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Abstract:
We introduce a multilevel technique for interpolating scattered data of divergence-free vector fields with

the help of matrix-valued compactly supported kernels. The support radius at a given level is linked to
the mesh norm of the data set at that level. There are at least three advantages of this method: no grid

structure is necessary for the implementation, the multilevel approach is computationally cheaper than

solving a large one-shot system and the interpolant is guaranteed to be analytically divergence-free.

Furthermore, though we will not pursue this here, our multiscale approach is able to represent multiple

scales in the data if present. We will prove convergence of the scheme, stability estimates and give a
numerical example.

1. Introduction

A vector field v : Ω ⊆ Rd → Rd is called divergence-free if it satisfies

div(v) = ∇ ·v = 0. (1.1)

In fluid dynamics this condition is commonly used to model incompressible fluids. It is of great impor-

tance that this constraint is satisfied analytically. For example, when solving the magnetohydrodynamic

equations, small numerical errors in the divergence constraint of the magnetic field (div(B) = 0) lead to

unstable and unphysical numerical solutions, see Brackbill & Barnes (1980); McNally (2011).

Therefore, it is crucial to have discretisation techniques which provide analytically divergence-free

approximations. One such technique is based upon matrix-valued kernels which have been investi-

gated in Narcowich & Ward (1994); Lowitzsch (2005b,c,a); Fuselier (2008c,b); Narcowich et al. (2007);

Fuselier et al. (2009). These kernels have the additional advantage that they can approximate data at
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scattered nodes without needing to generate a mesh which becomes, especially for larger dimensions,

prohibitively expensive.

Unfortunately, for a growing number of nodes one has to cope with increasing condition numbers

and computational costs. Hence, in this paper we combine and analyse for the first time this matrix-

valued approximation scheme with a recently investigated multilevel strategy (see for example Le Gia

et al. (2010); Townsend & Wendland (2013); Wendland (2010)), which reduces the computational cost

significantly. The technique has the additional advantage to capture different scales in the data if present.

This paper is organised as follows. In the next section, we introduce the necessary notation and

background theory. In the third section we present the analytically divergence-free approximation algo-

rithm, prove its convergence and analyse the condition numbers of the involved matrices. In the final

section, we discuss a numerical example.

Though we concentrate on analytically divergence-free approximation spaces, our approach, includ-

ing convergence and stability proofs, immediately carries over to analytically curl-free approximation

spaces if designed similarly, see Fuselier (2008c).

1.1 Notation

For non-negative integer k and Ω ⊆ Rd let Hk(Ω) denote the Sobolev space with differentiability order

k and integrability power p = 2. Define for u ∈ Hk(Ω) the Sobolev norms

‖u‖2
Hk(Ω)

:= ∑
|ααα |6k

‖Dααα u‖2
L2(Ω). (1.2)

For Ω = Rd there is another way to characterise and generalise Sobolev spaces via Fourier transforms

by defining

Hσ (Rd) :=
{

f ∈ L2(R
d) | f̂ (·)(1+‖ · ‖2

2)
σ/2 ∈ L2(R

d)
}
,

where 0 6 σ < ∞ can now also denote a fractional positive number (Evans, 1998, Chapter 5). The norm

on this space is naturally defined by

‖ f‖2
Hσ (Rd)

:= (2π)−d/2
∫

Rd
| f̂ (ωωω)|2(1+‖ωωω‖2

2)
σ dωωω,

which is equivalent to the norm (1.2) in the case of σ = k ∈ N0. Here, the Fourier transform of an

integrable function f ∈ L1(R
d) is defined to be

f̂ (ωωω) := (2π)−d/2
∫

Rd
f (x)e−ixT ωωω dx, ωωω ∈ Rd

and then extended to L2(R
d)-functions in the usual way.

Other function spaces will be introduced later on.

2. Positive Definite Matrix-Valued Kernels

A continuous scalar-valued function φ : Rd → R is called positive semi-definite on Rd if for all N ∈ N,

any finite set X = {x1,x2, ...,xN} ⊆ Rd of pairwise distinct points, and all ααα = (α1, ...,αN)
T ∈ RN , the

quadratic form

N

∑
j=1

N

∑
k=1

α jαkφ(x j −xk) (2.1)
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is non-negative. It is called positive definite on Rd if the quadratic form is positive for all ααα ∈ RN\{0}.

We will be concerned mostly with compactly supported radial basis functions for which the Fourier

transform exhibits algebraic decay. The basis function φ : Rd → R is radial if it is of the form φ(x) =
φ0(‖x‖2), where ‖ · ‖2 denotes the Euclidean norm on Rd . The Fourier transform of an integrable

function φ decays algebraically, if there are two constants c1,c2 > 0 and some τ > d/2 such that

c1(1+‖ωωω‖2
2)

−τ
6 φ̂(ωωω)6 c2(1+‖ωωω‖2

2)
−τ . (2.2)

We will mostly be interested in radial basis functions with compact support having a Fourier transform

with such a decay. Typical examples are given in Johnson (2012); Wendland (1995, 2005).

In this section, we introduce positive definite matrix-valued kernels, which we will eventually use

to construct divergence-free approximants. The theory for positive definite matrix-valued kernels was

originally developed by Narcowich and Ward in Narcowich & Ward (1994). We will follow an approach

by Fuselier for introducing the theory Fuselier (2008c,b), which mimics some of the ideas from the

scalar-valued case Wendland (2005).

Let us start by making a reasonable generalisation of positive definite scalar-valued kernels.

DEFINITION 2.1 A continuous matrix-valued kernel Φ : Rd → Rn×n is called positive definite if it is

even, Φ(−x) = Φ(x), symmetric, Φ(x) = Φ(x)T , and if

N

∑
j,k=1

αααT
j Φ(x j −xk)αααk > 0

for all N ∈ N, all pairwise distinct x j ∈ Rd and all ααα j ∈ Rn, not all of them vanishing.

