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Abstract. The statistical Bayesian approach is a natural setting to resolve the ill-posedness
of inverse problems by assigning probability densities to the considered calibration parameters.
Based on a parametric deterministic representation of the forward model, a sampling-free
approach to Bayesian inversion with an explicit representation of the parameter densities is
developed. The approximation of the involved randomness inevitably leads to several high
dimensional expressions, which are often tackled with classical sampling methods such as
MCMC. To speed up these methods, the use of a surrogate model is beneficial since it
allows for faster evaluation with respect to calibration parameters. However, the inherently
slow convergence can not be remedied by this. As an alternative, a complete functional
treatment of the inverse problem is feasible as demonstrated in this work, with functional
representations of the parametric forward solution as well as the probability densities of the
calibration parameters, determined by Bayesian inversion.

The proposed sampling-free approach is discussed in the context of hierarchical tensor
representations, which are employed for the adaptive evaluation of a random PDE (the forward
problem) in generalized chaos polynomials and the subsequent high-dimensional quadrature of
the log-likelihood. This modern compression technique alleviates the curse of dimensionality by
hierarchical subspace approximations of the involved low rank (solution) manifolds. All required
computations can be carried out efficiently in the low-rank format. A priori convergence is
examined, considering all approximations that occur in the method. Numerical experiments
demonstrate the performance and verify the theoretical results.

1. Introduction

Mathematical models in engineering and science applications are typically characterized by
calibration parameters, which are uncertain due to incomplete knowledge. It hence is a common
task to identify these parameters based on noisy and incomplete measurement data related to
the system response. For this, the response of the model is evaluated with different parameter
realizations (“exitations”), a functional of which is used to adjust the guess for the parameters.
This so-called inverse problem of identification has been tackled with a variety of methods. In a
deterministic setting, the problem is ill-posed in the sense of Hadamard and has to be regularized
in some way in order to become solvable. As an alternative approach, we are concerned with
the Bayesian setting in which the parameters are considered as random variables. The aim then
is to determine the posterior density subject to measurements corrupted by some predetermined
noise assumption. With this Bayesian notion of the task, the problem is regularized in the sense
that a posterior probability distribution can be obtained.
Computational methods for the efficient evaluation of (the expectation of) the parameter
densities have received considerable interest in recent years, in particular as part of the research
efforts in the field of Uncertainty Quantification (UQ). The most widely used methods are based
on statistical sampling from the posterior measure, namely Monte Carlo (MC) type algorithms
such as the popular Markov-Chain Monte Carlo method (MCMC). While these methods are
well-understood analytically and are relatively simple to implement, a major drawback is the
inherently slow convergence, which is limited by the convergence order 1/2 of MC methods.
Since for each sampling of the Markov chain a realization of the governing equation has to be
computed, these methods can quickly become very costly computationally.
For the solution of random forward problems, significant progress could be witnessed over the
last decade. In particular methods which aim at the construction of an adequate surrogate
model were shown to potentially converge at much higher rates than classical MC methods.
These findings are also supported by recent analytical results regarding the sparsity of the
solution manifold. In addition to a priori results, adaptive algorithms can be derived which steer
the problem-dependent adjustment of the discretization parameters based on some a posteriori
error indicator or even a reliable error estimator. To improve the efficiency of the Bayesian
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inversion, such surrogate models, e.g. given as a functional representation in generalized chaos
polynomials, can be used in combination with sampling methods.
However, also a complete functional representation of the posterior density is feasible, leading
to a sampling-free method of the statistical inverse problem. For this, we employ a hierarchical
tensor representation of the stochastic forward solution. Hierarchical tensor formats have
only recently been investigated more thoroughly in the community of numerical mathematics,
although these techniques have been used for a long time in physics and chemistry. With
hierarchical tensor representations, the low-rank structure of the solution operator and the
solution manifold can be fully exploited, which leads to very efficient methods for the evaluation
of the system response. We make use of our previous results on adaptive stochastic Galerkin
methods in tensor representations.
With a functional representation in the tensor train (TT) format at hand, we derive the
representation of the Bayesian potential. Subsequently, the entire Bayesian inversion can be
carried out in the low-rank approximation. To describe the posterior density, we introduce a
collocation ansatz in parameter space. For the computation of the high-dimensional likelihood
in tensor format, we suggest an adaptive Euler scheme.
All employed approximations, i.e. for the forward problem, the tensor exponential and the
polynomial interpolation of the probability densities, can be estimated a priori. With this, we
provide a convergence analysis of the posterior measure in the Hellinger distance.

The structure of this work is as follows: Section 2 reviews the Bayesian setting and introduces the
used notation. Moreover, the parametric model problem is defined. Section 3 is concerned with
hierarchical tensor formats, which form the basis for the derived method. As a special case, the
popular TT format is introduced and functional representations with this format are discussed.
Key to this work is the low-rank approximation of the Bayesian potential using an adaptively
computed stochastic Galerkin solution of the parametric problem. In order to carry out the
Bayesian inversion, the evaluation of the likelihood makes use of an adaptive Euler method for
which numerical observations are presented. These preparations are culminated in Section 4
where the Bayesian inversion in the hierarchical tensor representation is described. Section 5
is devoted to the derivation of an a posteriori convergence result for the Bayesian posterior,
taking into account all occurring approximations. The concluding Section 6 demonstrates the
performance of the proposed novel approach.

2. Bayesian Inversion of Operator Equations

2.1. Bayes setup. We consider a class of operator equations depending on some uncertain
datum u taking values in a separable Banach space X̃. The datum u, which for instance is
a random coefficient field in a PDE, is determined by a countable infinite set of parameters
y = (yj)j∈N. By the observation of the system response δ in the separable Banach space Y ,
the goal is to gain knowledge about the unknown u by means of Bayesian estimation with
respect to some prior measure π0 on a full measure subset of X ⊂ X̃. The measurement data
is corrupted by Gaussian noise η ∼ N(0, Γ ) on Y . We assume that Y is finite-dimensional and
the covariance operator Γ is non-degenerate, i.e. Y ⊆ RK for K <∞ noisy measurements.
O = (o1, . . . , oK)T ∈ (X ′)K models the observation at K sensors including estimated noise
from model and measurement errors such that

δ = (O ◦G)(u) + η. (2.1)
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Assume a “forward” response operator G : X → X mapping from a separable Banach space
X of uncertain distributed parameters u into the reflexive Banach space of responses X . The
spaces are equipped with the norms ‖·‖X and ‖·‖X , respectively.
As model response, we consider solutions of the linear operator equation

Given u ∈ X, f ∈ Y ′ find q ∈ X s.t. A(u)q = f (2.2)

with a uniformly boundedly invertible random linear operator A(u) ∈ L(X ,X ′) with respect to
the random data u ∈ X sufficiently close to the expectation 〈u〉. With known forcing f ∈ X ′,
the response of (2.2) is given by

X 3 u 7→ q(u) := G(u, f) =: G(u) = (A(u))−1f ∈ X . (2.3)

(2.2) is referred as the forward problem throughout this article. The main goal of this work is
to solve the backward problem

Given δ = (O ◦G)(u) + η : X → L2
Γ (RK) find u ∈ X. (2.4)

L2
Γ (RK) denotes the weighted space of square integrable functions over RK equipped with the

norm
‖v‖2Γ := 〈v, v〉Γ = 〈v, Γ−1v〉 (2.5)

where 〈·, ·〉 is the Euclidean inner product in RK and Γ is the symmetric positive definite
covariance matrix of the noise η.
As a deterministic problem, (2.4) is usually ill-posed, e.g. due to the possible dimension gap
between the solution space and the measurement space. Interpreting the involved objects as
random variable over some probability space, solvability can be deduced by the theorem of
Bayes.
As a measure to quantify the probability of u given δ, we introduce a likelihood model by

L : B(RK)×X → [0, 1]. (2.6)

The likelihood explains how well the uncertain data u fits the measurements δ. For any set
E ∈ B(RK) and with the Lebesgue density of η denoted by %, a convenient choice is

L(E|u) = P(δ ∈ E|u) =
∫
E

(δ − (O ◦G)(u))%dδ. (2.7)

The joint random variable (u, δ) is distributed according to the joint (possibly non product)
measure µ. For Ẽ ∈ B(X × RK) it is given by

µ(Ẽ) :=
∫
X

∫
RK

1Ẽ(u, δ)L( dδ|u)π0( du), (2.8)

where π0 is a prior measure on the uncertain data u, containing à priori information about the
unknown with π0(X) = 1. The suitable choice of the prior is a challenging task and depends
on the effective problem.
The sought posterior measure πδ describes the distribution of u given δ. It follows from
conditioning the joint measure to the RK-fibre represented by the measurement vector. Usually,
one defines the Bayesian potential1 by

Φ(u; δ) := − log %(δ − (O ◦G)(u)) (2.9)

1also called misfit or negative log likelihood
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Theorem 2.1 (Bayes theorem). Assume that the norming factor Z satisfies

Z :=
∫
X
%(δ − (O ◦G)(u))π0( du) > 0. (2.10)

Then, the measure of u given δ is absolutely continuous and has the Radon-Nikodym derivative
with respect to π0

dπδ
dπ0

(u) = 1
Z
% (δ − (O ◦G)(u)) = 1

Z
exp(−Φ(u; δ)). (2.11)

Since we have chosen η to be a centered Gaussian noise, there exists an explicit expression of
the Bayesian posterior in (2.11). Using that the translation of a N (0, Γ ) random variable by
(O ◦G)(u) is distributed according to N ((O ◦G)(u), Γ ), we obtain

Φ(u; δ) = ‖δ − (O ◦G)(u)‖2Γ = 1
2〈δ − (O ◦G)(u), Γ−1(δ − (O ◦G)(u))〉. (2.12)

Remark 2.2. In general, Bayes theorem requires the measurability of the potential Φ. In our
setting, this fact follows immediately by using the local Lipschitz property of the forward
operator and the continuity of the observation operator.

