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Abstrat. In this paper we study metastability in large volumes at low temperatures.We onsider both Ising spins subjet to Glauber spin-�ip dynamis and lattie gas parti-les subjet to Kawasaki hopping dynamis. Let β denote the inverse temperature and let
Λβ ⊂ Z

2 be a square box with periodi boundary onditions suh that limβ→∞ |Λβ | = ∞.We run the dynamis on Λβ starting from a random initial on�guration where all thedroplets (= lusters of plus-spins, respetively, lusters of partiles) are small. For large
β, and for interation parameters that orrespond to the metastable regime, we inves-tigate how the transition from the metastable state (with only small droplets) to thestable state (with one or more large droplets) takes plae under the dynamis. Thistransition is triggered by the appearane of a single ritial droplet somewhere in Λβ .Using potential-theoreti methods, we ompute the average nuleation time (= the �rsttime a ritial droplet appears and starts growing) up to a multipliative fator that tendsto one as β → ∞. It turns out that this time grows as KeΓβ/|Λβ | for Glauber dynamisand KβeΓβ/|Λβ | for Kawasaki dynamis, where Γ is the loal anonial, respetively,grand-anonial energy to reate a ritial droplet and K is a onstant re�eting the ge-ometry of the ritial droplet, provided these times tend to in�nity (whih puts a growthrestrition on |Λβ |). The fat that the average nuleation time is inversely proportionalto |Λβ | is referred to as homogeneous nuleation, beause it says that the ritial dropletfor the transition appears essentially independently in small boxes that partition Λβ .1. Introdution and main results1.1. Bakground. In a reent series of papers, Gaudillière, den Hollander, Nardi, Olivieri,and Soppola [12, 13, 14℄ study a system of lattie gas partiles subjet to Kawasakihopping dynamis in a large box at low temperature and low density. Using the so-alled path-wise approah to metastability (see Olivieri and Vares [23℄), they show that thetransition time between the metastable state (= the gas phase with only small droplets)and the stable state (= the liquid phase with one or more large droplets) is inverselyproportional to the volume of the large box, provided the latter does not grow too fast withthe inverse temperature. This type of behavior is alled homogeneous nuleation, beauseit orresponds to the situation where the ritial droplet triggering the nuleation appearsessentially independently in small boxes that partition the large box. The nuleationtime (= the �rst time a ritial droplet appears and starts growing) is omputed up to amultipliative error that is small on the sale of the exponential of the inverse temperature.The tehniques developed in [12, 13, 14℄ enter around the idea of approximating the lowtemperature and low density Kawasaki lattie gas by an ideal gas without interationand showing that this ideal gas stays lose to equilibrium while exhanging partiles withdroplets that are growing and shrinking. In this way, the large system is shown to behaveessentially like the union of many small independent systems, leading to homogeneousnuleation. The proofs are long and ompliated, but they provide onsiderable detailabout the typial trajetory of the system prior to and shortly after the onset of nuleation.In the present paper we onsider the same problem, both for Ising spins subjet to Glauberspin-�ip dynamis and for lattie gas partiles subjet to Kawasaki hopping dynamis.Using the potential-theoreti approah to metastability (see Bovier [5℄), we improve partof the results in [12, 13, 14℄, namely, we ompute the average nuleation time up to amultipliative error that tends to one as the temperature tends to zero, thereby providinga very sharp estimate of the time at whih the gas starts to ondensate.We have no results about the typial time it takes for the system to grow a large dropletafter the onset of nuleation. This is a hard problem that will be addressed in future work.All that we an prove is that the dynamis has a negligible probability to shrink downa superritial droplet one it has managed to reate one. At least this shows that theappearane of a single ritial droplet indeed represents the threshold for nuleation, as wasshown in [12, 13, 14℄. A further restrition is that we need to draw the initial on�gurationaording to a lass of initial distributions on the set of subritial on�gurations, alled the1



last-exit biased distributions, sine these are partiularly suitable for the use of potentialtheory. It remains a hallenge to investigate to what extent this restrition an be relaxed.This problem is addressed with some suess in [12, 13, 14℄, and will also be takled infuture work.Our results are an extension to large volumes of the results for small volumes obtained inBovier and Manzo [8℄, respetively, Bovier, den Hollander, and Nardi [7℄. In large volumes,even at low temperatures entropy is ompeting with energy, beause the metastable stateand the states that evolve from it under the dynamis have a highly non-trivial stru-ture. Our main goal in the present paper is to extend the potential-theoreti approahto metastability in order to be able to deal with large volumes. This is part of a broaderprogramme where the objetive is to adapt the potential-theoreti approah to situationswhere entropy annot be negleted. In the same diretion, Bianhi, Bovier, and Io�e [3℄study the dynamis of the random �eld Curie-Weiss model on a �nite box at a �xed positivetemperature.As we will see, the basi di�ulty in estimating the nuleation time is to obtain sharpupper and lower bounds on apaities. Upper bounds follow from the Dirihlet variationalpriniple, whih represents a apaity as an in�mum over a lass of test funtions. In[3℄ a new tehnique is developed, based on a variational priniple due to Berman andKonsowa [2℄, whih represent a apaity as a supremum over a lass of unit �ows. Thistehnique allows for getting lower bounds and it will be exploited here too.1.2. Ising spins subjet to Glauber dynamis. We will study models in �nite boxes,
Λβ, in the limit as both the inverse temperature, β, and the volume of the box, |Λβ |,tend to in�nity. Spei�ally, we let Λβ ⊂ Z

2 be a square box with odd side length,entered at the origin with periodi boundary onditions. A spin on�guration is denotedby σ = {σ(x) : x ∈ Λβ}, with σ(x) representing the spin at site x, and is an element of
Xβ = {−1,+1}Λβ . It will frequently be onvenient to identify a on�guration σ with itssupport, de�ned as supp[σ] = {x ∈ Λβ : σ(x) = +1}.The interation is de�ned by the the usual Ising Hamiltonian

Hβ(σ) = −J

2

∑

(x,y)∈Λβ
x∼y

σ(x)σ(y) − h

2

∑

x∈Λβ

σ(x), σ ∈ Xβ, (1.1)where J > 0 is the pair potential, h > 0 is the magneti �eld, and x ∼ y means that x and
y are nearest neighbors. The Gibbs measure assoiated with Hβ is

µβ(σ) =
1

Zβ
e−βHβ(σ), σ ∈ Xβ, (1.2)where Zβ is the normalizing partition funtion.The dynamis of the model will the a ontinuous-time Markov hain, (σ(t))t≥0, with statespae Xβ whose transition rates are given by

cβ(σ, σ′) =

{

e−β[Hβ(σ′)−Hβ(σ)]+ , for σ′ = σx for some x ∈ Λβ ,
0, otherwise, (1.3)where σx is the on�guration obtained from σ by �ipping the spin at site x. We refer tothis Markov proess as Glauber dynamis. It is ergodi and reversible with respet to itsunique invariant measure, µβ, i.e.,

µβ(σ)cβ(σ, σ′) = µβ(σ′)cβ(σ′, σ), ∀σ, σ′ ∈ Xβ. (1.4)Glauber dynamis exhibits metastable behavior in the regime
0 < h < 2J, β → ∞. (1.5)2



ℓc

ℓc − 1

Λ
⋆Figure 1. A ritial droplet for Glauber dynamis on Λ. The shaded arearepresents the (+1)-spins, the non-shaded area the (−1)-spins (see (1.6)).To understand this, let us brie�y reall what happens in a �nite β-independent box Λ ⊂

Z
2. Let ⊟Λ and ⊞Λ denote the on�gurations where all spins in Λ are −1, respetively,

+1. As was shown by Neves and Shonmann [22℄, for Glauber dynamis restrited to
Λ with periodi boundary onditions and subjet to (1.5), the ritial droplets for therossover from ⊟Λ to ⊞Λ are the set of all those on�gurations where the (+1)-spins forman ℓc × (ℓc − 1) quasi-square (in either of both orientations) with a protuberane attahedto one of its longest sides, where

ℓc =

⌈

2J

h

⌉ (1.6)(see Figs. 1 and 2; for non-degeneray reasons it is assumed that 2J/h /∈ N). The quasi-squares without the protuberane are alled proto-ritial droplets.Let us now return to our setting with �nite β-dependent volumes Λβ ⊂ Z
2. We willstart our dynamis on Λβ from initial on�gurations in whih all droplets are �su�ientlysmall�. To make this notion preise, let CB(σ), σ ∈ Xβ, be the on�guration that isobtained from σ by a �bootstrap perolation map�, i.e., by irumsribing all the dropletsin σ with retangles, and ontinuing to doing so in an iterative manner until a union ofdisjoint retangles is obtained (see Koteký and Olivieri [19℄). We all CB(σ) subritial ifall its retangles �t inside a proto-ritial droplet and are at distane ≥ 2 from eah other(i.e., are non-interating).De�nition 1.1. (a) S = {σ ∈ Xβ : CB(σ) is subritial }.(b) P = {σ ∈ S : cβ(σ, σ′) > 0 for some σ′ ∈ Sc}.() C = {σ′ ∈ Sc : cβ(σ, σ′) > 0 for some σ ∈ S}.We refer to S, P and C as the set of subritial, proto-ritial, respetively, ritial on�gu-rations. Note that, for ever σ ∈ Xβ, eah step in the bootstrap perolation map σ → CB(σ)deeases the energy, and therefore the Glauber dynamis moves from σ to CB(σ) in a timeof order one. This is why CB(σ) rather than σ appears in the de�nition of S.For ℓ1, ℓ2 ∈ N, let Rℓ1,ℓ2(x) ⊂ Λβ be the ℓ1 × ℓ2 retangle whose lower-left orner is x. Wealways take ℓ1 ≤ ℓ2 and allow for both orientations of the retangle. For L = 1, . . . , 2ℓc−3,let QL(x) denote the L-th element in the anonial sequene of growing squares and quasi-squares

R1,2(x), R2,2(x), R2,3(x), R3,3(x), . . . , Rℓc−1,ℓc−1(x), Rℓc−1,ℓc
(x). (1.7)In what follows we will hoose to start the dynamis in a way that is suitable for the useof potential theory, as follows. First, we take the initial law to be onentrated on sets

SL ⊂ S de�ned by
SL = {σ ∈ S : eah retangle in CB(σ) �ts inside QL(x) for some x ∈ Λβ} , (1.8)3



where L is any integer satisfying
L∗ ≤ L ≤ 2ℓc − 3 with L∗ = min

{

1 ≤ L ≤ 2ℓc − 3: lim
β→∞

µβ(SL)

µβ(S)
= 1

}

. (1.9)In words, SL is the subset of those subritial on�gurations whose droplets �t inside asquare or quasi-square labeled L, with L hosen large enough so that SL is typial within
S under the Gibbs measure µβ as β → ∞ (our results will not depend on the hoie of
L subjet to these restritions). Seond, we take the initial law to be biased aording tothe last exit of SL for the transition from SL to a target set in Sc. (Di�erent hoies willbe made for the target set, and the preise de�nition of the biased law will be given inSetion 2.2.) This is a highly spei� hoie, but learly one of physial interest.Remarks: (1) Note that S2ℓc−3 = S, whih implies that the range of L-values in (1.9)is non-empty. The value of L∗ depends on how fast Λβ grows with β. In Appendix C.1we will show that, for every 1 ≤ L ≤ 2ℓc − 4, limβ→∞ µβ(SL)/µβ(S) = 1 if and only if
limβ→∞ |Λβ |e−βΓL+1 = 0 with ΓL+1 the energy needed to reate a droplet QL+1(0) at theorigin. Thus, if |Λβ | = eθβ, then L∗ = L∗(θ) = (2ℓc − 3) ∧ min{L ∈ N : ΓL+1 > θ}, whihinreases stepwise from 1 to 2ℓc − 3 as θ inreases from 0 to Γ de�ned in (1.10).(2) If we draw the initial on�guration σ0 from some subset of S that has a strong reurreneproperty under the dynamis, then the hoie of initial distribution on this subset shouldnot matter. This issue will be addressed in future work.

Γ

Figure 2. A nuleation path from ⊟Λ to ⊞Λ for Glauber dynamis. Γ in (1.10)is the minimal energy barrier the path has to overome under the loal variant ofthe Hamiltonian in (1.1).To state our main theorem for Glauber dynamis, we need some further notation. The keyquantity for the nuleation proess is
Γ = J [4ℓc] − h[ℓc(ℓc − 1) + 1], (1.10)whih is the energy needed to reate a ritial droplet of (+1)-spins at a given loation ina sea of (−1)-spins (see Figs. 1 and 2). For σ ∈ Xβ, let Pσ denote the law of the dynamisstarting from σ and, for ν a probability distribution on X , put

Pν(·) =
∑

σ∈Xβ

Pσ(·) ν(σ). (1.11)For a non-empty set A ⊂ Xβ, let
τA = inf{t > 0: σt ∈ A, σt− /∈ A} (1.12)denote the �rst time the dynamis enters A. For non-empty and disjoint sets A,B ⊂ Xβ,let νB

A denote the last-exit biased distribution on A for the rossover to B de�ned in (2.9)in Setion 2.2. Put
N1 = 4ℓc, N2 = 4

3(2ℓc − 1). (1.13)4



For M ∈ N with M ≥ ℓc, de�ne
DM =

{

σ ∈ Xβ : ∃x ∈ Λβ suh that supp[CB(σ)] ⊃ RM,M (x)
}

, (1.14)i.e., the set of on�gurations ontaining a superritial droplet of size M . For our resultsbelow to be valid we need to assume that
lim

β→∞
|Λβ | = ∞, lim

β→∞
|Λβ| e−βΓ = 0. (1.15)Theorem 1.2. In the regime (1.5), subjet to (1.9) and (1.15), the following hold:(a)

lim
β→∞

|Λβ | e−βΓ
EνSc

SL

(τSc) =
1

N1
. (1.16)(b)

lim
β→∞

|Λβ | e−βΓ
E

ν
Sc\C
SL

(

τSc\C

)

=
1

N2
. (1.17)()

lim
β→∞

|Λβ | e−βΓ
E

ν
DM
SL

(τDM
) =

1

N2
, ∀ ℓc ≤ M ≤ 2ℓc − 1. (1.18)The proof of Theorem 1.2 will be given in Setion 3. Part (a) says that the averagetime to reate a ritial droplet is [1 + o(1)]eβΓ/N1|Λβ |. Parts (b) and () say that theaverage time to go beyond this ritial droplet and to grow a droplet that is twie aslarge is [1 + o(1)]eβΓ/N2|Λβ|. The fator N1 ounts the number of shapes of the ritialdroplet, while |Λβ| ounts the number of loations. The average times to reate a ritial,respetively, a superritial droplet di�er by a fator N2/N1 < 1. This is beause onethe dynamis is �on top of the hill� C it has a positive probability to �fall bak� to S. Onaverage the dynamis makes N1/N2 > 1 attempts to reah the top C before it �nally �fallsover� to Sc\C. After that, it rapidly grows a large droplet (see Fig. 2).Remarks: (1) The seond ondition in (1.15) will not atually be used in the proof ofTheorem 1.2(a). If this ondition fails, then there is a positive probability to see a proto-ritial droplet in Λβ under the starting measure νSc