In this paper, we will exclusively be interested in one specific example of a matrix-valued positive

definite kernel. Let φ : Rd → R be a positive definite function in C2(Rd). Then we define

Φ : Rd → Rd×d , Φ := (−∆ I +∇∇T )φ (2.3)

where ∆ is the Laplacian, ∇ the gradient and I the d-dimensional identity matrix. The component-wise

Fourier transform is given by

Φ̂(ωωω) =
(
‖ωωω‖2

2I −ωωωωωωT
)

φ̂(ωωω).

For just two space dimensions the kernel Φ takes the form

Φ =

(
−∂22 ∂12

∂21 −∂11

)
φ =

(
−

x2
2

r2 φ ′′
0 (r)−

x2
1

r3 φ ′
0(r)

x1x2

r2 φ ′′
0 (r)−

x1x2

r3 φ ′
0(r)

x1x2

r2 φ ′′
0 (r)−

x1x2

r3 φ ′
0(r) −

x2
1

r2 φ ′′
0 (r)−

x2
2

r3 φ ′
0(r)

)
,

provided φ is radial with φ(x) = φ0(r) where r =
√

x2
1 + x2

2. Therefore, in general matrix-valued kernels

are not radial. Nevertheless, they are commonly referred to as matrix-valued radial basis functions. By

construction the kernel Φ consists of divergence-free columns and rows. It is possible to show that it is

indeed positive definite in the sense of Definition 2.1. The following result essentially follows from the

general theory in Narcowich & Ward (1994).

THEOREM 2.2 Let φ ∈W 2
1 (R

d)∩C2(Rd) be positive definite. Then the kernel Φ is positive definite.

As usual, the space W 2
1 (R

d) consists of all functions u which are, together with their weak derivatives

up to order two, in L1(R
d).
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2.1 Native Spaces for Matrix-Valued Kernels

Next, let us introduce native spaces for positive definite matrix-valued kernels. We will follow here

mostly ideas from Fuselier (2008c); Wendland (2005). It is possible to develop a similar Hilbert space

theory as in the scalar-valued case. Define the function space

FΦ(Ω) :=

{
N

∑
j=1

Φ(·−x j)ααα j | x j ∈ Ω ,ααα j ∈ Rn

}

and equip it with the inner product

(
N

∑
j=1

Φ(·−x j)ααα j,
M

∑
k=1

Φ(·−yk)βββ k

)

Φ

:=
N

∑
j=1

M

∑
k=1

αααT
j Φ(x j −yk)βββ k.

Note that the bilinear form is indeed an inner product since Φ is assumed to be symmetric and positive

definite.

As in the scalar-valued case, we form the closure with respect to the norm induced by the inner

product and denote it with FΦ(Ω), i. e.

FΦ(Ω) := FΦ(Ω)
‖·‖Φ

.

Again, it is not obvious what these abstract elements in the completion actually mean. But the scalar-

valued case gives a good indication what to do. To interpret these elements as functions we define for

an element f ∈ FΦ(Ω) the function value

f j(x) := (f,Φ(·−x)e j)Φ

where e j denotes the jth canonical unit vector. Now we can interpret the abstract elements from the

completion as continuous functions by defining a linear mapping R : FΦ(Ω) → C(Ω ,Rn), whose jth

component (1 6 j 6 n) is given by

R(f) j(x) := f j(x) = (f,Φ(·−x)e j)Φ .

We make several remarks. Firstly, R(f)(x) actually defines a continuous function because for each

component we find

|R(f) j(x)−R(f) j(y)|= (f,(Φ(·−x)−Φ(·−y))e j)Φ

6 ‖f‖Φ‖(Φ(·−x)−Φ(·−y))e j‖Φ ,

where

‖(Φ(·−x)−Φ(·−y))e j‖
2
Φ = 2eT

j Φ(0)e j −2eT
j Φ(x−y)e j.

Thus as x tends to y, R(f) j(x) tends to R(f) j(y) as Φ is assumed to be continuous. Therefore each

component of R(f) is continuous, which implies that R(f) defines a continuous function itself.

Lastly, we note that R is injective. The injectivity means that R : FΦ(Ω)→ R(FΦ(Ω)) is actually

a bijective mapping and we can identify each abstract element from FΦ(Ω) with a continuous function

from R(FΦ(Ω)). Just as in the scalar-valued case, this motivates us to define the native space as the

image of R.
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DEFINITION 2.3 The native space of a positive definite matrix-valued kernel Φ is defined by

NΦ(Ω) := R(FΦ(Ω)).

It is equipped with the inner product

(f,g)NΦ (Ω) :=
(
R−1f,R−1g

)
Φ
.

To simplify notation we will sometimes use (·, ·)Φ instead of (·, ·)NΦ (Ω) and ‖ · ‖Φ instead of ‖ ·
‖NΦ (Ω). As in the scalar-valued case, the native space is unique (Fuselier, 2008b, Proposition 1) and

there exists a kernel reproduction property.

LEMMA 2.1 (Kernel Reproduction Property) For f ∈ NΦ(Ω),ααα ∈ Rn and x ∈ Ω we have

Φ(·−x)ααα ∈ NΦ(Ω),

(f,Φ(·−x)ααα)Φ = f(x)T ααα .

Proof. For the second property let f ∈ NΦ(Ω). Then, there exists a unique g ∈ FΦ(Ω) such that

R(g) = f. We compute for 1 6 j 6 n

f(x)T e j = [R(g)(x)]T e j = (g,Φ(·−x)e j)Φ =
(
R−1f,Φ(·−x)e j

)
Φ

= (f,Φ(·−x)e j)NΦ (Ω) ,

where in the last step we have used that R (and thus R−1 as well) leaves Φ(·−x)e j unaltered. This also

immediately implies the first property. �

Thus the native space is a Hilbert space of continuous functions on the domain Ω with reproducing

kernel Φ . There is a useful characterisation for native spaces which are defined on the whole Euclidean

space.

