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ON ASYMPTOTIC MINIMAXITY OF 
KOLMOGOROV AND OMEGA SQUARE TESTS 

M.Ermakov 

Summary. We consider the problem of hypothesis testing about a value of functional. 
For ct given functional T the problem is to test a hypothesis T(P) = 0 versus alterna-
tives T( P) > b0 > 0 where P is an arbitrary probability measure. Under the natural 
assumptions we show that the test statistics T( P n) depending on the empirical proba-
bility measures Pn are asymptotically minimax. Since the sets of alternatives is fixed 
the asymptotic minimaxity is considered in the senses of Bahadur and Hodges-Lehmann 
efficiencies. In particular the functional T can be the functional corresponded to the test 
statistics of Kolmogorov and omega-square tests. 

Key words and phra:rns: large deviations, nonparametric hypothesis testing, asymp-
totically minimax hypothesis testing, Bahadur efficiency, Hodges-Lehmann efficiency, 
Kol~ogorov test, omega-square test. 
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1.Introd uction. In nonparametric hypothesis testing a statistician has not usually the 
information about the parametric structure of sets of alternatives. From this point it 
is natural to study the properties of nonparametric tests in essentially nonparametric 
setting. A natural approach to the assignment of nonparametric sets of alternatives has 
been proposed by Ch.Stein (1956). For the setting under consideration this approach is 
as follows. 

Let S be a separable Hausdorff space, B the a-field of Borel sets in S, A the set of 
all probability measures (pms) on (S, B) and T a real function on A. Let Xi, ... , Xn 
be i.i.d.r.v.'s with pm P E A and let Pn be their empirical pm. Suppose the problem 
is to test a hypothesis P E il(O) = ilT(O) = {P : T(P) = 0, P E A} versus alternatives 
PE <P(bo) = <PT(bo) = {P: T(P) > bo > 0, PE A}. For this problem we show that the 
sequence of test statistics T( P n) are asymptotically minimax in the senses of Bahadur 
and Hodges-Lehmann efficiencies. In the case of Kolmogorov and omega-square tests 
the functional T equals respectively. 

T(P) = max{IF(x) - Fo(x)lq(Fo(x)): x E (0, 1)} 

and 

T(P) = [ (F(x) - Fo(x))2 q(F0 (x))dF0 (x). 

Here F and F0 .are the distribution functions ( dfs) of pms P and Po respectively, and q 
is a nonnegative continuous function on [O, l]. 

This setting is the setting of hypothesis testing about a value of functional. This 
problem has not obtained such a comprehensive development as in estimation (see Levit 
(1974), Koshevnick and Levit (1976), Millar (1983), Ibragimov and Khasminskii (1991), 
van der Vaart (1991 ), Bickel, Klaassen, Ritov and Wellner (1993), and others). We can 
mention only the papers of Ermakov (1990),(1992),(1993). In this papers the lower bound 
for the Pitman efficiency has been indicated and results about asymptotic minimaxity of 
Kolmogorov, omega-square and chi-square tests has been announced. 

The study of Bahadur and Hodges-Lehmann efficiencies of test statistics is a tradi-
tional theme in the theory of hypothesis testing. We should mention the papers of Ba-
hadur (1971 ), Hodges-Lehmann ( 1956), Abrahamson (1967) , Mogulskii (1977), Nikitin 
(1979), Groeneboom and Shorack (1981), Kallenberg and Ledwina (1987), and others. 

2.Main Results.. For any pms P, Q E A define the Kullback-Leibler information 

K(Q,P) = LqlogqdP if Q<<P (2.1) 

and K(Q,P) = oo otherwise. Here q = dQ/dP. For any PE A and any n c A, <Pc A 
denote K(il,P) = inf{K(Q,P): Q EA} and K(il,<P) = inf{K(il,P): PE <P}. 

Introduce on A the topologies T and Tc of weak convergence. The topology T is 
used traditionally in the theory of large deviations (see Groene boom, Oosterhoff and 
Ruymgaart 1979 ). The topology Tc will be necessary for the receipt of the more subtle 
results which could not be obtained on the base of the topology T. We say that a sequence 
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of pms Pn converges to a pm Pin the topology r (the topology re) iff for each bounded 
measurable function f (continuous bounded function f respectively) 

lim 1 f dPn = 1 f dP. (2.2) 
n-oo S S 

If otherwise is not stipulated all topological properties will be considered with respect to 
topology T. The closure and the interior of a set n in the topology T will be denoted by 
cl ( n) and int ( n} respectively. 