SL
, and nuleation sets in immediately.Theorem 1.2(a) ontinues to be true, but it no longer desribes metastable behavior.(2) In Appendix D we will show that the average probability under the Gibbs measure

µβ of destroying a superritial droplet and returning to a on�guration in SL is exponen-tially small in β. Hene, the rossover from SL to Sc\C represents the true threshold fornuleation, and Theorem 1.2(b) represents the true nuleation time.(3) We expet Theorem 1.2() to hold for values of M that grow with β as M = eo(β). Aswe will see in Setion 3.3, the neessary apaity estimates arry over, but the neessaryequilibrium potential estimates are not yet available. This problem will be addressed infuture work.(4) Theorem 1.2 should be ompared with the results in Bovier and Manzo [8℄ for the aseof a �nite β-independent box Λ (large enough to aommodate a ritial droplet). In thatase, if the dynamis starts from ⊟Λ, then the average time it needs to hit CΛ (= the setof on�gurations in Λ with a ritial droplet), respetively, ⊞Λ equals
KeβΓ[1 + o(1)], with K = K(Λ, ℓc) =

1

N

1

|Λ| for N = N1,N2. (1.19)(4) Note that in Theorem 1.2 we ompute the �rst time when a ritial droplet appearsanywhere (!) in the box Λβ . It is a di�erent issue to ompute the �rst time when the plus-phase appears near the origin. This time, whih depends on how a superritial dropletgrows and eventually invades the origin, was studied by Dehghanpour and Shonmann [10,11℄, Shlosman and Shonmann [24℄ and, more reently, by Cerf and Manzo [9℄.5



1.3. Lattie gas subjet to Kawasaki dynamis. We next onsider the lattie gassubjet to Kawasaki dynamis and state a similar result for homogeneous nuleation. Someaspets are similar as for Glauber dynamis, but there are notable di�erenes.A lattie gas on�guration is denoted by σ = {σ(x) : x ∈ Xβ}, with σ(x) representing thenumber of partiles at site x, and is an element of Xβ = {0, 1}Λβ . The Hamiltonian isgiven by
Hβ(σ) = −U

∑

(x,y)∈Λβ
x∼y

σ(x)σ(y), σ ∈ Xβ, (1.20)where −U < 0 is the binding energy and x ∼ y means that x and y are neighboring sites.Thus, we are working in the anonial ensemble, i.e., there is no term analogous to theseond term in (1.1). The number of partiles in Λβ is
nβ = ⌈ ρβ |Λβ| ⌉, (1.21)where ρβ is the partile density, whih is hosen to be

ρβ = e−β∆, ∆ > 0. (1.22)Put
X (nβ)

β = {σ ∈ Xβ : |supp[σ]| = nβ}, (1.23)where supp[σ] = {x ∈ Λβ : σ(x) = 1}.Remark: If we were to work in the grand-anonial ensemble, then we would have toonsider the Hamiltonian
Hgc(σ) = −U

∑

(x,y)∈Λβ
x∼y

σ(x)σ(y) + ∆
∑

x∈Λβ

σ(x), σ ∈ Xβ, (1.24)with ∆ > 0 an ativity parameter taking over the role of h in (1.1). The seond term wouldmimi the presene of an in�nite gas reservoir with density ρβ outside Λβ. Suh a Hamilton-ian was used in earlier work on Kawasaki dynamis, when a �nite β-independent box withopen boundaries was onsidered (see e.g. den Hollander, Olivieri, and Soppola [18℄, denHollander, Nardi, Olivieri, and Soppola [17℄, and Bovier, den Hollander, and Nardi [7℄).The dynamis of the model will be the ontinuous-time Markov hain, (σt)t≥0, with statespae X (nβ)
β whose transition rates are

cβ(σ, σ′) =

{

e−β[Hβ(σ′)−Hβ(σ)]+ , for σ′ = σx,y for some x, y ∈ Λβ with x ∼ y,
0, otherwise, (1.25)where σx,y is the on�guration obtained from σ by interhanging the values at sites x and

y. We refer to this Markov proess as Kawasaki dynamis. It is ergodi and reversible withrespet to the anonial Gibbs measure
µβ(σ) =

1

Z
(nβ)
β

e−βHβ(σ), σ ∈ X (nβ)
β , (1.26)where Z

(nβ)
β is the normalizing partition funtion. Note that the dynamis preserves par-tiles, i.e., it is onservative.Kawasaki dynamis exhibits metastable behavior in the regime

U < ∆ < 2U, β → ∞. (1.27)This is again inferred from the behavior of the model in a �nite β-independent box Λ ⊂ Z
2.Let �Λ and �Λ denote the on�gurations where all the sites in Λ are vaant, respetively,oupied. For Kawasaki dynamis on Λ with an open boundary, where partiles are anni-hilated at rate 1 and reated at rate e−∆β, it was shown in den Hollander, Olivieri, andSoppola [18℄ and in Bovier, den Hollander, and Nardi [7℄ that, subjet to (1.27) and for6



ℓc

ℓc−1

1
0

ΛFigure 3. A ritial droplet for Kawasaki dynamis on Λ (= a proto-ritialdroplet plus a free partile). The shaded area represents the partiles, the non-shaded area the vaanies (see (1.28)). Note that the shape of the proto-ritialdroplet for Kawasaki dynamis is the same as that of the ritial droplet forGlauber dynamis. The proto-ritial droplet for Kawasaki dynamis beomesritial when a free partile is added.the Hamiltonian in (1.24), the ritial droplets for the rossover from �Λ to �Λ are the setof all those on�gurations where the partiles form(1) either an (ℓc − 2) × (ℓc − 2) square with four bars attahed to the four sides withtotal length 3ℓc − 3,(2) or an (ℓc − 1) × (ℓc − 3) retangle with four bars attahed to the four sides withtotal length 3ℓc − 2,plus a free partile anywhere in the box, where
ℓc =

⌈

U

2U − ∆

⌉ (1.28)(see Figs. 3 and 4; for non-degeneray reasons it is assumed that U/(2U − ∆) /∈ N).Let us now return to our setting with �nite β-dependent volumes. We de�ne a referenedistane, Lβ, as
L2

β = e(∆−δβ)β =
1

ρβ
e−δββ (1.29)with

lim
β→∞

δβ = 0, lim
β→∞

βδβ = ∞, (1.30)i.e., Lβ is marginally below the typial interpartile distane. We assume Lβ to be odd,and write BLβ ,Lβ
(x), x ∈ Λβ, for the square box with side length Lβ whose enter is x.De�nition 1.3. (a) S = {σ ∈ X (nβ)

β : |supp[σ] ∩ BLβ ,Lβ
(x)| ≤ ℓc(ℓc − 1) + 1 ∀x ∈ Λβ}.(b) P = {σ ∈ S : cβ(σ, σ′) > 0 for some σ′ ∈ Sc}.() C = {σ′ ∈ Sc : cβ(σ, σ′) > 0 for some σ ∈ S}.(d) C− = {σ ∈ C : ∃x ∈ Λβ suh that BLβ ,Lβ

(x) ontains a proto-ritial droplet plus afree partile at distane Lβ}.(e) C+ = the set of on�gurations obtained from C− by moving the free partile to a site atdistane 2 from the proto-ritial droplet.As before, we refer to S, P and C as the set of subritial, proto-ritial, respetively,ritial on�gurations. Note that, for every σ ∈ S, the number of partiles in a box of size
Lβ does not exeed the number of partiles in a proto-ritial droplet. These partiles donot have to form a luster or to be near to eah other, beause the Kawasaki dynamisbrings them together in a time of order L2

β = o(1/ρβ).7



The initial law will again be onentrated on sets SL ⊂ S, this time de�ned by
SL =

{

σ ∈ X (nβ)
β : |supp[σ] ∩ BLβ ,Lβ

(x)| ≤ L ∀x ∈ Λβ

}

, (1.31)and L any integer satisfying
L∗ ≤ L ≤ ℓc(ℓc − 1) + 1 with L∗ = min

{

1 ≤ L ≤ ℓc(ℓc − 1) + 1: lim
β→∞

µβ(SL)

µβ(S)
= 1

}

.(1.32)In words, SL is the subset of those subritial on�gurations for whih no box of size Lβarries more than L partiles, with L again hosen suh that SL is typial within S underthe Gibbs measure µβ as β → ∞.Remark: Note that Sℓc(ℓc−1)+1 = S. As for Glauber, the value of L∗ depends on howfast Λβ grows with β. In Appendix C.2 we will show that, for every 1 ≤ L ≤ ℓc(ℓc − 1),
limβ→∞ µβ(SL)/µβ(S) = 1 if and only if limβ→∞ |Λβ|e−β(ΓL+1−∆) = 0 with ΓL+1 theenergy needed to reate a droplet of L + 1 partiles, losest in shape to a square or quasi-square, in BLβ ,Lβ

(0) under the grand-anonial Hamiltonian on this box. Thus, if |Λβ| =

eθβ, then L∗ = L∗(θ) = [ℓc(ℓc − 1) + 1] ∧ min{L ∈ N : ΓL+1 − ∆ > θ}, whih inreasesstepwise from 1 to ℓc(ℓc − 1) + 1 as θ inreases from ∆ to Γ de�ned in (1.33).
Γ

∆

U

2U

Λ

ΛFigure 4. A nuleation path from �Λ to �Λ for Kawasaki dynamis on Λ withopen boundary. Γ in (1.33) is the minimal energy barrier the path has to overomeunder the loal variant of the grand-anonial Hamiltonian in (1.24).Set
Γ = −U [(ℓc − 1)2 + ℓc(ℓc − 1) + 1] + ∆[ℓc(ℓc − 1) + 2], (1.33)whih is the energy of a ritial droplet at a given loation with respet to the grand-anonial Hamiltonian given by (1.24) (see Figs. 3 and 4). Put N = 1

3ℓ2
c(ℓ

2
c − 1). For

M ∈ N with M ≥ ℓc, de�ne
DM =

{

σ ∈ Xβ : ∃x ∈ Λβ suh that supp[(σ)] ⊃ RM,M (x)
}

, (1.34)i.e., the set of on�gurations ontaining a superritial droplet of size M . For our resultsbelow to be valid we need to assume that
lim

β→∞
|Λβ | ρβ = ∞, lim

β→∞
|Λβ | e−βΓ = 0. (1.35)This �rst ondition says that the number of partiles tends to in�nity, and ensures thatthe formation of a ritial droplet somewhere does not globally deplete the surroundinggas. 8



Theorem 1.4. In the regime (1.27), subjet to (1.32) and (1.35), the following hold:(a)
lim

β→∞
|Λβ|

4π

β∆
e−βΓ

E
ν
(Sc\C̃)∪C+

SL

(

τ(Sc\C̃)∪C+

)

=
1

N
. (1.36)(b)

lim
β→∞

|Λβ |
4π

β∆
e−βΓ

E
ν
DM
SL

(τDM
) =

1

N
, ∀ ℓc ≤ M ≤ 2ℓc − 1. (1.37)The proof of Theorem 1.4, whih is the analog of Theorem 1.2, will be given in Setion 4.Part (a) says that the average time to reate a ritial droplet is [1+o(1)](β∆/4π)eβΓN |Λβ |.The fator β∆/4π omes from the simple random walk that is performed by the free partile�from the gas to the proto-ritial droplet� (i.e., the dynamis goes from C− to C+), whihslows down the nuleation. The fator N ounts the number of shapes of the proto-ritialdroplet (see Bovier, den Hollander, and Nardi [7℄). Part (b) says that, one the ritialdroplet is reated, it rapidly grows to a droplet that has twie the size.Remarks: (1) As for Theorem 1.2(), we expet Theorem 1.4(b) to hold for values of Mthat grow with β as M = eo(β). See Setion 4.2 for more details.(2) In Appendix D we will show that the average probability under the Gibbs measure µβof destroying a superritial droplet and returning to a on�guration in SL is exponentiallysmall in β. Hene, the rossover from SL to Sc\C̃ ∪ C+ represents the true threshold fornuleation, and Theorem 1.4(a) represents the true nuleation time.(3) It was shown in Bovier, den Hollander, and Nardi [7℄ that the average rossover timein a �nite box Λ equals

KeβΓ[1 + o(1)], with K = K(Λ, ℓc) ∼
log |Λ|

4π

1

N |Λ| , Λ → Z
2. (1.38)This mathes the |Λβ |-dependene in Theorem 1.4, with the logarithmi fator in (1.38)aounting for the extra fator β∆ in Theorem 1.4 ompared to Theorem 1.2. Note thatthis fator is partiularly interesting, sine it says that the e�etive box size responsible forthe formation of a ritial droplet is Lβ.1.4. Outline. The remainder of this paper is organized as follows. In Setion 2 we presenta brief sketh of the basi ingredients of the potential-theoreti approah to metastability.In partiular, we exhibit a relation between average rossover times and apaities, andwe state two variational representations for apaities, the �rst of whih is suitable forderiving upper bounds and the seond for deriving lower bounds. Setion 3 ontains theproof of our results for the ase of Glauber dynamis. This will be tehnially relativelyeasy, and will give a �rst �avor of how our method works. In Setion 4 we deal withKawasaki dynamis. Here we will enounter several rather more di�ult issues, all omingfrom the fat that Kawasaki dynamis is onservative. The �rst is to understand whythe onstant Γ, representing the loal energeti ost to reate a ritial droplet, involvesthe grand-anonial Hamiltonian, even though we are working in the anonial ensemble.This mystery will, of ourse, be resolved by the observation that the formation of a ritialdroplet redues the entropy of the system: the preise omputation of this entropy lossyields Γ via equivalene of ensembles. The seond problem is to ontrol the probability of apartile moving from the gas to the proto-ritial droplet at the last stage of the nuleation.This non-loality issue will be dealt with via upper and lower estimates. Appendies A�Dollet some tehnial lemmas that are needed in Setions 3�4.The extension of our results to higher dimensions is limited only by the ombinatorialproblems involved in the omputation of the number of ritial droplets (whih is hardin the ase of Kawasaki dynamis) and of the probability for simple random walk tohit a ritial droplet of a given shape when oming from far. We will not pursue this9



generalization here. The relevant results on a β-independent box in Z
3 an be found inBen Arous and Cerf [1℄ (Glauber) and den Hollander, Nardi, Olivieri, and Soppola [17℄(Kawasaki). For reent overviews on droplet growth in metastability, we refer the readerto den Hollander [15, 16℄ and Bovier [4, 5℄. A general overview on metastability is givenin the monograph by Olivieri and Vares [23℄.2. Basi ingredients of the potential-theoreti approahThe proof of Theorems 1.2 and 1.4 uses the potential-theoreti approah to metastabilitydeveloped in Bovier, Ekho�, Gayrard and Klein [6℄. This approah is based on the fol-lowing three observations. First, most quantities of physial interest an be representedin term of Dirihlet problems assoiated with the generator of the dynamis. Seond, theGreen funtion of the dynamis an be expressed in terms of apaities and equilibrium po-tentials. Third, apaities satisfy variational priniples that allow for obtaining upper andlower bounds in a �exible way. We will see that in the urrent setting the implementationof these observations provides very sharp results.2.1. Equilibrium potential and apaity. The fundamental quantity in the theory isthe equilibrium potential, hA,B, assoiated with two non-empty disjoint sets of on�gura-tions, A,B ⊂ X (= Xβ or X (nβ)