THEOREM 2.4 (Characterisation of Native Spaces) Suppose the positive definite kernel φ lies in W 2
1 (R

d)∩
C2(Rd). Then the native space of the divergence-free kernel is given by

NΦ(Rd) =
{

f ∈ L2(R
d)∩C(Rd) | ‖f‖

NΦ (Rd) < ∞,div(f) = 0
}

where the native space norm is given by

‖f‖2
NΦ (Rd)

= (2π)−d/2
∫

Rd

‖̂f(ωωω)‖2
2

‖ωωω‖2
2φ̂(ωωω)

dωωω...

Here L2(R
d) and C(Rd) denote vector-valued function spaces with each component in L2(R

d) or

C(Rd), respectively. Proofs of this can be found in (Fuselier, 2008c, Theorem 2 and 3) as well as in

(Wendland, 2009, Theorem 3.4).

2.2 Native Spaces as Sobolev Spaces

As in the scalar-valued case, it is possible to interpret the native space under some assumptions as some

type of Sobolev space. For scalar valued kernels it is well-known that the native space of a scalar-

valued function is norm-equivalent to a classical Sobolev space if the Fourier transform of the kernel

has algebraic decay Wendland (2005).
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We define the vector-valued Sobolev space Hσ (Ω) to consist of those vector functions u=(u1, . . . ,ud)
T : Ω →

Rd for which each component lies in the scalar-valued Sobolev space Hσ (Ω). A norm on the vector-

valued Sobolev space can be defined with the help of the scalar-valued Sobolev norm in the following

way

‖u‖Hσ (Ω) :=

(
d

∑
j=1

‖u j‖
2
Hσ (Ω)

)1/2

.

This means we take the discrete ℓ2 norm of the Sobolev norms of each component for the vector function

u. We introduce divergence-free Sobolev spaces,

Hσ (Rd ,div) :=
{

f ∈ Hσ (Rd) | div(f) = 0
}
.

With the help of these spaces we define subspaces

H̃σ (Rd) :=
{

f ∈ Hσ (Rd) | ‖f‖
H̃σ (Rd)

< ∞
}
,

H̃σ (Rd ,div) :=
{

f ∈ Hσ (Rd ,div) | ‖f‖
H̃σ (Rd)

< ∞
}
,

where

‖f‖2

H̃σ (Rd)
:= (2π)−d/2

∫

Rd

‖̂f(ωωω)‖2
2

‖ωωω‖2
2

(1+‖ωωω‖2
2)

σ+1dωωω

All the spaces introduced in this section are obviously related. Let us consider a divergence-free velocity

u, which lies in the space H̃σ (Rd ,div) for some σ > 0. This space, however, is a subspace of Hσ (Rd).
Therefore, we may sometimes write u in the Hσ (Rd) norm as well. Moreover, the following simple

lemma holds:

LEMMA 2.2 (Relationship between different Sobolev Norms) For u ∈ H̃σ (Rd) we have

‖u‖Hσ (Rd) 6 ‖u‖
H̃σ (Rd),

showing particularly H̃σ (R)d ⊆ Hσ (Rd) and also H̃σ (Rd ,div)⊆ Hσ (Rd ,div).

Proof. Using the definitions above, we obtain

‖u‖2
Hσ (Rd)

=
n

∑
j=1

‖u j‖
2
Hσ (Rd)

= (2π)−d/2
n

∑
j=1

∫

Rd
|û j(ωωω)|2(1+‖ωωω‖2

2)
σ dωωω

= (2π)−d/2
∫

Rd

n

∑
j=1

|û j(ωωω)|2(1+‖ωωω‖2
2)

σ dωωω

= (2π)−d/2
∫

Rd
‖û(ωωω)‖2

2(1+‖ωωω‖2
2)

σ dωωω

6 (2π)−d/2
∫

Rd

‖û(ωωω)‖2
2

‖ωωω‖2
2

(1+‖ωωω‖2
2)

σ+1dωωω

= ‖u‖2

H̃σ (Rd)
,

where we have used that 1 6
1+‖ωωω‖2

2

‖ωωω‖2
2

. � Now we are able to state another characterisation of the

native spaces that we have discussed so far. To this end, note that if φ ∈ L1(R
d) has a Fourier transform
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satisfying (2.2) with τ = σ +1 and σ > d/2 then φ ∈C2(Rd). This can be seen as follows. Under the

assumptions, we can invoke the Fourier inversion formula to write

φ(x) = (2π)−d/2
∫

Rd
φ̂(ωωω)eixT ωωω dωωω.

We can differentiate under the integral

Dα φ(x) = (2π)−d/2
∫

Rd
φ̂(ωωω)(iωωω)α eixT ωωω dωωω ,

as long as the function ωωω 7→ φ̂(ωωω)(iωωω)α belongs to L1(R
d). This function is continuous and for second

order derivatives, i.e. |α|= 2, it behaves for large ωωω like ‖ωωω‖
−2σ−2+|α |
2 = ‖ωωω‖−2σ

2 , showing integrabil-

ity as long as σ > d/2.

THEOREM 2.5 (Native Spaces as Sobolev Spaces) Let σ > d/2. Let φ generate Hσ+1(Rd) as its native

space, i.e. φ ∈ L1(R
d) possesses a Fourier transform satisfying (2.2) with τ = σ + 1. Then, the native

space of the matrix-valued kernel Φ = (−∆ I +∇∇T )φ is given by

NΦ(Rd) = H̃σ (Rd ,div).

The proof follows immediately from Theorem 2.4. For details, see Fuselier (2008c); Wendland

(2009).