The results will be given for the k-sample setting since their generalization on this case 
is trivial. The changes in the setting and notations are as follows. Let Xii, ... , Xin, be 
i.i.d.r.v.'s taking values in S according to pm Pi EA, 1 ::=:; i ::=:; k. Denote n = n 1 + ... +nk 
and suppose that ni/n-+ Vi > 0 as n-+ oo for all l ::=:; i:::; k. Put Pn = P1~1 x ... x P;nk 
where P;n, is the empirical pm of Xi1, ... , Xin,, 1 ::=:; i ::=:; k. A is endowed with the topology 
r and A k is given the product topology. For a given functional T : A k -+ R1 and any 
a, b E R1 define the sets !Z(a) = {P: T(P) <a, PE Ak} and ~(b) = {P: T(P) 2:: b, PE 
Ak}. As mentioned the problem is to test a hypothesis P E !1(0) versus alternatives 
PE ~(bo), bo > 0. . 

For any Q =Qi x ... x Qk, P = P1 x ... x Pk E Ak denote 

k 

Iv(Q, P) = L ViK(Qi, Pi)· . (2.3) 
i=l 

For any P E Ak and any n c Ak, ~ c Ak put I 11(!l,P) = inf{I11 (Q,P) : Q E n}, 
Iv(n, ~) = inf{I11 (n, P) : P E ~}. We show that the asymptotically minimax lower 
bounds can be given in the terms of functional I 11 (!l, ~ ). 

For any test Wn denote.a(Wn) its type I error probability and f3(Wn, Q) its type 
II error probability under the alternative Q E ~(b). Put f3(Wn, b) = sup{f3(Wn, Q) : 
Q E ~(b)}. If Ln is the test statistics of test Wn then denote f3(a, Ln, Q) = f3(Wn, Q), 
f3(a, Ln, bo) = f3(Wn, bo) where a= a(Wn)· 

We say that a sequence of test statistics L = {Ln} have the uniform Hodges-Lehmann 
index d(L, b0 ) if 

d(L, bo) = -2 lim n-1 log f3( a, Ln, bo). (2.4) 
n-oo 

The uniform Bahadur slope e(L, b0 ) is defined similarly 

e(L, bo) = -2 lim n-1 logr(/31, Ln, bo) (2.5) 
n-oo 

where r(/31, L, bo) =sup{ a: f3(a, L, bo) < /3i}, /31 E (0, 1) . 
. Note that in these definitions we assume that the left handsides of (2.4),(2.5) do 

not depend on a and /31 respectively. This assumption is usually satisfied for the test 
statistics. 
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We say that the sequence of test statistics L = { Ln} is asymptotically minimax in the 
sense of Hodges-Lehmann efficiency (Bahadur efficiency respectively) if for any sequence 
of test statistics V = {Vn} it holds 

lim sup log,B(a, Vn,bo)/log,B(a,Ln,bo) :2: 1 
n--+-oo 

for all a E (0, 1) (respectively 

lim sup logr(,B, Vn,bo)/logr(,B,Ln,bo) :2: 1 
n--+-oo 

for all /3 E ( 0, 1)). 
It is clear, that d(V, b0 ) ~ d(L, b0 ) and e(V, b0 ) ~ e(L, b0 ). 

Theorem 2.1. Let T : A k -7 R1 be a nonnegative continuous functional and let one of 
the following properties be satisfied 

i). n(O) = {P0 }, P0 E Ak. 
ii). S is a compact set. There exists bi, b1 < b0 , such that the sets cI>(b), b1 < b < b0 , 

and n(O) are closed in the topology Tc. 

Then the sequence of test statistics T(J\) is asymptotically minimax in the sense of 
Bahadur efficiency and e(T, b0 ) =Iv( cI>(b0 ), n(O)). 
Theorem 2.2. Let T : A k -7 R1 be a nonnegative continuous functional. Let S be a 
compact set and let there exist ao > 0 such that the sets cI>(bo ), n( a) with 0 ~ a ~ a0 are 
closed in the topology Tc· Then the sequence of test statistics T(Pn) are asymptotically 
minimax in the sense of Hodges-Lehman efficiency and d(T, b0 ) = Iv(n(o), cI>(bo)). 

Theorem 2.1 are easily transfered on the problems of testing complex nonparametric 
hypothesis. As an example consider the problem of testing a hypothesis of homogenity 
with k = 2 and S = (0, l]. 

