∇dddn‖2
L∞(LLL2)+‖φn‖2

L∞(H2
0 )
)+2η‖∆dddn‖2

L2(LLL2)+η‖∆2φn‖2
L2(L2)−η‖∆dddn‖2

L2(LLL2)

+β1‖(∇vvvn)sym‖2
L2(LLL2)+β2‖dddn · (∇vvvn)symdddn‖2

L2(L2)+β3‖(∇vvvn)symdddn‖2
L2(LLL2)

+β4‖aaan · (∇vvvn)symaaan‖2
L2(L2)+β5‖(∇vvvn)symaaan‖2

L2(LLL2)+β6‖dddn · (∇vvvn)symaaan‖2
L2(L2)

≤c1 + c(‖∇dddn‖78
L∞(LLL2)+‖φn‖42

L∞(H2
0 )
+‖ddd1‖78

HHH3/2(∂Ω)
+1)≤ c1 +2c(c1 +1)39 .

This finally proves the assertion.

Lemma 4.5. Let the assumptions of Theorem 2.3 be fulfilled. Then there exists a constant C > 0 such that the

time derivatives of the solutions (dddn,φn,vvvn) (n ∈ N) to the approximate system (4.2) obey the estimate

‖∂tdddn‖L4/3(LLL2)+‖∂tφn‖L2(LLL2)+‖∂tvvvn‖L2((HHH2∩HHH1
0,σ )

∗) ≤C , . (4.17)

Proof. The first goal is to estimate the time derivative of the solution to the approximate director equation (4.2a).

We test ∂tdddn with an arbitrary function ψψψ ∈ LLL2 in the LLL2-inner product. Since ∂tdddn(t) ∈ Yn, we can insert the

projection Rn such that

(∂tdddn,ψψψ) = (∂tdddn,Rnψψψ) =

− ((vvvn ·∇)dddn − (∇vvvn)skwdddn,Rnψψψ)− (λ (∇vvvn)symdddn +2κ1γ(∇vvvn)symaaan + γqqqn,Rnψψψ) . (4.18)

Inserting equation (4.2a) is only allowed due to the application of the projection Rn. The time derivative in the

LLL2-norm is estimated with the definition of the dual norm such that

sup
‖ψψψ‖

LLL2≤1

|(∂tdddn,ψψψ)| ≤ sup
‖ψψψ‖

LLL2≤1

(‖(vvvn ·∇)dddn − (∇vvvn)skwdddn‖LLL2)‖Rnψψψ‖LLL2

+ sup
‖ψψψ‖

LLL2≤1

(
λ‖(∇vvvn)symdddn‖LLL2 +2κ1γ‖(∇vvvn)symaaan‖LLL2 + γ‖qqqn‖LLL2

)
‖Rnψψψ‖LLL2 .

(4.19)

We recall that ‖Rnψψψ‖LLL2 ≤ ‖ψψψ‖LLL2 . Additionally, the boundedness of ‖(∇vvvn)symdddn‖L2(LLL2), ‖(∇vvvn)symaaan‖L2(LLL2),

and ‖qqqn‖L2(LLL2) is granted by the a priori estimate (4.14). What remains is to estimate the first term on the

right-hand side of (4.19). Hölder’s inequality is used to estimate the time derivative in the L4/3(LLL2)-norm:

‖∂tdddn‖L4/3(LLL2) ≤ ‖(vvvn ·∇)dddn‖L4/3(LLL2)+‖(∇vvvn)skwdddn‖L4/3(LLL2)

+λ‖(∇vvvn)symdddn‖L4/3(LLL2)+2κ1γ‖(∇vvvn)symaaan‖L4/3(LLL2)+ γ‖qqqn‖L4/3(LLL2)

≤ ‖vvvn‖L2(LLL6)‖dddn‖L4(WWW 1,3)+‖vvvn‖L2(HHH1
0)
‖dddn‖L4(LLL∞)

+ c
(
‖(∇vvvn)symdddn‖L2(LLL2)+‖(∇vvvn)symaaan‖L2(LLL2)+‖qqqn‖L2(LLL2)

)
.

The appearing norms of dddn are bounded in view of the a priori estimate (4.15) since

‖dddn‖L4(WWW 1,3) ≤ c‖dddn‖1/2

L2(HHH2)
‖dddn‖1/2

L∞(HHH1)
and ‖dddn‖L4(LLL∞) ≤ c‖dddn‖1/2

L2(HHH2)
‖dddn‖1/2

L∞(HHH1)
.

