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Abstract. In this article we propose several pathwise and finite difference based meth-
ods for calculating sensitivities of Bermudan options using regression methods and Monte
Carlo simulation. These methods rely on conditional probabilistic representations which
allow, in combination with a regression approach, for efficient simultaneous computation
of sensitivities at many initial positions. Assuming that the price of a Bermudan option
can be evaluated sufficiently accurate, we develop a method for constructing deltas based
on least squares. We finally propose a testing procedure for assessing the performance
of the developed methods.

1. Introduction

Valuation of high-dimensional American/Bermudan options is one of the most difficult
numerical problems in financial engineering. Besides its practical relevance, investiga-
tions in this field are of great theoretical importance because pricing of such options is an
archetype for high-dimensional optimal stopping problems. Recently several approaches
have been proposed for pricing of American options using Monte Carlo simulation tech-
nique and regression methods (see [1]-[12], [15], [20], [22], [25], [30], [31], [34] and references
therein). The problem of efficient evaluation of price sensitivities however is considerably
more involved. Even for European options this problem remains to be of great interest
both in theory and practice. The simplest methods of evaluating price sensitivities for
European options are based on finite difference approximations using Monte Carlo simu-
lation. A shortcoming of these methods is a rather poor accuracy. In [27], finite difference
based methods are essentially improved regarding accuracy and efficiency. Many articles
are devoted to pathwise methods of estimating Greeks (see [15] and references therein,
see [26] as well). In comparison with finite difference based methods, these methods are
more accurate but less universal and they require rather large computational expenses.
In contrast to European options there are only a few articles devoted to Greeks for Amer-
ican/Bermudan derivatives ( [29], [13], [19], and references therein).

In this paper we propose a number of pathwise and finite difference based methods for
computing sensitivities of Bermudan options via regression methods and Monte Carlo
simulation. We basically assume that we have a pricing method for a Bermudan option
which is accurate enough, and then construct a convenient least squares based method
for computing its sensitivities (deltas). Our main goal is the development of methods
which allow for evaluating sensitivities at any point in time using a single set of Monte
Carlo simulated trajectories. The presented approach is related to [28] where conditional
probabilistic representations are introduced for sensitivities of diffusion processes. There
the sensitivities are estimated via a regression approach and used for variance reduced
Monte Carlo simulation of diffusions. In [2] a regression based martingale estimator for
dual upper bounds of Bermudan products is developed. The martingale estimator in [2],
which essentially relies on a Clarc-Ocone type formula, implicitly allows for estimating
sensitivities. So, the methods relying on conditional probabilistic representations in con-
nection with regression play as such a decisive role in the problem of efficient estimating
sensitivities.
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Computing prices and sensitivities of Bermudan options involves a number of estimation
errors of different nature which are hard to treat on a theoretical base. As an alternative
we propose some kind of testing procedure for the application of the developed methods.
Extensive numerical investigations of the here introduced approaches will be considered
in a separate work.

In Section 2 we introduce our modelling framework and recall some known facts on pric-
ing of American/Bermudan derivatives in a form suitable for our purposes. Section 3 is
devoted to Monte Carlo estimation of Bermudan sensitivities using unconditional prob-
abilistic representations and in Section 4 we study the estimation of sensitivities via re-
gression methods using conditional probabilistic representations. In Section 5 an efficient
least squares method for constructing deltas is proposed in the case where at all (time-
space) positions a sufficiently accurate price of the Bermudan option under consideration
is available. A method for testing the proposed procedures in an application is outlined in
Section 6. In Section 7 it is proposed to implement this test procedure for regularisation
of calibration routines.

2. Preliminaries

2.1. Modelling framework. We consider a price system consisting of a saving account
B (riskless asset) and price processes X i, i = 1, . . . , d, of risky assets, which satisfies the
stochastic differential equations (SDEs)

(2.1)
dX i

X i
= r(t,X)dt+

d∑
j=1

σij(t,X)dW j,
dB

B
= r(t,X)dt,

in the (risk-neutral) measure P. In (2.1) W = (W 1, ...,W d)> is a d-dimensional standard
Wiener process on a probability space (Ω,F , (Ft)t∈[t0,T ], P ), where the P -augmentation
of the filtration generated by W is denoted by (Ft). It is assumed that the interest rate
r(t,X) and the matrix σ(t, x) = {σij(t, x)}, t ∈ [t0, T ], x ∈ Rd

