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Abstract

We investigate the shape of critical points for a free energy consisting of a nonlocal perimeter
plus a nonlocal repulsive term. In particular, we prove that a volume-constrained critical point
is necessarily a ball if its volume is sufficiently small with respect to its isodiametric ratio, thus
extending a result previously known only for global minimizers.

We also show that, at least in one-dimension, there exist critical points with arbitrarily small
volume and large isodiametric ratio. This example shows that a constraint on the diameter is, in
general, necessary to establish the radial symmetry of the critical points.
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1 Introduction

In recent years the following variational problem has been widely studied:

min
|E|=m

P (E) +

∫∫
E×E

dx dy

|x− y|
, (1)

where P (E) denotes the perimeter of a set E ⊂ R3. Such problem first appeared in the liquid drop
model of the atomic nuclei proposed by Gamow in 1928 [13] and then developed by other researchers
[3, 9], and it is also relevant in some models of diblock copolymer melts [5, 17].

In [15, 16] (see also [6]) the authors showed that global minimizers of (1) exist if the volumem is small,
and do not exist if the volume is large enough. They also showed that minimizers are necessarily balls
if the volume is small enough. This result has been later extended in [14] to connected critical points
in two-dimensions. However it is still not known if there exist non-spherical critical points of (1) with
arbitrarily small volume.

In this paper we consider the modified energy

F (E) := Ps(E) +

∫∫
E×E

dx dy

|x− y|α
, (2)
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with s ∈ (0, 1) and α ∈ (0, n), which is a nonlocal extension of the energy in (1), which takes into
account long-range interactions in the attractive term of surface tension type.

Here

Ps(E) :=

∫∫
E×Ec

dx dy

|x− y|n+s

denotes the so-called fractional perimeter of E, recently introduced by Caffarelli, Roquejoffre and
Savin in [4], where they initiated the analysis of the corresponding Plateau Problem.

The functional (2) has been studied in [11], where the authors showed that volume-constrained mini-
mizers are balls, if the volume is small enough, thus extending the results in [15, 16].

We observe that, for any λ > 0, it holds

F (λE) = λn−s
(
Ps(E) + λn−α+s

∫∫
E×E

dx dy

|x− y|α

)
.

Therefore, minimizing F under the volume constraint |E| = m is equivalent to minimize the functional

Fε(E) := Ps(E) + ε

∫∫
E×E

dx dy

|x− y|α
,

under the constraint |E| = 1, with ε := m1−α
n

+ s
n .

If E is a critical point of Fε with boundary of class C2, then

κE(x) + cεVE(x) = λε for any x ∈ ∂E, (3)

for a suitable λε ∈ R. Here above, c > 0 is a normalizing constant,

VE(x) :=

∫
E

dy

|x− y|α
(4)

is the potential, and κE is the fractional mean curvature of E, i.e.,

κE(x) :=

∫
Rn

χRn\E(y)− χE(y)

|x− y|n+s
dy, (5)

where the integral is meant in the principal value sense, see e.g. [4, 1, 11] for further details on this
notion of mean curvature.

Notice that, if E is a critical point of Fε with boundary of class C2, by elliptic regularity (see [2]) the
boundary of E is in fact of class C∞.

The main result of this paper is that critical points of F are necessarily spherically symmetric, if their
volume is small enough with respect to their isodiametric ratio, which is defined as

I(E) :=
m

1
n

diam(E)
. (6)

To state this result precisely, we introduce a scale parameter that links volume and diameter of a set,
given by

β = β(n, α, s) :=
n+ s− α

(2n+ s+ 1)n
. (7)

With this notation, we have:
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Theorem 1. Let n > 2, s ∈ (0, 1) and α ∈ (0, n− 1).

There exists co = co(n, α, s) > 0 such that, if E? is a bounded, volume-constrained, critical point
of F with smooth boundary, such that

|E?|β 6 co I(E?), (8)

then E? is a ball.

Equivalently, if E is a bounded, volume-constrained, critical point of Fε with smooth boundary, such
that

|E| = 1 and diam(E) 6 co ε
− 1

2n+s+1 , (9)

then E is a ball.