β ), whih probabilistially is given by
hA,B(σ) =







Pσ(τA < τB), for σ ∈ (A ∪ B)c,
1, for σ ∈ A,
0, for σ ∈ B,

(2.1)where
τA = inf{t > 0: σt ∈ A, σt− /∈ A}, (2.2)

(σt)t≥0 is the ontinuous-time Markov hain with state spae X , and Pσ is its law startingfrom σ. This funtion is harmoni and is the unique solution of the Dirihlet problem
(LhA,B)(σ) = 0, σ ∈ (A ∪ B)c,
hA,B(σ) = 1, σ ∈ A,
hA,B(σ) = 0, σ ∈ B,

(2.3)where the generator is the matrix with entries
L(σ, σ′) = cβ(σ, σ′) − δσ,σ′ cβ(σ), σ, σ′ ∈ X , (2.4)with cβ(σ) the total rate at whih the dynamis leaves σ,

cβ(σ) =
∑

σ′∈X\{σ}

cβ(σ, σ′), σ ∈ X . (2.5)A related quantity is the equilibrium measure on A, whih is de�ned as
eA,B(σ) = −(LhA,B)(σ), σ ∈ A. (2.6)The equilibrium measure also has a probabilisti meaning, namely,
Pσ(τB < τA) =

eA,B(σ)

cβ(σ)
, σ ∈ A. (2.7)The key objet we will work with is the apaity, whih is de�ned asCAP(A,B) =

∑

σ∈A

µβ(σ)eA,B(σ). (2.8)10



2.2. Relation between rossover time and apaity. The �rst important ingredientof the potential-theoreti approah to metastability is a formula for the average rossovertime from A to B. To state this formula, we de�ne the probability measure νB
A on A wealready referred to in Setion 1, namely,

νB
A(σ) =

{

µβ(σ)eA,B(σ)CAP(A,B)
, for σ ∈ A,

0, for σ ∈ Ac.
(2.9)The following proposition is proved e.g. in Bovier [5℄.Proposition 2.1. For any two non-empty disjoint sets A,B ⊂ X ,

∑

σ∈A

νB
A(σ) Eσ(τB) =

1CAP(A,B)

∑

σ∈Bc

µβ(σ)hA,B(σ). (2.10)Remarks: (1) Due to (2.7�2.8), the probability measure νB
A(σ) an be written as

νB
A(σ) =

µβ(σ) cβ(σ)CAP(A,B)
Pσ(τB < τA), σ ∈ A, (2.11)and thus has the �avor of a last-exit biased distribution. Proposition 2.1 explains why ourmain results on average rossover times stated in Theorem 1.2 and 1.4 are formulated forthis initial distribution. Note that

µβ(A) ≤
∑

σ∈Bc

µβ(σ)hA,B(σ) ≤ µβ(Bc). (2.12)We will see that in our setting µβ(Bc\A) = o(µβ(A)) as β → ∞, so that the sum in theright-hand side of (2.10) is ∼ µβ(A) and the omputation of the rossover time redues tothe estimation of CAP(A,B).(2) For a �xed target set B, the hoie of the starting set A is free. It is tempting tohoose A = {σ} for some σ ∈ X . This was done for the ase of a �nite β-independentbox Λ. However, in our ase (and more generally in ases where the state spae is large)suh a hoie would give intratable numerators and denominators in the right-hand sideof (2.10). As a rule, to make use of the identity in (2.10), A must be so large that theharmoni funtion hA,B �does not hange abruptly near the boundary of A� for the targetset B under onsideration.As noted above, average rossover times are essentially governed by apaities. The use-fulness of this observation omes from the omputability of apaities, as will be explainednext.2.3. The Dirihlet priniple: A variational priniple for upper bounds. The a-paity is a boundary quantity, beause eA,B > 0 only on the boundary of A. The analogof Green's identity relates it to a bulk quantity. Indeed, in terms of the Dirihlet formde�ned by
E(h) = 1

2

∑

σ,σ′∈X

µβ(σ)cβ(σ, σ′)[h(σ) − h(σ′)]2, h : X → [0, 1], (2.13)it follows, via (2.1) and (2.7�2.8), thatCAP(A,B) = E(hA,B). (2.14)Elementary variational alulus shows that the apaity satis�es the Dirihlet priniple:Proposition 2.2. For any two non-empty disjoint sets A,B ⊂ X ,CAP(A,B) = min
h : X→[0,1]

h|A≡1,h|B≡0

E(h). (2.15)11



The importane of the Dirihlet priniple is that it yields omputable upper bounds forapaities by suitable hoies of the test funtion h. In metastable systems, with theproper physial insight it is often possible to guess a reasonable test funtion. In oursetting this will be seen to be relatively easy.2.4. The Berman-Konsowa priniple: A variational priniple for lowerbounds. We will desribe a little-known variational priniple for apaities that is origi-nally due to Berman and Konsowa [2℄. Our presentation will follow the argument given inBianhi, Bovier, and Io�e [3℄.In the following it will be onvenient to think of X as the vertex-set of a graph (X , E)whose edge-set E onsists of all pairs (σ, σ′), σ, σ′ ∈ X , for whih cβ(σ, σ′) > 0.De�nition 2.3. Given two non-empty disjoint sets A,B ⊂ X , a loop-free non-negativeunit �ow, f , from A to B is a funtion f : E → [0,∞) suh that:(a) (f(e) > 0 =⇒ f(−e) = 0) ∀ e ∈ E.(b) f satis�es Kirho�'s law:
∑

σ′∈X

f(σ, σ′) =
∑

σ′′∈X

f(σ′′, σ), ∀σ ∈ X\(A ∪ B). (2.16)() f is normalized:
∑

σ∈A

∑

σ′∈X

f(σ, σ′) = 1 =
∑

σ′′∈X

∑

σ∈B

f(σ′′, σ). (2.17)(d) Any path from A to B along edges e suh that f(e) > 0 is self-avoiding.The spae of all loop-free non-negative unit �ows from A to B is denoted by UA,B.A natural �ow is the harmoni �ow, whih is onstruted from the equilibrium potential
hA,B as

fA,B(σ, σ′) =
1CAP(A,B)

µβ(σ)cβ(σ, σ′)
[

hA,B(σ) − hA,B(σ′)
]

+
, σ, σ′ ∈ X . (2.18)It is easy to verify that fA,B satis�es (a�d). Indeed, (a) is obvious, (b) uses the harmoniityof hA,B, () follows from (2.6) and (2.8), while (d) omes from the fat that the harmoni�ow only moves in diretions where hA,B dereases.A loop-free non-negative unit �ow f is naturally assoiated with a probability measure P

fon self-avoiding paths, γ. To see this, de�ne F (σ) =
∑

σ′∈X f(σ, σ′), σ ∈ X\B. Then P
fis the Markov hain (σn)n∈N0 with initial distribution P

f (σ0) = F (σ0)1A(σ0), transitionprobabilities
qf (σ, σ′) =

f(σ, σ′)

F (σ)
, σ ∈ X\B, (2.19)suh that the hain is stopped upon arrival in B. In terms of this probability measure, wehave the following proposition (see [3℄ for a proof).Proposition 2.4. Let A,B ⊂ X be two non-empty disjoint sets. Then, with the notationintrodued above, CAP(A,B) = sup

f∈UA,B

E
f





[

∑

e∈γ

f(el, er)

µβ(el)cβ(el, er)

]−1


 , (2.20)where e = (el, er) and the expetation is with respet to γ. Moreover, the supremum isrealized for the harmoni �ow fA,B. 12



The nie feature of this variational priniple is that any �ow gives a omputable lower bound.In this sense (2.15) and (2.20) omplement eah other. Moreover, sine the harmoni �owis optimal, a good approximation of the harmoni funtion hA,B by a test funtion h leadsto a good approximation of the harmoni �ow fA,B by a test �ow f after putting h insteadof hA,B in (2.18). Again, in metastable systems, with the proper physial insight it is oftenpossible to guess a reasonable �ow. We will see in Setions 3�4 how this is put to work inour setting. 3. Proof of Theorem 1.23.1. Proof of Theorem 1.2(a). To estimate the average rossover time from SL ⊂ S to
Sc, we will use Proposition 2.1. With A = SL and B = Sc, (2.10) reads

∑

σ∈SL

νSc

SL
(σ) Eσ(τSc) =

1CAP(SL,Sc)

∑

σ∈S

µβ(σ)hSL,Sc(σ). (3.1)The left-hand side is the quantity of interest in (1.16). In Setions 3.1.1�3.1.2 we estimate
∑

σ∈S µβ(σ)hSL,Sc(σ) and CAP(SL,Sc). The estimates will show thatr.h.s. (3.1) =
1

N1|Λβ|
eβΓ [1 + o(1)], β → ∞. (3.2)3.1.1. Estimate of ∑σ∈S µβ(σ)hSL,Sc(σ).Lemma 3.1. ∑σ∈S µβ(σ)hSL,Sc(σ) = µβ(S)[1 + o(1)] as β → ∞.Proof. Write, using (2.1),

∑

σ∈S

µβ(σ)hSL,Sc(σ) =
∑

σ∈SL

µβ(σ)hSL,Sc(σ) +
∑

σ∈S\SL

µβ(σ)hSL,Sc(σ)

= µβ(SL) +
∑

σ∈S\SL

µβ(σ)Pσ(τSL
< τSc).

(3.3)The last sum is bounded above by µβ(S\SL). But µβ(S\SL) = o(µβ(S)) as β → ∞ byour hoie of L in (1.9).3.1.2. Estimate of CAP(SL,Sc).Lemma 3.2. CAP(SL,Sc) = N1 |Λβ|e−βΓµβ(S)[1 + o(1)] as β → ∞ with N1 = 4ℓc.Proof. The proof proeeds via upper and lower bounds.Upper bound: We use the Dirihlet priniple and a test funtion that is equal to 1 on Sto get the upper boundCAP(SL,Sc) ≤ CAP(S,Sc) =
∑

σ∈S,σ′∈Sc

cβ (σ,σ′)>0

µβ(σ)cβ(σ, σ′) =
∑

σ∈S,σ′∈Sc

cβ(σ,σ′)>0

[µβ(σ) ∧ µβ(σ′)] ≤ µβ(C),(3.4)where the seond equality uses (1.4) in ombination with the fat that cβ(σ, σ′)∨cβ(σ′, σ) =
1 by (1.3). Thus, it su�es to show that

µβ(C) ≤ N1 |Λβ | e−βΓ [1 + o(1)] as β → ∞. (3.5)For every σ ∈ P there are one or more retangles Rℓc−1,ℓc
(x), x = x(σ) ∈ Xβ, that are�lled by (+1)-spins in CB(σ). If σ′ ∈ C is suh that σ′ = σy for some y ∈ Λβ, then σ′ hasa (+1)-spin at y situated on the boundary of one of these retangles. Let

Ŝ(x) =
{

σ ∈ S : supp[σ] ⊆ Rℓc−1,ℓc
(x)
}

,

Š(x) =
{

σ ∈ S : supp[σ] ⊆ [Rℓc+1,ℓc+2(x − (1, 1))]c
}

.
(3.6)13



x

ℓc + 1

ℓc + 2

Figure 5. Rℓc−1,ℓc
(x) (shaded box) and [Rℓc+1,ℓc+2(x − (1, 1))]c (omplementof dotted box).For every σ ∈ P, we have σ = σ̂∨σ̌ for some σ̂ ∈ Ŝ(x) and σ̌ ∈ Š(x), uniquely deomposingthe on�guration into two non-interating parts inside Rℓc−1,ℓc

(x) and [Rℓc+1,ℓc+2(x −
(1, 1))]c (see Fig. 5). We have

Hβ(σ) − Hβ(⊟) = [Hβ(σ̂) − Hβ(⊟)] + [Hβ(σ̌) − Hβ(⊟)]. (3.7)Moreover, for any y /∈ supp[CB(σ)], we have
Hβ(σy) ≥ Hβ(σ) + 2J − h. (3.8)Hene

µβ(C) =
1

Zβ

∑

σ∈P

∑

x∈Λβ
σx∈C

e−βHβ(σx)

≤ 1

Zβ

N1 e−β[2J−h−Hβ(⊟)]
∑

x∈Λβ

∑

σ̌∈Š(x)

e−βHβ(σ̌)
∑

σ̂∈Ŝ(x)
σ̂∨σ̌∈P

e−βHβ(σ̂)

≤ [1 + o(1)]
1

Zβ
N1 |Λβ | e−βΓ

∑

σ̌∈Š(0)

e−βHβ(σ̌)

= [1 + o(1)]N1 |Λβ| e−βΓ µβ(Š(0)),

(3.9)
where the �rst inequality uses (3.7�3.8), with N1 = 2 × 2ℓc = 4ℓc ounting the number ofritial droplets that an arise from a proto-ritial droplet via a spin �ip (see Fig. 1), andthe seond inequality uses that

σ̂ ∈ Ŝ(0), σ̂ ∨ σ̌ ∈ P =⇒ Hβ(σ̂) ≥ Hβ(Rℓc−1,ℓc
(0)) = Γ − (2J − h) + Hβ(⊟) (3.10)with equality in the right-hand side if and only if supp[σ̂] = Rℓc−1,ℓc

(0). Combining (3.4)and (3.9) with the inlusion Š(0) ⊂ S, we get the upper bound in (3.5).Lower bound: We exploit Proposition 2.4 by making a judiious hoie for the �ow f . Infat, in the Glauber ase this hoie will be simple: with eah on�guration σ ∈ SL weassoiate a on�guration in C ⊂ Sc with a unique ritial droplet and a �ow that, fromeah suh on�guration, follows a unique deterministi path along whih this droplet isbroken down in the anonial order (see Fig. 6) until the set SL is reahed, i.e., a squareor quasi-square droplet with label L is left over (reall (1.7�1.8)).
σ0 σ1 σ2 σ3 σ4 σ5 σKFigure 6. Canonial order to break down a ritial droplet.14