+ := {x : x1 > 0, . . . , xd > 0}
are such that for all x ∈ Rd

+ and s ∈ [t0, T ] there exists a unique solution (Xt, Bt) =

(Xs,x
t , Bs,x,b

t ) ∈ Rd
+ × R+ of (2.1) for s ≤ t ≤ T with (Xs,x

s , Bs,x,b
s ) = (x, b) (note that

Bs,x,b
t = bBs,x,1

t for any b > 0), which is smooth in x, and that all Xt/Bt are (true)
martingales on [t0, T ] under the risk-neutral measure P. For example, it is sufficient to
assume that the functions

(2.2) ai(t, x) := xir(t, x), cij(t, x) := xiσij(t, x)

are continuous in t, and have bounded derivatives with respect to x up to some order.
In addition, we assume that the volatility matrix σ(t, x) has full rank for every (t, x),
t ∈ [t0, T ], x ∈ Rd

+. Under these assumptions the price system (X,B) constitutes a
complete market [21]. In this article we consider exact solutions of (2.1) although, of
course, in reality we have only approximations usually. For instance, one may integrate
(2.1) numerically and so construct an accurate enough solution of (2.1) using, for example,
a standard Euler scheme with sufficiently small time step ∆t.
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Let us now consider a Bermudan contract with exercise dates t0 = T0 < T1 < ... < TI = T
and corresponding pay-off functions fi(x), 0 ≤ i ≤ I. The holder of this contract has the
right to call (once) a cash-flow fi(XTi

) at an exercise date Ti of his choice. Henceforth we
will write, where convenient, subindex i instead of subindex Ti. For instance Bi := BTi

,
Xi := XTi

, and so on. The process Xi is a Markov chain with respect to the discrete
filtration (Fi)0≤i≤I := (FTi

)0≤i≤I . For notational convenience we sometimes use the cash-
flow discounted from time t to s :

(2.3) Zs,x
t :=

ft(X
s,x
t )

Bs,x,1
t

, s ≤ t.

It is well known (e.g. [11]) that the fair price of a Bermudan contract with remaining
exercise dates {Ti, Ti+1, .., TI}, at a time Ti−1 < s ≤ Ti, is given by

(2.4) us(x) := sup
τ∈Ti,I

EZs,x
τ = EZs,x

τs,x , Ti−1 < s ≤ Ti,

where Ti,I the set of stopping times τ taking values in {Ti, Ti+1, ..., TI}, and τ s,x is the
minimal optimal stopping index. The value function us(x) is determined by induction as
follows:

uI(x) = fI(x),(2.5)

ui(x) = max

{
fi(x), E

(
ui+1(X

i,x
i+1)

Bi,x,1
i+1

)}
,

us(x) = E

(
ui+1(X

s,x
i+1)

Bs,x,1
i+1

)
, Ti < s ≤ Ti+1, i = I − 1, ..., 0.

We see that, in principle, the problem of evaluating u0(x0), i.e. the price of the Bermudan
option at the initial position (t0, x0), is easily solved using the backward recursive pro-
cedure (2.5), also called backward dynamic program. However, if X is high dimensional
and I is large, this procedure is practically not feasible.

For the solution (Xt, Bt) = (X t0,x
t , Bt0,x,1

t ) of (2.1) on the interval [t0, T ], the discrete
discounted value process Yi := ui(Xi)/Bi, called the Snell envelope, is a supermartingale
due to (2.5), and in particular Yi is the smallest supermartingale which dominates the
discounted cash-flow process fi(Xi)/Bi, e.g. [32].

2.2. Continuation values and optimal stopping times. For the considered Bermu-
dan option, we introduce the continuation value

(2.6) Ci(x) = E

(
ui+1(X

i,x
i+1)

Bi,x,1
i+1

)
, i = 0, ..., I − 1; CI(x) = fI(x),

the continuation region C, and the exercise (stopping) region E :

C = {(ti, x) : fi(x) < Ci(x), i = 0, ..., I} ,(2.7)

E = {(ti, x) : fi(x) ≥ Ci(x), i = 0, ..., I} .
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Clearly, (tI , x) ∈ E for any x. Due to (2.5)

(2.8) ui(x) = max {fi(x), Ci(x)} , i = 0, ..., I.

It is not difficult to see that Ci(x) has also the probabilistic representation

(2.9) Ci(x) = E

(
fτ (X

i,x
τ )

Bi,x,1
τ

)
, τ = τ ti+1,Xi+1 , Xi+1 = X i,x

i+1,

where the optimal stopping time τ i,x = τ ti,x is defined recurrently by the dynamic pro-
gramming principle in the following way. We set

τI,x = τT,x = T,(2.10)

τ i,x = Tiχ{Ci(x)≤fi(x)} + τ i+1,Xi,x
i+1χ{Ci(x)>fi(x)}

= Tiχ{ui(x)=fi(x)} + τ i+1,Xi,x
i+1χ{ui(x)>fi(x)},

i = I − 1, ..., 0.