For the time derivative of the approximate layer function, we follow the same reasoning as for the director

equation. Recall that Qn is the L2-orthogonal projection onto Zn. In order to estimate the time derivative of φn,

we insert the projection onto the appropriate subspace. This allows us to use the approximate equation (4.2b)

and estimate further on with Hölder’s inequality:

sup
‖ζ‖

L2(L2)
≤1

∣∣∣∣
∫ T

0
(∂tφn,ζ )d t

∣∣∣∣=

sup
‖ζ‖

L2(L2)
≤1

∣∣∣∣
∫ T

0
(−(vvvn ·∇)φn −λp jn,Qnζ )d t

∣∣∣∣≤ ‖vvvn‖L2(LLL6)‖∇φn‖L∞(L3)+λp‖ jn‖L2(L2) .
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Thus, the time derivative is bounded in the Hilbert space L2(L2).

Recall that Pn is the (HHH2 ∩HHH1
0,σ )-orthogonal projection onto Wn. Using (4.2c), it follows for ϕϕϕ ∈HHH2 ∩HHH1

0,σ that

|〈∂tvvvn,ϕϕϕ〉|=
∣∣〈ggg,Pnϕϕϕ〉−

(
(vvvn ·∇)vvvn −∇dddT

n qqqn −∇φn jn,Pnϕϕϕ
)
−
(
TTTV

n ;∇Pnϕϕϕ
)∣∣

≤ ‖ggg‖(HHH1
0,σ )

*‖Pnϕϕϕ‖HHH1
0,σ

+‖(vvvn ·∇)vvvn‖LLL1‖Pnϕϕϕ‖LLL∞ +‖∇dddT
n qqqn‖LLL1‖Pnϕϕϕ‖LLL∞

+‖∇φn jn‖LLL3/2‖Pnϕϕϕ‖LLL3 +‖TTTV
n ‖LLL6/5‖∇Pnϕϕϕ‖LLL6 .

Since HHH2 ∩HHH1
0,σ is continuously embedded in HHH1

0,σ , LLL∞, LLL3, and WWW 1,6, we obtain

‖∂tvvvn‖(HHH2∩HHH1
0,σ )

∗ ≤ c
(
‖ggg‖(HHH1

0,σ )
* +‖(vvvn ·∇)vvvn‖LLL1 +‖∇dddT

n qqqn‖LLL1 +‖∇φn jn‖LLL3/2 +‖TTTV
n ‖LLL6/5

)

and thus

‖∂tvvvn‖L2((HHH2∩HHH1
0,σ )

∗) ≤ c
(
‖ggg‖L2((HHH1

0,σ )
*)+‖(vvvn ·∇)vvvn‖L2(LLL1)

+ ‖∇dddT
n qqqn‖L2(LLL1)+‖∇φn jn‖L2(LLL3/2)+‖TTTV

n ‖L2(LLL6/5)

)
.

With Hölder’s inequality, we observe that

‖(vvvn ·∇)vvvn‖L2(LLL1) ≤ ‖vvvn‖L∞(LLL2)‖∇vvvn‖L2(LLL2) and
∥∥∇dddT

n qqqn

∥∥
L2(LLL1)

≤ ‖∇dddn‖L∞(LLL2) ‖qqqn‖L2(LLL2)

as well as

‖∇φn jn‖L2(LLL3/2) ≤ ‖∇φn‖L∞(LLL6)‖ jn‖L2(L2) .

In view of (4.14) and (4.15), the terms on the right-hand sides of the foregoing estimates are bounded.

Finally, we observe with (4.2g) and again with Hölder’s inequality that

‖TTTV
n ‖L2(LLL6/5) ≤ c

((
‖dddn · (∇vvvn)symdddn‖L2(L2)+‖aaan · (∇vvvn)symdddn‖L2(L2)

)(
‖dddn‖2

L∞(LLL6)+‖aaan‖2
L∞(LLL6)

)

+‖aaan · (∇vvvn)symaaan‖L2(L2)

(
‖dddn‖2

L∞(LLL6)+‖aaan‖2
L∞(LLL6)

)
+‖∇vvvn‖L2(LLL2)

+
(
‖dddn‖L∞(LLL6)+‖aaan‖L∞(LLL6)

)(
‖qqqn‖L2(LLL2)+‖(∇vvvn)symdddn‖L2(LLL2)

)

+
(
‖dddn‖L∞(LLL6)+‖aaan‖L∞(LLL6)

)
‖(∇vvvn)symaaan‖L2(LLL2)

)
,

which proves the assertion because of (4.15) and standard embeddings.