We finish this section by introducing a vector-valued extension operator since we are mostly in-

terested in bounded domains and therefore need to extend our locally defined Sobolev functions to

functions defined on the whole Euclidean space. The following result follows from (Wendland, 2009,

Proposition 3.8.) by setting the pressure component to zero.

PROPOSITION 2.6 (Extension Operator) Suppose either d = 2 or d = 3. Let σ > 0 and let Ω ⊆ Rd

be a simply-connected domain with Ck,1 boundary, where k > σ is some integer. Then there exists a

continuous operator

Ediv : Hτ(Ω ,div)→ H̃τ(Rd ,div), 0 6 τ 6 σ ,

such that

1. (Edivv)|Ω = v|Ω

2. ‖Edivv‖
H̃τ (Rd ,div) 6C‖v‖Hτ (Ω ,div),

for all v ∈ Hτ(Ω ,div), with some C =Cτ > 0.

Finally, we need a lemma from Chernih & Gia (2013). For the convenience of the reader we include

its proof here.

LEMMA 2.3 Assume u ∈ Hσ (Ω ,div) with σ > 0. Then

∫

Rd

‖Êdivu(ωωω)‖2
2

‖ωωω‖2
2

dωωω 6C‖u‖2
L2(Ω).

Proof. To prove this result, we need to discuss the extension operator Ediv in more detail. This

operator involves the standard, bounded extension operator ES : Hσ (Ω)→Hσ (Rd) as well a specifically

constructed, bounded operator T : Hσ (Ω ,div)→ Hσ+1(Ω) which satisfies

u = ∇×T u
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for all u ∈ Hσ (Ω ,div). Then Ediv is defined as

Ediv(u) = ∇×EST u,

where ES is taken component-wise. For more details on the construction of this operator, we refer to

Wendland (2009). Using this definition, we compute

∫

Rd

‖Êdivu(ωωω)‖2
2

‖ωωω‖2
2

dωωω =
∫

Rd

‖ωωω × ÊST u(ωωω)‖2
2

‖ωωω‖2
2

dωωω 6C

∫

Rd
‖ÊST u(ωωω)‖2

2dωωω

6C‖EST u‖2
L2(Rd)

6C‖EST u‖2
H1(Rd)

6C‖T u‖2
H1(Ω) 6C‖u‖2

L2(Ω).

�

2.3 Reconstruction Problem

The following discussion is well-known from the theory of scalar-valued kernels which can easily be

extended to matrix-valued kernels Wendland (2009). We provide it nevertheless to remind us of some

of the key results. Suppose we want to reconstruct data f1, . . . , fN ∈ Rn at scattered data points X =
{x1, . . . ,xN} ⊆ Rd . For some coefficient vectors ααα j ∈ Rn, we can set up a vector-valued interpolant of

the form

sf,X :=
N

∑
j=1

Φ(·−x j)ααα j (2.4)

and apply to it the interpolation conditions

sf,X (xk) = fk (2.5)

for k = 1, . . . ,N. This means we have to solve the nN ×nN block matrix system




Φ(x1 −x1) . . . Φ(x1 −xN)
...

...

Φ(xN −x1) . . . Φ(xN −xN)







ααα1

...

αααN


=




f1

...

fN




or in abbreviated form

AΦ ,X ααα = f. (2.6)

Note that for βββ = (βββ 1, . . . ,βββ N)
T ∈ RnN , we have

βββ T
AΦ ,X βββ =

N

∑
j,k=1

βββ T
j Φ(x j −xk)βββ k > 0,

since Φ is a positive definite kernel. Therefore, the matrix AΦ ,X is positive definite and the interpolant

(2.4) with coefficient vectors determined by (2.6) exists and is unique.
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Assuming the data are generated by f j = f(x j) with f ∈ NΦ(Rd), the interpolant sf,X is also the best

approximation from

VX =

{
N

∑
j=1

Φ(·−x j)βββ j | βββ j ∈ Rn

}
,

to f in the native space norm. This is a direct consequence of Lemma 2.1 because for any g=∑N
j=1 Φ(·−

x j)βββ j ∈ VX we deduce the best approximation property

(
f− sf,X ,g

)
Φ
=

N

∑
j=1

(
f− sf,X ,Φ(·−x j)βββ j

)
Φ

=
N

∑
j=1

[
f(x j)− sf,X(x j)

]T
βββ j = 0,

where we have used the interpolation condition (2.5) in the last step. This best approximation property

immediately implies two stability results. Namely,

‖f− sf,X‖Φ 6 ‖f‖Φ and ‖sf,X‖Φ 6 ‖f‖Φ .

In theory, we could use this idea to interpolate divergence-free fields with a divergence-free kernel.

However, just as in the scalar-valued kernel case, the condition number of the linear system (2.6) will

become very large when interpolating many nodes. Also, the density of the matrices and the resulting

computational cost limits the number of points, particularly, since our system now has dimension nN ×
nN instead of N ×N in the scalar-valued case. This motivates our multilevel idea in the next section.

3. Multilevel Theory for Divergence-Free Vector Fields

We define scaled kernels via

Φ j = Φδ j
= (−∆ I +∇∇T )φδ j

, (3.1)

where φδ (x) = δ−dφ(x/δ ) and φ is a function satisfying the decay condition (2.2) with τ = σ +1 and

σ > d/2. These kernels generate for any 0 < δ 6 δc native spaces which are norm equivalent to the

same Sobolev space which is determined by the smoothness of the kernel.

LEMMA 3.1 (Norm Equivalence for Scaled Matrix-Valued Kernels) Let δ ∈ (0,δc]. Let φ generate

Hσ+1(Rd) with σ > d/2. Then

NΦδ
(Rd) = H̃σ (Rd ,div)

and for every v ∈ H̃σ (Rd ,div), we have

C1‖v‖2
NΦδ

(Rd)
6 ‖v‖2

H̃σ (Rd ,div)
6C2δ−2(σ+1)‖v‖2

NΦδ
(Rd)

for two positive constants C1,C2.

