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Abstract

By making use of the multiphoton limit of Keldysh theory, we show that
for the case of two-photon absorption a Kramers-Kroning expansion can be
used to calculate the nonlinear refractive index for different wavelengths. We
apply this method to various inert gases and compare the obtained numerical
values to different experimental and theoretical results for the dispersion of
the Kerr nonlinearity.

Nonlinear refraction is the one of the key nonlinear optical mechanism in isotropic
media such as all gases and liquids, and a large class of solids. In dielectric me-
dia, nonlinear refraction causes an intensity-dependent increase of the index of re-
fraction n = ng + nol, which gives rise to spectral broadening and is the basis
of nearly all femtosecond pulse compression mechanisms. While nonlinear refrac-
tion in solids and liquids has been directly linked to two-photon absorption via a
modified Kramers-Kronig relationship [1, 2, 3] and has been extensively explored
experimentally using the z-scan technique [4], neither one of these can be used to
determine the nonlinear index of refraction ns in gases. Despite the high techni-
cal importance of this nonlinear spectral broadening mechanism in gaseous media
[5, 6], therefore, all theoretical modeling of the latter depends on an indirect de-
termination of ny = K11117® (—w,w,w,w) from third-harmonic generation (THG)
measurements [7] 7 (3w, w, w,w) or theoretical calculations [8, 9] of the dynamic hy-
perpolarizability v (0, w, w, 2w), which mostly refer to the scenario of electric-field
induced second harmonic generation (ESHG). Even though the efficiency of second
harmonic generation in an isotropic medium in the presence of a strong constant
electric field is very accurately measurable, the deduced coefficients 7(3)(0, w,w, 2w)
show different dispersion than the coefficients v (—w, w,w,w) governing nonlinear
refraction [10], and only equal each other for the limiting case w — 0, i.e., in the
infrared. Probably the most accepted experimental data for ny has been measured
by Lehmeier et al. determining the THG efficiency in the inert gases [7]. Because
this data has only been determined at one wavelengths, frequency scaling is gener-
ally considered difficult. For argon, for example, using Eq. (18) of Ref. [7] yields
ny = 1.33 x 107%cm? /W at 248 nm, which disagrees with independently measured
values ny = 2.9+ 1.0 x 107%cm? /W [11]. Both values, finally, appear to be incom-
patible to explain the high efficiency of a hollow fiber compressor at 248 nm, which
indicates an even higher value of ny at this wavelength [12]. This example makes
it clear, that there is urgent need for improved scaling laws and more dependable
theoretical estimates of the latter.

Consequently, and probably owing to the wide spread of experimental data on ny
published [7, 11, 12, 13|, values used for the modeling typically varies over an order
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of magnitude, even for the most commonly used inert gases. In the following, we will
describe a different approach to deduce ny in the inert gases from Keldysh theory
[14, 15, 16, 17, 18| using the modified Kramers-Kronig relationship from Ref. [2].
Specifically, we utilize the description of the ionization probability w in a strong

no(1072%cm?/W) | n || Eq. (11) | [7] | ESHG data
He 0.35 0.44 0.41 0.37
Ne 0.69 2.13 0.74 0.94
Ar 0.49 13.6 10.4 10.9
Kr 0.47 30.2 29.4 24.7
Xe 0.38 66.3 93.5 63.9

Table 1: Correction factor 7y and values for the nonlinear refractive index ny at
800nm. ESHG data has been compiled from Refs. [8, 9, 10] and corrected for the
dispersion of the DFWM process [Eq. (16)]. Data from [7] was scaled from 1064 nm
using Eq. (12) with v = 3/2.

electric field E at angular frequency w from Ref. [19, 16, 20|

2n*—1
B w2 A, () S)
w(E) - n*r(n*)r(n* + 1) E /1 — ’)/2

X exp [—3%9(7)] (1)

where wy, is the angular frequency corresponding to the ionization energy of the gas,
n*? = Z%u, /wy describes scaling relative to the hydrogen atom, and E = (I/2¢qc)*/?
the electric field. Here c is the speed of light, epsilony the dielectric constant, and
I the intensity. The parameter O is defined as

4
6 = —ui?\/(Zm.h), 2)
with ¢, and m, the electron charge and mass, respectively. The function g(v) is
defined as
3 1 _ 1+ ~2
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with the Keldysh parameter [14]

wy/2hwpme

"= Ba (4)

Calculation of the factor A,«(7) typically involves computation of an infinite series
[20, 19]. As we will only consider the perturbative case v — inf of multiphoton
ionization, we can greatly simplify the description of the ionization rate w = o,,I™.