Thus, for any position (Ti, x), the optimal stopping time τ i,x is either equal to Ti : τ i,x =
Ti, or τ i,x > Ti. It is also clear that (Ti, x) is a stopping point (i.e., τ i,x = Ti) iff (Ti, x) ∈
E (i.e., (Ti, x) belongs to the exercise region). The instant τ i,x is either the first time
that the trajectory (Tj, X

i,x
j ) enters the region E during i ≤ j ≤ I − 1, or τ i,x = TI . So,

(τ i,x, X i,x
τ i,x) ∈ E (see (2.7)).

2.3. General schemes for the regression method. Let us consider a sample (mX,m V ),
m = 1, ... ,M, from a generic random pair (X,V ). We are interested in the estimation of
the regression function

(2.11) c(x) = E(V |X = x).

There are different regression methods for estimating c(x) in fact. We here recall a
general scheme for the linear regression method (see, e.g., [18]). Let {ψr(x)}K

r=1 be a set
of basis functions each mapping Rd

+ into R. An estimate ĉ(x) of c(x) is obtained as a

function of the form
∑K

k=1 αkψk(x) which minimizes the empirical risk

(2.12) α̂ = arg min
α∈RK

1

M

M∑
m=1

(mV −
K∑

k=1

αkψk(mX))2.

So

(2.13) ĉ(x) =
K∑

k=1

α̂kψk(x).

Thus, the usual base material for the linear regression procedure is a sample (mX,m V ), m =
1, ...,M, from a generic random pair (X,V ), where X is a d-dimensional random vector,
V is a one-dimensional random variable, and a set of basis functions {ψr}.
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2.4. Recursively estimating continuation values and optimal stopping times.
Suppose we have a sample (t, mXt, mBt) of M independent trajectories all starting from
the position (t0, X0, 1). There are different regression methods (and even different generic
members and samples) for estimating ui by backward recursion. For example, one may
estimate the continuation value function Ci(x) backwardly by regression via (2.12)-(2.13)
by considering the (d+ 1)-dimensional sample

(2.14) (mXi,m Vi) := (mXi,
mBi

mBi+1

û

from (Xi, Vi) := (Xi,
Bi

Bi+1
ûi+1(Xi+1)) where ûi+1(Xi+1) is an estimate of ui+1(Xi+1) ob-

tained by (2.8) using an approximation of Ci+1(x) in (2.6). This procedure is due to [34],
see also [15].

In the method of [25] one considers backwardly the sample
(2.15)

(mXi,
mBi

mBτ

fτ (mX
ti+1, mXi+1
τ )) = (mXi,

mBi

mBτ

fτ (mX
ti, mXi
τ )), τ = τ ti+1, mXi+1 , m = 1, ...,M,

from (Xi,
Bi

Bτ
fτ (X

ti+1,Xi+1
τ )) = (Xi,

Bi

Bτ
fτ (X

ti,Xi
τ )), where τ = τ ti+1,Xi+1 , and then con-

structs an approximation of Ci(x) due (2.9) by regression via (2.12)-(2.13).

We here briefly recap the regression method from [25] which is analyzed rigorously in [10].
Let ψr, r = 1, ..., K, be a system of real valued base functions on the state space Rd

+.

Set τ̂I,x = TI , and ĈI(mXI) = −1, m = 1, . . . ,M. For i < I we recursively construct

τ̂ i, mXi , Ĉi(mXi) from τ̂ i+1, mXi+1 , Ĉi+1(mXi+1), m = 1, . . . ,M, as follows. Via standard
least squares minimization we compute a system of regression coefficients (cir)1≤r≤K ,

(2.16) (cir)1≤r≤K := argmin
(cr)1≤r≤K

M∑
m=1

(
K∑

r=1

crψr(mXi)− mZ
i,mXi

τ̂ i+1,mXi+1

)2

,

and set

(2.17) Ĉi(mXi) :=
K∑

r=1

cirψr(mXi), m = 1, . . . ,M.

We then define

τ̂ i, mXi = Ti if Ĉi(mXi) ≤ fi(mXi), else τ̂ i, mXi = τ̂ i+1, mXi+1 .