4.3 Convergence of the approximate solutions

The a priori estimates (4.14) and (4.15) prove the boundedness of the sequences of solutions to the approximate

problem (4.2) in different norms. The Banach–Alaoglu–Bourbaki theorem [4, Thm 3.16 on p. 66] allows us to

deduce relative weak and weak∗ compactness of the sequence in the considered spaces. In the following, we

are not going to relabel the subsequences.

Lemma 4.6. Let the assumptions of Theorem 2.3 be fulfilled. Then there exists a subsequence of the sequence

of solutions to the approximate problem (4.2) and ddd, φ , vvv satisfying (2.12) as well as qqq ∈ L2(0,T ;LLL2), j ∈
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L2(0,T ;L2) such that the convergences

dddn
∗
⇀ ddd in L∞(0,T ;HHH1)∩L2(0,T ;HHH2)∩W 1,4/3(0,T ;LLL2) , (4.20a)

φn
∗
⇀ φ in L∞(0,T ;H2

0 )∩L2(0,T ;H4)∩W 1,2(0,T ;L2) , (4.20b)

vvvn
∗
⇀ vvv in L∞(0,T ;LLL2

σ )∩L2(0,T ;HHH1
0,σ )∩W 1,2(0,T ;(HHH2 ∩HHH1

0,σ )
∗) ,

(4.20c)

qqqn ⇀ qqq in L2(0,T ;LLL2) , (4.20d)

jn ⇀ j in L2(0,T ;L2) , (4.20e)

dddn · (∇vvvn)symdddn ⇀ ddd · (∇vvv)symddd in L2(0,T ;L2) , (4.20f)

aaan · (∇vvvn)symaaan ⇀ aaa · (∇vvv)symaaa in L2(0,T ;L2) , (4.20g)

dddn · (∇vvvn)symaaan ⇀ ddd · (∇vvv)symaaa in L2(0,T ;L2) , (4.20h)

(∇vvvn)symdddn ⇀ (∇vvv)symddd in L2(0,T ;LLL2) , (4.20i)

(∇vvvn)symaaan ⇀ (∇vvv)symaaa in L2(0,T ;LLL2) , (4.20j)

dddn → ddd in L2(0,T ;HHH1)∩L16/5(0,T ;WWW 1,16/5)∩L48/5(0,T ;LLL48/5) , (4.20k)

φn → φ in L2(0,T ;H2
0 )∩L24/7(0,T ;W 2,24/7)∩L12(0,T ;WWW 1,12) , (4.20l)

vvvn → vvv in L2(0,T ;LLL2
σ ) (4.20m)

hold for n→∞.

Proof. The a priori estimates (4.15) and (4.17) yield the weak and weak∗ convergences (4.20a)-(4.20j). The

Lemma of Lions–Aubin (Lions [30, Théorème 1.5.2]) ensures the following compact embeddings

L2(0,T ;HHH2)∩W 1,4/3(0,T ;LLL2)
c→֒ L2(0,T ;HHH1) ,

L2(0,T ;H4)∩W 1,2(0,T ;LLL2)
c→֒ L2(0,T ;H2

0 ) ,

L2(0,T ;HHH1
0,σ )∩W 1,2(0,T ;(HHH2 ∩HHH1

0,σ )
∗)

c→֒ L2(0,T ;LLL2
σ ) .