Denote tP the set of all dfs and tPc the set of all continuous dfs. On a functional 
T: A2 

-7 R1 define the functional Tc: tP2 
-7 R1 such that Tc(H1,H2) = T(Q1,Q2) 

for any dfs Hi,H2 having pms Qi,Q2 EA respectively. Denote H = v1H1 + v2H2. For 
any H E tPc define the inverse function n-1 such that n-1 (t) = s, t = H(s) for any 
t E (0, 1 ). Suppose that the functional Tc has the following properties which are assigned 
traditionally for the tests of homogenity. 

A. For any Hi,H2 E tPc Tc( Hi, H2) = 0 implies H1 = H2 

B. For any Hi,H2 E tPc Tc(H1,H2) = Tc(Gi, G2) where G1(t) = H1(H-1(t)), G2(t) = 
H2(H-1 (t)) for all t E (0, 1). 

Theorem 2.3. Let T : A 2 
-7 R1 be a continuous functional satisfying A,B. Then the 

sequence of test statistics T(Pn) is asymptotically minimax in the sense of Bahadur effi-
ciency and e(T, b0 ) = Iv( cI>(b0 ), n(O)). . 

The equivariance property B together with the assumption A allows us to modify 
easily the proof of Theorem 2.1 on this case. Thus the proof of Theorem 2.3 will be 
omitted. 
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3.Proofs of Theorems 2.1,2.2. Since the arguments for one and several samples are 
similar we consider only the one sample case, that is, k = 1. 

Denote II= IIm = {Sj}} a finite partition of S consisting of Borel sets Sj, 1 ·~ j ~ m, 
and say that a partition IIm embeded in a partition Ilz iff for each S E IIm there exists 
S' E Ilz such that S C S'. If for each m a partition IIm+i embedded in IIm then we shall 
say that we have a sequence of embedded partitions IIm. 

For any P, Q E A denote 

m 

K(Q,PIIT) = L Q(Sj)logQ(Sj)/P(Sj)· (3.1) 
j=l 

For any set n c A and PE A put K(n,PIII) = inf{K(Q,PIII)IQ En}. Note that 
K(Q,PIITz) ~ K(Q,PIIIm) if IIm embedded in Ilz. 

The next Lemma is a refinement of Lemma 3.1 in Groeneboom, Oosterhoff and Ruym-
gaart (1979). 

Lemma 3.1. For any open set n E A and any pm P E A 

P(Pn En)< exp{-nK(n, PIIIm) + nwm(n)} (3.2) 

where Wm ( n) -+ 0 as n -+ oo and Wm ( n) does not depend on a choice of pm P and a 
partition IIm. 

The proof of Lemma 3.1 is obtained by a simple revision of estimates in the proof of 
Lemma 3.1 in Groeneboom, Oosterhof£ and Ruymgaart (1979) and is omitted. 

The next Lemma 3.2 and Theorem 3.1 have also the auxilliary character. Their proofs 
will be given in sections 4 and 5 respectively. 

Lemma 3.2. Let the assumptions of Theorem 3.1 be satisfied. Then 
d). Iv( <P(b ), n(O)) is continuous from the left in b = b0 • 

. dd). For any b < b0 it holds 

lim sup P(T(Pn < b) = 0. (3.3) 
n-+oo PE<P(bo) 

Theorem 3.1. Let S be a compact set, let T : A k -+ R 1 be a continuous functional and 
let the sets <P(b), n(O) be closed in the topology Tc. Then 

lim sup logP(Pn E <P(b)) = -Iv(<P(b),n(O)) (3.4) 
n-+oo PEO(O) 

Proof of Theorem 2.1. Suppose that ii) is valid and prove the upper bound, that is, 
e(bo, T) ~ Iv( <P(bo), n(O)). 

Let Wn be a sequence of tests with the test statistics T(Pn) and let ,B(Wn) = ,8, 
0 < ,8 < 1. Let r n be the cri'tical region of Wn. Then, by (3.3), 

r n = <P(bo - €n) (3.5) 
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where €n ---t 0 as n ---t oo. 
Fix €, 0 < € < b0 • By (3.4) we have 

lim sup log P(T(Pn) > bo - €) =-Iv( <P(bo - €), n(O)), (3.6) 
n-+oo PEO(O) 

By Lemma 3.2 

limiv(<P(bo - €),n(O)) = Iv(<P(bo),n(o)) (3.7) 
€-+0 

that completes the proof of upper bound. 
If the assumption i} fulfilled then (3.6),(3.7) follows respectively fiom Theorem 3.1 

and Lemma 3.3 in Groeneboom, Oosterhoff and Ruymgaart (1979). 
Prove the lower bound. Fix € ~ 0. Then there exist pms Q0 E <P(bo ), Po E n(O) 

such that Iv(Qo,Po) ::; Iv(<P(bo),n(O)) + €. Consider the problem of testing the sim-
ple hypothesis P = P0 versus the simple alternative P = Q0 as the problem with 
"the least favourable" hypothesis and alternatives (see Lehmann (1986)). By Bahadur-
Ragavachary inequality the Bahadur slope of likelihood ratio test in this problem equals 
Iv( Q0 , P0 ) that proves the lower bound. 