As a result all the positions (t, mXt), Ti−1 < t ≤ Ti, are equipped with stopping times
τ̂ ti, mXi . This gives us the following estimate for u0(X0) :

(2.18) û0(X0) =
B0

M

M∑
m=1

1

Bmτ

fmτ (mX
t0, X0

mτ ),

where either mτ = t0 (i.e., (t0, X0) belongs to the exercise region and û0(X0) = f0(X0))
or mτ > t0 (i.e., mτ = τ̂ t1, mX1).
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Moreover, via (2.17) we get an approximate sequence of continuation value functions

(2.19) Ĉi(x) :=
K∑

r=1

cirψr(x), 0 ≤ i < I, ĈI = −1,

and obtain a lower biased approximation

(2.20) ûs(x) = EZs,x
τ̂s,x , Ti−1 < s ≤ Ti,

for the true price of a Bermudan option with exercise possibilities {Ti, Ti+1, .., TI}, via the
stopping rule

(2.21) τ̂ s,x = inf{Tj ≥ Ti : Ĉj(X
s,x
Tj

) ≤ fj(X
s,x
Tj

)}.

It should be noted that for a lower biased estimate of (2.20) by Monte Carlo simulation,
one should use a new set of trajectories all starting from (s, x).

Another estimate for ûi(x) = ûTi
(x) can be obtained by (see (2.8) and (2.19))

(2.22) ûi(x) = max
{
fi(x), Ĉi(x)

}
, i = 0, ..., I.

This estimate is less expensive but apparently less accurate than (2.20). Having ûi(x),
we can estimate us(x) for Ti−1 < s < Ti by pricing the European claim at the maturity
time Ti specified by the payoff function ûi(x).

3. Monte Carlo estimation of Bermudan sensitivities at a fixed position

In this section we concentrate on the evaluation of deltas

∂k
s (x) :=

∂us(x)

∂xk
, k = 1, ..., d, t0 ≤ s ≤ T,

at the starting position (t0, X0). Let us introduce the notation

∂s(x) = (∂1
s (x), ..., ∂

d
s (x))

ᵀ =

(
∂us(x)

∂x1
, ...,

∂us(x)

∂xd

)ᵀ

.

In order to simplify the presentation we now assume r(t, x) ≡: r in (2.1) to be constant.

3.1. Pathwise approach. We note that τ s,x in (2.4) depends on s, x and on an elemen-
tary random event ω : τ s,x = τ s,x(ω). Due to finiteness of Ti,I , we have τ s,x+∆x(ω) =
τ s,x(ω) almost surely for all ∆x small enough if (s, x) does not belong to the boundary of
the exercise region. Therefore we obtain from (2.4):

(3.1) ∂k
s (x) = BsE

(
1

Bτs,x

d∑
i=1

∂fτs,x(Xs,x
τs,x)

∂xi
δk(Xs,x

τs,x)i

)
,

where

δkX i
t := δk(Xs,x

t )i =
∂(Xs,x

t )i

∂xk
, s ≤ t ≤ T, k, i = 1, ..., d,
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satisfies the system of variational equations associated with (2.1) and (2.2):

dδkX =
d∑

i=1

δkX i∂a(t,X)

∂xi
dt+

d∑
i=1

δkX i∂c(t,X)

∂xi
dW (t) ,(3.2)

δkX i(s) = 0 , if i 6= k, and δkXk(s) = 1 .

We note that if the position (s, x) belongs to the exercise region (hence τ s,x = s = Tk for
some k = 0, ..., I), then formula (3.1) evidently gives

∂k
s (x) =

∂fs(x)

∂xk
.

Let τ t0,x > t0. Based on the independent trajectories (t, mXt), m = 1, ...,M, all starting
from the point (t0, X0), we obtain from (3.1) with (s, x) = (t0, X0) the following Monte
Carlo estimates for the deltas:

(3.3) ∂̂k
t0
(X0) =

B0

M

M∑
m=1

1

Bmτ

d∑
i=1

∂fmτ (mX
t0,X0
mτ )

∂xi
δk(mX

t0,X0

mτ )i, mτ = τ t1, mX1 .

For a corresponding estimator in the case where the interest rate r = r(t, x) is non-
constant we get somewhat more complicated expressions (see e.g. [26]).

3.2. Finite difference based approach. Formula (3.1) requires computation of δkX i
t ,

i.e., to evaluate deltas by the pathwise approach one has to integrate not only the d-
dimensional system for X from (2.1) but also d additional systems, each of dimension d.
This can cause severe computational difficulties in practice. However, in [16] an adjoint
simulation approach is presented to speed up this procedure. As an alternative, we may
compute (approximately) the derivatives in (3.1) by finite differences as studied in [27] for
the European case. This method is based on the finite difference formula (we put X0 = x)
(3.4)
∂ut(x)

∂xk
=
ut(x

1, . . . , xk + ∆xk, . . . , xd)− ut(x
1, . . . , xk −∆xk, . . . , xd)

2∆xk
+O

((
∆xk

)2)
.