The convergences of the director (4.20a), the layer function (4.20b), the velocity field (4.20c) as well as their time

derivatives (4.20a–4.20c), immediately give the strong convergences with respect to the first space indicated

in (4.20k)–(4.20l) as well as (4.20m). With Lemma 3.1 and Corollary 3.2, we observe that

‖dddn‖L10/3(WWW 1,10/3) ≤ c‖dddn‖3/5

L2(HHH2)
‖dddn‖2/5

L∞(HHH1)
and ‖dddn‖L10(LLL10) ≤ c‖dddn‖1/5

L2(HHH2)
‖dddn‖4/5

L∞(HHH1)

as well as

‖φn‖L14/3(W 2,14/3) ≤ ‖φn‖3/7

L2(H4)
‖φn‖4/7

L∞(H2
0 )

and ‖φn‖L14(W 1,14) ≤ ‖φn‖1/7

L2(H4)
‖φn‖6/7

L∞(H2
0 )

and thus the boundedness of the sequence {dddn} in L10/3(0,T ;WWW 1,10/3)∩L10(0,T ;LLL10) and of the sequence

{φn} in L14/3(0,T ;W 2,14/3)∩L14(0,T ;W 1,14). Since 16/5 < 10/3, 48/5 < 10, 24/7 < 14/3, and 12 < 14,

a standard interpolation argument grants the strong convergence in the last two spaces of (4.20k) and (4.20l),

respectively. These strong convergences allow us to identify the limits in (4.20f)-(4.20j) (recalling that aaan =∇φn).

Remark 4.7. The initial values for the approximate equations are defined via the associated orthogonal projec-

tions of the given initial datum, i.e., Rnddd0, Qnφ0, and Pnvvv0, respectively. This ensures that the initial values of

the approximate solutions converge strongly to the given initial value,

dddn(0)→ddd(0) in HHH1, φn(0)→φ(0) in H2
0 and vvvn(0)→vvv0 in LLL2

σ . (4.21)
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The next lemma identifies the weak limits for the variational derivatives (4.20d) and (4.20e).

Lemma 4.8. The variational derivatives qqqn and jn of the solution to the approximate system converge weakly

to the variational derivative qqq and j of the limit functions given by (2.3) with ddd and φ given by Lemma 4.6, i.e.

qqqn ⇀ qqq in L2(0,T ;LLL2) and jn ⇀ j in L2(0,T ;L2) as n→∞ . (4.22)

Proof. With a priori estimate (4.14), we have already deduced the weak convergences (4.20d) and (4.20e). It

remains to identify the limits qqq and j in dependence of ddd and φ . In regard of the composition of the variational

derivative qqq (see (3.7)), the higher order term, i.e., ∇2ddd, occurs only linearly. For ψψψ ∈ L2(0,T ;LLL2), consider qqqn

tested with ψψψ ,

∫ T

0
(qqqn,ψψψ)d t =−

∫ T

0
(k1∇(∇·dddn)− k3 ∇×∇×dddn,Rnψψψ)d t

+

∫ T

0
B0((|∇φn|2 +dddn ·∇φn −2)∇φn,Rnψψψ)d t

+
∫ T

0

(
B1((|∇φn|2dddn − (dddn ·∇φn)∇φn),Rnψψψ)+

1

ε1
((|dddn|2 −1)dddn,Rnψψψ)

)
d t . (4.23)

In the first line of (4.23) only linear terms of ∇2dddn occur. Due to the weak convergence of {dddn} in L2(0,T ;HHH2),
we can pass to the limit in this terms. The second line of (4.23) depends only on the lower order terms dddn and

∇φn, which converge strongly.

Indeed, due to (4.20k) and (4.20l), we can extract an almost everywhere converging subsequence such that

dddn(xxx, t)→ddd(xxx, t) and ∇dddn(xxx, t)→∇ddd(xxx, t) for allmost every (xxx, t) ∈ Ω× (0,T ) ,

∇φn(xxx, t)→∇φ(xxx, t) and ∇2φn(xxx, t)→∇2φ(xxx, t) for allmost every (xxx, t) ∈ Ω× (0,T ) ,

where {∇dddn} is dominated by a function in L16/5(0,T ;LLL16/5), {dddn} by a function in L48/5(0,T ;LLL48/5), {∇2φn}
by a function in L24/7(0,T ;L24/7), and {∇φn} by a function in L12(0,T ;L12).

Similarly to the estimate (3.10) in Lemma 3.4, we can find a dominating function in L2(0,T ;L2) for the variational

derivative (4.23) and pass to the limit with Lebesgue’s theorem on dominated convergence. Note that we put

the projection Rn on the test function ψψψ in (4.23) and that Rnψψψ converges strongly to ψψψ for all ψψψ ∈ LLL2.