Proof.

We first consider the upper bound. If δ 6 1, then

(1+‖ωωω‖2
2)

σ+1 = δ−2(σ+1)(δ 2 +‖δωωω‖2
2)

σ+1
6 δ−2(σ+1)(1+‖δωωω‖2

2)
σ+1.
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Moreover, if 1 < δ 6 δc, we can simply use

(1+‖ωωω‖2
2)

σ+1
6 (1+‖δωωω‖2

2)
σ+1

6 δ−2(σ+1)δ
2(σ+1)
c (1+‖δωωω‖2

2)
σ+1.

With both estimates we can then deduce for m = max{1,δ σ+1
c }

‖v‖2

H̃σ (Rd ,div)
= (2π)−d/2

∫

Rd

‖v̂(ωωω)‖2
2

‖ωωω‖2
2

(1+‖ωωω‖2
2)

σ+1dωωω

6
m2

(2π)d/2

∫

Rd

‖v̂(ωωω)‖2
2

δ 2(σ+1)‖ωωω‖2
2

(1+‖δωωω‖2
2)

σ+1dωωω

6 m2c2(2π)−d/2
∫

Rd
δ−2(σ+1) ‖v̂(ωωω)‖2

2

‖ωωω‖2
2φ̂(δωωω)

dωωω

= m2c2(2π)−d/2
∫

Rd
δ−2(σ+1) ‖v̂(ωωω)‖2

2

‖ωωω‖2
2φ̂δ (ωωω)

dωωω

=C2δ−2(σ+1)‖v‖2
NΦδ

(Rd)
,

where C2 = m2c2. For the lower bound, again, we distinguish between two cases. If δ 6 1, then we

have

(1+‖ωωω‖2
2)

σ+1
> (1+‖δωωω‖2

2)
σ+1.

Moreover, for 1 < δ 6 δc, we have

(1+‖ωωω‖2
2)

σ+1 = δ−2(σ+1)(δ 2 +‖δωωω‖2
2)

σ+1
> δ

−2(σ+1)
c (1+‖δωωω‖2

2)
σ+1.

Similarly, for k = min{1,δ−σ−1
c }, we then find

‖v‖2

H̃σ (Rd ,div)
> k2(2π)−d/2

∫

Rd

‖v̂(ωωω)‖2
2

‖ωωω‖2
2

(1+‖δωωω‖2
2)

σ+1dωωω

> k2c1(2π)−d/2
∫

Rd

‖v̂(ωωω)‖2
2

‖ωωω‖2
2φ̂δ (ωωω)

dωωω

=C1‖v‖2
NΦδ

(Rd)
,

where C1 = k2c1. �

Another ingredient of the multilevel convergence proof consists of a sampling inequality for vector-

valued functions. This comes from and is proven in Wendland (2009) and gives an error estimate in

terms of the fill distance or mesh norm of a discrete point set X ⊆ Ω defined by

hX ,Ω = sup
x∈Ω

inf
x j∈X

‖x−x j‖2.

LEMMA 3.2 (Vector-Valued Sampling Inequality) Let Ω ⊆ Rd be a domain with Lipschitz boundary.

Furthermore, let σ ,η ∈ R with σ > d/2 and 0 6 η 6 σ . Assume that u ∈ Hσ (Ω) satisfies u|X = 0 on

a discrete set X ⊆ Ω with a sufficiently small fill distance hX ,Ω . Then,

‖u‖Hη (Ω) 6Ch
σ−η
X ,Ω ‖u‖Hσ (Ω)

with a constant C > 0 independent of u.
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3.1 The Multilevel Interpolation Algorithm

Suppose we are given a sequence of point sets in Ω , namely X1,X2, . . ., with decreasing mesh norms

h1 := hX1,Ω ,h2 := hX2,Ω , . . .. From these mesh norms we construct support radii so that

δ j = βh
σ

σ+1

j (3.2)

with some proportionality constant β > 0. We define scaled kernels as in (3.1). The vector-valued

divergence-free interpolants s j come from the space

V j =

{
∑

x∈X j

Φ j(·−x)βββ x | βββ x ∈ Rd

}
.

Now, we can state the multilevel interpolation algorithm for matrix-valued kernels, which recon-

structs some divergence-free target function u by a residual correction scheme.

Algorithm 3.1 (Multilevel Interpolation Algorithm)

Input: Data u with div(u) = 0 and number of levels n

Set u0 = 0 and e0 = u. For j = 1, . . . ,n do

(i) Determine the local correction s j ∈ V j to e j−1 on X j

s j(x) = e j−1(x) x ∈ X j

(ii) Update the global approximation and the residuals

u j = u j−1 + s j

e j = e j−1 − s j

Output: Approximate solution un to u

Note that we only need to know the unknown function u at the discrete data sites X j.

The residual in this case is in fact the error between the solution u and its jth multiscale approxima-

tion u j, i. e.

e j = u−u j.

Our main result of this paper shows that the above algorithm indeed converges under the assumption

(3.2) on the relation between the support radii δ j and the fill distances h j.

THEOREM 3.2 (Convergence of Multilevel Interpolation Algorithm) Let σ > d/2. Let Ω ⊆ Rd be

bounded with a Ck,1 boundary where k > σ . Let X1,X2, . . . be a sequence of point sets in Ω with mesh

norms h1 = hX1,Ω , h2 = hX2,Ω , . . .. Assume

γµh j 6 h j+1 6 µh j (3.3)

for j = 1,2, ... and some fixed µ ∈ (0,1) and γ ∈ (0,1). Suppose that φ ∈ L1(R
d) satisfies (2.2) with

τ = σ +1, i.e. that its native space is Hσ+1(Rd). Define

δ j =

(
h j

µ

) σ
σ+1

as well as Φ j = Φδ j
= (−∆ I +∇∇T )φδ j
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with φδ = δ−dφ(·/δ ). Let h1 6 µ be sufficiently small. Finally, let u ∈ Hσ (Ω ,div). Then, there exists

a positive constant C independent of µ , j and u such that

‖Edive j‖Φ j+1
6 α‖Edive j−1‖Φ j

, (3.4)

for j = 1,2, ... with α =Cµσ−1. Moreover, we have the estimates

‖u−uk‖L2(Ω) 6 C̃αk‖u‖Hσ (Ω)

for k = 1,2, . . . with another constant C̃ > 0 independent of k, α and u. Hence, the multiscale approxi-

mation uk converges to u in the L2 norm if we choose µ so small that α < 1.