In typical situations, we need to use approximations ût(x
1, . . . , xk ± ∆xk, . . . , xd) for

ut(x
1, . . . , xk ±∆xk, . . . , xd), for example (see (2.18)):

(3.5) ût0(x
1, . . . , xk ±∆xk, . . . , xd) =

B0

M

M∑
m=1

1

Bmτ

fmτ (mX
t0,x1,...,xk±∆xk,...,xd

mτ ).

In (3.5), mXt, t0 ≤ t ≤ mτ, is an approximate solution of (2.1) obtained by a nu-
merical integration scheme. M triples of approximate trajectories are simulated, each
triple consists of a trajectory starting from x and a pair of trajectories starting from
x ± ∆xkek := (x1, . . . , xk ± ∆xk, . . . , xd) at the moment t0. The triples are indepen-
dent, but the three trajectories of the same triple are dependent: they correspond to
the same realization of the Wiener process. We therefore take the same stopping time

mτ = τ̂ t1, mX1 , mX1 = mX
t0,x
T1

for each trajectory of the m-th triple. For a particular

triple this is correct when ∆xk is small enough. In the finite difference approach one
takes one fixed ∆xk for all trajectories however, so for some trajectories this may fail to

7



be correct. But, with decreasing ∆xk the number of such trajectories decreases as well.
As an estimator for ∂k

t0
(X0) we thus obtain

(3.6) ∂̂k
t0
(X0) =

1

2∆xi

B0

M

M∑
m=1

1

Bmτ

[
fmτ (mX

t0,x+∆xkek

mτ )− fmτ (mX
t0,x−∆xkek

mτ )
]
.

For European options it is proved in [27] that the delta-estimator (3.6) has the same
convergence rate as the estimator for the option value. Using the fact that Bermudan
option values are continuous in x at the exercise boundary, and good properties of the
estimator (3.6) in the European case, a similar result can be shown for (3.6) as well.

3.3. The case of accurately known ûTi
(x). Proceeding with the problem of evaluating

deltas, we may naturally presuppose that ûTi
(x) is a sufficiently accurate estimate of

uTi
(x) for all x and i. In this case one can use results obtained for European options

(see, e.g., [27] and references therein) for evaluation of ∂k
t (x) at a position (t, x), where

Ti−1 ≤ t < Ti. (Note that if t = Ti−1, one needs to take the max-operator into account,
(2.5)). In particular, the theory developed for European options enables us to apply weak
methods of numerical integration for SDEs and variance reduction techniques. In this
context we recall an approach in [27] which is based on a Clark-Ocone type formula. Let
ξ = (ξ1, ..., ξd)ᵀ be a d-dimensional random vector with i.i.d. components distributed by
P (ξk = ±1) = 1/2, and h be a positive number. With (2.2) and the matrix c(t, x) :=
{cij(t, x)} we denote by X̄ the one-step approximation

X̄ := x+ ha(t, x) + h1/2c(t, x)ξ.

Then,

cᵀ(t, x)∂t(x) =
1√
h
E[ut+h(X̄)ξ] +O(h).

This formula can be used for effective estimation of ∂̂t(x), Ti−1 ≤ t < t + h ≤ Ti via
Monte Carlo simulation, provided ûTi

(x) is close to uTi
(x) (see [27]).

4. Regression methods for Bermudan sensitivities at arbitrary positions

The pathwise Monte Carlo estimator (3.3) and finite difference Monte Carlo estimator
(3.6) can be used for estimating sensitivities at a given starting position of the process
X, say (t0, Xt0) = (t0, x0), using a sample set of trajectories starting at (t0, x0). For
estimating sensitivities at another position, let us say (s, x) with t0 < s ≤ T1, one can
of course simulate a new set of trajectories and use (3.3) or (3.6) again. As a more
efficient alternative, we propose to infer the sensitivities from the old trajectories via the
well-known method of linear regression.