Theorem 2.2 follows directly from Theorem 3.1. It suffices to note that if we inter-
change the sets of hypothesis and alternatives then the Bahadur efficiency becomes the 
Hodges-Lehmann one. 

4.Proof of Lemma 3.2. In ·sections 4 and 5 IIm = {Sjm}r denotes a sequence of 
embedded partitions such that the sets Sjm, 1 ::; j :s; m, endows the a-algebra B. Then, 
for any pms P E A, Q E A 

K(Q,P) = lim K(Q,PIITm) (4.1) 
m-+oo 

Denote 8A the boundary of the set A. Prove· the following auxilliary Lemma. 

Lemma 4.1. Let S be a compact set. Let the sequences of pms P1,Q1 E A converges in 
the topology re to pms P ,Q E A respectively. Then 

lim inf K ( Q 1, P1) ~ K ( Q, P) ( 4.2) 
l-+oo 

Proof.· The arguments will be given under the assumptions that the pms P and Q has 
not atoms. This does not cause any principal differences in the proof. 

Suppose that the partitions IIm is choosed such that P( 8Sjm) = 0, Q( 8Sjm) = 0. 
Then Q1(Sjm) ---t Q(Sjm), P1(Sjm) ---t P(Sjm) as l ---t oo for all 1 ::; j ::; m, 1 ::; m ::; oo. 
Hence 

lim K(Q1, PdIIm) = K(Q, PIIIm) (4.3) 
l-+oo 

Now (4.1),(4.3) imply (4.2). 
Prove (3.3). Suppose that (3.3) is not valid. Then, by (3.2), for each m there exist 

pms Pm E <P(bo) and Qm E n(b) such that Qm(Sjm) = Pm(Sjm) for all 1 ~ j ~ m. 
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Denote Am and Bm respectively the sets of all pms Pm and Qm satisfying this property. 
For all j ~ m define the sets Dmj = { v : Vmj .= P(Sjm), v = { Vmj }i, P E Aj} and put 
Mm = nJ=mDmj· The sets Mm are closed and nonempty. Let the pm R be such that 
{R(Sjm)}i E Mm for all m and the sequences ofpms Pm E Am, Qm E Bm be such that 
Pm(Sjm) = Qm(Sjm) = R(Sjm) for all 1:::; j :::; m. Then the sequences of pms Pm, Qm 
converge to pm R. This implies RE cl(<l>(b0 )) = <l>(b0 ) and RE cl(il(b)) = il(b). Thus 
we obtain the contradiction with the continuity of the functional T. 

Proved). If the condition i) of Theorem 2.1 is satisfied then d) follows from Lemma 
3.3 in Groeneboom, Oosterhof£ and Ruymgaart (1979). Suppose that the condition ii) 
is not valid. Then ,for any € ~ 0, there exist a sequence b1 :::; b0 with b1 ---+ b0 as l ---+ oo 
and sequences P1 E il(O), Q1 E <l>(b1) such that 

K( Q1, P1) :::; K( <l>(bo), il(O)) - €. ( 4.4) 

Since il(O), <l>(b) are the compact sets in the topology Tc there exists subsequences Pin 
Q1i converging in this topology to some pm P0 E il(O) and Q0 E <l>(b0 ) respectively. By 
Lemma 4.1 we have 

lim .inf K( Qin Pli) ~ K( Qo, Po) 
i-+oo 

that contradicts ( 4.4 ). 

5.Proof of Theorem 3.1. The arguments are based on the same ideas. By Lemma 3.1 

sup P(Pn E <l>(b)):::; exp{-n(Jm + wm(n))} (5.1) 
PEG 

where Jm = inf{K(<l>(b),PIIIm) IP E il(O)}. 
Let the sequences pms Pm E n(O), Qm E <l>(b) satisfy 

and let the pms Po, Qo be the limits points (in the topology Tc) of the sequences Pm, 
Qm respectively. Then, by Lemma 4.1 and (4.1), · 

lim sup K(Qo,PolIIm)/Jm:::; 1 (5.3) 
m-+-oo 

At the same time Po E n(O), Q0 E <l>(b) and 

K(Qo,Po) > K(<l>(b),n(O)) ~ Jm (5.4) 

Now (4.1),(5.1)-(5.4) together implies (3.4). 
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