In this case,
10 1

A, () ~ ST (5)
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and 2log(2 1

~g2los) =1 (6)
4y

Considering two-photon absorption, i.e., m = 2, the PPT theory [16]| allows for

estimation of two-photon absorption coefficients, which simplifies w to

9(7)
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Figure 1: Nonlinear refractive index of helium. Solid line: Kramers-Kronig expan-
sion of PPT theory, Eq. (11), including correction by factor 7y, Eq. (12). Circles:
computed values for the DFWM efficiency [10]. Square: measured value of the THG
efficiency [7]. Dashed and dotted lines: extrapolations using Eq. (15) with v = 3/2
and a fit to the series expansion ny = ngy + ngw? + nyw? 9], respectively.

Coefficients for o, can be found in Table I. Note that we deliberately keep the
entire formalism in SI-units to simplify comparison with experimental data. For the
calculation of intensity dependent index changes, we insert the above results into
the modified Kramers-Kronig relations [2]

[e.9]

¢ [ Aa(w)
0

The intensity-dependent change of absorption at half ionization energy can then be

written as

w w, Ow
A« <7p) = h?ppﬁ = hwyposl. (9)
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Figure 2: Nonlinear refractive index of neon. Circles: computed values for the
ESHG efficiency (second-order perturbation theory (MP2), v in [9]). Stars: mea-
sured ESHG efficiency. ESHG data dispersion was rescaled for DFWM according
to Eq. (16). Filled circle: Experimental ny data [11]. Other symbols and lines as
described in the caption of Fig. 1.

Neglecting any frequency dependence of absorption above ionization energy, we can
use Eq. (9) as an estimate for computing the nonlinear refractive index

cpoyhw 1
ma(w) ~ gL / T (10)
wp/2
hew 2
T W Wy

where 7 is a correction factor to account for the exact spectral dependence of absorp-
tion above the ionization edge. It is quite clear from the spectral behavior of linear
absorption above w, that 7 = 1 will give rise to an overestimation of n, as it surmises
a frequency-independent A« . Using linear absorption data a(w) [21, 22, 23], one
can derive a correction

[ a(w’) [ Olmax
n(w) = / sl / e du (12)

Wp

to remove this systematic error of Eq. (11). Alternatively, one could also use directly
computed data of the two-photon absorption cross sections |24, 25|, which, however,
are only available for a much smaller spectral range and the elements helium, neon,
and argon. For the wavelengths under consideration, it is found sufficient to consider
the limiting case 7y = n(w — 0), because n only deviates from 7y by about 5%
for 200nm wavelength. Based on the data of Refs. [21, 22, 23| we compute the
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Figure 3: Nonlinear refractive index of argon. Symbols and lines as described in the
caption of Fig. 2.

correction factor 7y in Table 1. All the above consideration can be carried together
for the following completely analytic estimation

py (exp<2>qe24”*)2 (13)

n herI3(n* + 1) Me€o

in the long wavelength limit. Finally, the Kramers-Kronig transformation approach
can be further generalized to compute higher-order nonlinearities, e.g.,
_ nepos %

tanh ™! B—W, (14)
3m w Wy

ng(w)

which has found some mentioning in early literature [13].

Calculations for the 5 inert gases in comparison to experimental and theoretical
data is shown in Figs. 1 - 5. Experimental data has been mainly extracted from
measurements of the third-harmonic efficiency by Lehmeier et al. [7], which is
probably the most accepted reference on experimental data for ny of the inert gases.
As all data has been acquired at a wavelength of 1064 nm, we have extrapolated the
data to indicate the dispersion of ny with wavelength. Using an adapted version of
the relation