Remark 2.3. To show the positivity of the normalization constant Z in (2.11), we need
boundedness of Φ(u; y), which can directly be deduced from the boundedness of (O ◦G)(u)
in RK and the η-almost sure finiteness of δ. Hence, the potential is bounded in X by some
constant C(δ) = C <∞ and it follows that

Z = Z(y) =
∫
X

exp(−Φ(u; δ))π0( du) ≥
∫
X

exp(−C)π0( du) = exp(−C) > 0. (2.13)

2.2. Connection to Deterministic Regularized Optimization. The Bayesian approach is a
tool to ensure solvability of usually non well-posed problems. From the optimization perspective,
the problem (2.4) is intuitively solved by minimizing a least squares functional. This deterministic
approach suffers from the possible non-uniqueness of the solution and probably high sensitivity
of the data δ. A widely used technique to overcome this issue is by introducing a penalty or
constraint term to regularize the optimization.
In this outlook we will show that minimizing a regularized minimizing problem is equivalent to
calculating the Bayesian potential.
Assume there is a complete orthonormal system (bj)j≥1 on X which yields the expression

(O ◦G)(u) = O(
∑
k≥1

αkbk) = BTα, B = [oj(bk)]k,j ∈ R∞,K . (2.14)

The coefficient α = (αk)k∈N is now the unknown parameter which has to be identified. Moreover,
we assume a Gaussian prior π0 = N (0, Σ) for some positive definite and symmetric covariance
operator Σ on X. Then, to calculate the Bayesian posterior density (2.11) with respect to π0
we have to estimate

%(α) = e−
1
2‖δ−B

Tα‖Γ e−
1
2‖α‖Σ = e−( 1

2‖δ‖Γ−〈BΓ
−1δ,α〉+ 1

2 〈BΓ
−1BT−Σ−1)α,α〉). (2.15)

Then, the exponent can be expressed in a quadratic form

〈Q(α− α0), α− α0〉 = 〈Qα,α〉 − 2〈Qα0, α〉+ 〈α0, α0〉 (2.16)

for some α0 ∈ R. By equating coefficients we obtain

Q := 1
2(BΓ−1BT −Σ−1) (2.17)
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and
Qα0 = BΓ−1δ ⇐⇒ α0 = Q−1BΓ−1δ. (2.18)

Completing the square yields finally

%(α) = e−(〈Q(α−α0),α−α0〉+‖δ‖Γ−〈α0,α0〉) (2.19)

The estimation of α0 is now equivalent to minimizing the empirical loss functional

J(α) = 1
2‖δ − (O ◦G)(u)‖2Γ + 1

2‖u‖
2
Σ (2.20)

= 1
2〈δ −B

Tα, Γ−1(δ −BTα)〉+ 1
2〈α,Σ

−1α〉, (2.21)

since by the sufficient Gaussian normal equation we obtain

0 = 〈∇J, v〉 = −〈BΓ−1δ, v〉+ 1
2〈BΓ

−1BT −Σ−1)α, v〉. (2.22)

This computation highlights the connection between a deterministic optimization problem
using a regularization in terms of a hyperparameter Σ and the statistical Bayesian approach by
considering a Gaussian prior distribution.
The main reason to express % as a quadratic function in the exponent is the usability in further
estimations. By introducing the substitution α̃ = α−α0 we can simplify the process of moment
estimation of the forward solution G(u) with respect to the posterior measure

Eπδ [G(u)] =
∫
X
G(u)πδ = 1

Z

∫
`2(N)

∑
k≥1

αkbj

 %(α) dα. (2.23)

With (2.19) and the substitution we have

Eπδ [G(u)] = 1
Z

∑
k≥1

bk

∫
`2(N)

(α0,k + α̃k)e−〈Qα̃,α̃〉+‖δ‖Γ−‖α0‖ dα = BTα0. (2.24)

The first equation follows by splitting the integral and observing that the second term vanishes
for it being the mean of a centered Gaussian distribution. And the second equation uses that
probability densities have unit L1 norm.

2.3. Parametric uncertainty model. Since the data of the model G depends on a countable
infinite number of parameters y = (y1, . . .), the same holds for the solution G(u(y)) and
consequently also the Bayesian formulation in (2.11). For numerical computations to become
feasible, several approximations have to be applied.
We make the representation of u more specific and assume that some set {ψj}∞j=1 forms a
basis of X. Moreover, y = {yj}∞j=1 is an independent identically distributed set of random
variables with y ∼ π0 =

⊗
j≥1 π

j
0. With this, we assume an unconditionally L2-convergent

expansion of the form
u = u(x, y) := 〈u〉(x) +

∑
j≥1

ψj(x)yj , (2.25)

where 〈u〉 is a deterministic nominal value of u. Examples for such decompositions are the
Karhunen-Loève expansion [4, Prop. 2.1.6] and [9, 15, 14], or the principal component analysis.
Throughout this article we assume y ∈ Ξ = [−1, 1]∞ which results in πj0 being the uniform
distribution on [−1, 1].
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In the common stationary diffusion problem

div(u(x, y))∇q(x, y)) = f(x) in D ×Ξ (2.26)
q(x, y) = 0 on ∂D ×Ξ (2.27)

the expansion (2.25) gives rise to the operator representation

A(y) = A0 +
∑
j≥1

Ajyj . (2.28)

with
Aj : H1

0 (D)→ H−1(D), v 7→ −div(ψj∇v), j ∈ N0, (2.29)
for ψ0 := 〈u〉. We assume bounded invertability for every component of (Aj)j≥1 such that the
parametric operator equation

A(y)q = f (2.30)
admits a unique solution G(y) := G(u(y)) = A−1(y)f , see e.g. [19, Sec. 2] for details.
With these assumptions, we obtain a parametric formulation of the Bayesian posterior (2.11).

Theorem 2.4. The Bayesian posterior πδ of u ∈ X given data δ ∈ RK is absolutely continuous
with respect to the prior π0 and it holds

dπδ
dπ0

(y) = 1
Z

exp(−Φ(u(y); δ))|u=〈u〉+
∑

j≥1 ψjyj
. (2.31)

One is often interested in functionals depending on the uncertain data, so-called quantities
of interest, denoted by ϕ : X → R. Common such functions are moments of u, i.e. ϕm(u) =∫
X u

m dπδ.

Proposition 2.5. Given a quantity of interest ϕ : X → R and noisy data δ ∈ RK , the Bayesian
estimate takes the form

Eπδ [ϕ] = 1
Z
Eπ0

[
exp(−Φ(u; δ))ϕ(u)

∣∣
u=〈u〉+

∑
j≥1 ψjyj

]
. (2.32)

2.4. Dimension Truncation and Forward Operator Approximation. For practical compu-
tations, the infinite expansion (2.25) has to be truncated to a finite number M <∞ of terms,
which results in the truncated, parametrized forward solution

GM : Ξ → X , (y1, . . . , yM , 0, . . . ) 7→ G
(
〈u〉+

M∑
j=1

ψjyj
)
. (2.33)

The error introduced by the approximation of the data can be estimated as follows, see [17,
Prop. 2.2.].