We observe that condition (8) does not violate the isodiametric inequality, since the right hand side is
scale invariant, and so it is not void for small sets. Moreover, we remark that in problems like the ones
considered in this paper, in which an aggregating energy is competing with a repulsive one, universal
bounds on the diameter of the solutions do not hold in general. Indeed, roughly speaking, the repulsive
term of the energy functional may produce critical points with disconnected components which lie “far
away” one from the other and which therefore violate uniform diameter bounds. To give a concrete
example of this phenomenon we provide the following result:

Theorem 2. Let n = 1, s ∈ (0, 1) and α ∈ (0, 1).

There exists m̄ = m̄(α, s) > 0 such that, if m ∈ (0, m̄), there exists a bounded critical point E? of
F with volume m, made by two disconnected components, whose diameter satisfies

diam(E?) > Co,

for some Co > 0.

Equivalently, there exists ε̄ = ε̄(α, s) > 0 such that, if ε ∈ (0, ε̄), there exists a bounded set E ⊂ R
which is a solution of (3), which is made by two disconnected components, whose diameter satisfies

diam(E) > Co ε
− 1

1+s−α .

In particular, the diameter of E is not bounded uniformly in ε.

One of the main tools in the proof of Theorem 1 is a nonlocal version of Alexandrov’s Theorem,
recently proved in [8], which states that regular sets with almost constant fractional mean curvature
are necessarily balls. This result can be applied to solutions to (3), after deriving suitable estimates on
the potential VE .

We point out that such quantitative Alexandrov’s Theorem does not hold in the local setting, where it
is known that a set with almost constant mean curvature is close to a family of tangent balls (see [7]),
and this is the main obstruction for extending our result to the case s = 1, that is, to the functional in
(1).

The plan of the paper is the following: in Section 2 we provide some preliminary estimates on the
potential VE and on its gradient, which will be useful in the proof of Theorem 1; in Section 3 we prove
Theorem 1; finally in Section 4 we prove Theorem 2, giving an explicit example of a one-dimensional
set, composed by two disjoint segments, which is a critical point of (2) and has arbitrarily small volume.
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2 Potential estimates

In this section we provide some bounds on the potential V and on its derivatives that will be used in
the proof of the main results.

Lemma 3. Let B be a ball centered at the origin with |B| = |E|. Then, for any x ∈ Rn,

VE(x) 6 VB(0) 6 C,

for some C > 0.

Proof. Let ρ > 0 be the radius ofB. In this way, we have that x+B = Bρ(x). Also, if y ∈ Bρ(x)\E,
then |x− y| 6 ρ and so∫

Bρ(x)\E

dy

|x− y|α
>
∫
Bρ(x)\E

dy

ρα
=
|Bρ(x) \ E|

ρα
.

Similarly, if y ∈ E \Bρ(x), then |x− y| > ρ and so∫
E\Bρ(x)

dy

|x− y|α
6
|E \Bρ(x)|

ρα
.

Moreover

|E \Bρ(x)| = |E| − |E ∩Bρ(x)| = |Bρ(x)| − |Bρ(x) ∩ E| = |Bρ(x) \ E|.

Consequently, ∫
E\Bρ(x)

dy

|x− y|α
6
∫
Bρ(x)\E

dy

|x− y|α
.

Therefore, summing the contributions in E ∩Bρ(x) to both sides of this inequality, we obtain that∫
E

dy

|x− y|α
6
∫
Bρ(x)

dy

|x− y|α
.

This and the integrability of the kernel imply the desired result.

Following are additional potential estimates:

Lemma 4. We have that∫
E

∇VE(x) · x dx = −α
2

∫
E

VE(x) dx (10)

and

∫
∂E

VE(x)x · ν(x) dHn−1(x) =
(
n− α

2

) ∫
E

VE(x) dx. (11)

Moreover,
|∇VE(x)| 6 C, (12)

for any x ∈ Rn, for a suitable C > 0.
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Proof. We observe that

∇VE(x) = −α
∫
E

(x− y) dy

|x− y|α+2
, (13)

so we can write

β :=

∫
E

∇VE(x) · x dx = −α
∫∫

E×E

(x− y) · x
|x− y|α+2

dx dy.