Let f(β) be suh that
lim

β→∞
f(β) = ∞, lim

β→∞

1

β
log f(β) = 0, lim

β→∞
|Λβ |/f(β) = ∞, (3.11)and de�ne

W =
{

σ ∈ S : |supp[σ]| ≤ |Λβ|/f(β)
}

. (3.12)Let CL ⊂ C ⊂ Sc be the set of on�gurations obtained by piking any σ ∈ SL ∩ W andadding somewhere in Λβ a ritial droplet at distane ≥ 2 from supp[σ]. Note that thedensity restrition imposed on W guarantees that adding suh a droplet is possible almosteverywhere in Λβ for β large enough. Denoting by P(y)(x) the ritial droplet obtainedby adding a protuberane at y along the longest side of the retangle Rℓc−1,ℓc
(x), we maywrite

CL =
{

σ ∪ P(y)(x) : σ ∈ S ∩W, x, y ∈ Λβ, (x, y)⊥σ
}

, (3.13)where (x, y)⊥σ stands for the restrition that the ritial droplet P(y)(x) is not interatingwith supp[σ], whih implies that Hβ(σ ∪ P(y)(x)) = Hβ(σ) + Γ (see Figs. 7 and 8).
x

yFigure 7. The ritial droplet P(y)(x).
P

(y)(x)

ΛβFigure 8. Going from SL to CL by adding a ritial droplet P(y)(x) somewhere in Λβ .Now, for eah σ ∈ CL, we let γσ = (γσ(0), γσ(1), . . . , γσ(K)) be the anonial path from
σ = γσ(0) to SL along whih the ritial droplet is broken down, where K = v(2ℓc−3)−v(L)with

v(L) = |QL(0)| (3.14)15



(reall (1.7)). We will hoose our �ow suh that
f(σ′, σ′′)

=











ν0(σ), if σ′ = σ, σ′′ = γσ(1) for some σ ∈ CL,
∑

σ̃∈CL
f(γσ̃(k − 1), γσ(k)), if σ′ = γσ(k), σ′′ = γσ(k + 1) for some k ≥ 1, σ ∈ CL,

0, otherwise. (3.15)Here, ν0 is some initial distribution on CL that will turn out to be arbitrary as long as itssupport is all of CL.We see from (3.15) that the �ow inreases whenever paths merge. In our ase this happensonly after the �rst step, when the protuberane at y is removed. Therefore we get theexpliit form
f(σ′, σ′′) =











ν0(σ), ifσ′ = σ, σ′′ = γσ(1) for some σ ∈ CL,

Cν0(σ), ifσ′ = γσ(k), σ′′ = γσ(k + 1) for some k ≥ 1, σ ∈ CL,

0, otherwise, (3.16)where C = 2ℓc is the number of possible positions of the protuberane on the proto-ritialdroplet (see Fig. 6). Using Proposition 2.4, we therefore haveCAP(SL,Sc) = CAP(Sc,SL) ≥ CAP(CL,SL)

≥
∑

σ∈CL

ν0(σ)

[

K−1
∑

k=0

f(γσ(k), γσ(k + 1))

µβ(γσ(k))cβ(γσ(k), γσ(k + 1))

]−1

=
∑

σ∈CL

[

1

µβ(σ)cβ(γσ(0), γσ(1))
+

K−1
∑

k=1

C

µβ(γσ(k))cβ(γσ(k), γσ(k + 1))

]−1

.(3.17)Thus, all we have to do is to ontrol the sum between square brakets.Beause cβ(γσ(0), γσ(1)) = 1 (removing the protuberane lowers the energy), the termwith k = 0 equals 1/µβ(σ). To show that the terms with k ≥ 1 are of higher order, weargue as follows. Abbreviate Ξ = h(ℓc − 2). For every k ≥ 1 and σ(0) ∈ CL, we have (seeFig. 9 and reall (1.2�1.3))
µβ(γσ(k))cβ(γσ(k), γσ(k+1)) =

1

Zβ

e−β[Hβ(γσ(k))∨Hβ(γσ(k+1))] ≥ µβ(σ0) eβ[2J−h−Ξ] = µβ(σ)eβδ ,(3.18)where δ = 2J − h − Ξ = 2J − h(ℓc − 1) > 0 (reall (1.6)). Therefore
K−1
∑

k=1

C

µβ(γσ(k))cβ(γσ(k), γσ(k + 1))
≤ 1

µβ(σ)
CKe−δβ, (3.19)and so from (3.17) we getCAP(SL,Sc) ≥

∑

σ∈CL

µβ(σ)

1 + CKe−βδ
=

µβ(CL)

1 + CKe−βδ
= [1 + o(1)]µβ(CL). (3.20)16



2J − h

2J − h − Ξ

σ0

Figure 9. Visualization of (3.18).The last step is to estimate, with the help of (3.13),
µβ(CL) =

1

Zβ

∑

σ∈CL

e−βHβ(σ) =
1

Zβ

∑

σ∈SL∩W

∑

x,y∈Λβ
(x,y)⊥σ

e−βHβ(σ∪P(y)(x))

= e−βΓ 1

Zβ

∑

σ∈SL∩W

e−βHβ(σ)
∑

x,y∈Λβ
(x,y)⊥σ

1

≥ e−βΓ µβ(SL ∩W)N1 |Λβ| [1 − (ℓc + 1)2/f(β)].

(3.21)
The last inequality uses that |Λβ|(ℓc +1)2/f(β) is the maximal number of sites in Λβ whereit is not possible to insert a non-interating ritial droplet (reall (3.12) and note that aritial droplet �ts inside an ℓc × ℓc square). Aording to Lemma A.1 in Appendix A, wehave

µβ(SL ∩W) = µβ(SL)[1 + o(1)], (3.22)while onditions (1.8�1.9) imply that µβ(SL) = µβ(S)[1+o(1)]. Combining the latter with(3.20�3.21), we obtain the desired lower bound.3.2. Proof of Theorem 1.2(b). We use the same tehnique as in Setion 3.1, whih iswhy we only give a sketh of the proof.To estimate the average rossover time from SL ⊂ S to Sc\C, we will use Proposition 2.1.With A = SL and B = Sc\C, (2.10) reads
∑

σ∈SL

ν
Sc\C
SL

(σ) Eσ(τSc\C) =
1CAP(SL,Sc\C)

∑

σ∈S∪C

µβ(σ)hSL,Sc\C(σ). (3.23)The left-hand side is the quantity of interest in (1.17).In Setions 3.2.1�3.2.2 we estimate ∑σ∈S∪C µβ(σ)hSL,Sc\C(σ) and CAP(SL,Sc\C). Theestimates will show thatr.h.s. (3.23) =
1

N2|Λβ|
eβΓ [1 + o(1)], β → ∞. (3.24)3.2.1. Estimate of ∑σ∈S∪C µβ(σ)hSL,Sc\C(σ).Lemma 3.3. ∑σ∈S∪C µβ(σ)hSL,Sc\C(σ) = µβ(S)[1 + o(1)] as β → ∞.Proof. Write, using (2.1),

∑

σ∈S∪C

µβ(σ)hSL,Sc\C(σ) = µβ(SL) +
∑

σ∈(S\SL)∪C

µβ(σ)Pσ(τSL
< τSc\C). (3.25)17



The last sum is bounded above by µβ(S\SL) + µβ(C). As before, µβ(S\SL) = o(µβ(S)) as
β → ∞. But (1.35) and (3.9) imply that µβ(C) = o(µβ(S)) as β → ∞.3.2.2. Estimate of CAP(SL,Sc\C).Lemma 3.4. CAP(S,Sc\C) = N2 |Λβ |e−βΓµβ(S)[1+o(1)] as β → ∞ with N2 = 4

3 (2ℓc−1).Proof. The proof is similar as that of Lemma 3.2, exept that it takes are of the transitionprobabilities away from the ritial droplet.Upper bound: Realling (2.13�2.15) and noting that Glauber dynamis does not allowtransitions within C, we have, for all h : C → [0, 1],CAP(SL,Sc\C) ≤ CAP(S,Sc\C) ≤
∑

σ∈C

µβ(σ)
[

ĉσ(h(σ) − 1)2 + čσ(h(σ) − 0)2
]

, (3.26)where ĉσ =
∑

η∈S cβ(σ, η) and čσ =
∑

η∈Sc\C cβ(σ, η). The quadrati form in the right-hand side of (3.26) ahieves its minimum for h(σ) = ĉσ/(ĉσ + čσ), soCAP(SL,Sc\C) ≤
∑

σ∈C

Cσ µβ(σ) (3.27)with Cσ = ĉσ čσ/(ĉσ + čσ). We have
∑

σ∈C

Cσ µβ(σ) =
1

Zβ

∑

σ∈P

∑

x∈Λβ
σx∈C

Cσx e−βHβ(σx)

= e−β(2J−h) 1

Zβ

∑

σ∈P

e−βHβ(σ) 2
(

1
2 4 + 2

3(2ℓc − 4)
)

= e−β(2J−h) µβ(P)N2 =
1

N1
µβ(C)N2,

(3.28)
where in the seond line we use that Cσ = 1

2 if σ has a protuberane in a orner (2 × 4hoies) and Cσ = 2
3 otherwise (2 × (2ℓc − 4) hoies).

σ0 σ1 σ2

d(σ0, σ1) = 1/2 d(σ1, σ2) = 1 d(σ2, σ3) = 1Figure 10. Canonial order to break down a proto-ritial droplet plus a doubleprotuberane. In the �rst step, the double protuberane has probability 1
2 tobe broken down in either of the two possible ways. The subsequent steps aredeterministi as in Fig. 6.Lower bound: In analogy with (3.13), denoting by P 2

(y)(x) the droplet obtained by addinga double protuberane at y along the longest side of the retangle Rℓc−1,ℓc
(x), we de�nethe set DL ⊂ Sc\C by

DL = {σ ∪ P 2
(y)(x) : σ ∈ SL ∩W, x, y ∈ Λβ, (x, y)⊥σ}. (3.29)As in (3.15), we may hoose any starting measure on DL. We hoose the �ow as follows.For the �rst step we hoose

f(σ′, σ) = 1
2 ν0(σ), σ′ ∈ DL, σ ∈ CL, (3.30)18



whih redues the double protuberane to a single protuberane (ompare (3.13) and(3.29)). For all subsequent steps we follow the deterministi paths γσ used in Setion 3.1.2,whih start from γσ(0) = σ. Note, however, that we get di�erent values for the �ows
f(γσ(0), γσ(1)) depending on whether the protuberane sits in a orner or not. In theformer ase, it has only one possible anteedent, and so

f(γσ(0), γσ(1)) = 1
2 ν0(σ), (3.31)while in the latter ase it has two anteedents, and so

f(γσ(0), γσ(1)) = ν0(σ). (3.32)This time the terms k = 0 and k = 1 are of the same order while, as in (3.19), all thesubsequent steps give a ontribution that is a fator O(e−δβ) smaller. Indeed, in analogywith (3.17) we obtain, writing σ ∼ σ′ when cβ(σ′, σ) > 0,CAP(SL,Sc\C) = CAP(Sc\C,SL) ≥ CAP(DL,SL)

≥
∑

σ′∈DL

1
2

∑

σ∈CL
σ∼σ′

[

f(σ′, σ)

µβ(σ)
+

f(σ, γσ(1))

µβ(σ)
+

K−1
∑

k=1

f(γσ(k), γσ(k + 1))

µβ(γσ(k))cβ(γσ(k), γσ(k + 1))

]−1

≥
∑

σ′∈DL

1
2

∑

σ∈CL
σ∼σ′

µβ(σ)
[

f(σ′, σ) + f(σ, γσ(1)) + CKe−βδ
]−1

= [1 + o(1)]µβ(CL)

(

2ℓc − 4

2ℓc

1

1 + 1
2

+
1

2

4

2ℓc

1
1
2 + 1

2

)

= [1 + o(1)]µβ(CL)
N2

N1
.

(3.33)
Using (3.21) and the remarks following it, we get the desired lower bound.3.3. Proof of Theorem 1.2(). Write

∑

σ∈Dc
M

µβ(σ)hSL,DM
(σ) =

∑

σ∈SL

µβ(σ)hSL,DM
(σ) +

∑

σ∈Dc
M

\SL

µβ(σ)hSL,DM
(σ)

= µβ(SL) +
∑

σ∈Dc
M

\SL

µβ(σ)Pσ(τSL
< τDM

).
(3.34)The last sum is bounded above by µβ(S\SL) + µβ(Dc

M\S). But µβ(S\SL) = o(µβ(S)) as
β → ∞ by our hoie of L in (1.9), while µβ(Dc

M\S) = o(µβ(S)) as β → ∞ beause of therestrition ℓc ≤ M2ℓc − 1. Indeed, under that restrition the energy of a square droplet ofsize M is stritly larger than the energy of a ritial droplet.Proof. The proof of Theorem 1.2() follows along the same lines as that of Theorems 1.2(a�b) in Setions 3.1�3.2. The main point is to prove that CAP(SL,DM ) = [1+o(1)]CAP(SL,Sc\C).Sine CAP(SL,DM ) ≤ CAP(SL,Sc\C), whih was estimated in Setion 3.2, we need onlyprove a lower bound on CAP(SL,DM ). This is done by using a �ow that breaks down an
M × M droplet to a square or quasi-square droplet QL in the anonial way, whih takes
M2 − v(L) steps (reall Fig. 6 and (3.14)). The leading terms are still the proto-ritialdroplet with a single and a double protuberane. To eah M × M droplet is assoiateda unique ritial droplet, so that the pre-fator in the lower bound is the same as in theproof of Theorem 1.2(b).Note that we an even allow M to grow with β as M = eo(β). Indeed, (3.11�3.12) showthat there is room enough to add a droplet of size eo(β) almost everywhere in Λβ, and thefator M2e−δβ replaing Ke−δβ in (3.20) still is o(1).19



4. Proof of Theorem 1.44.1. Proof of Theorem 1.4(a).4.1.1. Estimate of ∑σ∈S∪(C̃\C+) µβ(σ)hSL,(Sc\C̃)∪C+(σ).Lemma 4.1. ∑σ∈S∪(C̃\C+) µβ(σ)hSL,(Sc\C̃)∪C+(σ) = µβ(S)[1 + o(1)] as β → ∞.Proof. Write, using (2.1),
∑

σ∈S∪(C̃\C+)

µβ(σ)hSL,(Sc\C̃)∪C+(σ)

= µβ(SL) +
∑

σ∈(S\SL)∪(C̃\C+)

µβ(σ)Pσ

(

τSL
< τ(Sc\C̃)∪C+

)

.
(4.1)The last sum is bounded above by µβ(S\SL) + µβ(C̃\C+). But µβ(S\SL) = o(µβ(S)) as

β → ∞ by our hoie of L in (1.32). In Lemma B.3 in Appendix B.3 we will show that
µβ(C̃\C+) = o(µβ(S)) as β → ∞.4.1.2. Estimate of CAP(SL, (Sc\C̃) ∪ C+).Lemma 4.2. CAP(SL,Sc\C̃) ∪ C+) = N |Λβ | 4π

β∆ e−βΓµβ(S)[1 + o(1)] as β → ∞ with
N = 1

3ℓ2
c(ℓ

2
c − 1).Proof. The argument is in the same spirit as that in Setion 3.1.2. However, a number ofadditional hurdles need to be taken that ome from the onservative nature of Kawasakidynamis. The proof proeeds via upper and lower bounds, and takes up quite a bit ofspae.Upper bound: The proof omes in 7 steps.