Proposition 2.6. For a sufficiently small, closed neighborhood X̂ ⊂ X of the nominal value
〈u〉 ∈ X, we assume that the forward solution G(u) is well-posed for every u ∈ X̂, i.e.
G : X̂ → X is injective and continuous and the sequence {‖ψj‖X}j≥1 ∈ `p(N) for some
0 < p ≤ 1. Then, there exists a constant CTrun > 0 such that

sup
y∈Ξ
‖G(y)−GM (y)‖X ≤ CTrunM

− 1
p
−1
. (2.34)

If not stated otherwise, we assume that the forward operator is approximated by a Galerkin
finite element solution, which admits a well-known quasi-optimality result.
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Proposition 2.7 ([17] Prop 2.3). Let {Xh}h>0 ⊂ X , be a sequence of finite dimensional
subspaces. Then, given solvability of the forward problem corresponding to G, for every
y ∈ Ξ there exists the Galerkin approximation Gh(y) to G(y). Furthermore, it converges quasi
optimally, i.e., there exists a constant CGal > 0 independent of h and y such that

‖G(y)−Gh(y)‖X ≤ CGal inf
06=v∈Xh

‖G(y)− v‖X . (2.35)

Moreover, assume a sequence of subspaces {Xt}t>0 ⊂ X with Xt2 ⊂ Xt1 for t1 < t2, scaling
regularity, and G(y) ∈ Xt. Then,

‖G(y)−Gh(y)‖X ≤ CGalh
t sup
y∈Ξ
‖G(y)‖Xt . (2.36)

Remark 2.8. The regularity denoted by the subspace Xt usually corresponds to a faster decay
rate of the basis {ψj}j≥1 and can be seen as a Sobolev scale, for example Xt = H1+t(D).

Remark 2.9. From Propositions 2.6 and 2.7 we can deduce a combined error bound for the
forward operator,

‖G(y)−Gh,M (y)‖X ≤ CTrun,Gal(ht +M
− 1
p
−1), y ∈ Ξ. (2.37)

3. Hierarchical Tensor Formats

Representation of multivariate functions in a geometric tensor setting was introduced in [12]
and we relate mainly on the article [21]. By introducing the notion of hierarchical tensor
networks we build up the setting for the Bayesian inversion using tensor trains, a subclass of
hierarchical tensors. To systematically present the idea of hierarchical tensor product spaces
one usually relay on the definition of dimension partition trees. For a given topological tensor
space

⊗M
m=1 Vm and an element V of it define T ⊂ F({1, . . . ,M}), a subset of the powerset

of the index set, as dimension partition tree with the following properties

1 The root α∗ := {1, . . . ,M} corresponds to the full index set.
2 Every node α ∈ T is either a leaf, i.e. |α| = 1 or there exists α1, α2 ∈ T such that
α = α1 ∪ α2 and α1 ∩ α2 = ∅.

This construction is used for binary trees and gives direct access to the length of the tree
and suitable traversal techniques. Connecting to every node α ∈ T\{α∗} with sons α1, α2 a
subspace Uα ⊂

⊗
j∈α Vj of dimension rα using the nestedness property

Uα ⊂ Uα1 ⊗ Uα2 , α ∈ T\{α̂ : α̂ is a leaf or the root} =: T̂, (3.1)
we recursively construct the corresponding basis {Uα[·, kα] : kα = 1, . . . , rα} of Uα by

Uα[xα, kα] =
rα1∑
k1=1

rα2∑
k2=1

Bα[k1, k2, kα]Uα1 [xα1 , k1]Uα2 [xα2 , k2], α ∈ T̂. (3.2)

Here, Bα is an order three coefficient tensor. With Uα∗ = Uα∗1 ⊗ Uα∗2 , we can find a basis
representation with respect to the according subspaces

V[xα∗ ] =
rα∗1∑
k1=1

rα∗2∑
k2=1

Bα∗ [kα∗1 , kα∗2 , kα]Uα∗1 [xα∗1 , kα∗1 ]Uα∗2 [xα∗2 , kα∗2 ]. (3.3)

Expanding this structure recursively using (3.2) one obtains a tree network structure which
depicts a multi-linear low-rank subspace approximation. See [2] for more details. To make
the essential point, we need only the component tensors (here of order 3) Bα∗ [kα∗1 , kα∗2 , kα],
α ∈ T. Depending on the ranks rα this format gives rise to efficient algorithms. The overall
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storage reduces to the order three component tensor tuple (Bα)α∈T which, in contrast to e.q.
the Tucker format, does not scale exponentially in the dimension. Moreover, linear algebra
operation can be carried out with a similar but slightly larger complexity.

3.1. Tensor Train Format. A popular subclass of the hierarchical tensors introduced above is
the tensor train (TT) format. It corresponds to a degenerated, unsymmetric tree, where for
every α ∈ T̂ we have α := {1, . . . , j} = {1, . . . , , j − 1} ∪ {j} = α1 ∪ α2 with α1 ∈ T̂ and α2
is a leaf. Its parametrized form renders it simpler to handle while maintaining the main features
of more general hierarchies, see [2] and [10, Sec. 11]. Historically, this format has been known
for a long time in quantum chemistry and physics under the name of matrix product states
(MPS). The TT format became known to a broader community in applied mathematics by
recent publications such as [18, 11] and [22]. We provide a brief overview in what follows. In
the sequel, we will write for the nodes of the tree {1, . . . , j} simply j.

Let V1, . . . ,VM be real Hilbert spaces and consider V ∈
⊗M

m=1 Vm an element in the topological
tensor product of function spaces Vi depending on the variable xi. We say V is in TT-format
if there exists a rank vector r = (r1, . . . , rM ) ∈ NM such that V admits the representation

V[x1, . . . , xM ] =
r1∑

k1=1
· · ·

rM−1∑
kM−1=1

V1[k1, x1]V2[k1, x2, k2] · · ·VM [kM−1, xM ] (3.4)

with core matrices Vj [xj ] := (Vj [kj−1, xj , kj ])kj−1,kj
∈ Rrj−1,rj and r0 = rM = 1 by construc-

tion. Hence, every entry of V can be determined by the matrix product
V[x1, . . . , xM ] = V1[x1] · · ·VM [xM ]. (3.5)

The key element to construct the TT format is the higher order singular value decomposition
[18, Thm 2.1]. We will shortly discuss the algorithm of obtaining a TT representation and
afterwards we point out the possibility to reduce the obtained complexity by truncation.
We describe this procedure for the finite-dimensional case. Given a tensor U ∈

⊗M
m=1 Rnm and

multi-rank r = (r1, . . . , rM ) consider the unfolding matrix
Ak := U(µ1, . . . , µk;µk+1, . . . , µM ) (3.6)

corresponding to a numerical reshape of the tensor. By assumption of U admitting a TT-
representation, the unfolding A1 of U has rank r1. Hence, there exists the QR decomposition
A1 = QRT

A1[µ1;µ2, . . . , µM ] = Q[µ1]R[µ2, . . . , µM ] =
r1∑

α1=1
Q[µ1, α1]R[α1, µ2, . . . , µM ]. (3.7)

Expressing R = AT1 Q(QTQ)−1 =: AT1 G1 we obtain

R[µ1, µ2, . . . , µM ] =
r1∑

α1=1
U[α1, µ2, . . . , µM ]G1[µ1, α1]. (3.8)

By construction of the unfolding matrices of U one can deduce that rank Rk ≤ rk. Thus, the
process can be repeated inductively for the next index (α1, µ2) to obtain the remaining cores
Gk(αk−1, µk, αk) for k = 2, . . . ,M , giving the TT representation

U[µ1, . . . , µM ] =
r1,...,rM−1∑
α1,...,αM−1

G1[µ1, α1]G2[α1, µ2, α2] . . . GM [αM−1, µM ]. (3.9)

Replacing the QR decomposition in the construction with a singular value decomposition
A1 = UΣV T with Σ = diag(σ1, . . . , σr1) containing the singular values of A1, we can replace
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Σ by some Σs = diag(σ1, . . . , σs) for s ≤ r1. This truncation (hard thresholding) yields an
approximation to A1 which is optimal in the Frobenius norm of matrices. This thresholding
algorithm can be used to round a tensor to some prescribed rank and granting numerical
feasibility. Nevertheless, this process is an approximation and the error must be controlled. For
a more rigorous treatment we refer to [2, sec. 3.7]
An error bound for the approximation with a rank-r tensor is given by the next lemma.
Lemma 3.1 ([18] Cor. 2.4). Given a tensor U ∈

⊗M
m=1 Rnm and a rank vector r, there exists

an approximation V of U with maximal rank r. The approximation can be obtained by the
Higher Order Singular Value Decomposition (HOSVD) and it holds

‖U−V‖F ≤
√
M − 1‖U−V∗‖F , (3.10)

where V∗ is the best approximation of V with bound ranks r and ‖ · ‖F denotes the Frobenius
norm, which is the square root of the sum of square magnitudes of the tensor elements.

Proof. The existence follows immediately by the sequential closedness of the fixed rank mani-
folded spanned by all TT tensors of some prescribed multi-rank and the quasi-optimally bound
is the result of the reiterated singular value decomposition and its optimality for matrices. �

Remark 3.2. The storage complexity for a tensor in the tensor train format can be estimated by
O(nr2d). (3.11)

where n = max{ni : i ∈ {1, . . . , d}}, r = max{ri : i ∈ {1, . . . , d−1}}. Hence, the exponential
growth with the number of dimensions (curse of dimensionality) can be reduced to a polynomial
complexity.
Remark 3.3. The Hadamard product of two TT-tensors U and V is the element-wise multipli-
cation in the full tensor representation, and can be extended easily to the infinite-dimensional
setting of multivariate continuous functions where it is the point-wise multiplication. It is
defined by

C[x1, . . . , xM ] = U[x1, . . . , xM ] ◦V[x1, . . . xM ]. (3.12)
The Hadamard product is a binary operation between two tensors, e.g. two TT tensors. When
applying this operation in the TT-format, the resulting TT-tensor has a rank which is at most
the product of the individual representation ranks,

C[x1, . . . , xM ] = U1[x1] · · ·UM [xM ]V1[x1] · · ·VM [xM ]
= (U1[x1]⊗ V1[x1]) · · · (UM [xM ]⊗ VM [xM ])
=: C1[x1] · · ·CM [xM ].