Since the role played by the variable in the latter integral is symmetric, we can also write

β = −α
∫∫

E×E

(y − x) · y
|x− y|α+2

dx dy.

As a consequence

2β = −α
∫∫

E×E

(x− y) · x
|x− y|α+2

dx dy − α
∫∫

E×E

(y − x) · y
|x− y|α+2

dx dy

= −α
∫∫

E×E

(x− y) · (x− y)

|x− y|α+2
dx dy = −α

∫∫
E×E

dx dy

|x− y|α
.

This establishes (10).

Now we use the Divergence Theorem and (10) to see that∫
∂E

VE(x)x · ν(x) dHn−1(x) =

∫
E

div
(
VE(x)x

)
dx

= n

∫
E

VE(x) dx+

∫
E

∇VE(x) · x dx

=
(
n− α

2

) ∫
E

VE(x) dx,

and so we have proved (11).

Finally, by (13),

|∇VE(x)| 6 α

∫
E

dy

|x− y|α+1
,

hence (12) follows as in Lemma 3 (replacing α there with α + 1 ∈ (0, n)).

With this, we can show that smooth critical points possess a uniform bound on λε in the Euler-
Lagrange equation in (3):

Corollary 5. There exist C1, C2 > 0 such that∣∣λε − C1 Ps(E)
∣∣ 6 C2ε.

Proof. Given a vector field X ∈ C∞0 (Rn), we denote, for any small t > 0, by Φt the flow induced
by X , as defined by the Cauchy problem{

∂tΦ
t(x) = X(Φt(x)),

Φ0(x) = x.

Then (up to normalizing constants that we neglect, see e.g. Formula (6.12) in [11]), we have that

∂

∂t
Ps(Φ

t(E))
∣∣∣
t=0

=

∫
∂E

κE(x)X(x) · ν(x) dHn−1(x), (14)
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being ν the external normal of E.

Now, by taking X(x) := x in the vicinity of E, we have that

Φt(x) = x+ tX(x) +O(t2) = (1 + t)x+O(t2)

and so |Φt(E)| = (1 + t+O(t2)) |E|. Therefore, by scaling, we have that

Ps(Φ
t(E)) = (1 + t+O(t2))n−s Ps(E)

and thus
∂

∂t
Ps(Φ

t(E))
∣∣∣
t=0

= (n− s)Ps(E).

Comparing this and (14), we obtain

Ps(E) =

∫
∂E

κE(x)x · ν(x) dHn−1(x), (15)

up to multiplicative normalization constants that we neglect.

Also, by the Divergence Theorem,∫
∂E

x · ν(x) dHn−1(x) =

∫
E

div x dx = n |E|.

Hence, by (3), (15) and Lemma 4, up to multiplicative constants,

λε |E| =

∫
∂E

λεx · ν(x) dHn−1(x)

=

∫
∂E

κE(x)x · ν(x) dHn−1(x) + ε

∫
∂E

VE(x)x · ν(x) dHn−1(x)

= Ps(E) + ε

∫
E

VE(x) dx.

(16)

Also, by Lemma 3, ∫
E

VE(x) dx 6 C |E|.

From this, (16) and the volume constraint |E| = 1, the desired result plainly follows.

Now we control the tangential gradient of VE :

Lemma 6. Let x ∈ ∂E and τE(x) be a tangential vector to ∂E at x. Assume that E = T (B), for a
suitable ball B, with |B| = |E| and let T be a diffeomorphism such that

‖T − Id‖C1(B) 6 µ,

for some µ > 0. Then, there exists µ0 > 0 such that for any µ ∈ [0, µ0]∣∣∇VE(x) · τE(x)
∣∣ 6 Cµ, (17)

for some C > 0.
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Proof. We define x̄ := T−1(x) and

τB(x̄) := DT−1(x) τE(x) =
(
DT (x̄)

)−1
τE(x).