4.1. Pathwise methods with linear regression. We here propose to use the old trajec-
tories (together with the corresponding stopping times) starting at (t0, x0), for evaluation
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of the price and deltas for the new position (s, x), t0 < s ≤ t1. The key tools are the
following expressions (see (2.4) and (3.1)),

us(x) = BsE

(
fτ (X

s,x
τ )

Bτ

)
with τ = τ s,x(4.1)

= BsE

(
1

Bτ

fτ (X
s,X
τ ) with X := X t0,x0

s and τ = τ t0,x0 | X t0,x0
s = x

)
and

∂k
s (x) = BsE

(
1

Bτ

d∑
i=1

∂fτ (X
s,x
τ )

∂xi
δk(Xs,x

τ )i

)
with τ = τ s,x(4.2)

= BsE

(
1

Bτ

d∑
i=1

∂fτ (X
s,X
τ )

∂xi
δk(Xs,X

τ )i | X t0,x0
s = x

)
with X := X t0,x0

s and τ = τ t0,x0 .

Thus, we have two different probabilistic representations both for us(x) and ∂k
s (x): the

first one is in the form of an unconditional expectation and the second one is in the form
of a conditional one. The first forms can be naturally computed by direct Monte Carlo
and the second one by a regression method. Using regression based on one and the same
set of trajectories (t,mX

t0,x0
t ) and stopping times mτ =m τ t0,x0 , m = 1, ...,M, for many

positions (s, x) is of course much more efficient than simulating new from each desired
position (s, x) (though generally less accurate of course)

A proof of (4.1) and (4.2) relies on the following assertion: if ζ is F̃ -measurable, f(x, ω) is
independent of F̃ , and Ef(x, ω) = φ(x), then E(f(ζ, ω)|F̃) = φ(ζ) (see, e.g., [23]). From
this assertion, for any measurable g it holds (with ζ = X t0,x0

s , F̃ = σ(X t0,x0
s ), f(x, ω) =

g(Xs,x
τ (ω))):

E
(
g(Xs,X

τ ) | X t0,x0
s = x

)
= Eg(Xs,x

τ ) with X := X t0,x0
s and τ ≥ s,

hence (4.1) and (4.2).

For evaluating us(x) by regression, the pairs (X,V ) and (mX,m V ) (see Subsection 2.3)
have the form

(X,V ) ∼
(
X t0,x0

s ,
Bs

Bτ

fτ (X
s,X
τ )

)
,(4.3)

(mX,m V ) ∼
(

mX
t0,x0
s ,

Bs

Bmτ

fmτ (mX
s,mX
mτ )

)
,

and for evaluating ∂k
s (x) they have the form

(X,V ) ∼

(
X t0,x0

s ,
Bs

Bτ

d∑
i=1

∂fτ (X
s,X
τ )

∂xi
δk(Xs,X

τ )i

)
,(4.4)

(mX,m V ) ∼

(
mX

t0,x0
s ,

Bs

Bmτ

d∑
i=1

∂fmτ (mX
s,mX
mτ )

∂xi m
δk(mX

s,mX
mτ )i

)
.
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Having the sample (4.3), one can obtain the estimate ûs(x) by linear regression as

ûs(x) =
L∑

l=1

α̂lϕl(x).

In principle one can differentiate this expression to obtain an estimate for ∂k
s (x). However,

in general this is not a suitable method. It is better to apply linear regression directly to
the sample (4.4) to get

∂̂k
s (x) =

L1∑
l=1

β̂k
l ψl(x).

Of course, the choice of basis functions {ϕl} and {ψl} is a problem in it’s own right.

4.2. Finite difference based methods via linear regression. We have

(4.5) ∂k
s (x) ' 1

2∆xk
[us(x+ ∆xk)− us(x−∆xk)].

Similar to (4.1) and (4.2), the right part of (4.5) has the following probabilistic represen-
tations:

1

2∆xk
[us(x+ ∆xk)− us(x−∆xk)](4.6)

=
1

2∆xk
E

(
Bs

Bτ

[
fτ (X

s,x+∆xkek

τ )− fτ (X
s,x−∆xkek

τ )
]

with τ = τ s,x

)
=

1

2∆xk
E

(
Bs

Bτ

[
fτ (X

s,X+∆xkek

τ )− fτ (X
s,X−∆xkek

τ )
]

with τ = τ t0,x0|X = X t0,x0
s = x

)
.

The corresponding generic member (X,V ) and the sample (mX,m V ) have the form

(X,V ) ∼
(
X t0,x0

s ,
Bs

2∆xkBτ

[
fτ (X

s,X+∆xkek

τ )− fτ (X
s,X−∆xkek

τ )
])

,(4.7)

(mX,m V ) ∼
(

mX
t0,x0
s ,

Bs

2∆xkBmτ

[
fmτ (mX

s,mX+∆xkek

mτ )− fmτ (mX
s,mX−∆xkek

mτ )
])

.