S

C− C+

C̃Figure 11. Shemati piture of the sets S, C−, C+ de�ned in De�nition 1.3and the set C̃ interpolating between C− and C+.1. Proto-ritial droplet and free partile. Let C̃ denote the set of on�gurations�interpolating� between C− and C+, in the sense that the free partile is somewhere betweenthe boundary of the proto-ritial droplet and the boundary of the box of size Lβ aroundthe proto-ritial droplet (see Fig. 11). Then we haveCAP(SL, (Sc\C̃) ∪ C+) ≤ CAP(S ∪ C−, (Sc\C̃) ∪ C+)

= min
h : X

(nβ )

β
→[0,1]

h|
S∪C−

≡1, h|
(Sc\C̃)∪C+≡0

1
2

∑

σ,σ′∈X
(nβ )

β

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2.(4.2)20



Split the right-hand side into a ontribution oming from σ, σ′ ∈ C̃ and the rest:r.h.s.(4.2) = I + γ1(β), (4.3)where
I = min

h : C̃→[0,1]
h|

C−
≡1, h|

C+≡0

1
2

∑

σ,σ′∈C̃

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2 (4.4)and γ1(β) is an error term that will be estimated in Step 7. This term will turn out tobe small beause µβ(σ)cβ(σ, σ′) is small when either σ ∈ X (nβ)
β \C̃ or σ′ ∈ X (nβ)

β \C̃. Next,partition C̃, C−, C+ into sets C̃(x), C−(x), C+(x), x ∈ Λβ, by requiring that the lower-leftorner of the proto-ritial droplet is in the enter of the box BLβ ,Lβ
(x). Then, beause

cβ(σ, σ′) = 0 when σ ∈ C̃(x) and σ′ ∈ C̃(x′) for some x 6= x′, we may write
I = |Λβ| min

h : C̃(0)→[0,1]
h|

C−(0)
≡1, h|

C+(0)
≡0

1
2

∑

σ,σ′∈C̃(0)

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2. (4.5)2. Deomposition of on�gurations. De�ne (ompare with (3.6))
Ĉ(0) =

{

σ1BLβ,Lβ
(0) : σ ∈ C̃(0)

}

,

Č(0) =
{

σ1[BLβ,Lβ
(0)]c : σ ∈ C̃(0)

}

.
(4.6)Then every σ ∈ C̃(0) an be uniquely deomposed as σ = σ̂ ∨ σ̌ for some σ̂ ∈ Ĉ(0) and

σ̌ ∈ Č(0). Note that Ĉ(0) has K = ℓc(ℓc − 1) + 2 partiles and Č(0) has nβ − K partiles(and reall that, by the �rst half of (1.35), nβ → ∞ as β → ∞). De�ne
Cfp(0) =

{

σ ∈ C̃(0) : Hβ(σ) = Hβ(σ̂) + Hβ(σ̌)
}

, (4.7)i.e., the set of on�gurations onsisting of a proto-ritial droplet and a free partile inside
BLβ ,Lβ

(0) not interating with the partiles outside BLβ ,Lβ
(0). Write Cfp,−(0) and Cfp,+(0)to denoting the subsets of Cfp(0) where the free partile is at distane Lβ , respetively, 2from the proto-ritial droplet. Split the right-hand side of (4.5) into a ontribution omingfrom σ, σ′ ∈ Cfp(0) and the rest:r.h.s.(4.5) = |Λβ | [II + γ2(β)], (4.8)where

II = min
h : Cfp(0)→[0,1]

h|
Cfp,−(0)

≡1, h|
Cfp,+(0)

≡0

1
2

∑

σ,σ′∈Cfp(0)

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2 (4.9)and γ2(β) is an error term that will be estimated in Step 6. This term will turn out to besmall beause of loss of entropy when the partile is at the boundary.3. Redution to apaity of simple random walk. Estimate
II = min

h : Cfp(0)→[0,1]
h|

Cfp,−(0)
≡1, h|

Cfp,+(0)
≡0

1
2

∑

σ̌,σ̌′∈Č(0)

∑

σ̂,σ̂′∈Ĉ(0):

σ̂∨σ̌,σ̂′∨σ̌′∈Cfp(0)

µβ(σ̂ ∨ σ̌) cβ(σ̂ ∨ σ̌, σ̂′ ∨ σ̌′) [h(σ̂ ∨ σ̌) − h(σ̂′ ∨ σ̌′)]2

≤ min
g : Ĉ(0)→[0,1]

g|
Ĉ−(0)

≡1, g|
Ĉ+(0)

≡0

1
2

∑

σ̌∈Č(0)

∑

σ̂,σ̂′∈Ĉ(0):

σ̂∨σ̌,σ̂′∨σ̌∈Cfp(0)

µβ(σ̂ ∨ σ̌) cβ(σ̂ ∨ σ̌, σ̂′ ∨ σ̌) [g(σ̂) − g(σ̂′)]2, (4.10)21



where Ĉ−(0), Ĉ(0)+ denote the subsets of Ĉ(0) where the free partile is at distane Lβ,respetively, 2 from the proto-ritial droplet, and the inequality omes from substituting
h(σ̂ ∨ σ̌) = g(σ̂), σ̂ ∈ Ĉ(0), σ̌ ∈ Č(0), (4.11)and afterwards replaing the double sum over σ̌, σ̌′ ∈ Č(0) by the single sum over σ̌ ∈ Č(0)beause cβ(σ̂ ∨ σ̌, σ̂′ ∨ σ̌′) > 0 only if either σ̂ = σ̂′ or σ̌ = σ̌′ (the dynamis updates onesite at a time). Next, estimater.h.s.(4.10)

≤
∑

σ̌∈Č(0)

1

Z
(nβ)
β

e−βHβ(σ̌) min
g : Ĉ(0)→[0,1]

g|
Ĉ−(0)

≡1, g|
Ĉ+(0)

≡0

1
2

∑

σ̂,σ̂′∈Ĉ(0)

σ̂∨σ̌,σ̂′∨σ̌∈Cfp(0)

e−βHβ(σ̂) cβ(σ̂, σ̂′) [g(σ̂) − g(σ̂′)]2,(4.12)where we used Hβ(σ) = Hβ(σ̂) + Hβ(σ̌) from (4.7) and write cβ(σ̂, σ̂′) to denote the tran-sition rate assoiated with the Kawasaki dynamis restrited to BLβ ,Lβ
(0), whih learlyequals cβ(σ̂ ∨ σ̌, σ̂′ ∨ σ̌) for every σ̌ ∈ Č(0) suh that σ̂ ∨ σ̌, σ̂′ ∨ σ̌ ∈ Cfp(0) beause thereis no interation between the partiles inside and outside BLβ ,Lβ

(0). The minimum in ther.h.s. of (4.12) an be estimated from above by
∑

σ∈P(0)

Vβ(σ) (4.13)with P(0) the set of proto-ritial droplets with lower-left orner at 0, and
Vβ(σ) = min

f : Z2→[0,1]
f |Pσ(0)≡1, f |[BLβ,Lβ

(0)]c≡0

1
2

∑

x,x′∈Z2

x∼x′

[f(x) − f(x′)]2, (4.14)where Pσ(0) is the support of the proto-ritial droplet in σ, and x ∼ x′ means that xand x′ are neighboring sites. Indeed, (4.13) is obtained from the expression in (4.12) bydropping the restrition σ̂ ∨ σ̌, σ̂′ ∨ σ̌ ∈ Cfp(0), substituting
g(Pσ(0) ∪ {x}) = f(x), σ ∈ P(0), x ∈ BLβ ,Lβ

(0)\Pσ(0), (4.15)and noting that cβ(Pσ(0) ∪ {x}, Pσ(0) ∪ {x′}) = 1 when x ∼ x′ and zero otherwise. What(4.13) says is that
Vβ(σ) = CAP(Pσ(0), [BLβ .Lβ

(0)]c) (4.16)is the apaity of simple random walk between the proto-ritial droplet Pσ(0) in σ andthe exterior of BLβ .Lβ
(0). Now, de�ne

Ž
(n−K)
β (0) =

∑

σ̌∈Č(0)

e−βHβ(σ̌). (4.17)Then we obtain via (4.13) thatr.h.s.(4.12) ≤ e−βΓ∗ Ž
(n−K)
β (0)

Z
(nβ)
β

∑

σ∈P(0)

Vβ(σ), (4.18)where Γ∗ = −U [(ℓc − 1)2 + ℓc(ℓc − 1)+1] is the binding energy of the proto-ritial droplet(ompare with (1.33)).4. Capaity estimate. For future referene we state the following estimate on apaitiesfor simple random walk.Lemma 4.3. Let U ⊂ Z
2 be any set suh that {0} ⊂ U ⊂ Bk,k(0), with k ∈ N ∪ {0}independent of β. Let V ⊂ Z

2 be any set suh that [BKLβ ,KLβ
(0)]c ⊂ V ⊂ [BLβ ,Lβ

(0)]c,with K ∈ N independent of β. ThenCAP ({0}, [BKLβ ,KLβ
(0)]c

)

≤ CAP (U, V ) ≤ CAP (Bk,k(0), [BLβ ,Lβ
(0)]c

)

. (4.19)22



Moreover, via (1.29�1.30),CAP (Bk,k(0), [BKLβ ,KLβ
(0)]c

)

= [1+o(1)]
2π

log(KLβ) − log k
= [1+o(1)]

4π

β∆
, β → ∞.(4.20)Proof. The inequalities in (4.19) follow from standard monotoniity properties of apaities.The asymptoti estimate in (4.20) for apaities of onentri boxes are standard (see e.g.Lawler [20℄, Setion 2.3), and also follow by omparison to Brownian motion.We an apply Lemma 4.3 to estimate Vβ(σ) in (4.16), sine the proto-ritial droplet withlower-left orner in 0 �ts inside the box B2ℓc,2ℓc

(0). This gives
Vβ(σ) =

4π

β∆
[1 + o(1)], ∀σ ∈ P(0), β → ∞. (4.21)Morover, from Bovier, den Hollander, and Nardi [7℄, Lemmas 3.4.2�3.4.3, we know that

N = |P(0)|, the number of shapes of the proto-ritial droplet, equals N = 1
3ℓ2

c(ℓ
2
c − 1).5. Equivalene of ensembles. Aording to Lemma B.1 in Appendix B, we have

Ž
(nβ−K)
β (0)

Z
(nβ)
β

= (ρβ)K µβ(S) [1 + o(1)], β → ∞. (4.22)This is an �equivalene of ensembles� property relating the probabilities to �nd nβ − K,respetively, nβ partiles inside [BLβ ,Lβ
(0)]c (reall (4.6)). Combining (4.2�4.3), (4.5),(4.8), (4.10), (4.12), (4.18) and (4.21�4.22), we getCAP(S, C+) ≤ γ1(β) + |Λβ|γ2(β) + N |Λβ |

4π

β∆
e−βΓ µβ(S) [1 + o(1)], β → ∞, (4.23)where we use that Γ∗ + ∆K = Γ de�ned in (1.33). This ompletes the proof of the upperbound, provided that the error terms γ1(β) and γ2(β) are negligible.6. Seond error term. To estimate the error term γ2(β), note that the on�gurationsin C̃(0)\Cfp(0) are those for whih inside BLβ ,Lβ
(0) there is a proto-ritial droplet whoselower-left orner is at 0, and a partile that is at the boundary and attahed to some lusteroutside BLβ ,Lβ

(0). Realling (4.5�4.9), we therefore have
γ2(β) ≤

∑

σ∈C̃(0)\Cfp(0)

∑

σ′∈C̃(0)

µβ(σ)cβ(σ, σ′) [h(σ) − h(σ′)]2 ≤ 6µβ(C̃(0)\Cfp(0)), (4.24)where we use that h : C̃(0) → [0, 1], µβ(σ)cβ(σ, σ′) = µβ(σ)∧µβ(σ′), and there are 6 possibletransitions from C̃(0)\Cfp(0) to C̃(0): 3 through a move by the partile at the boundary of
BLβ ,Lβ

(0) and 3 through a move by a partile in the luster outside BLβ ,Lβ
(0). Sine

Hβ(σ) ≥ Hβ(σ̂) + Hβ(σ̌) − U, σ ∈ C̃(0)\Cfp(0), (4.25)it follows from the same argument as in Steps 3 and 5 that
µβ(C̃(0)\Cfp(0)) ≤ N e−βΓ∗

(ρβ)K+1 µβ(S) eβU 4(K − 1) [1 + o(1)], (4.26)where (ρβ)K+1 omes from the fat that nβ − (K + 1) partiles are outside BLβ−1,Lβ−1(0)(one more use Lemma B.1 in Appendix B), eβU omes from the gap in (4.25), and 4(K−1)ounts the maximal number of plaes at the boundary of BLβ ,Lβ
(0) where the partilean interat with partiles outside BLβ ,Lβ

(0) due to the onstraint that de�nes S (reallDe�nition 1.3)(a)). Sine ρβeβU = o(1) by (1.27), we therefore see that γ2(β) indeed issmall ompared to the main term of (4.23). 23



7. First error term. To estimate the error term γ1(β), we de�ne the sets of pairs ofon�gurations
I1 = {(σ, η) ∈ [X (nβ)

β ]2 : σ ∈ S, η ∈ Sc\C̃},

I2 = {(σ, η) ∈ [X (nβ)
β ]2 : σ ∈ C̃, η ∈ Sc\C̃},

(4.27)and estimate
γ1(β) ≤ 1

2

2
∑

i=1

∑

(σ,η)∈Ii

µβ(σ) cβ(σ, η) = 1
2Σ(I1) + 1

2Σ(I2). (4.28)The sum Σ(I1) an be written as
Σ(I1) = |Λβ |

∑

σ∈P

∑

η∈Sc\C̃

cβ(η, σ) 1
{

|supp[η] ∩ BLβ ,Lβ
(0)| = K

} 1

Z
(nβ)
β

e−βHβ(η), (4.29)where we use that µβ(σ)cβ(σ, η) = µβ(η)cβ(η, σ), σ, η ∈ X (nβ)
β , and cβ(η, σ) = 0, η ∈ Sc\C̃,

σ /∈ P (reall De�nition 1.3(b)). We have
Hβ(η) ≥ Hβ(η̂) + Hβ(η̌) − kU, η ∈ Sc\C̃, (4.30)where k ounts the number of pairs of partiles interating aross the boundary of BLβ ,Lβ

(0).Moreover, sine η /∈ C̃, we have
Hβ(η̂) ≥ Γ∗ + U. (4.31)Inserting (4.30�4.31) into (4.29), we obtain

Σ(I1) ≤ |Λβ| e−βΓ∗
µβ(S) [1 + o(1)]