Notice that τB(x̄) is a tangent vector to ∂B at x̄ ∈ ∂B. Also, by rotational symmetry, the function VB
is constant along ∂B, and therefore

∇VB(x̄) · τB(x̄) = 0. (18)

Moreover, by (13) and using the substitution ȳ := T−1(y),

∇VE(x) · τE(x) = −α
∫
E

(x− y) · τE(x)

|x− y|α+2
dy

= −α
∫
B

(T (x̄)− T (ȳ)) ·
(
DT (x̄)τB(x̄)

)
|T (x̄)− T (ȳ)|α+2

| detDT (ȳ)| dȳ.
(19)

Now, by (17),∣∣∣DT (x̄)τB(x̄)− τB(x̄)
∣∣∣ 6 Cµ,∣∣∣ detDT (ȳ)− 1

∣∣∣ 6 Cµ,

and
∣∣∣T (x̄)− T (ȳ)− (x̄− ȳ)

∣∣∣ 6 ∫ 1

0

∣∣DT (tȳ + (1− t)x̄)
∣∣ dt |x− y| 6 Cµ |x̄− ȳ|

(20)

for some C > 0, and so

(1− Cµ) |x̄− ȳ| 6
∣∣T (x̄)− T (ȳ)

∣∣ 6 (1 + Cµ) |x̄− ȳ|,

which in turn implies that∣∣∣∣ 1

|T (x̄)− T (ȳ)|α+2
− 1

|x̄− ȳ|α+2

∣∣∣∣ =
1

|x̄− ȳ|α+2

∣∣∣∣1− |x̄− ȳ|α+2

|T (x̄)− T (ȳ)|α+2

∣∣∣∣ 6 Cµ

|x̄− ȳ|α+2
,
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up to renaming C > 0. Using this and (20) inside (19), we obtain that

1

α

∣∣∣∇VE(x) · τE(x)−∇VB(x̄) · τB(x̄)
∣∣∣

=

∣∣∣∣∣
∫
B

(T (x̄)− T (ȳ)) ·
(
DT (x̄)τB(x̄)

)
|T (x̄)− T (ȳ)|α+2

| detDT (ȳ)| dȳ −
∫
B

(x̄− ȳ) · τB(x̄)

|x̄− ȳ|α+2
dȳ

∣∣∣∣∣
6

∣∣∣∣∣
∫
B

(T (x̄)− T (ȳ)) ·
(
DT (x̄)τB(x̄)

)
|T (x̄)− T (ȳ)|α+2

| detDT (ȳ)| dȳ

−
∫
B

(x̄− ȳ) ·
(
DT (x̄)τB(x̄)

)
|T (x̄)− T (ȳ)|α+2

| detDT (ȳ)| dȳ

∣∣∣∣∣
+

∣∣∣∣∣
∫
B

(x̄− ȳ) ·
(
DT (x̄)τB(x̄)

)
|T (x̄)− T (ȳ)|α+2

| detDT (ȳ)| dȳ

−
∫
B

(x̄− ȳ) · τB(x̄)

|T (x̄)− T (ȳ)|α+2
| detDT (ȳ)| dȳ

∣∣∣∣
+

∣∣∣∣∫
B

(x̄− ȳ) · τB(x̄)

|T (x̄)− T (ȳ)|α+2
| detDT (ȳ)| dȳ −

∫
B

(x̄− ȳ) · τB(x̄)

|x̄− ȳ|α+2
| detDT (ȳ)| dȳ

∣∣∣∣
+

∣∣∣∣∫
B

(x̄− ȳ) · τB(x̄)

|x̄− ȳ|α+2
| detDT (ȳ)| dȳ −

∫
B

(x̄− ȳ) · τB(x̄)

|x̄− ȳ|α+2
dȳ

∣∣∣∣
6 Cµ

∫
B

dȳ

|x̄− ȳ|α+1

6 Cµ,

possibly changing C > 0 from one line to another. From this estimate and (18), the desired result
plainly follows.