Proof. It is easy to verify that the support radii are monotonically decreasing. We compute

‖Edive j‖
2
Φ j+1

= (2π)−d/2
∫

Rd

‖Êdive j(ωωω)‖2
2

‖ωωω‖2
2φ̂ j+1(ωωω)

dωωω

6
1

c1
(2π)−d/2

∫

Rd

‖Êdive j(ωωω)‖2
2

‖ωωω‖2
2

(1+‖δ j+1ωωω‖2
2)

σ+1dωωω

=:
1

c1
(2π)−d/2(I1 + I2),

where we introduced the notation

I1 =

∫

‖ωωω‖26
1

δ j+1

‖Êdive j(ωωω)‖2
2

‖ωωω‖2
2

(1+‖δ j+1ωωω‖2
2)

σ+1dωωω

I2 =

∫

‖ωωω‖2>
1

δ j+1

‖Êdive j(ωωω)‖2
2

‖ωωω‖2
2

(1+‖δ j+1ωωω‖2
2)

σ+1dωωω .

To bound these two integrals we start with the following observation:

‖e j‖
2
Hσ (Ω) = ‖e j−1 − se j−1

‖2
Hσ (Ω)

= ‖Edive j−1 − sEdive j−1
‖2

Hσ (Ω)

6 ‖Edive j−1 − sEdive j−1
‖2

Hσ (Rd)

6 ‖Edive j−1 − sEdive j−1
‖2

H̃σ (Rd)

6 Cδ
−2(σ+1)
j ‖Edive j−1 − sEdive j−1

‖2
Φ j

6 Cδ
−2(σ+1)
j ‖Edive j−1‖

2
Φ j

. (3.5)

Here we have used the definition of e j, the facts that Edive j−1 = e j−1 on Ω and that the interpolant

se j−1
equals sEdive j−1

as well as Lemma 2.2, Lemma 3.1 and the best approximation property of the

interpolant.
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For the first integral, I1, we have δ j+1‖ωωω‖2 6 1 and thus by Lemma 2.3, the sampling inequality

(Lemma 3.2) and (3.5), it follows that

I1 6 2σ+1
∫

‖ωωω‖26
1

δ j+1

‖Êdive j(ωωω)‖2
2

‖ωωω‖2
2

dωωω

6 C‖e j‖
2
L2(Ω)

6 Ch2σ
j ‖e j‖

2
Hσ (Ω)

6 Ch2σ
j δ

−2(σ+1)
j ‖Edive j−1‖

2
Φ j

= C1µ2σ‖Edive j−1‖
2
Φ j

,

using also that by definition we have
hσ

j

δ σ+1
j

= µσ .

Next we turn to the second integral I2. Since δ j+1‖ωωω‖2 > 1, we find

(1+δ 2
j+1‖ωωω‖2

2)
σ+1

6 (2δ 2
j+1‖ωωω‖2

2)
σ+1

6 2σ+1δ
2(σ+1)
j+1 (1+‖ωωω‖2

2)
σ+1

and consequently, using Proposition 2.6 and (3.5) once again, gives

I2 6 2σ+1δ
2(σ+1)
j+1

∫

Rd

‖Edive j(ωωω)‖2
2

‖ωωω‖2
2

(1+‖ωωω‖2
2)

σ+1dωωω

= 2σ+1δ
2(σ+1)
j+1 ‖Edive j‖

2

H̃σ (Rd ,div)

6 Cδ
2(σ+1)
j+1 ‖e j‖

2
Hσ (Ω)

6 C(δ j+1/δ j)
2(σ+1)‖Edive j−1‖

2
Φ j

6 C2µ2σ‖Edive j−1‖
2
Φ j

.

In the last step we have used

(
δ j+1

δ j

)σ+1

=

(
h j+1

µ

)σ ( µ

h j

)σ

=

(
h j+1

h j

)σ

6 µσ .

Combining both estimates now yields (3.4) with

α =

√
1

c1
(2π)−d/2(C1 +C2)

1/2µσ =Cµσ .

It follows by the sampling inequality, Lemma 2.2 and Lemma 3.1 that

‖u−uk‖
2
L2(Ω) = ‖ek‖

2
L2(Ω) 6Ch2σ

k ‖ek‖
2
Hσ (Ω)

6 Ch2σ
k ‖Edivek‖H̃σ (Rd)

6 Ch2σ
k δ

−2(σ+1)
k+1 ‖Edivek‖

2
Φk+1

= C‖Edivek‖
2
Φk+1

,
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where we have used the fact that

hσ
k

δ σ+1
k+1

= µσ

(
hk

hk+1

)σ

6 µσ

(
1

µγ

)σ

= γ−σ .

Applying (3.4), n times we can conclude

‖u−uk‖
2
L2(Ω) 6 C̃α2n‖Edive0‖

2
Φ1

= C̃α2n‖Edivu‖2
Φ1

6 C̃α2n‖u‖2
Hσ (Ω)

with a constant C̃ = C̃(γ)> 0 independent of α , k and u. �

In contrast to the multilevel interpolation with scalar-valued kernels Wendland (2010), the multi-

level interpolation of divergence-free fields with matrix-valued kernels is shown to converge only for a

(mildly) non-proportional relationship between mesh norm and support radius. In fact, as we will see

in the next section, a proportional relationship does not lead to convergence. The non-proportionality is

introduced via the native space norm for matrix-valued kernels.