3.2. Functional Representation in TT-Format. As in [8], we employ the tensor train for-
malism for functional approximations of stochastic operators and functions with appropriate
polynomials in the parameters. Concerning our model problem (2.26), we have to consider a ba-
sis approximation in both physical and stochastic space. We refer to the approximation of [7] in
H1

0 (D)×
(⊗M

m=1 L
2
πm([−1, 1])

)
given by a polynomial basis in L2

πm([−1, 1]) for the stochastic
dimensions. This fact concludes the extended TT format, possessing a polynomial basis on the
leafs of the dimension tree, instead of a general Tucker basis, i.e. U j [xj , kj ] = Pkj (xj), where
(Pk)k∈N are the orthonormal Legendre polynomials with respect to the weighted inner product
in 〈·, ·〉πj on L2[−1, 1] for j = 1, . . . ,M . For an element V ∈

⊗M
m=1 L

2
πm([−1, 1]) =: Y, the

corresponding core tensor is denote by Ṽ, i.e.

V[x] =
∞∑

µ1=1
· · ·

∞∑
µM

Ṽ[µ1, . . . , µM ]
M∏
i=1

Pµi(xi), x ∈ ΞM := [−1, 1]M (3.13)



10

To appropriately use the extended TT format we have to consider a finite dimensional approxima-
tion PM (N) ⊂ Y by polynomials of degree at most N ∈ N in every dimension m = 1, . . . ,M ,
i.e. Λ = {(µ1, . . . , µm) : µi = 1, . . . , N}. Choosing an appropriate set of interpolation points
ΞM = {yµ1 , . . . , yµ1 : µ ∈ Λ}, the interpolation in ΞM follows from tensorization of the uni-
variate Lagrange polynomials Lµ(y) :=

∏M
m=1 Lµm(ym) such that Lµ(ŷν) = δµν for µ, ν ∈ ΛL

and y ∈ ΞM . Given some function f : ΞM → R, we define the N -th order tensor product
interpolation operator IN by a univariate interpolation basis L = (Lm)Nm=1 and collocation
nodes ŷj ∈ ΞM , j = 1, . . . , N , such that for all (x1, . . . , xM ) ∈ ΞM ,

INf(x1, . . . , xM ) :=
∑
µ∈Λ

f(ŷµ1 , . . . , ŷµM )Lµ1(x1) · · ·LµM (xM ) ∈ PM (N). (3.14)

Here, the multi-index set Λ ⊂ {0, . . . , N}M specifies the polynomial degrees used in the
representation (3.14). We define the tensor

F[µ1, . . . , µd] := f(ŷµ1 , . . . , ŷµM ) .

The interpolation operator IN yields the usual error bounds [20], namely for f ∈ Hs(ΞM )
there exists a constant C > 0 such that

‖f − INf‖Y ≤ CN−s‖f‖Hs(ΞM ). (3.15)

The error of (3.15) using the quasi best rank-r TT compression of F, denoted by F∗ :=
HOSV D(F) and the best rank-r TT approximation F+, can be bounded with the previous
results (3.10) and (3.14)

‖f −
∑
µ∈Λ

F∗[µ]Lµ‖Y ≤ ‖f − INf‖Y + ‖
∑
µ∈Λ

(F[µ]− F+[µ])Lµ‖Y

which yields the bound

‖f −
∑
µ∈Λ

F∗[µ]Lµ‖Y ≤ C
(
N−s‖f‖Hs(ΞM ) + c2

√
M − 1‖F− F+‖F

)
. (3.16)

The bound c2‖F−F+‖F can be significantly improved by expanding INf into an ortho-normal
Legendre basis instead of the interpolation basis with an ill-conditioned Gram matrix. Ths can
be achieved by a rank-one transformation ⊗Mi=1Ti : F→ F̂. For details see section 3.4.

Remark 3.4. If we apply the Hadamard product to two tensors U,V in the extended TT
format, the resulting polynomial degree has doubled, and it is not given by the Hadamard
poduct of Ũ, Ṽ. Therefore, we approximate the Hadamar poduct of U,V, by collocation at
the interpolation points, i.e. we compute

T[µ1, . . . , µd] := U[ŷµ1 , . . . , ŷµd ]V[ŷµ1 , . . . , ŷµd ].

Usage of (3.16) with F = U ◦V and F+ = T+ yields an error bound for the coefficient tensor
Hadamard product.

3.3. (Adaptive) Stochastic Galerkin Method. By the introduced tensor train format and the
approximation in stochastic and physical space, we present the solution of the forward problem
in Y = H1

0 (D)⊗
(⊗M

m=1 L
2
πm([−1, 1])

)
for the model problem (2.2) using approximation in

finite elements and a tensorized Legendre basis, respectively. Therefore, consider the set of
finitely supported multi-indices

F̂ := {µ ∈ NM0 : | suppµ| <∞} (3.17)
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and for any Λ ⊂ F̂ the family of orthogonal Legendre polynomials (Pµ)µ∈Λ. For a given
dimension vector (dm)m=1,...,M ∈ NM0 we define the multi-index set

Λ :=
{

(µ1, . . . , µM ) ∈ F̂ : µm = 0, . . . , dm − 1; m = 1, . . . ,M
}
. (3.18)

By that we obtain the semi-discrete space

Y(Λ) :=

vΛ(x, y) =
∑
µ∈Λ

vΛ,µ(x)Pµ(y) : vΛ,µ ∈ H1
0 (D)

 ⊂ Y. (3.19)

Discretizing H1
0 (D) in conforming finite element spaces (X (Λ)p)p≥1 by piecewise polynomials

of degree p on some triangulation T of D yields a nodal basis (ϕi)h−1
i=0 with h = dim(Xp). The

fully discrete space is given by

Yp(Λ, T ) :=

vh(x, y) =
∑
µ∈Λ

vh,µ(x)Pµ(y) : vh,µ ∈ Xp

 ⊂ Y(Λ) (3.20)

and the Galerkin projection of the solution of the variational problem obtained from (2.2) is
the unique Gh,M ∈ Yp(Λ, T ) satisfying∫

ΞM

∫
D
u(x, y)∇Gh,M (x, y)∇v(x, y) =

∫
ΞM

∫
D
f(x)∇v(x, y) for all v ∈ Yp(Λ, T ).

(3.21)
Hence, we get the representation

Gh,M (x, y) =
N∑
k=1

∑
µ∈Λ

U [k, µ]ϕk(x)Pµ(y) x ∈ D, y ∈ ΞM . (3.22)

Using a tensor train recompression of the coefficient tensor U ∈ RN×d1×...,dM by e.q. a HOSVD
we can write in abuse of the same notation

Gh,M (x, y) =
N∑
k=1

∑
µ∈Λ

U [k, µ]ϕk(x)Pµ(y) (3.23)

=
r1,...,rM−1∑

k1,...,kM−1=1

 d0∑
µ0=0

U0[µ0, k1]ϕµ0(x)

 . . .
 dM∑
µM=0

UM [kM−1, µM ]PµM (yM )

 .
= U [x, y1, . . . , yM ] = U0[x]U1[y1]U2[y2] . . . UM [yM ] x ∈ D, y ∈ ΞM .