K
∑

k=0

(ρβ)K+k [4(K − 1)]k eβ(k−1)U

= |Λβ| e−βΓµβ(S) [1 + o(1)] e−βU ,

(4.32)where (ρβ)K+k omes from the fat that nβ − (K + k) partiles are outside BLβ−1,Lβ−1(0)(one more use Lemma B.1 in Appendix B), and the inequality again uses an argumentsimilar as in Steps 3 and 5. Therefore Σ(I1) is small ompared to the main term of (4.23).The sum Σ(I2) an be estimated as
Σ(I2) =

∑

σ∈C̃

∑

η∈Sc\C̃

µβ(σ) cβ(σ, η)

= |Λβ |
∑

σ∈C̃(0)

µβ(σ)
∑

η∈Sc\C̃(0)

cβ(σ, η)

≤ |Λβ |µβ(C̃(0))
{

e−β U + (4Lβ) ρβ [1 + o(1)]
}

,

(4.33)where the �rst term omes from detahing a partile from the ritial droplet and theseond term from a extra partile entering BLβ ,Lβ
(0). The term between braes is o(1).Moreover, µβ(C̃(0)) = µβ(Cfp(0)) + µβ(C̃(0)\Cfp(0)). The seond term was estimated in(4.26), the �rst term an again be estimated as in Steps 3 and 5:

µβ(Cfp(0)) =
∑

σ̂∈Ĉ(0)

∑

σ̌∈Č(0)

σ̂∨σ̌∈Cfp(0)

µβ(σ̂ ∨ σ̌) = N e−βΓ∗ Ž
(nβ−K)
β (0)

Z
(nβ)
β

= N e−βΓ µβ(S) [1 + o(1)].(4.34)Therefore also Σ(I2) is small ompared to the main term of (4.23).Lower bound: The proof of the lower bound follows the same line of argument as forGlauber dynamis in that it relies on the onstrution of a suitable unit �ow. This �owwill, however, be onsiderably more di�ult. In partiular, we will no longer be able to24



get away with hoosing a deterministi �ow, and the full power of the Berman-Konsowavariational priniple has to be brought to bear. The proof omes in 5 steps.For future referene we state the following property of the harmoni funtion for simplerandom walk on Z
2.Lemma 4.4. Let g be the harmoni funtion of simple random walk on B2Lβ ,2Lβ

(0) (whihis equal to 1 on {0} and 0 on [B2Lβ ,2Lβ
(0)]c). Then there exists a onstant C < ∞ suhthat

∑

e

[g(z) − g(z + e)]+ ≤ C/Lβ ∀ z ∈ [BLβ ,Lβ
(0)]c. (4.35)Proof. See e.g. Lawler, Shramm and Werner [21℄, Lemma 5.1. The proof an be given viathe estimates in Lawler [20℄, Setion 1.7, or via a oupling argument.1. Starting on�gurations. We start our �ow on a subset of the on�gurations in

C+ that is su�iently large and su�iently onvenient. Let C+
2 ⊂ C+ denote the setof on�gurations having a proto-ritial with lower-left orner at some site x ∈ Λβ, afree partile at distane 2 from this proto-ritial droplet, no other partiles in the box

B2Lβ ,2Lβ
(x), and satisfying the onstraints in SL, i.e., all other boxes of size 2Lβ arry nomore partiles than there are in a proto-ritial droplet. This is the same as C+, exeptthat the box around the proto-ritial droplet has size 2Lβ rather than Lβ.Let K = ℓc(ℓc−1)+2 be the volume of the ritial droplet, and let S(nβ−K)

2 be the analogueof S when the total number of partiles is nβ−K and the boxes in whih we ount partileshave size 2Lβ (ompare with De�nition 1.3). Similarly as in (3.17), our task is to derivea lower bound for CAP(SL, (Sc\C̃) ∪ C+) = CAP((Sc\C̃) ∪ C+,SL) ≥ CAP(CL,SL), where
CL ⊂ C+

2 ⊂ C+ de�ned by
CL = {σ ∪ P(y)(x, z) : σ ∈ S(nβ−K)

2 , x, y ∈ Λβ, (x, y, z)⊥σ} (4.36)is the analog of (3.13), namely, the set of on�gurations obtained from S(nβ−K)
2 by addinga ritial droplet somewhere in Λβ (lower-left orner at x, protuberane at y, free partileat z) suh that it does not interat with the partiles in σ and has an empty box of size

2Lβ around it. Note that the nβ −K partiles an blok at most nβ(2Lβ)2 = o(|Λβ|) sitesfrom being the enter of an empty box of size 2Lβ, and so the ritial partile an be addedat |Λβ | − o(|Λβ |) loations.We partition CL into sets CL(x), x ∈ Λβ, aording to the loation of the proto-ritialdroplet. It su�es to onsider the ase where the ritial droplet is added at x = 0, beausethe union over x trivially produes a fator |Λβ |.2. Overall strategy. Starting from a on�guration in CL(0), we will suessively pik
K − L partiles from the ritial droplet (starting with the free partile at z at distane
2) and move them out of the box BLβ ,Lβ

(0), plaing them essentially uniformly in theannulus B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0). One this has been ahieved, the on�guration is in SL.Eah suh move will produe an entropy of order L2
β, whih will be enough to ompensatefor the loss of energy in tearing down the droplet (reall Fig. 4). The order in whih thepartiles are removed follows the anonial order employed in the lower bound for Glauberdynamis (reall Fig. 6). As for Glauber, we will use Proposition 2.4 to estimateCAP(CL,SL) ≥ |Λβ |

∑

σ∈CL(0)

∑

γ : γ0=σ

P
f (γ)

τ(γ)
∑

k=0

[

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)

]−1 (4.37)for a suitably onstruted �ow f and assoiated path measure P
f , starting from someinitial distribution on CL(0) (whih as for Glauber will be irrelevant), and τ(γ) the timeat whih the last of the K − L partiles exits the box BLβ ,Lβ

(0) .25



The di�erene between Glauber and Kawasaki is that, while in Glauber the droplet anbe torn down via single spin-�ips, in Kawasaki after we have detahed a partile from thedroplet we need to move it out of the box BLβ ,Lβ
(0), whih takes a large number of steps.Thus, τ(γ) is the sum of K − L stopping times, eah exept the �rst of whih is a sumof two stopping times itself, one to detah the partile and one to move it out of the box

BLβ ,Lβ
(0). With eah motion of a single partile we need to gain an entropy fator of orderlose to 1/ρβ . This will be done by onstruting a �ow that involves only the motion ofthis single partile, based on the harmoni funtion of the simple random walk in the box

B2Lβ ,2Lβ
(0) up to the boundary of the box BLβ ,Lβ

(0). Outside BLβ ,Lβ
(0) the �ow beomesmore omplex: we modify it in suh a way that a small fration of the �ow, of order L−1+ǫ

βfor some ǫ > 0 small enough, is going into the diretion of removing the next partile fromthe droplet. The reason for this hoie is that we want to make sure that the �ow beomessu�iently small, of order L−2+ǫ
β , so that this an ompensate for the fat that the Gibbsweight in the denominator of the lower bound in (2.20) is redued by a fator e−βU whenthe protuberane is detahed. The reason for the extra ǫ is that we want to make surethat, along most of the paths, the protuberane is detahed before the �rst partile leavesthe box B2Lβ ,2Lβ

(0).One the protuberane detahes itself from the proto-ritial, the �rst partile stops andthe seond partile moves in the same way as the �rst partile did when it moved awayfrom the proto-ritial droplet, and so on. This is repeated until no more than L partilesremain in BLβ ,Lβ
(0), by whih time we have reahed SL. As we will see, the only signi�antontribution to the lower bound omes from the motion of the �rst partile (as for Glauber),and this oinides with the upper bound established earlier. The details of the onstrutionare to some extent arbitrary and there are many other hoies imaginable.3. First partile. We �rst onstrut the �ow that moves the partile at distane 2 fromthe proto-ritial droplet to the boundary of the box BLβ ,Lβ

(0). This �ow will onsist ofindependent �ows for eah �xed shape and loation of the ritial droplet. This �rst partof the �ow will be seen to produe the essential ontribution to the lower bound.We label the on�gurations in CL(0) by σ, desribing the shape of the ritial droplet, aswell as the on�guration outside the box B2Lβ ,2Lβ
(0), and we label the position of the freepartile in σ by z1(σ).Let g be the harmoni funtion for simple random walk with boundary onditions 0 on

[B2Lβ ,2Lβ
(0)]c and 1 on the ritial droplet. Then we hoose our �ow to be

f(σ(z), σ(z′)) =

{

C1 [g(z) − g(z + e)]+, if z′ = z + e, ‖e‖ = 1,

0, otherwise, (4.38)where σ(z) is the on�guration obtained from σ by plaing the �rst partile at site z. Theonstant C1 is hosen to ensure that f de�nes a unit �ow in the sense of De�nition 2.3,i.e.,
∑

σ∈CL(0)

C1

∑

z1(σ),e

[g(z1(σ)) − g(z1(σ) + e)] = C1

∑

σ∈CL(0)

CAP (Pσ(0), [B2Lβ ,2Lβ
(0)]c

)

= 1,(4.39)where Pσ(0) denotes the support of the proto-ritial droplet in σ, and the apaity refersto the simple random walk.Now, let z1(k) be the loation of the �rst partile at time k, and
τ1 = inf{k ∈ N : z1(k) ∈ [BLβ ,Lβ

(0)]c} (4.40)26



be the �rst time when, under the Markov hain assoiated to the �ow f , it exits BLβ ,Lβ
(0).Let γ be a path of this Markov hain. Then, by (4.38�4.39), we have

τ1
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
=

C1[g(z1(0)) − g(z1(τ1))]

µβ(γ0)
(4.41)where the sum over the g's is telesoping beause only paths along whih the g-funtiondereases arry positive probability, and cβ(γk, γk+1) = 1 for all 0 ≤ k ≤ τ1 beause the�rst partile is free. We have g(z1(0)) = 1, while, by Lemma 4.4, there exists a C < ∞suh that

g(x) ≤ C/ log Lβ, x ∈ [BLβ ,Lβ
(0)]c. (4.42)Therefore

τ1
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
=

C1

µβ(γ0)
[1 + o(1)]. (4.43)Next, by Lemma 4.3, we haveCAP(Pσ(0), [B2Lβ ,2Lβ

(0)]c
)

=
4π

β∆
[1 + o(1)], σ ∈ CL(0), β → ∞, (4.44)(beause {0} ⊂ Pσ(0) ⊂ B2ℓc.2ℓc

(0) for all σ ∈ CL(0)). Sine N = |CL(0)|, it follows from(4.39) that
1

C1
= N

4π

β∆
[1 + o(1)], (4.45)and so (4.43) beomes





τ1
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)





−1

= µβ(γ0)N
4π

β∆
[1 + o(1)]. β → ∞, (4.46)This is the ontribution we want, beause when we sum (4.46) over γ0 = σ ∈ CL(0) (reall(4.37)), we get a fator

µβ(CL(0)) = e−βΓ µβ(S) [1 + o(1)]. (4.47)To see why (4.47) is true, reall from (4.36) that CL(0) is obtained from S(nβ−K)
2 by addinga ritial droplet with lower-left orner at the origin that does not interat with the nβ −Kpartiles elsewhere in Λβ. Hene

µβ(CL(0)) = e−βΓ∗ Z̃
(nβ−K)
β (0)

Z
(nβ)
β

, (4.48)where Z̃
(nβ−K)
β (0) is the analog of Ž

(nβ−K)
β (0) (de�ned in (4.17)) obtained by requiringthat the nβ −K partiles are in [Rℓc,ℓc
(0)]c instead of [BLβ ,Lβ

(0)]c. However, it will followfrom the proofs of Lemmas B.1�B.2 in Appendix B that, just as in (4.22),
Z̃

(nβ−K)
β (0)

Z
(nβ)
β

= (ρβ)K µβ(S) [1 + o(1)], βτ∞, (4.49)whih yields (4.47) beause Γ = Γ∗ + K∆. For the remaining part of the onstrution ofthe �ow it therefore su�es to ensure that the sum beyond τ1 gives a smaller ontribution.4. Seond partile. One the �rst partile (i.e., the free partile) has left the box
BLβ ,Lβ

(0), we need to allow the seond partile (i.e., the protuberane) to detah itselffrom the proto-ritial droplet and to move out of BLβ ,Lβ
(0) as well. The problem is thatdetahing the seond partile redues the Gibbs weight appearing in the denominator by27



e−Uβ, while the inrements of the �ow are redued only to about 1/Lβ . Thus, we annotimmediately detah the seond partile. Instead, we do this with probability L−1+ǫ
β only.The idea is that, one the �rst partile is outside BLβ ,Lβ

(0), we leak some of the �ow thatdrives the motion of the �rst partile into a �ow that detahes the seond partile. To dothis, we have to �rst onstrut a leaky �ow in B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0) for simple randomwalk. This goes as follows.Let p(z, z + e) denote the transition probabilities of simple random walk driven by theharmoni funtion g on B2Lβ ,2Lβ
(0). Put

p̃(z, z + e) =

{

p(z, z + e), if z ∈ BLβ ,Lβ
(0),

(1 − L−1+ǫ
β ) p(z, z + e), if z ∈ B2Lβ ,2Lβ

(0)\BLβ ,Lβ
(0).

(4.50)Use the transition probabilities p̃(z, z + e) to de�ne a path measure P̃ . This path measuredesribes simple random walk driven by g, but with a killing probability L−1+ǫ
β inside theannulus B2Lβ ,2Lβ

(0)\BLβ ,Lβ
(0). Put

k(z, z + e) =
∑

γ

P̃ (γ)1(z,z+e)∈γ , z ∈ B2Lβ ,2Lβ
(0). (4.51)This edge funtion satis�es the following equations:

• k(z, z + e) = [g(z) − g(z + e)]+,if z ∈ BLβ ,Lβ
(0),

• k(z, z + e) = 0,if z ∈ B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0) and [g(z) − g(z + e)]+ = 0,

• (1 − L−1+ǫ
β )

∑

e

k(z + e, z)1g(z+e)−g(z)>0 =
∑

e

k(z, z + e)1g(z)−g(z+e)>0if z ∈ B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0).

(4.52)
Note that inside the annulus B2Lβ ,2Lβ

(0)\BLβ ,Lβ
(0) at eah site the �ow out is less thanthe �ow in by a leaking fator 1 − L−1+ǫ

β . We pik ǫ > 0 so small that
eβU is exponentially smaller in β than L2−ǫ

β , (4.53)(whih is possible by (1.27) and (1.29�1.30)). The important fat for us is that this leaky�ow is dominated by the harmoni �ow assoiated with g, in partiular, the �ow in satis�es
∑

e

k(z + e, z) ≤
∑

e

[g(z + e) − g(z)]+ ∀ z ∈ B2Lβ ,2Lβ
(0), (4.54)(and the same applies for the �ow out). This inequality holds beause g satis�es the sameequations as in (4.50�4.51) but without the leaking fator 1 − L−1+ǫ

β .Using this leaky �ow, we an now onstrut a �ow involving the �rst two partiles, asfollows:
• f(σ(z1, a), σ(z1 + e, a)) = C1k(z1, z1 + e),if z1 ∈ B2Lβ ,2Lβ

(0),

• f(σ(z1, a), σ(z1, b)) = C1L
−1+ǫ
β

∑

e

k(z1, z1 + e),if z1 ∈ B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0),

• f(σ(z1, z2), σ(z1, z2 + e)) =

{

C1L
−1+ǫ
β

∑

e

k(z1, z1 + e)

}

[g(z2) − g(z2 + e)]+,if z1 ∈ B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0), z2 ∈ BLβ ,Lβ
(0)\Pσ(0).