3.2 Stability

In this section, we will discuss how the interpolation matrices AΦδ ,X in the multilevel algorithm depend

on the support radii and the separation distance

qX := min
j 6=k

‖x j −xk‖

for some data set X = {x1, . . . ,xN}. We will extend the one-shot results proven by Fuselier Fuselier

(2008b,a). Earlier work is due to Lowitzsch (2005c); Narcowich & Ward (1994). Since AΦδ ,X is sym-

metric and positive definite, we only need to find bounds on the smallest and largest eigenvalues.

For the smallest eigenvalue we will use the following general result by Fuselier Fuselier (2008b,a).

THEOREM 3.3 Let φ be an even positive definite function, which possesses a positive Fourier transform

φ̂ ∈C(Rd/{0}). Let Φ = (−∆ I +∇∇T )φ . Define the function

M(s) := inf
‖ωωω‖26s

φ̂(ωωω).

A lower bound on the smallest eigenvalue of the interpolation matrix AΦ ,X is given by

λmin(AΦ ,X )>

(
s2

16π

)(d+2)/2
M(s)π

(4π)dΓ ((d +2)/2)

for any s > 0 satisfying

s > c̃/qX

where c̃ is a constant independent of φ and X .

A direct consequence of this result is the following one. Suppose φ ∈ L1(R
d) has a Fourier transform

satisfying the bound (2.2) with τ = σ + 1, meaning in particular φ̂(ωωω) > c1(1+ ‖ωωω‖2
2)

−σ−1. Then,

obviously, M(s) can be bounded from below by M(s) > c1(1 + s2)−σ−1 > cs−2σ−2, where the last

estimate holds for example for s > 1. Hence, taking s = c/qX , Theorem 3.3 yields in this situation,

λmin(AΦ ,X )> cq
−(d+2)−2σ−2
X = cq2σ−d

X . (3.6)
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Here, however, we are interested in scaled versions of the basis function, i. e. we are interested in lower

bounds for λmin(AΦδ ,X ) with Φδ = (−∆ I +∇∇T )φδ , where φδ = δ−dφ(·/δ ). We can derive such

lower bounds in two ways. We can either proceed as above using the fact that φ̂δ = φ̂(δ ·) and hence

M(c/qX )> c(qX/δ )2(σ+1) yielding

λmin(AΦδ ,X )> cq
−(d+2)
X

(qX

δ

)2(σ+1)
= cq2σ−d

X δ−2σ−2 (3.7)

for δ/qX > 1. Alternatively, we can realise that

Φδ = δ−d−2[(−∆ I +∇∇T )φ ](·/δ ) = δ−d−2Φ(·/δ )

and that X/δ := {x/δ | x ∈ X} has obviously separation distance qX/δ = qX/δ . Hence, apart from the

scaling factor δ−d−2 interpolating with Φδ in X is the same as interpolating with Φ in X/δ . Thus, (3.6)

yields

λmin(AΦδ ,X )> cδ−d−2
(qX

δ

)2σ−d

= cq2σ−d
X δ−2σ−2

which is obviously the same as (3.7).

THEOREM 3.4 Suppose φ is positive definite and compactly supported, with a Fourier transform satis-

fying (2.2) with τ = σ +1 and σ > d/2, i. e. generating Hσ+1(Rd). Then,

cond(AΦδ ,X )6C

(
1+

2δ

qX

)d( δ

qX

)2σ−d

with a constant C > 0 independent of qX and δ .

Proof. It remains to bound the largest eigenvalue λmax = λmax(AΦδ ,X ). For this, we follow ideas from

Farrell & Wendland (2013). Due to the Gershgorin theorem there is an index j ∈ {1, . . . ,dN} with

corresponding data site x
j̃

with 1 6 j̃ 6 N such that

|λmax|6
dN

∑
k=1

|aδ
jk|

with AΦδ ,X = (aδ
jk) ∈ RdN×dN . The entries aδ

jk have the form

aδ
jk = δ−d−2(Dα φ)((x

j̃
−x

k̃
)/δ )

with certain multi-indices α ∈ Nd
0 of length |α|= 2. Note that the data site x

k̃
corresponds to d indices

k. By assumption, φ belongs to C2(Rd) and has compact support. This means that there is a constant

cφ > 0 such that

|aδ
jk|6 δ−d−2cφ , 1 6 j,k 6 dN

Since Φδ has compact support in the ball B(0,δ ), only those terms aδ
jk, 1 6 k 6 dN, are nonzero

which belong to the index set

I
j̃
:= {k̃ ∈ {1, . . . ,N} | ‖x

j̃
−x

k̃
‖< δ}.
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That is, there are dn
j̃

non-zero summands with

n
j̃
:=
∣∣∣{k̃ ∈ {1, . . . ,N} | ‖x

j̃
−x

k̃
‖2 < δ}

∣∣∣ .

In Farrell & Wendland (2013) it is shown that we have the estimate

n
j̃
6

(
δ +qX/2

qX/2

)2

=

(
1+

2δ

qX

)d

.

Now we can bound the largest eigenvalue by

|λmax|6
dN

∑
k=1

|aδ
jk|6 dn

j̃
max

16k6N
|aδ

jk|6 cφ dδ−d−2

(
1+

2δ

qX

)d

.

Combining this with the lower bound (3.7) on the smallest eigenvalue yields

cond(AΦδ ,X )6C

(
1+

2δ

qX

)d( δ

qX

)2σ−d

with a constant C > 0 independent of X and δ .