In fact, the defining parameters M,Λ and T can be obtained adaptive using error estimators
for the stochastic and physical space, introduced in [7] and for the TT tensor setting adapted
in [8]. An example of the resulting procedure is mentioned in section 6

3.4. Low rank approximation of the Bayesian potential. A key point for the proposed
sampling-free Bayesian approach is the explicit representation of the posterior measure (and
consequently the marginals) in terms of the functional representation in the TT format as
described in the preceding sections. For efficient calculations, it is paramount to carry out
all evaluations in the TT format. We recall the Radon-Nikodym derivative which has to be
computed subsequently,

dπδ
dπ0

(u) = 1
Z

exp(−1
2〈δ − (O ◦G)(u), Γ−1(δ − (O ◦G)(u))〉). (3.24)

In actual computations, we use the approximate solution Gh,M of the forward problem given as a
multivariate polynomial representation in TT format (3.23) where the discretization parameters
h and M determine the FE mesh width and the length of the parameter vector used in the
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expansion of the data, respectively. Furthermore, x̂ = (x1, . . . , xK) are the nodes in the
physical domain D employed with the measure operator O. The observed approximated system
response O ◦Gh,M again is a TT tensor whose first core is of rank 1 and which is indexed by
k ∈ {1, . . . ,K} denoting the physical measurement xk,

(O ◦Gh,M )(x̂, y) =
r1∑

k1=1
· · ·

rM−1∑
kM−1=1

(
K∑
k=1

U0[k, k1]
)
· · ·

 dM∑
µM=0

UM [kM−1, µM ]PµM (yM )

 .
(3.25)

Note that this tensor object represents the stochastic solution at certain measure points x̂
parametrized with a polynomial basis in y. This has to be considered when evaluating the
inner product (3.24) in RK . In order to make the computation feasible and avoid handling
the large product polynomial basis which would normally arise, we introduce a collocation
ansatz in the parametric dimensions and then interpolate the solution. For this, we employ
univariate Chebyshev nodes of the same order L in every dimension to obtain a full tensor
grid in ΞM = [−1, 1]M . To make the construction precise, choose ŷν̂ = cos

(
2ν−1

2L π
)
with

1 ≤ ν̂ ≤ L. We then evaluate the sum over every tensor core at any combination of nodes and
store the results in the corresponding tensor cores,

(O ◦Gh,M )(x̂`, ŷν) =
r1∑

k1=1
· · ·

rM−1∑
kM−1=1

(
K∑
k=1

U0[`, k1]
) d1∑

µ1=0
U1[k1, µ1, k2]Pµ1(ŷν1)

×
(3.26)

× · · ·

 dM∑
µM=0

UM [kM−1, µM ]PµM (ŷνM )

 (3.27)

=
r1∑

k1=1
· · ·

rM−1∑
kM−1=1

Ũ0[`, k1]Ũ1[k1, ν1, k2] · · · ŨM [kM−1, νM ] (3.28)

= Ũ0[`]Ũ1[ν1] · · · ŨM [νM ] =: Ũ [`, ν1, . . . , νM ], (3.29)

for ` = 1, . . . ,K and ν = (ν1, . . . , νM ) ∈ {1, . . . , L}M =: ΛL. The resulting tensor of the
Bayesian potential can then be evaluated pointwise at the LM collocation nodes ν ∈ ΛL,

Ûh,ML [ν] := 1
2(δ − Ũ [·, ν])TΓ−1(δ − Ũ [·, ν]), (3.30)

where the Euclidean inner product (expanded in (3.23)) is calculated by the sum of the terms

A := δTΓ−1δ, (3.31)
B := −2δTΓ−1Ũ [·, ν], (3.32)
C := Ũ [·, ν]TΓ−1Ũ [·, ν]. (3.33)

The first term A is a order and rank 1 tensor product which has to be raised to aM dimensional
tensor, which is constant in the remaining dimensions. This can be carried out by taking
Ã = A⊗ e⊗ · · · ⊗ e, where e is the vector (1, . . . , 1). The matrix tensor product in the mixed
term B acts only on the first core of the collocated solution. In order to avoid rank increasing
operations, we do not implement the summation of the remaining vector product but instead
treat the physical and stochastic dimensions separately. For this, we create a copy of the TT
tensor Ũ [·, ν], set all entries in the first core to zero, multiply it by K − 1 and add the result
to the already calculated Γ−1Ũ [·, ν]. Computationally more involved is the quadratic term C.
Usually the TT-ranks add up with every summation and are multiplied with every multiplication.
Hence, while increasing the number of measurements K clearly adds information to the problem,
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this may also lead to a substantial growth in the tensor ranks which has to be compensated by
recompression of the low-rank representation. Nevertheless, the proposed splitting of the inner
product allows for a parallel computation and reduces the rank increase when compared to a
straightforward approach.
The interpolation in ΞM follows from tensorization of the univariate Lagrange polynomi-
als Lµ(y) :=

∏M
m=1 Lµm(ym) such that Lµ(ŷν) = δµν for µ, ν ∈ ΛL and y ∈ ΞM . An

approximation of the Bayesian misfit function (2.12) is then given by

Φh,ML (y; δ) : Ξ → R, (y1, . . . , yM , 0, . . .) 7→
∑
µ∈ΛL

Ûh,ML [µ]Lµ(y). (3.34)

This representation does not depend on the physical space anymore and satisfies the following
property.

Lemma 3.5. Let Φh,M (·; δ) ∈ Hs(Ξ), s > 0, be an approximation of the Bayesian potential
which is Lipschitz in the first component. Given a prescribed maximal tensor rank r ∈ NM ,
there holds

Φh,ML (·; δ) : Ξ → R, (y1, . . . , yM , 0, . . .) 7→
∑
µ∈ΛL

Uh,ML [µ]Pµ(y), (3.35)

where (Pµ)µ∈ΛL =
(∏L

m=1 Pµm

)
µ∈ΛL

denotes the orthonormal Legendre basis of

P(ΛL) :=
{
p(y) =

M∏
m=1

pm(ym) : y ∈ ΞM , pm polynomial of degree L
}

(3.36)

⊂ L∞(ΞM ), (3.37)

and Uh,ML is the coefficient tensor of Φh,ML , resulting from (3.30) with additional one dimensional
basis change in every tensor core by T = (ti,j)i,j=1,...,L given by

ti,i := 〈Li, Pj〉 =
∫ 1

−1
Lµ(x)Pν(x) dx. (3.38)

Furthermore, there exists a constant C > 0 such that

‖Φh,M − Φh,ML ‖L2
π0 (Ξ) ≤ C

(√
M − 1‖Uh,ML − Uh,M∗L ‖F (3.39)

+ L−s‖Φh,M‖Hs(Ξ)

)
, (3.40)

where Uh,M∗L is the best rank-r approximation of the coefficient tensor Uh,ML .

Proof. The proof is an immediate consequence of (3.16) applied to the construction of the
Bayesian potential approximation. �

Remark 3.6. Note that the proposed collocation and interpolation approach is exact for L ∈ N
sufficiently large, i.e. twice the maximal degree of the solution of the operator in (3.23). The
Bayesian potential calculated from the tensor representation,

Φh,M (y, δ) = ‖δ − (O ◦Gh,M )(y)‖Γ , (3.41)

is a polynomial depending on the active index set Λ ⊂ F . With this adaptively constructed set
at hand, we can easily choose the collocation degree L for an exact interpolation. To make this
more efficient and consider the anisotropy in the active set Λ, we can choose the collocation
degree seperately in each dimension which results in a sparser non-product structure in ΞM .
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Remark 3.7. The basis change in (3.35) can be implemented computationally robust since it
contains only one dimensional basis functions.

3.5. Exponential of a TT-Tensor. As presented in section 3.4 we have an almost optimal
functional representation of the Bayesian potential in terms of an orthonormal basis, which
exhibits important properties to become a useful surrogate model. Nevertheless, we want to
present a sampling free Bayesian inversion method, therefore we have to consider the remaining
terms in (3.24). From a practical point of view, the exponential of the functional representation
of the potential is a critical part. Obtaining a closed form representation is subject to collocation
and interpolation, i.e. we take collocation nodes ŷ ∈ ΞM and create a tensor from (3.34)
analog to (3.26), which is used for multivariate interpolation using Lagrange polynomials and a
rank one basis change to obtain orthonormal Legendre polynomials. This procedure needs to
be consistent in the tensor train format, which additionally gives the possibility to work with
tensor meshes of magnitudes unsustainable even in modern devices.
In [5] several possibilities to calculate the matrix exponential are described, which in principle
could be applied in the tensor framework. We make use of the well-known fact that the
exponential is the solution of a simple ordinary differential equation (ODE)

d
dtW (t, ŷ, δ) = −W (t, ŷ; δ) ◦ Φ(ŷ, δ) (3.42)

W (0, ŷ, δ) = 1. (3.43)

The solution to this initial value problem is given by

W (t, ŷ, δ) = exp(−tΦ(ŷ, δ)), (3.44)

andW (1, ŷ, δ) is equivalent to the exponential of the negative Bayesian potential. It is to mention
that, in abuse of notation, Φ(ŷ, δ) denotes the discrete collocation tensor of the approximated
potential in (3.34). Hence, the initial value problem (3.42) is a low-rank approximation of the
original system interpreting the point-wise multiplication as Hadamard product. It remains to
solve this ODE in tensor format. [16] explains the problem of quasi-optimal approximation
on larger time-scales and gives rise to dynamical algorithms maintaining in the desired rank
manifold, without the use of hard-thresholding.

3.5.1. Runge-Kutta methods. Numerical methods for the solution of ODEs are a classical
topic [13, 3]. For our purposes, we adapt a well-known class of explicit s-stage Runge-Kutta
methods to the TT-tensor framework. Runge-Kutta schemes are usually described by Butcher-
Tableaus of the form

c A
bT (3.45)

where, in explicit approaches, A = [ai,j ] is a strict lower-triangular s × s matrix. We cite a
result for the general scheme.