For any m we have to consider three trajectories defined on the interval s ≤ t ≤ mτ.
One of them is (t,mX

t0,x0
t ) = (t,Xs,mX

t ) which is constructed previously. Two others

(t,Xs,mX±∆xkek

t ) start from points X±∆xkek at time s, and they have to be constructed.
We recall that these three trajectories are dependent: two last trajectories have the same
realization of the Wiener process as the first (basic) trajectory. Besides, let us note that
∆xk is the same for all m.

4.3. Greeks by local polynomial regression. In the case that we only need ûs(x) and

∂̂k
s (x) at a particular point x at time s it is advantageous to use local regression (see e.g.

[14]). In the local regression approach the regression function

(4.8) c(x) = E(V |X = x)

and its derivatives c′(x), ..., c(p)(x) at a point x = x0 are to be estimated from a sample
(mX,m V ), m = 1, ...,M, from (X,V ). For notational simplicity we here suppose that X
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and V are one-dimensional. Assume that the (p + 1)-th derivative of c(x) at x0 exists.
Then the unknown regression function c(x) can be locally approximated by a polynomial
of order p due to the weighted least squares regression problem (see [18])

(4.9)
M∑

m=1

Kh(mX − x0) ·

[
mV −

p∑
j=0

βj(mX − x0)
j

]2

→ min
β0,...,βp

,

where h is a bandwidth, and Kh is a kernel function. If β̂j, j = 0, ..., p, is the solution to
problem (4.9) then,

(4.10) ĉ(x0) = β̂0, ..., ĉ
(j)(x0) = j!β̂j, j = 0, ..., p.

The local polynomial regression approach allows for different alternatives. For example,
to get an estimate for ∂k

s (x) one can use a local regression method directly to the sample
(4.4) or one can use a polynomial regression method of order p ≥ 1 to the sample (4.3) and

obtain both estimates ûs(x) and ∂̂k
s (x). Apparently the second alternative for estimating

∂k
s (x) is less accurate but not so expensive since sample (4.3) is simpler. If we apply a

polynomial regression method of order p ≥ 1 to sample (4.4), we can obtain estimates
both for deltas and gammas. The latter is very noteworthy, since known methods for
estimating gammas are very expensive. Moreover we note that local regression methods
do not involve the rather difficult problem of choice of basis functions. Admittedly, it
involves the problem of bandwidth selection however. But this difficulty can in principle
be solved during numerical calculations. Over all, the local regression method in the
situation where we need ûs(x) and ∂̂k

s (x) only at one position (s, x) looks promising.

5. Direct least squares methods for deltas

Due to (2.5), ut(x) is continuous in t for Ti < t < Ti+1, i = 0, ..., I − 1, uTi+1−0(x) =
uTi+1

(x) , and if

fi(x) > uTi+0(x) = E

(
ui+1(X

i,x
i+1)

Bi,x,1
i+1

)
,

then
uTi+0(x) < uTi

(x) = fi(x).

Together with (2.1) we have on (Ti, Ti+1]

(5.1) du = rudt+
d∑

j=1

∂u

∂xj

d∑
k=1

cjkdW k(t)

or

(5.2) ut(Xt) = uTi+0(x) +

∫ t

Ti

r(s,Xs)us(Xs)ds+

∫ t

Ti

d∑
j=1

∂us(Xs)

∂xj

d∑
k=1

cjk(s,Xs)dW
k(s),

where Xs = XTi,x
s .

Let h be a small positive number and Ti ≤ t < t + h ≤ Ti+1. We assume that Xt is
supposed to be known exactly (see Section 2). In the context below, this means that the
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time step ∆t used in a numerical integration scheme for computing Xt (e.g. the Euler
scheme) is much smaller than h: ∆t � h. From (5.2) we get the following approximate
equality

(5.3) ut+h(Xt+h) ' ut(Xt) + r(t,Xt)ut(Xt)h+ [cᵀ(t,Xt)∂t(Xt)]
ᵀ∆tW (h),

where ∆tW (h) = W (t + h) −W (t). Of course, if t = Ti, one should set uTi+0 instead of
uTi

in (5.3).

Suppose ût(x) and ût+h(x) are known (e.g., they are evaluated by one of the procedures in
[5]), mXs, m = 1, ...,M, are trajectories starting from (t0, x0), and mW (s) are the corre-
sponding realizations of the Wiener process. We then look for ∂t(x) = (∂1

t (x), ..., ∂
d
t (x))

ᵀ

in the form

(5.4) ∂k
t (x) ∼

Lk∑
l=1

αk
l ψ

k
l (x), k = 1, ..., d,

where Lk and ψk
l may depend on t. Substituting in (5.3) mXt, mXt+h, ût, ût+h instead of

Xt, Xt+h, ut, ut+h, then mW (t+h)−mW (t) instead of ∆tW (h), and ∂t(mXt) in the form
(5.4), we obtain M relations, whence α̂k

l can be found by the method of least squares, i.e.