�

Since we can assume that 2δ > qX , the bound further simplifies to

cond(AΦδ ,X )6C

(
δ

qX

)2σ

(3.8)

COROLLARY 3.1 Under the assumption δ = cqX , the condition number is constant and independent

of qX and δ . If we assume that the data sets are quasi-uniform, i.e. satisfy qX ≈ hX , the convergence

theorem requires δ = cq
σ/(σ+1)
X . In this case, the condition number behaves like

cond(AΦδ ,X )6Cq
−2σ/(σ+1)
X .

Proof. The statement for the case δ = cqX immediately follows from (3.8). Since δ = cq
σ/(σ+1)
X gives

(
δ

qX

)σ

= cδ−1 = cq
−σ/(σ+1)
X , (3.9)

the second statement also follows from (3.8). �

4. Numerical Example

We run a numerical example for a divergence-free vector field of the form

u(x,y) =

(
−2x3y

3x2y2

)
(4.1)

on the closed unit square Ω = [0,1]2. Note that the vector field is indeed divergence-free. We choose

regular nested grids as data sites. That is, qX and h = hX ,Ω are comparable. As basis function we
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N H ‖e‖L2(Ω) ‖e‖H1(Ω) ‖e‖L∞(Ω) cond(A) ratio [%]

9 2−1 1.83e-1 1.53e0 6.11e-1 1.3e2 72.22

25 2−2 3.35e-2 5.00e-1 2.19e-1 9.2e2 74.96

81 2−3 5.62e-3 1.65e-1 6.19e-2 5.2e3 52.44

289 2−4 1.02e-3 6.13e-2 1.75e-2 2.4e4 24.75

1089 2−5 1.91e-4 2.46e-2 4.80e-3 9.1e4 10.19

4225 2−6 3.37e-5 1.02e-2 1.17e-3 2.9e5 4.31

16641 2−7 5.29e-6 4.47e-3 2.81e-4 8.3e5 1.54

Table 1: Convergence study for multilevel interpolation of divergence-free vector field (4.1) with basis

function φ2,3 and support radii (4.2) where ν = 2.5.

N H ‖e‖L2(Ω) ‖e‖H1(Ω) ‖e‖L∞(Ω) cond(A)

25 2−2 2.45 1.61 1.48 -2.83

81 2−3 2.57 1.60 1.83 -2.50

289 2−4 2.46 1.43 1.83 -2.20

1089 2−5 2.42 1.31 1.86 -1.93

4225 2−6 2.50 1.27 2.04 -1.69

16641 2−7 2.67 1.20 2.05 -1.50

Table 2: Orders for multilevel interpolation of divergence-free vector field (4.1) with basis function φ2,3

and support radii (4.2) where ν = 2.5.

employ φ2,3(r) = (1−r)8
+(32r3+25r2+8r+1), i. e. σ +1= 4.5. Furthermore, we use a proportionality

constant ν = 2.5 and support radii of the form

δ = νh
σ

σ+1 = νh
7
9 . (4.2)

As the numerical results in Tables 1 and 2 show, the numerical solution converges. Note that the number

N is actually referring to the amount of data points. The systems that need to be solved are actually twice

as big, since u consists of two spatial components. The parameter H denotes the distance between two

horizontal (or vertical) nearest data points of the uniform grid. Thus, this parameter is proportional to

the mesh norm h. We point out that the condition numbers are estimated values only since the matrices

become quite large. The final column shows the ratio of non-zeros to total numbers of entries in the

matrix (in percent). The multilevel interpolant and the errors at the last level are depicted in Figures

1 and 2. Due to Corollary 3.1, we expect the condition number to grow asymptotically not faster than

q−1.55
X .

Tables 3 and 4 show the results for the stationary case, i. e.

δ = νh. (4.3)

In this case, the algorithm eventually stagnates. According to Corollary 3.1, we expect the condition

number to become asymptotically independent of qX . The numerics seem to corroborate this.

REFERENCES
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(a) u1 (b) u2

(c) e1 (d) e2

FIG. 1: Both components of multilevel approximation and corresponding errors of divergence-free vec-

tor field (4.1) after seven levels, using a basis function φ2,3, µ = 0.5 and ν = 2.5.
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N H ‖e‖L2(Ω) ‖e‖H1(Ω) ‖e‖L∞(Ω) cond(A) ratio [%]

9 2−1 2.00e-1 1.70e0 6.18e-1 9.4e1 72.22

25 2−2 4.10e-2 6.11e-1 2.72e-1 2.3e2 58.00

81 2−4 7.88e-3 2.28e-1 8.69e-2 3.9e2 25.95

289 2−4 1.68e-3 9.77e-2 2.56e-2 5.2e2 8.75

1089 2−5 5.44e-4 6.22e-2 7.00e-3 6.1e2 2.55

4225 2−6 3.90e-4 8.54e-2 1.62e-3 6.7e2 0.69

16641 2−7 4.15e-4 1.66e-2 9.85e-4 6.6e2 0.18

Table 3: Convergence study for multilevel interpolation of divergence-free vector field (4.1) with basis

function φ2,3 and support radii (4.3) where ν = 2.5.

N H ‖e‖L2(Ω) ‖e‖H1(Ω) ‖e‖L∞(Ω) cond(A)

25 2−2 2.28 1.47 1.18 -1.29

81 2−3 2.38 1.42 1.65 -0.78

289 2−4 2.23 1.22 1.76 -0.41

1089 2−5 1.63 0.65 1.87 -0.23

4225 2−6 0.48 -0.45 2.11 -0.12

16641 2−7 -0.09 2.37 0.72 0.02

Table 4: Orders for multilevel interpolation of divergence-free vector field (4.1) with basis function φ2,3

and support radii (4.3) where ν = 2.5.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4
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0.8

1

u
1

u 2

(a) Vector field u

FIG. 2: The divergence-free vector field (4.1) after seven levels, using a basis function φ2,3, µ = 0.5 and

ν = 2.5.
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