Proposition 3.8. Let Y (t) be the unique solution to the initial value problem

d
dtY (t) = f(t, Y (t)), (3.46)

Y (0) = Y0. (3.47)
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Then, the approximation method given by a temporal grid ti = ih, a Butcher-Tableau (3.45)
and the iterative procedure

Yn+1 = Yn + h
s∑
i=1

biki, (3.48)

ki = f

tn + cih, Yn + h
i−1∑
j=1

ai,jkj

 , (3.49)

is consistent if and only if
∑s
i=1 bi = 1.

Assuming an admissible rhs f , i.e. continuous in the first and Lipschitz in the second argument,
we obtain convergence rates equal to the resulting consistency rate, which depends on the
choice of A, b and c. Examples are the explicit Euler scheme with convergence order 1,

0 0
1 , (3.50)

the Heun method with convergence order 2,
0 0 0
1 1 0

1/2 1/2
, (3.51)

and the classical Runge-Kutta method which is convergent of order 4,
0 0 0 0 0

1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

. (3.52)

Remark 3.9. For our context, we only need to consider a stationary rhs f . Hence, the calculations
are independent of the nodes vector c. However, the stability and convergence of the considered
method still also depends on c.

For the evaluation of the Bayes potential in TT format, we have to consider (3.42) as tensor
ODE and extend the iteration scheme (3.48) to TT tensors. This is formally described in
Algorithm 1. Figure 1 pictures the convergence of Vexp for different numerical schemes. The
computation was executed for a randomly created order five TT-tensor with dimensions up to
10 and ranks up to 20. The error for this plot is determined approximately by Monte-Carlo
sampling of the tensor and comparison with the exact pointwise exponential. One can observe
the mentioned convergence rates for the different numerical schemes. The implicit and explicit
Euler display the same convergence but the implicit method yields an approximation already for
less than 10 iteration steps.

Remark 3.10. Note that the tensor multiplication in line 11 has to be carried out element-wise,
i.e. in the Hadamard sense. It is apparent that with regard to complexity, the iteration process is
dominated by these tensor multiplications. As mentioned above, this leads to a strong increase
of tensor ranks due to the multiplication of the respective ranks of the involved tensors.
Since explicit schemes are not unconditionally stable and hence may require a very small step
size and many iterations, the inevitable increase of tensor ranks in each step becomes a pressing
issue. To keep the scheme computationally feasible, the tensor has to be recompressed to a
prescribed tolerance in each iteration.
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Algorithm 1: explicit Runge-Kutta method for TT-tensors
Require: TT-tensor V , number of iterations N , maximal rank r, rounding precision ε,

Butcher-Tableau (A, b)
1: Vexp = (1, . . . , 1)⊗ · · · ⊗ (1, . . . , 1) according to dimensions and ranks of V .
2: for l = 1 : N do
3: if max(TT-ranks of Vexp) > r then
4: Vexp ← hard-thresholding to maximal rank r and precision ε.
5: end if
6: summ = 0
7: for j = 1 : s do
8: for i = 1 : j − 1 do
9: summ = summ + ai,jki
10: end for
11: kj = hf(Vexp + summ) = hV ◦ Vexp
12: end for
13: summ = 0
14: for j = 1 : s do
15: summ = summ + bjkj
16: end for
17: Vexp = Vexp + summ
18: end for
19: return Vexp

While this may become impossible with general tensors, the convenient structure of the Bayesian
misfit (element-wise negative and hopefully small), this procedure turns out to be relatively
stable.

3.5.2. Adaptive step size Runge-Kutta algorithm. Adaptivity can often greatly reduce the
computational complexity while maintaining a high accuracy of the solution. We hence discuss
embedded step size control of Runge-Kutta methods as described in Section 3.5.1. The main
idea is to take a second Runge-Kutta approximation of higher order q > p which reuses the
already calculated increments ki of the order p scheme, i.e.,

Y ∗n+1 = Y ∗n + hn

s∑
i=1

b∗i ki.

The resulting error

en+1 = ‖Yn+1 − Y ∗n+1‖F = hn‖
s∑
i=1

(bi − b∗i )ki‖F (3.53)

is of order p and it can be used as an error estimator to adaptively adjust the step size. Given a
desired approximation tolerance τ > 0 and a delay parameter 0 < β < 1, we obtain an optimal
step size for the next step in the iteration process by

hn+1 =

βhn
(

τ
en+1

) 1
p en+1 >= τ

βhn
(

τ
en+1

) 1
p

+1
else.
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Figure 1. Convergence rates (top) and measured time (bottom) of different
Runge-Kutta schemes for the evaluation of the tensor exponential for decreasing
step sizes. The error is determined by Monte-Carlo sampling with respect to
the point-wise exact exponential.

Proposition 3.11. Assume 0 < p < q <∞ and two Runge-Kutta methods with convergence
of order p and q. Then, the embedded Runge-Kutta method for (3.46) converges with order p.

3.5.3. Implicit Method. Usually, the above defined methods are stable only in specific restricted
regions. In order to alleviate such limitations, we can take advantage of implicit methods which
are unconditionally stable. The simplest implicit method is the first order convergent backward
Euler scheme which can be written as

Wk+1(ŷ, δ) = Wk(ŷ, δ) + hΦ(ŷ, δ) ◦Wk+1(ŷ, δ)

In every iteration step of the implicit Euler scheme a system of linear equations has to be
solved, which in our setting consists of TT tensors. Solving linear equation system involving
TT-tensors is e.g. examined in [22]. For our computations, we use the Alternating Minimal
Energy (AMEN) [6] algorithm with a random starting tensor. In experiments, as a result of its
unconditional stability, the implicit Euler scheme already converges for a small number of steps,
i.e., a large step size. We now express the main result of this section.

Lemma 3.12. Let Φh,ML (·; δ) ∈ P(ΛL) be an approximation of the Bayesian potential which
is Lipschitz in the first component. Assume there is a stable one-step Runge-Kutta method
of convergence order p ≥ 1 with step size τ > 0. Then, for a prescribed maximal tensor rank
r ∈ NM , the following mapping is well-defined

expτ
(
−1

2Φ
h,M
L (·; δ)

)
: Ξ → R, (y1, . . . , yM , 0, . . .) 7→

∑
µ∈ΛL

Uh,ML,τ [µ]Pµ(y), (3.54)
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Algorithm 2: Implicit Euler method for TT-tensors
Require: TT-tensor V , number of iterations N , maximal rank r, rounding precision ε
1: O = (1, . . . , 1)⊗ · · · ⊗ (1, . . . , 1) according to dimensions and ranks of V
2: Vexp = O
3: for j = 1 : N do
4: if max(TT-ranks of Vexp) > r then
5: Vexp ← hard-thresholding to maximal rank r and precision ε
6: end if
7: diag(O − 1

N V, . . . , O −
1
N V )Vexp = Vexp

8: end for
9: return Vexp

where Uh,ML,τ is the resulting coefficient tensor of Φh,ML from (3.35) applied to (3.42). Fur-
thermore, if (e−

1
2Φ

h,M
L ) ∈ H s̃(Ξ) for some s̃ > 0, then there exists a constant C̃ > 0 such

that

‖expτ
(
−1

2Φ
h,M
L

)
− exp

(
−1

2Φ
h,M
L

)
‖L2

π0 (Ξ) ≤ Ĉ
(√

M − 1‖Uh,ML,τ − U
h,M∗
L,τ ‖F (3.55)

+ L−s̃‖e−
1
2Φ

h,M
L ‖H s̃(Ξ) + τ−p

)
, (3.56)

where Uh,M∗L,τ is the best rank-r approximation of the coefficient tensor Uh,ML,τ .