In a similar way, we show the limiting behaviour for the sequence { jn}. Consider the variational derivative of F

with respect to φ , which is given in equation (3.14), tested with ζ ∈ L2(0,T ;L2),

∫ T

0
(( jn,ζ ))d t =

∫ T

0

(
(k5∆2φn,Qnζ )

)
d t −B0

∫ T

0

(
∇·((|∇φn|2 +dddn ·∇φn −2)(2∇φn −dddn)),Qnζ

)
d t

−
∫ T

0

(
B1

(
∇·(|dddn|2∇φn − (dddn ·∇φn)dddn),Qnζ

)
+

1

ε2

(
∇·((|∇φn|2 −1)∇φn),Qnζ

))
d t . (4.24)

The higher order term ∆2φ occurs again linearly and thus converges weakly due to (4.20b). The lower order

terms in (3.14) also depend on ∇2φ . Similarly to the estimate (3.16) in Lemma 3.4, we can find a dominating

function in L2(0,T ;L2) for the variational derivative in (4.24) and pass to the limit with Lebesgue’s theorem

on dominated convergence. Note that we put the projection Qn on the test function ζ in (4.24) and that Qnζ

converges strongly to ζ for all ζ ∈ L2.

Proof of Theorem 2.3. To prove the main result, it remains to prove that the limit of the subsequence of the

sequence of solutions (dddn,φn,vvvn) to the approximate problem (4.2) fulfills the weak formulation (2.13). The

essential tools to show this statement are the different convergence results achieved so far.
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We start with the director equation. The time derivative of the approximate solutions converge weakly due

to (4.20a). From (4.20a), the strong convergence (4.20k), and the weak convergence of the velocities (4.20c),

we find that

∫ T

0
(∂tdddn +(vvvn ·∇)dddn − (∇vvvn)skw,ψψψ)d t→

∫ T

0
(∂tddd +(vvv ·∇)ddd− (∇vvv)skwddd,ψψψ)d t (4.25)

for ψψψ ∈ C
∞
c (Ω× (0,T );R3) as n→∞. Due to (4.20i) and (4.20j), the other semilinear terms converge,

∫ T

0

(
λ (∇vvvn)symdddn +2κ1γ(∇vvvn)symaaan,ψψψ

)
d t→

∫ T

0

(
λ (∇vvv)symddd +2κ1γ(∇vvv)symaaa,ψψψ

)
d t (4.26)

for ψψψ ∈ C
∞
c (Ω× (0,T );R3) as n→∞. The variational derivative qqqn converges due to Lemma (4.8). Thus, we

have shown the convergence of every term of (4.2a) and hence, that the limit fulfills (2.13a).

Due to the strong convergence of ∇φn according to (4.20l) as well as the weak convergence of the velocity

field according to (4.20c), the time derivative according to (4.20b), and the variational derivative jn according

to (3.14), we can take the limit in every term of the approximate layer equation (4.2b) and obtain

∫ T

0
(∂tφn +(vvvn ·∇)φn +λp jn,ζ )d t→

∫ T

0
(∂tφ +(vvv ·∇)φ +λp j,ζ )d t

for ζ ∈ C
∞
c (Ω× (0,T )) as n→∞.

Finally, we show that the limit of the solutions to the approximate system (4.2) solves (2.13c). The term incor-

porating the time derivative converges due to (4.20c). With (4.20c) and (4.20m), we see the convergence of the

convection term such that ∫ T

0
((vvvn ·∇)vvvn,ϕϕϕ)d t →

∫ T

0
((vvv ·∇)vvv,ϕϕϕ)d t

for all solenoidal ϕϕϕ ∈ C ∞
c (Ω× (0,T );R3) as n→∞.

The strong convergences of the director and the layer function, see (4.20k), (4.20l), as well as the weak con-

vergence of the velocity field and the variational derivative qqq, see (4.22), grants the weak convergence of the

approximate elastic stress (4.2g) to the rearranged elastic stress, where d̊dd in (2.5b) is replaced using (2.1a).