3 Proof of Theorem 1

By a spatial dilation, we replace E? with a critical point E of the functional Fε, under the volume
constraint |E| = 1. To this aim, we define

E := m−
1
n E? and ε := m1−α

n
+ s
n .

In particular diam(E) = m−
1
n diam(E?) and thus, by (6) and (7), condition (8) becomes

ε
(
diam(E)

)2n+s+1
=
(
ε

1
2n+s+1 ·m−

1
n diam(E?)

)2n+s+1

=
(
m

n−α+s
(2n+s+1)n ·m−

1
n diam(E?)

)2n+s+1

=

(
mβ

I(E?)

)2n+s+1

6 c2n+s+1
o ,

(21)

which is supposed to be a small quantity.

8



Also, the Euler-Lagrange equation in (3) holds true. Therefore we have that

δs(E) := sup
x,y∈∂E
x 6=y

|κE(x)− κE(y)|
|x− y|

= sup
x,y∈∂E
x6=y

∣∣∣(c ε VE(x)− λε
)
−
(
c ε VE(y)− λε

)∣∣∣
|x− y|

= cε sup
x,y∈∂E
x6=y

|VE(x)− VE(y)|
|x− y|

.

(22)

Thus, by (12),

δs(E) 6 cε sup
x,y∈Rn
x 6=y

|VE(x)− VE(y)|
|x− y|

6 Cε, (23)

for some C > 0. Now, letting

ηs(E) :=
(
diam(E)

)2n+s+1
δs(E), (24)

by Formula (1.4) in [8] we have that

ρ(E) := inf

{
R− r

diam(E)
, with p ∈ E, Br(p) ⊆ E ⊆ BR(p)

}
6 C ηs(E), (25)

up to renaming C > 0. Also, by (23) and (24) we get

ηs(E) 6 C
(
diam(E)

)2n+s+1
ε. (26)

This and (21) give that ηs(E) is small if so is co, hence we are in the position to apply Theorem 1.5 in
[8]. In particular, we obtain that ∂E = F (∂B), where B is a ball with volume m, with

‖F − Id‖C2(∂B) 6 C ηs(E),

up to renaming C > 0. That is, if we set T (x) := |x|F
(
x
|x|

)
, we have that E = T (B) and

‖T − Id‖C1(B) 6 C ηs(E).

This says that we are in the setting of Lemma 6, with µ := C ηs(E). As a consequence, we obtain
that ∣∣∇τVE(x)

∣∣ 6 Cηs(E),

for some C > 0. Hence, we insert this into (22) and we find

δs(E) 6 C ε ηs(E),

up to renaming C > 0. Accordingly, in view of (24) and (21),

δs(E) 6 C ε
(
diam(E)

)2n+s+1
δs(E) 6 C c2n+s+1

o δs(E) 6
δs(E)

2
,

if co is small enough. This implies that δs(E) = 0.

So, by (24), we have that ηs(E) = 0 and then, by (25), also ρ(E) = 0, which says that E is a ball,
as desired.
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4 Proof of Theorem 2

We let

E :=

(
0,

1

2

)
∪
(
d, d+

1

2

)
,

for some d > 1/2, that we choose appropriately in order to fulfill (3).

By (5) and (4), for any x ∈ {0, 1/2, d, d+ 1/2},

ζE(x) := κE(x) + cε VE(x)

=

∫ 0

−∞

dy

|x− y|1+s
−
∫ 1/2

0

dy

|x− y|1+s
+

∫ d

1/2

dy

|x− y|1+s

−
∫ d+1/2

d

dy

|x− y|1+s
+

∫ +∞

d+1/2

dy

|x− y|1+s

+cε

∫ 1/2

0

dy

|x− y|α
+ cε

∫ d+1/2

d

dy

|x− y|α
.