Proof. The result follows directly from the stability of the Runge-Kutta method and (3.16). �

4. Bayesian Inversion Using Low-Rank Tensor Approximation

This section is concerned with the derivation of of an explicit representation of the Bayesian
posterior density based on the results of the preceding sections.
We pointed out the usability of the tensor train format to express the Bayesian potential in
terms of multivariate polynomials (3.34). Moreover, we have shown that we can calculate the
point-wise exponential of a TT-tensor with higher order Runge-Kutta methods efficiently, or at
least stable using the implicit Euler approach from section 3.5. Combining both ideas with a
suitable interpolation basis leads to a functional representation of the Bayesian posterior density

expτ
(
−1

2Φ
h,M
L (y; δ)

)
=
∑
µ∈ΛL

Uh,ML,τ [µ]Pµ(y), for y ∈ Ξ. (4.1)

Employing the TT tensor structure and the shorthand Vk := (Uh,ML,τ )k for the tensor cores
k = 0, . . . ,M we have

expτ
(
−1

2Φ
h,M
L (y; δ)

)
=

r1∑
k1=1
· · ·

rM−1∑
kM−1=1

V0[k1]

 L∑
µ1=0

U1[k1, µ1, k2]Pµ1(y1)

× (4.2)

× · · ·

 L∑
µM=0

VM [kM−1, µM ]PµM (yM )

 .
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The usability of (4.2) becomes apparent when estimating usually expensive quantities as e.q.
the norming factor Z from (2.31)

Z = Eπδ [1] = Eπ0

[
exp

(
−1

2Φ(·, δ)
)]

. (4.3)

This high dimensional integral equation is a challenging task for direct integration methods.
Method classes like MCMC are favored partly due to the benefit of not having to calculate this
constant. Contrasting, in the TT tensor setting using a functional representation in orthogonal
polynomials, the approximation to the normalization constant is worked out by

Zh,ML,τ = Eπ0 [expτ (−Φh,ML (y, δ))] =
∫
ΞM

expτ (−Φh,ML (y, δ)) d1
2λ(y) (4.4)

= 2−M
∑
µ∈ΛL

V [µ]
1∫
−1

Pµ1(y1) dλ(y1) · · ·
1∫
−1

PµM (yM ) dλ(yM ) (4.5)

= 2−MV [0, 0, . . . , 0]. (4.6)

This one tensor evaluation, consisting of M + 1 Matrix vector multiplications, yields the
expression for our approximated Bayesian density in (2.11)

dπh,Mδ,L,τ
dπ0

(y) = 1
Zh,ML,τ

expτ
(
−1

2Φ
h,M
L (y, δ)

)
. (4.7)

This joint density contains all information about the unknown parameter in our model parametrized
by the expansion (2.25). Concerning parameter estimation, the tensor train decomposed Bayesian
potential can be used to estimate the marginals as well. Setting y−k = (y1, . . . , yk−1, yk+1, . . . , yM )
the k-th marginal density for the parameter yk is given bydπh,Mδ,L,τ

dπ0


k

(yk) = 1
Zh,ML,τ

∫ 1

−1
expτ

(
−1

2Φ
h,M
L (y, δ)

)
dπ0(y−k) (4.8)

= 2−M+1
L∑
j=1

V [0, 0, . . . , 0, j, 0, . . . , 0]Pj(yk), (4.9)

using again the orthogonality of the Legendre polynomials.
Another advantage can be employed by estimating a quantity of interest (2.32), e.q. moments
of the forward solution with respect to the posterior measure.

Example 4.1. Given the representation (3.23) of the forward map in [8, sec 3.3] it is shown
that the estimation of the mean of the solution with respect to the prior measure is a simple
tensor evaluation as in (4.4). Employing the same argument for the posterior measure gives
the calculation

E
πh,M
L,τ,δ

[
Gh,M (y)

]
=
(1

2

)M ∫
Ξ

 N∑
i=1

∑
µ∈Λ

U [i, µ]Pµ(y)

 ∑
ν∈ΛL

V [ν]Pν(y)

 dy. (4.10)

Here we use again the orthogonality of the Legendre polynomials and moreover the fact that
the index sets Λ and consequently ΛL are monotone. Thus,

E
πh,M
L,τ,δ

[
Gh,M (y)

]
=
(1

2

)M N∑
i=1

∑
µ∈Λ∩ΛL

U [i, µ]V [µ]. (4.11)
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Obviously, the extended TT format grants easy access to important quantities which, by
sampling or integration in general, are hard to obtain.

5. Error Analysis

5.1. Convergence of the posterior. In considering the Hellinger distance,

dHell(πδ, πh,Mδ,L,τ ) =

1
2

∫
ξ∈[−1,1]|J|


√
dπδ
dπ0
−

√√√√dπh,Mδ,L,τ
dπ0


2

dπ0


1
2

, (5.1)

there is a tool to measure the distance of the analytical posterior measure πy and an approxi-
mation πh,Mδ,L,τ , containing possible approximations of the forward operator by an M -term series
truncation and a finite element method with meshsize h as described in (3.23), a collocation
with polynomial interpolation of degree L (3.30) and a stepsize parameter τ for the ODE solver
of (3.42) In [1], it is shown that an alternative approximation by Gaussian processes yields sole
dependence on the L2

π0(X)-norm of the solution operator.
The approach designed in this article is an analogous method using a different basis representation
and due to parametrization and tensor compression we are able to use more design points.
With the same arguments as in [1] Lemma 4.1. we can show

Zh,ML > 0 (5.2)

and therefore the following theorem holds.

Theorem 5.1. Assume that supy∈Ξ |O(G(y))| <∞ and supy∈Ξ ‖G(y)−Gh,M (y)‖X → 0 as
N →∞. Then, there exists a constant C > 0 independent of M,h,L and τ , such that

dHell(πδ, πh,Mδ,L,τ ) ≤ C‖G−Gh,M‖L2
π0 (X) + C̃(h,M,L, τ), (5.3)

where C̃(L, τ)→ 0 as h, τ → 0 and M,L→∞.

Proof. We consider the Bayesian posterior density (2.31) and the calculated approximation

dπh,Mδ,L,τ
dπ0

(ξ) = 1
Zh,ML

expτ (−Φh,ML (ξ; δ)) , (5.4)

with Φh,ML (ξ; δ) from (3.34) and expτ is the approximated exponential as solution of the ODE
(3.42).
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Given that setup, by Hölders inequality we have

2dHell(πδ, πh,Mδ,L,τ )2 = Eπ0


e− 1

2Φ(·,δ)
√
Z

− e
− 1

2Φ
h,M
L (·,δ)

τ√
Zh,ML

2
= 2
Z
Eπ0

[(
e−

1
2Φ(·;δ) − e−

1
2Φ

h,M
L (·,δ)

τ

)2]
︸ ︷︷ ︸

:=I

− 2
Z
Eπ0

[
e−Φ

h,M
L (·,δ)

]

+

 4
Z
− 2√

ZZh,ML

Eπ0

[
e−

1
2Φ(·,δ)e

1
2Φ

h,M
L (·,δ)

τ

]

≤ I − 2Zh,ML
Z

+
4
√
ZZh,ML
Z

− 2

= I − 2Zh,ML

 1√
Z
− 1√

Zh,ML

2

︸ ︷︷ ︸
:=II

≤ I + II . (5.5)

Using the triangle inequality we can split the difference in I into two distinct error terms

∣∣∣∣e− 1
2Φ(ξ;δ) − e−

1
2Φ

h,M
L (ξ;δ)

τ

∣∣∣∣ ≤ ∣∣∣e− 1
2Φ(ξ;δ) − e−

1
2Φ

h,M
L (ξ;δ)

∣∣∣+∣∣∣∣e− 1
2Φ

h,M
L (ξ;δ) − e−

1
2Φ

h,M
L (ξ;δ)

τ

∣∣∣∣ . (5.6)

Due to the continuity of the observation operator O and the convergence of the forward
operator, we have that the exponential expression in the first term is locally Lipschitz, which
means there exists a Q > 0, such that

|e−
1
2Φ(ξ;δ) − e−

1
2Φ

h,M
L (ξ;δ)| ≤ 1

4Q|Φ(ξ; δ)− Φh,ML (ξ; δ)| . (5.7)

Here, the second term of (5.6) models the error of the exponential approximation with a chosen
ODE solver. Another triangle inequality yields the splitting of the potential interpolation error

|Φ(ξ; δ)− Φh,ML (ξ; δ)| ≤ |Φ(ξ; δ)− Φh,M (ξ; δ)|+ |Φh,M (ξ; δ)− Φh,ML (ξ; δ)|, (5.8)

where the second term is the interpolation error of the potential itself.
To reduce notation we omit the functional dependence of Φ := Φ(·, δ) and their approximations.
Thus,
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Z

2 I ≤
1
16Q

2Eπ0

[(∣∣∣Φ− Φh,M ∣∣∣+ ∣∣∣Φh,M − Φh,ML ∣∣∣)2
]

(5.9)

+ 1
2QEπ0

[(∣∣∣Φ− Φh,M ∣∣∣+ ∣∣∣Φh,M − Φh,ML ∣∣∣) ∣∣∣∣e− 1
2Φ

h,M
L − e−

1
2Φ

h,M
L

τ

∣∣∣∣]
+ Eπ0

[∣∣∣∣e− 1
2Φ

h,M
L − e−

1
2Φ

h,M
L

τ

∣∣∣∣2
]

= 1
16Q

2Eπ0

[(∣∣∣Φ− Φh,M ∣∣∣)2
]

+ 1
8Q

2Eπ0

[∣∣∣Φ− Φh,M ∣∣∣ ∣∣∣Φh,M − Φh,ML ∣∣∣]
+ 1

16Q
2Eπ0

[(∣∣∣Φh,M − Φh,ML ∣∣∣)2
]