(4.55)
28



Here, we write a and b for the loations of the seond partile prior and after it detahesitself from the proto-ritial droplet, and σ(z1, z2) for the on�guration obtained from σ byplaing the �rst partile (that was at distane 2 from the proto-ritial droplet) at site z1and the seond partile (that was the protuberane) at site z2. The �ow for other motionsis zero, and the onstant C1 is the same as in (4.38�4.39)We next de�ne two further stopping times, namely,
ζ2 = inf{k ∈ N : z2(γk) = b}, (4.56)i.e., the �rst time the seond partile (the protuberane) detahes itself from the proto-ritial droplet, and

τ2 = inf{k ∈ N : z2(γk) ∈ [BLβ ,Lβ
(0)]c}, (4.57)i.e., the �rst time the seond partile exits the box BLβ ,Lβ
(0). Note that, sine we hoosethe leaking probability to be L−1+ǫ, the probability that ζ2 is larger than the �rst timethe �rst partile exits B2Lβ ,2Lβ

(0) is of order exp[−Lǫ
β] and hene is negligible. We willdisregard the ontributions of suh paths in the lower bound. Paths with this propertywill be alled good.We will next show that (4.41) also holds if we extend the sum along any path of positiveprobability up to ζ2. The reason for this lies in Lemma �ow-lb.11. Let γ be a path thathas a positive probability under the path measure P

f assoiated with f stopped at τ2. Wewill assume that this path is good in the sense desribed above. To that end we deompose
τ2
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)

=

τ1
∑

k=0

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
+

ζ2−2
∑

k=τ1+1

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
+

τ2
∑

k=ζ2−1

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)

= I + II + III. (4.58)The term I was already estimated in (4.41�4.47). To estimate II, we use (4.42) and(4.54�4.55) to bound (ompare with (4.41))
II ≤ C1

g(z1(ζ2)) − g(z1(τ1))

µβ(γ0)
≤ C1

[C/ log Lβ]

µβ(γ0)
, (4.59)whih is negligible ompared to I due to the fator C/ log Lβ. It remains to estimate III.Note that

III =
f(γζ2−1, γζ2)

µβ(γζ2−1)cβ(γζ2−1, γζ2)
+

τ2
∑

k=ζ2

f(γk, γk+1)

µβ(γk)cβ(γk, γk+1)
. (4.60)The �rst term orresponds to the move when the protuberane detahes itself from theproto-ritial droplet. Its numerator is given by f(σ(z1, a), σ(z1, b)) (for some z1 ∈ [BLβ ,Lβ

(0)]c)whih, by Lemma 4.4 and (4.54�4.55), is smaller than C1L
−1+ǫ
β CL−1

β = C1CL−2+ǫ
β . Onthe other hand, its denominator is given by

µ(γζ2−1)cβ(γζ2−1, γζ2) = µβ(γ0)e
−Uβ. (4.61)The same holds for the denominators in all the other terms in III, while the numeratorsin these terms satisfy the bound

f(γk, γk+1) ≤ C1 C L−2+ǫ
β

[

g(z2(γk)) − g(z2(γk+1))
]

. (4.62)Adding up the various terms, we get that
III ≤ C1

µβ(γ0)
L−2+ǫ

β eβU
(

1 + [g(z2(ζ2)) − g(z2(τ2)]
)

≤ 2C1

µβ(γ0)
L−2+ǫ

β eβU . (4.63)29



The right-hand side is smaller than I by a fator L−2+ǫ
β eβU , whih, by (4.53), is exponen-tially small in β.5. Remaining partiles. The lesson from the previous steps is that we an onstruta �ow with the property that eah time we remove a partile from the droplet we gaina fator L−2+ǫ

β , i.e., almost e−∆β. (This entropy gain orresponds to the gain from themagneti �eld in Glauber dynamis, or from the ativity in Kawasaki dynamis on a �niteopen box.) We an ontinue our �ow by tearing down the ritial droplet in the sameorder as we did for Glauber dynamis. Eah removal orresponds to a �ow that is builtin the same way as desribed in Step 4 for the seond partile. There will be some minormodi�ations involving a negligible fration of paths where a partile hits a partile thatwas moved out earlier, but this is of no onsequene. As a result of the onstrution, thesums along the remainders of these paths will give only negligible ontributions.Thus, we have shown that the lower bound oinides, up to a fator 1 + o(1), with theupper bound and the lemma is proven.4.2. Proof of Theorem 1.4(b). The same observation holds as in (3.34).Proof. The proof of Theorem 1.4(b) follows along the same lines as that of Theorem 1.4(a).The main point is to prove that CAP(DM ,SL) = [1+o(1)]CAP(C+,SL). Sine CAP(SL,DM ) ≤CAP(SL, C+), we need only prove a lower bound on CAP(DM ,SL). This is done in almostexatly the same way as for Glauber, by using the onstrution given there and substitutingeah Glauber move by a �ow involving the motion of just two partiles.Note that, as long as M = eo(β), an M×M droplet an be added at |Λβ|−o(|Λβ |) loationsto a on�guration σ ∈ S (ompare with (4.36)). The only novelty is that we have to eventu-ally remove the loud of partiles that is produed in the annulus B2Lβ ,2Lβ
(0)\BLβ ,Lβ

(0).This is done in muh the same way as before. As long as only eo(β) partiles have tobe removed, potential ollisions between partiles an be ignored as they are su�ientlyunlikely. Appendix A. Appendix: sparseness of subritial dropletsReall De�nition 1.1(a) and (3.11�3.12). In this setion we prove (3.22).Lemma A.1. limβ→∞
1
β

log
µβ(S\W)

µβ(S) = −∞.Proof. We will prove that limβ→∞
1
β

log µβ(S\W)/µβ(⊟) = −∞. Sine ⊟ ∈ S, this willprove the laim.Let f(β) be the funtion satisfying (3.11). We begin by noting that
µβ(S\W) ≤ µβ(I) with I =

{

σ ∈ S : |supp[CB(σ)]| > |Λβ |/f(β)
}

, (A.1)beause the bootstrap perolation map inreases the number of (+1)-spins. Let D(k)denote the set of on�gurations whose support onsists on k non-interating subritialretangles. Put C1 = (ℓc + 2)(ℓc + 1). Sine the union of a subritial retangle and itsexterior boundary has at most C1 sites, it follows that in I there are at least |Λβ |/C1f(β)non-interating retangles. Thus, we have
µβ(I) ≤

Kmax
∑

k=
|Λβ |

C1f(β)

F (k) with F (k) =
1

Zβ

∑

σ∈Xβ :

C(σ)∈D(k)

e−β Hβ(σ), (A.2)where Kmax ≤ |Λβ|. 30



Next, note that
F (k) ≤ (2C1)k

1

Zβ

∑

σ∈D(k)

e−βHβ(σ). (A.3)Sine the bootstrap perolation map is downhill, the energy of a subritial retangle isbounded below by C2 = 2J−h (reall Fig. 9), and the number of ways to plae k retanglesin Λβ is at most (|Λβ |
k

), it follows that
F (k) ≤ 2C1k

(|Λβ|
k

)

µβ(⊟) e−C2βk ≤ 2C1k (C1ef(β))k µβ(⊟) e−C2βk ≤ µβ(⊟) exp[−1
2C2 βk],(A.4)where the seond inequality uses that k! ≥ kke−k, k ∈ N, and the third inequality usesthat f(β) = eo(β). We thus have

Kmax
∑

k=
|Λβ |

C1f(β)

F (k) ≤ 2µβ(⊟) f(β)
|Λβ |
f(β)

exp

[

−1
2

C2

C1
β

|Λβ |
f(β)

]

, (A.5)whih is the desired estimate beause |Λβ |/f(β) tends to in�nity.Appendix B. Appendix: equivalene of ensembles and typiality of holesFor m ∈ N, let
S(m) =

{

σ ∈ X (m)
β : |supp[σ] ∩ BLβ ,Lβ

(x)| ≤ ℓc(ℓc − 1) + 1 ∀x ∈ Λβ

} (B.1)and
Č(m)(0) =

{

σ1∈BLβ,Lβ
(0) : σ ∈ S(m)

}

,

Ž
(m)
β (0) =

∑

σ∈Č(m)(0)

e−β H(σ). (B.2)The latter is the partition sum restrited to BLβ ,Lβ
(0) when it arries m partiles. InAppendix B.1 we prove a lemma about ratios of partition sums that was used in(4.22),(4.26), (4.32) and (4.49). In Appendix B.2 we prove that limβ→∞ µβ(Š(0))/µβ(S) = 1,whih is needed in the proof of this lemma.B.1. Equivalene of ensembles. Reall (1.22), (4.6) and (4.17).Lemma B.1. Ž

(nβ−s)
β (0)/Z

(nβ )
β = (ρβ)s µβ(S) [1 + o(1)] as β → ∞ for all s ∈ N.Proof. The proof proeeds via upper and lower bounds.Upper bound: Let

Š(0) =
{

σ ∈ S : supp[σ] ∩ BLβ ,Lβ
(0) = ∅

}

. (B.3)Write
µβ(Š(0)) =

1

Z
(nβ)
β

∑

σ̌∈Č(0)

∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

(

nβ

s

)−1 1{σ̌∨ζ∈Š(0)} e−βHβ(σ̌∨ζ). (B.4)This relation simply says that nβ partiles an be plaed outside BLβ ,Lβ
(0) by �rst plaing

nβ − s partiles and then plaing another s partiles. Beause the interation is attrative,we have
Hβ(σ̌ ∨ ζ) ≤ Hβ(σ̌) + Hβ(ζ) and Hβ(ζ) ≤ 0, ∀ σ̌, ζ. (B.5)31



Consequently,
µβ(Š(0)) ≥

(

nβ

s

)−1 1

Z
(nβ)
β

∑

σ̌∈Č(0)

e−βHβ(σ̌)
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

1{σ̌∨ζ∈Š(0)}. (B.6)We next estimate the seond sum, uniformly in σ̌. When we add the s partiles, we mustmake sure not to violate the requirement that all boxes BLβ ,Lβ
(x), x ∈ Λβ, arry not morethan K partiles (note that Š(0) ⊂ S and reall De�nition 1.3(a)). Partition Λβ\BLβ ,Lβ

(0)into boxes of size Lβ . The total number of boxes ontaining K partiles is at most nβ/K.Hene, the total number of sites where we annot plae a partile is at most (nβ/K)(3Lβ)2.Therefore
∑

ζ⊂[BLβ,Lβ
(0)]c\{σ̌}

|ζ|=s

1{σ̌∨ζ∈Š(0)} ≥
(|Λβ\BLβ ,Lβ

(0)| − nβ − (nβ/K)(3Lβ)2

s

)

, ∀ σ̌. (B.7)But nβL2
β = o(nβ/ρβ) = o(|Λβ |) and L2

β = o(1/ρβ) = o(|Λβ |) by (1.22) and (1.29�1.30),and so the right-hand side of (B.7) equals [1+ o(1)] |Λβ |s/s! as β → ∞. Sine the binomialin (B.6) equals [1 + o(1)] (nβ)s/s! with nβ = ⌈ρβ |Λβ|⌉, we end up with (reall (4.17))
µβ(Š(0)) ≥

Ž
(nβ−s)
β (0)

Z
(nβ)
β

(ρβ)−s [1 + o(1)], (B.8)or
Ž

(nβ−s)
β (0)

Z
(nβ)
β

≤ (ρβ)s µβ(Š(0)) [1 + o(1)]. (B.9)Sine Š(0) ⊂ S, this gives the desired upper bound.Lower bound: Return to (B.4). Among the s partiles that are added to [BLβ ,Lβ
(0)]c, let

s1 ount the number that interat with the nβ − s partiles already present and s2 thenumber that interat among themselves, where s1 + s2 ≤ s. We an then estimate
µβ(Š(0))

≤ 1

Z
(nβ)
β

∑

σ̌∈Č(0)

(

nβ

s

)−1

e−βHβ(σ̌)
∑

s1,s2
0≤s1+s2≤s

(

s!

s1! s2!

)−1

×
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

e−βH(ζ) 1{|ζ∩∂σ̌|=s1} 1{s2 interating partiles in ζ} 1{σ̌∨ζ∈Š(0)}

≤ [1 + o(1)]
Ž

(nβ−s)
β (0)

Z
(nβ)
β

(ρβ)−s

+
1

Z
(nβ)
β

∑

σ̌∈Č(0)

(

nβ

s

)−1

e−βHβ(σ̌)
∑

s1,s2
1≤s1+s2≤s

×
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

e−βH(ζ) 1{|ζ∩∂σ̌|=s1} 1{s2 interating partiles in ζ} 1{σ̌∨ζ∈Š(0)},(B.10)where in the seond inequality we estimate the term with s1 = s2 = 0 by using the resultfor the upper bound. We will show that the other terms are exponentially small.32



For �xed σ̌, we may estimate the last sum in (B.10) as
∑

ζ⊂[BLβ,Lβ
(0)]c\supp[σ̌]

|ζ|=s

e−βH(ζ) 1{|ζ∩∂σ̌|=s1} 1{s2 interating partiles in ζ} 1{σ̌∨ζ∈Š(0)}

≤ |Λβ|s−s1−s2 (4nβ)s1
∑

σ∈S(s2)

e−βH(σ) 1{s2 interating partiles in σ}.