VW — Wy

na(w) = (15)

vw' — w,
originally suggested to scale THG data using v = 2, we find excellent agreement with
published theoretical data [10] and published experimental work [11] letting v = 3/2.
We augmented the data by theoretical calculations [9, 10] and measurements [8] of
the hyperpolarizability of the gases under considerations. With the noted exception
of the data provided by Bishop and Pipin, however, the hyperpolarizabity data
only provide ESHG efficiencies, which unfortunately exhibit a different dispersion
behavior. Without further processing, this data can therefore only be sensibly used
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Figure 4: Nonlinear refractive index of krypton. Symbols and lines as described in
the caption of Fig. 2.

to estimate the long wavelength limit no(w — 0). Based on the extensive work of
Ref. [10], we corrected the dispersion the ESHG data using the relation

Yesuc(0) } 23

VESHG(W) (16)

Yorwm(w) ~ YEsuG (W) [
Again, this adjustment provides a much better agreement with the experimental
data for gases like krypton and argon at 248 nm wavelength [11] but fails to explain
the values reported for neon and the large negative ns of xenon, which is, however,
attributed to a local coincidence with a two-photon resonance. The main reason for
including the ESHG data is their much higher reliability. Typically, a precision of
about 2% or better is claimed for ESHG data, whereas values of 10% are already
considered as extremely reliable for all methods of determining hyperpolarizabilities
with three optical fields, i.e., DFWM or THG measurements. Conversion between
the different units used throughout has been accomplished with the relation

2
N (%) = 3.95 x 10Mn, (esu) = 8.28 x 10737 (a.u1.) (17)

suggested in Refs. [7, 5].

Inspecting the data in Figs. 1 - 5, one finds that in the long wavelength limit all
different methods of estimating n, agree with each other within 20-30% with the ex-
ception of the neon data (Fig. 2), where the Kramers-Kronig expansion yields more
than double the value of an interpolation of the data in Ref. [7] and also markedly
deviates from theoretically predicted hyperpolarizability data. It has been remarked
before, however, that correct computation of this data is particularly sensitive to
the choice of basis functions for neon [8|, and experimental ESHG data showed
unexplainable oddities such as an anomalous dispersion of the hyperpolarizability
[9]. Otherwise, Eq. (11) delivers excellent results for the wavelength range down
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Figure 5: Nonlinear refractive index of xenon. Symbols and lines as described in the
caption of Fig. 2.

to 500 nm, with deviations from other methods that are widely compatible with
the error margins of these methods. Below 500 nm it becomes noticeable that the
Kramers-Kronig expansion does not appear to predict the correct dispersion behav-
ior of ny, which is most likely to be attributed to the omission of Stark shift effects
and other terms that have been discussed extensively for the computation of no
in solids. Table II lists a compilation of ny, values for 800 nm, which is currently
probably the most important wavelength for pulse compression experiments.
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Figure 6: Quadratic nonlinear refractive index n, of the inert gases as predicted by
Eq. (14).

Figure 6 depicts values of the quadratic nonlinear refraction coefficient ny for all
inert gases, extending the perturbative expansion n(I) = ng + nol + n4l?. De-
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Figure 7: Second order intercept intensity Ijpo = n4/no for the inert gases as pre-
dicted by Kramers-Kronig expansion of the PPT theory. Beyond these intensities,
) effects are expected to overrule the regular y(*-based nonlinear refraction.

pending on the gas, values of n, are estimated to lie in the range from 107%% to
10733 ecm®*. Most notably, the Kramers-Kronig theory clearly predicts a positive sign
of ng, which appears to be in contradiction with some early work [13], where x(®)-
type nonlinearities had been suggested to explain saturation of nonlinear refraction
effects. Today, it is rather undisputed that multiphoton-induced plasma generation
causes saturation of nonlinear refraction. From the computed n, values, we can
compute the second-order intercept intensity Iipa = n4/n9, which is shown in Fig. 7.
Quite independent of wavelength, this intercept intensity amounts to 5x 1014 W /cm?
for xenon and is about 10 times higher for helium. Quite clearly, these values have
little practical relevance because the ionization rate w exceeds 10'°s™! directly at
the intercept, i.e., the gas is completely ionized within a single cycle of the electric
field. Therefore, it is only imaginable that n, has a weak modifying influence in the
range about one order of magnitude below the intercept for very short pulses while
a plasma-induced reduction of the nonlinear phase will practically always dominate.

In conclusion, we have established an alternative route for estimating the nonlinear
refraction of inert gases from a Kramers-Kronig transformation of the PPT theory.
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