+ 1
2QEπ0

[∣∣∣Φ− Φh,M ∣∣∣ ∣∣∣∣e− 1
2Φ

h,M
L − e−

1
2Φ

h,M
L

τ

∣∣∣∣]
+ 1

2QEπ0

[∣∣∣Φh,M − Φh,ML ∣∣∣ ∣∣∣∣e− 1
2Φ

h,M
L − e−

1
2Φ

h,M
L

τ

∣∣∣∣]+ 1
2QEπ0

[∣∣∣∣e− 1
2Φ

h,M
L − e−

1
2Φ

h,M
L

τ

∣∣∣∣2
]

and using the reverse triangle as well as Hölder’s inequality
Z

2 I ≤
1
16Q

2Eπ0

[∣∣∣Φ 1
2 + (Φh,M )

1
2

∣∣∣2 ‖O‖2L(X ,Y )‖G−G
h,M‖2L2(X;X )

]
+ 1

8Q
2Eπ0

[∣∣∣Φ 1
2 + (Φh,M )

1
2

∣∣∣ ‖O‖L(X ,Y )‖G−Gh,M‖L2(X;X )|Φh,M − Φ
h,M
L |

]
+ 1

16Q
2‖Φh,M − Φh,ML ‖2L2

π0 (Ξ)

+ 1
2QEπ0

[∣∣∣Φ 1
2 + (Φh,M )

1
2

∣∣∣ ‖O‖L(X ,Y )‖G−Gh,M‖L2(X;X )

∣∣∣∣e− 1
2Φ

h,M
L − e−

1
2Φ

h,M
L

τ

∣∣∣∣]
+ 1

2Q‖Φ
h,M − Φh,ML ‖L2

π0 (Ξ)‖e−
1
2Φ

h,M − e−
1
2Φ

h,M
L

τ ‖L2
π0 (Ξ)

+ 1
2Q‖e

− 1
2Φ

h,M − e−
1
2Φ

h,M
L ‖2L2

π0 (Ξ)

≤ 1
16Q

2 sup
y∈Ξ

∣∣∣Φ(y)
1
2 + Φh,M (y)

1
2

∣∣∣2 ‖O‖2L(X ,Y )‖G−G
h,M‖2L2

π0 (Ξ)

+ 1
8Q

2 sup
y∈Ξ

∣∣∣Φ(y)
1
2 + Φh,M (y)

1
2

∣∣∣ ‖O‖L(X ,Y )‖G−Gh,M‖L2
π0 (Ξ)‖Φh,M − Φ

h,M
L ‖L2

π0 (Ξ)

+ 1
2Q sup

y∈Ξ

∣∣∣Φ(y)
1
2 + Φh,M (y)

1
2

∣∣∣ ‖O‖L(X ,Y )‖G−Gh,M‖L2
π0 (Ξ)‖e−

1
2Φ

h,M − e−
1
2Φ

h,M
L ‖L2

π0 (Ξ)

+ 1
2Q‖Φ

h,M − Φh,ML ‖L2
π0 (Ξ)‖e−

1
2Φ

h,M − e−
1
2Φ

h,M
L

τ ‖L2
π0 (Ξ)

+ 1
16Q

2‖Φh,M − Φh,ML ‖2L2
π0 (Ξ)

+ 1
2Q‖e

− 1
2Φ

h,M − e−
1
2Φ

h,M
L ‖2L2

π0 (Ξ)

By assumption, we can bound the supremum uniformly and independent ofM and h. Therefore,
we can rewrite I as

I ≤ C1‖G−Gh,M‖2Lπ0 (X ) + C̃1(h,M,L, τ), (5.10)

where C̃1(h,M,L, τ) goes to zero as L increases toward twice the maximal gpc degree of Λ,
τ → 0, h→ 0 and M →∞. Using the L2 bounds from Lemma 3.5 and 3.12, we can estimate
a convergence rate of C̃1.
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The second therm, II can be bounded by multiplication with
(
Z−Zh,ML
Z−Zh,ML

)2
and factoring out

an appropriate term

II = 2Zh,ML

 1√
Z
− 1√

Zh,ML

2

≤ 2Zh,ML max
{
Z−3,

(
Zh,ML

)−3
}(

Z − Zh,ML
)2

= 2Zh,ML max
{
Z−3,

(
Zh,ML

)−3
}(

Eπ0

[
e−Φ(·;δ) − e−Φ

h,M
L (·;δ)

])2
. (5.11)

Finally, by Jensens inequality and a similar argument as in (5.9), we obtain the upper bound on
II

II ≤ C2‖G−Gh,M‖2Lπ0 (X ) + C̃2(h,M,L, τ). (5.12)

The remainder C̃2(h,M,L, τ) is a rescaling of C̃1(h,M,L, τ). �

6. Numerical Experiments

To verify the introduced setting, we consider the model parametric stationary diffusion problem
on the unit square

−div(u∇p) = f in D := [0, 1]2 (6.1)
p = 0 on ∂D, (6.2)

with force term f ≡ 1. The unknown coefficient admits an affine-parametric presentation
analog to [8, sec. 7.2]

u(x, y) = 2 +
M∑
m=1

ψm(x)ym (6.3)

with
ψm(x) = αm cos(2π%1(m)x1) cos(2π%2(m)x2), (6.4)

where αm is of the form ᾱm−σ for some 0 < ᾱ < 1
ζ(σ) with σ > 0 and ζ the Riemann zeta

function. Moreover, we say

%1(m) := m− k(m)(k(m) + 1)
2 %2(m) := k(m)− %1(m) (6.5)

with k(m) = b−1
2 +

√
1
4 + 2mc. More precisely, the coefficient functions enumerate all planar

Fourier sine modes in increasing total order. The random variables are assumed to be uniformly
distributed ym ∼ U [−1, 1].
The goal is to estimate the distribution of u, resp. of the parameter y, from knowledge of noisy
measurement data

δ = (O ◦G)(y) + η. (6.6)
η is assumed to be Gaussian η ∼ N (0, Γ ) with covariance Γ = γI and γ < 1. To approximate
the forward solution G(y) we use the presented adaptive stochastic Galerkin approach and,
for reference, usual finite elements approximation with adaptive mesh refinements and order
p = 1, 2, 3. The adaptive solution algorithm is driven by the calibration of the physical mesh
acuteness h, the amount of stochastic modes M and the tensor rank r = (r0, . . . , rM ). Due
to the design of the error estimators, those parameters are chosen to balance the overall
approximation error. A suitable stopping criteria is given by the amount of information stored
in the tensor object, represented by the compressed amount of degrees of freedom. Therefore,
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Figure 2. Three resulting degrees of polynomials in the solution representation
(3.23) after reaching the threshold ndofs = 5 · 104 for finite elements of order
p = 1, 2, 3. We show the dimension with their respective polynomial degree.
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Figure 3. Physical mesh results of the adaptive stochastic Galerkin approach
for finite elements p = 1 (left), p = 2 (middle), p = 3 (right) after reaching
the threshold of ndofs = 5 · 104.

let Gh,M (x, y) = U [x, y] the system response (3.23) with coefficient tensor Ũ ∈ RN×d0×...×dM .
Then we define the TT-dofs as

ndofs := Nr0 +
M∑
m=1

rm−1dmrm. (6.7)

Remember, the first tensor rank r0 for the ASGFEM solution (3.23) is in fact nonzero and to
be precise, we consider r−1 = 0 to be part of the rank vector.
Nevertheless, we stop the refinement process when a given amount of TT-dofs is reached. For
a threshold of ndofs = 5 · 104 the resulting polynomial degrees can be seen in figure 2 and
the mesh refinement is exemplarily shown in figure 3 for P1 elements. As one would expect,
a finite elements discretization with higher order elements is already accurate in the physical
space and hence the algorithm refines the stochastic space, which results in higher polynomial
degrees and a larger consideration of coefficients in the uncertainty expansion. For p = 3 we in
fact obtained M = 67, whereas all spaces m ≥ 4 contain linear polynomials only.

The accuracy of the solution approximation can be seen in figure 4. We sampled the mean
error of the ASGFEM solution and a reference FEM solution with the same concinnity, using
Monte Carlo integration and N = 200 samples. It can be seen that we reach quasi-optimal
convergence orders in L1(Ξ;L2(D)) and L1(Ξ;H1

0 (D)) for the respective finite elements order.

Having a set of approximations of the forward solution Gh,M , we can focus on the inverse
problem. The designed algorithm contains measurements δ ∈ RK , which are observed at
K = 20 uniformly chosen nodes in D and obtained from the finest reference solution, disturbed
by a Gaussian noise with covariance factor γ = 10−3.
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Figure 4. Sampled mean of the forward solution error in L2(D) and H1
0 (D)

norm of the stationary diffusion problem on the square with homogeneous
Dirichlet boundary conditions and p = 1, 2, 3 FEM approximation w.r.t. number
of TT degrees of freedom (ndofs).
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Figure 5. Sampled error of the approximated normalization constant and
Monte Carlo sampling results for varying number of samples. The used Zh,ML
is the finest solution of the p = 1 approximation.

The first experiment involves the normalization constant

Z =
∫

[−1,1]M
e−

1
2‖δ−(O◦G)(y)‖2

dπ0(y) (6.8)

and its corresponding approximation Zh,ML,τ in (4.4).
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