Since the equation d̊dd +λ (∇vvv)symddd + 2κ1γ(∇vvv)symaaa+ γqqq = 0 even holds in L2(0,T ;LLL2), we can rearrange

the viscous stress and obtain (2.5b). Thus, it holds

∫ T

0
(TTTV

n ;∇ϕϕϕ)d t →
∫ T

0
(TTTV ;∇ϕϕϕ)d t

for all solenoidal ϕϕϕ ∈ C ∞
c (Ω × (0,T );R3) and as n→∞. The remaining term ∇dddT

n qqqn +∇φn jn converges

weakly due to the weak convergence of the variational derivatives according to (4.22) and the strong conver-

gence of the gradients of the director according to (4.20k) and the layer function according to (4.20l). For all

solenoidal ϕϕϕ ∈ C ∞
c (Ω× (0,T );R3), the reformulated elastic stress converges as n→∞,

∫ T

0

(
∇dddT

n qqqn +∇φn jn,ϕϕϕ
)

d t →
∫ T

0

(
∇dddTqqq+∇φ j,ϕϕϕ

)
d t . (4.27)

In the limit, the integration-by-parts formula (2.11) can be applied again such that the equation (2.13c) is even

fulfilled with the original elastic stress tensor (2.5a). All in all, we proved that a solution in the sense of Defini-

tion 2.2 exists.

In the next part, we introduce a possible adaptation of the model.
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5 Oseen constraint

5.1 Relaxation of the Oseen constraint

In the modelling of smectic-A liquid crystals, the Oseen constraint ∇×aaa = 0 is often assumed to hold (see De

Gennes [11, Section 7.2.1.8.]). The layer normal aaa is thus of gradient structure. Since the normal of the layers

is assumed to be a unit vector, it follows that ∇φ is a unit vector. Stewart [38] asserts (as experiments suggest,

see [12]) that this will not be the case in the dynamical theory away from equilibrium. He suggests to choose

aaa as aaa = ∇φ/|∇φ |. This is convenient since the normal vector should be a unit vector. In contrast to that, one

cannot deduce strong convergence of aaa from strong convergence of ∇φ due to the lack of continuity of the

mapping yyy 7→ yyy/|yyy|.
Instead, we propose to use a continuously differentiable function ρε , where ρε approximates the mapping xxx 7→
xxx/|xxx|. We can define aaaε via

aaaε := ∇φρε(∇φ). (5.1)

For every ε > 0, aaaε is continuous in ∇φ and, therewith, we may infer the strong convergence of aaaε ,n from the

strong convergence of ∇φn.

The proof in this paper can be extended by replacing every occurrence of aaa with aaaε . As already mentioned, this is

fairly easy in Section 4.3, where the convergence of the approximate solutions is shown. Since ρε is continuous

and we have deduced strong convergence of ∇φn, the strong convergence of aaaε ,n follows immediately. The a

priori estimates of Section 4.2 can be proved in the same way as long as the coerciveness (Lemma 3.6) and the

boundedness (Lemma 3.7) of the free energy and its variational derivatives are provided. The only difference

between the proofs of these lemmata due to the redefinition of aaaε in (5.1) is the variational derivative of F with

respect to φ (3.14).

5.2 Variational derivative of the relaxed free energy

Consider a potential F ∈ C
1(R3×R

3×3×R
3;R) and let this potential define a free energy via

F (φ) :=
∫

Ω
F(∇φ ,∇2φ ,aaaε)dxxx

with aaaε as defined in (5.1). Then the variational derivative of this functional can be calculated as

δF

δφ
(φ) =−∇· ∂F

∂∇φ
(∇φ ,∇2φ ,aaaε)+∇2 :

∂F

∂∇2φ
(∇φ ,∇2φ ,aaaε)−∇·

((
∂aaaε

∂∇φ

)T ∂F

∂aaaε

)

=−∇· ∂F

∂∇φ
(∇φ ,∇2φ ,aaaε)+∇2 :

∂F

∂∇2φ
(∇φ ,∇2φ ,aaaε)

−∇·
((

ρε(∇φ)I +∇φ ⊗ρ ′
ε(∇φ)

) ∂F

∂aaaε

)
,

where I denotes the identity matrix in R
3×3. Since ρε and its first derivative are bounded from above, all the

calculations in the proof of Lemma 3.6 and Lemma 3.7 can be carried out in a similar fashion. With this method,

it is possible to relax the Oseen constraint and, at the same time, to prevent the vector aaaε from becoming

degenerate.

The model studied this paper with the layer normal as defined in (5.1) can be seen as a relaxed model of the

one proposed by Stewart [38]. It has similar features and it incorporates especially the possible violation of the

Oseen constrain ∇×aaa = 0. In virtue of the proof in the article at hand, the global existence of weak solutions

to this relaxed Stewart model can be proved.
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