(B.11)Indeed, |Λβ|s−s1−s2 bounds the number of ways to plae s−s1−s2 non-interating partiles,and (4nβ)s1 the number of ways to plae s1 partiles that are interating with the nβ − spartiles already present. Next, we write
∑

σ∈S(s2)

e−βH(σ) 1{s2 interating partiles in σ}

=

s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

∑

C=∪
j
i=1

Ci
|Ci|=ki ∀ i

e−β
Pj

i=1 H(Ci),
(B.12)whih is a luster expansion of the partition funtion (with non-interating lusters Ci, allof whih have size ≤ K = ℓc(ℓc + 1) + 1). By a standard isoperimetri inequality we have

H(Ci) ≥ Hki
, with the latter denoting the energy of a droplet of ki = |Ci| partiles that islosest to a square or quasi-square. Hene
|Λβ|−s2

∑

σ∈S(s2)

e−βH(σ) 1{s2 interating partiles in σ}

≤ |Λβ |−s2

s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=s2

e−β
Pj

i=1 Hki

(

∑

C=∪
j
i=1

Ci
|Ci|=ki ∀ i

1

)

≤ C |Λβ|−s2

s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=s2

e−β
Pj

i=1 Hki |Λβ|j

≤ C

s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=s2

e−β
Pj

i=1[Hki
+(ki−1)β−1 log |Λβ |]

≤
s2
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=s2

e−β
Pj

i=1[Hki
+(ki−1)∆],

(B.13)
where in the last inequality we insert the bound β−1 log |Λβ | ≥ ∆, whih is a immediatefrom (1.22) and (1.35).Now, Hki

+ki∆ is the grand-anonial energy of a square or quasi-square with ki partiles.It was shown in the proof of Proposition 2.4.2 in Bovier, den Hollander and Nardi [7℄ thatthis energy is ≥ U
√

ki for 1 ≤ ki ≤ 4K, i.e., for a droplet twie the size of the proto-ritialdroplet. Sine 2U > ∆, we therefore have that Hki
+ (ki − 1)∆ > 0 when ki ≥ 4. Sine

∆ > U , H2 = −U and H3 = −2U , we have that also the terms with ki = 2, 3 are > 0.Consequently, there exist ǫ > 0 and a onstant C that is independent of β suh that
|Λβ|−s2

∑

σ∈S(s2)

e−βH(σ) 1{s2 interating partiles in σ}e
−βH(σ) ≤ C e−β ǫ. (B.14)33



Combining (B.10�B.11) and (B.14), we see that the orretion term in (B.10) is
µβ(Š(0)) − [1 + o(1)]

Ž
(nβ−s)
β (0)

Z
(nβ)
β

(ρβ)−s

≤ C [1 + o(1)]
Ž

(nβ−s)
β (0)

Z
(nβ)
β

(ρβ)−s
∑

s1,s2
1≤s1+s2≤s

(eUβρβ)s1 e−βǫ.

(B.15)Sine ∆ > U , we have eUβρβ ≤ 1 and so the sum is o(1). Hene
Ž

(nβ−s)
β (0)

Z
(nβ)
β

≥ (ρβ)s µβ(Š(0)) [1 + o(1)]. (B.16)The laim now follows by using Lemma B.2 below.B.2. Typiality of holes.Lemma B.2. limβ→∞ µβ(Š(0))/µβ(S) = 1.Proof. Sine Š(0) ⊂ S, we have µβ(Š(0)) ≤ µβ(S). It therefore remains to prove the lowerbound. Write
µβ(S) = µβ(Š(0))

+
K
∑

m=1

∑

η∈X
(m)
β

∑

ζ∈X
(nβ−m)

β
η∨ζ∈S

e−β H(η∨ζ)

Z
(nβ)
β

1{supp[η]⊂BLβ,Lβ
(0)}1{supp[ζ]⊂[BLβ,Lβ

(0)]c}

≤ µβ(Š(0)) + γ1(β) + γ2(β), (B.17)where
γ1(β) =

K
∑

m=1

∑

η∈X
(m)
β

∑

ζ∈X
(n−m)
β

η∨ζ∈S

e−β [H(η)+H(ζ)]

Z
(nβ)
β

1{supp[η]⊂BLβ,Lβ
(0)}1{supp[ζ]⊂[BLβ,Lβ

(0)]c}(B.18)and γ2(β) is a term that arises from partiles interating aross the boundary of BLβ ,Lβ
(0).We will show that both γ1(β) and γ2(β) are negligible.Estimate, with the help of (B.9) (and realling (B.1�B.2)),

γ1(β) ≤
K
∑

m=1

Ž
(nβ−m)
β

Z
(nβ)
β

∑

η∈S(m)

e−βH(η) 1{supp[η]⊂BLβ,Lβ
(0)}

= [1 + o(1)]µβ(Š(0))
K
∑

m=1

(ρβ)m
∑

η∈S(m)

e−β H(η) 1{supp[η]⊂BLβ,Lβ
(0)}

= [1 + o(1)]µβ(Š(0))

K
∑

m=1

(ρβ)m
m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

∑

C=∪
j
i=1

Ci
|Ci|=ki ∀ i

e−β
Pj

i=1 H(Ci),

(B.19)
34



where the last equality is a luster expansion as in (B.12). Using one more the isoperi-metri inequality, we get (reall (1.29))
γ1(β) ≤ [1 + o(1)]µβ(Š(0))

K
∑

m=1

(ρβ)m
m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

e−β
Pj

i=1 H(ki)

(

∑

C=∪
j
i=1

Ci
|Ci|=ki ∀ i

1

)

≤ C µβ(Š(0))
∑

∈K
m=1 (ρβ)m

m
∑

j=1

(L2
β)j

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

e−β
Pj

i=1 Hki

= C µβ(Š(0))

K
∑

m=1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

e−β
Pj

i=1[Hki
+ki∆−(∆−δβ)]

≤ C ′ µβ(Š(0)) e−βǫ

(B.20)
for some ǫ > 0 and onstants C,C ′ < ∞ that are independent of β.Estimate, with the help of (B.9),

γ2(β) ≤
K
∑

m=1

∑

η∈S(m)

e−βH(η)
m
∑

k=1

eβkU 1{supp[η]⊂BLβ,Lβ
(0)}

Ž
(nβ−(m+k))
β

Z
(nβ)
β

≤
K
∑

m=1

∑

η∈S(m)

e−βH(η)
m
∑

k=1

eβkU 1{supp[η]⊂BLβ,Lβ
(0)} (ρβ)m+k µβ(Š(0)) [1 + o(1)]

≤ [1 + o(1)]µβ(Š(0))

K
∑

m=1

(ρβ)m
∑

η∈S(m)

e−βH(η)
m
∑

k=1

e−βk(∆−U)1{supp[η]⊂BLβ,Lβ
(0)},(B.21)and we an proeed as (B.19�B.20) to show that this term is negligible.B.3. Atypiality of ritial droplets. The following lemma was used in Setion 4.1.1.Lemma B.3. limβ→∞ µβ(C̃\C+)/µβ(S) = 0.Proof. Similarly as in (B.17), we �rst write

µβ(C̃\C+) ≤ µβ(C̃)

= |Λβ | γ(β) + |Λβ |
∑

η∈X
(K)
β

∑

ζ∈X
(nβ−K)

β

η∨ζ∈C̃

e−β [H(η)+H(ζ)]

Z
(nβ)
β

1{supp[η]⊂BLβ,Lβ
(0)}1{supp[ζ]⊂[BLβ,Lβ

(0)]c}.(B.22)with γ(β) a negligible error term that arises from partiles interating aross the boundaryof BLβ ,Lβ
(0). We then proeed as in (B.18�B.20), obtaining (Γ = Γ∗ + K∆)r.h.s.(B.22) ≤ N |Λβ| e−βΓ∗

(ρβ)K µβ(Š(0)) [1 + o(1)]

= N |Λβ| e−βΓ µβ(S) [1 + o(1)], β → ∞,
(B.23)whih is o(µβ(S)) by (1.35).Appendix C. Appendix: Typiality of starting onfigurationsIn Setions C.1�C.2 we prove the laims made in the remarks below (1.9), respetively,(1.32). 35



C.1. Glauber.Proof. Split
S = SL ∪ (S \ SL) = SL ∪ U>L, (C.1)where U>L ⊂ S are those on�gurations σ for whih CB(σ) has at least one retangle thatis larger than QL(0). We have
CB(σ) =

⋃

x∈X(σ)

Rℓ1(x),ℓ2(x)(x), (C.2)where X(σ) is the set of lower-left orners of the retangles in CB(σ), whih in turn anbe split as
X(σ) = X>L(σ) ∪ X≤L(σ), (C.3)where X>L(σ) labels the retangles that are larger than QL(0) and X≤L(σ) labels the rest.Let σ|A denote the restrition of σ to the set A ⊂ Z

2. Then, for any x ∈ X(σ), we have
H(σ) = H

(

σ|Rℓ1(x),ℓ2(x)(x)

)

+ H
(

σ|Rc
ℓ2(x),ℓ2(x)

(x)

)

, (C.4)beause the retangles in CB(σ) are non-interating. Sine for σ ∈ U>L there is at leastone retangle with lower-left orner in X>L(σ), we have
µβ(U>L) ≤

∑

x∈Λβ

∑

σ∈S

1{x∈X>L(σ)} µβ(σ)

=
∑

x∈Λβ

∑

σ∈S

1{x∈X>L(σ)}
1

Zβ
exp

{

− β
[

H
(

σ|Rℓ1(x),ℓ2(x)(x)

)

+ H
(

σ|Rc
ℓ1(x),ℓ2(x)

(x)

)

]}

≤ e−βΓL+1
∑

x∈Λβ

∑

σ∈S

1{x∈X>L(σ)}
1

Zβ
e
−βH

(

σ|Rc
ℓ1(x),ℓ2(x)

(x)

)

, (C.5)where ΓL+1 is the energy of QL+1(0). In the last step we use the fat that the bootstrapmap is downhill and that the energy of QL(0) is inreasing with L. Sine the energy of asubritial retangle is non-negative, we get
µβ(U>L) ≤ NL+1 e−βΓL+1 |Λβ|µβ(S) (C.6)with NL+1 ounting the number of on�gurations with support in QL+1(0).On the other hand, by onsidering only those on�gurations in U>L that have a QL+1(0)droplet, we get

µβ(U>L) ≥ NL+1 e−βΓL+1 |Λβ |µ[QL+1(0)]
c

β (S), (C.7)where the last fator is the Gibbs weight of the on�gurations in S with support outside
[QL+1(0)]

c. It easy to show that µ
[QL+1(0)]

c

β (S) = µβ(S)[1 + o(1)] as β → ∞ and so
µβ(U>L) ≥ NL+1 e−βΓL+1 |Λβ |µβ(S) [1 + o(1)], β → ∞. (C.8)Combining (C.6�C.7), we onlude that limβ→∞ µβ(U>L)/µβ(S) = 0 if and only if

lim
β→∞

|Λβ| e−ΓL+1 = 0. (C.9)
36



C.2. Kawasaki.Proof. Split
S = SL ∪ (S \ SL) = SL ∪ U>L, (C.10)where U>L ⊂ S are those on�gurations σ for whih there exists an x suh that |supp[σ]∩

BLβ ,Lβ
(x)| > L. Then

µβ(U>L) ≤
∑

x∈Λβ

∑

σ∈S

K
∑

m=L+1

µβ(σ)1{|supp[σ]∩BLβ,Lβ
(x)|=m} = |Λβ| [ϕ(β) + γ(β)], (C.11)where

ϕ(β) =

K
∑

m=L+1

∑

η∈X
(m)
β

∑

ζ∈X
(nβ−m)

β
η∨ζ∈S

e−β[H(η)+H(ζ)]

Z
(nβ)
β

1{supp[η]⊂BLβ,Lβ
(0)} 1{supp[ζ]⊂[BLβ,Lβ

(0)]c}(C.12)and γ(β) is an error term arising from partiles interating aross the boundary of
BLβ ,Lβ

(0). By the same argument as in (B.21), this term is negligible. Moreover,
ϕ(β) ≤

K
∑

m=L+1

Ž
(nβ−m)
β

Z
(nβ)
β

(

∑

η∈S(m)

e−β H(η) 1{supp[η]⊂BLβ,Lβ
(0)}

)

≤ [1 + o(1)]µβ(S)

K
∑

m=L+1

(ρβ)m
(

∑

η∈S(m)

e−βH(η) 1{supp[η]⊂BLβ,Lβ
(0)}

)

,

(C.13)where in the last inequality we use Lemmas B.1�B.2. Now proeed as in (B.19�B.20), viathe luster expansion, to get
ϕ(β) ≤ 1 + o(1)]C µ(S)

K
∑

m=L+1

m
∑

j=1

∑

2≤k1,...,kj≤K
Pj

i=1
ki=m

e−β[Hki
+ki∆−(∆−δβ)]

≤ [1 + o(1)]C µ(S) e−β[ΓL+1−(∆−δβ)],

(C.14)where Hk is the energy of a droplet with k partiles that is losest to a square or quasi-square, ΓL+1 = HL+1+(L+1)∆, and the seond inequality uses the isoperimetri inequalitytogether with the fat that Hk + k∆ is inreasing in k for subritial droplets.On the other hand, by onsidering only those on�gurations in U>L that have a dropletwith L + 1 patiles, we get
ϕ(β) ≥ [1 + o(1)]C µ(S) e−β[ΓL+1−(∆−δβ)]. (C.15)Combining (C.11) and (C.14�C.15), we onlude that limβ→∞ µβ(U>L)/µβ(S) = 0 if andonly if

lim
β→∞

|Λβ| e−β (ΓL+1−(∆−δβ)) = 0. (C.16)Appendix D. Appendix: The ritial droplet is the thresholdIn this appendix we show that our estimates on apaities imply that the average proba-bility under the Gibbs measure µβ of destroying a superritial droplet and returning toa on�guration in SL is exponentially small in β. We will give the proof for Kawasakidynamis, the proof for Glauber dynamis being simpler.37



Pik M ≥ ℓc. Reall from (2.7) that eDM ,SL
(σ) = cβ(σ)Pσ (τSL

< τDM
) for σ ∈ DM . Henesumming over σ ∈ ∂DM , the internal boundary of DM , we get using (2.8) that

∑

σ∈∂DM
µβ(σ)cβ(σ)Pσ (τSL

< τDM
)

∑

σ∈∂DM
µβ(σ)cβ(σ)

=
CAP(SL,DM )

∑

σ∈∂DM
µβ(σ)cβ(σ)

. (D.1)Clearly, the left-hand side of (D.1) is the esape probability to SL from ∂DM averaged withrespet to the anonial Gibbs measure µβ onditioned on ∂DM weighted by the outgoingrate cβ . To show that this quantity is small, it su�es to show that the denominator islarge ompared to the numerator.By Lemma 4.2,CAP(SL,DM ) ≤ CAP(SL, (Sc \ C̃) ∪ C+) = N |Λβ|
4π

∆β
e−βΓ µβ(S)[1 + o(1)]. (D.2)On the other hand, note that ∂DM ontains all on�gurations σ for whih there is an

M × M droplet somewhere in Λβ, all Lβ-boxes not ontaining this droplet arry at most
K partiles, and there is a free partile somewhere in Λβ . The last ondition ensures that
cβ(σ) ≥ 1. Therefore we an use Lemma B.1 to estimate
∑

σ∈DM

µβ(σ)cβ(σ) ≥ |Λβ| e−βH
M2

Ž
(nβ−M2)
β

Z
(nβ)
β

= |Λβ | e−βH
M2 (ρβ)M

2
µβ(S) [1 + o(1)], (D.3)where HM2 is the energy of an M × M droplet. Combining (D.2�D.3) we �nd that theleft-hand side of (D.1) is bounded from above by

(

N
4π

∆β

)

exp [−βΓ]

exp [−β(HM2 + ∆M2)]
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