By symmetry (i.e. using the substitution ỹ := (d+ 1/2)− y), we see that

ζE(0) = ζE

(
d+

1

2

)
and ζE

(
1

2

)
= ζE(d). (27)

Now we prove that we can choose d > 1/2 in such a way that

ζE(0) = ζE

(
1

2

)
. (28)
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To this aim, we compute

f(d) := ζE

(
1

2

)
− ζE(0)

=

∫ 0

−∞

dy

|y − 1/2|1+s
−
∫ 1/2

0

dy

|y − 1/2|1+s
+

∫ d

1/2

dy

|y − 1/2|1+s

−
∫ d+1/2

d

dy

|y − 1/2|1+s
+

∫ +∞

d+1/2

dy

|y − 1/2|1+s

−
∫ 0

−∞

dy

|y|1+s
+

∫ 1/2

0

dy

|y|1+s
−
∫ d

1/2

dy

|y|1+s

+

∫ d+1/2

d

dy

|y|1+s
−
∫ +∞

d+1/2

dy

|y|1+s

+cε

∫ 1/2

0

dy

|y − 1/2|α
+ cε

∫ d+1/2

d

dy

|y − 1/2|α

−cε
∫ 1/2

0

dy

|y|α
− cε

∫ d+1/2

d

dy

|y|α

=

∫ −1/2

−∞

dy

|y|1+s
−
∫ 0

−1/2

dy

|y|1+s
+

∫ d−1/2

0

dy

|y|1+s
−
∫ d

d−1/2

dy

|y|1+s
+

∫ +∞

d

dy

|y|1+s

−
∫ 0

−∞

dy

|y|1+s
+

∫ 1/2

0

dy

|y|1+s
−
∫ d

1/2

dy

|y|1+s
+

∫ d+1/2

d

dy

|y|1+s
−
∫ +∞

d+1/2

dy

|y|1+s

+cε

∫ 0

−1/2

dy

|y|α
+ cε

∫ d

d−1/2

dy

|y|α
− cε

∫ 1/2

0

dy

|y|α
− cε

∫ d+1/2

d

dy

|y|α

= −2

∫ d

d−1/2

dy

|y|1+s
+ 2

∫ d+1/2

d

dy

|y|1+s
+ cε

∫ d

d−1/2

dy

|y|α
− cε

∫ d+1/2

d

dy

|y|α

=
2

s

[
2d−s − (d− 1/2)−s − (d+ 1/2)−s

]
+

cε

1− α
[
2d1−α − (d− 1/2)1−α − (d+ 1/2)1−α] .

Now we use that, for any β ∈ R and δ > 0 small,

2− (1− δ)β − (1 + δ)β = −β (β − 1) δ2 +O(δ3),

therefore, for large d,

f(d) =
2d−s

s

[
2−

(
1− 1

2d

)−s
−
(

1 +
1

2d

)−s]

+
cε d1−α

1− α

[
2−

(
1− 1

2d

)1−α

−
(

1 +
1

2d

)1−α
]

=
2d−s

s
·
(
−s(1 + s)

4d2
+O(d−3)

)
+
cε d1−α

1− α
·
(
α(1− α)

4d2
+O(d−3)

)
= d−1−α

(
cαε

4
− (1 + s)d−1−s+α

2
+O(d−2−s+α) +O(εd−3)

)
= d−1−α g(d),

(29)
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where

g(d) :=
cαε

4
− (1 + s)d−1−s+α

2
+O(d−2−s+α) +O(εd−3).

Notice that
g(+∞) =

cαε

4
> 0. (30)

Also, if

dε :=

(
1 + s

cαε

) 1
1+s−α

,

we have that
g(dε) = −cαε

4
+O(ε1+ 1

1+s−α ) +O(ε1+ 3
1+s−α ) 6 −cαε

8
< 0,

if ε is sufficiently small.

From this and (30) we obtain that there exists an appropriate d > dε for which g(d) = 0, and thus,
recalling (29), we obtain that f(d) = 0, which proves (28).

Now, from (27) and (28), we deduce that

ζE(0) = ζE

(
d+

1

2

)
= ζE

(
1

2

)
= ζE(d) =: λ,

for some λ ∈ R, that is
κE(x) + cε VE(x) = λ

for any x ∈ ∂E, as desired.
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