(5.5) α̂k
l = arg min

αk
l

1

M

M∑
m=1

[
m∆û− (mr)(mû)h−

d∑
i=1

(mZ
i)(m∆W i)

]2

,

where

m∆û = ût+h(mXt+h)− ût(mXt), mr = r(t,mXt), mû = ût(mXt),

m∆W i =m W i(t+ h)−m W i(t),

mZ
i =

d∑
k=1

(mc
ki)

Lk∑
l=1

αk
l (mψ

k
l ), with mc

ki = cki(t,mXt), mψ
k
l = ψk

l (mXt).

Using the technique from, e.g. [18] (see also [17]), it is not difficult to prove that ∂̂k
t (x) =∑Lk

l=1 α̂
k
l ψ

k
l (x) converge to the true deltas when the estimation error of û goes to zero,

h→ 0, M →∞, and Lk →∞. In our case the error analysis is much simpler than in [17].
In contrast to [17], we consider only a one-step error, we consider both ût(x) and ût+h(x)
to be accurately known, and finally the expression inside the square brackets in (5.5) is
linear with respect to αk

l .

As an alternative least squares problem we may look for

Zt(x) := cᵀ(t,Xt)∂t(Xt)

in the form

(5.6) Zk
t (x) ∼

L∑
l=1

βk
l ζl(x), k = 1, ..., d,
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where L and ζl do not depend on k. The solution β̂i
l satisfies the minimization problem

(5.7) β̂i
l = arg min

βi
l

1

M

M∑
m=1

[
m∆û− (mr)(mû)h−

d∑
i=1

L∑
l=1

βi
l (mζl)(m∆W i)

]2

.

Both minimization problem (5.5) and (5.7) lead to a linear algebraic system of order
d × Lk. We now show that the linear system corresponding to problem (5.7) can, in a
good approximation, be split into d linear systems each of order L. The error due to this
splitting tends to zero if M →∞.

We have

1

M

M∑
m=1

[
m∆û− (mr)(mû)h−

d∑
i=1

(mZ
i)(m∆W i)

]2

=
1

M

M∑
m=1

(m∆û− h(mr)(mû))
2(5.8)

− 2

M

M∑
m=1

d∑
i=1

(m∆û− h(mr)(mû))(mZ
i)(m∆W i) +

1

M

M∑
m=1

d∑
i,j=1

(mZ
i)(mZ

j)(m∆W i)(m∆W j),

where

mZ
i =

L∑
l=1

βi
l (mζl) =

L∑
l=1

βi
lζl(mXt).

Due to the central limit theorem, we have approximately

1

M

M∑
m=1

d∑
i,j=1

(mZ
i)(mZ

j)(m∆W i)(m∆W j) ' h
d∑

i=1

E(Zi)2,

where the error tends to zero if M →∞. By the same reasoning, we have

1

M

M∑
m=1

d∑
i=1

(mZ
i)2h ' h

d∑
i=1

E(Zi)2,

hence the last summand in (5.8) can be replaced by 1
M

∑M
m=1

∑d
i=1(mZ

i)2h. Now it is not
difficult to see that problem (5.7) is close to the following minimization problem

(5.9) β̂i
l = arg min

βi
l

1

M

M∑
m=1

d∑
i=1

[
m∆û− (mr)(mû)h

h
(m∆W i)−

L∑
l=1

βi
l (mζl)

]2

.

In turn, (5.9) is equivalent to d separate problems

(5.10) β̂i
l = arg min

βi
l

1

M

M∑
m=1

[
m∆û− (mr)(mû)h

h
(m∆W i)−

L∑
l=1

βi
l (mζl)

]2

, i = 1, ..., d.

Each of the i-th problem (5.10), i = 1, ..., d, gives a linear algebraic system of order L
with respect to βi

l , l = 1, ..., L.

In the approach based on (5.4) we get all the deltas at once, but the approach based on
(5.6) allows for more efficient computation.
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Concerning the selection of a suitable h, it is difficult (or even impossible) to give some
recommendations on a theoretical basis. In practice, however, this issue can be settled
during computations. In any case it is clear that h cannot be chosen too small because of
the terms (m∆û)(m∆W i)/h in (5.10). Heuristically, these terms have the error ρ ∼ ε/

√
h

if the error of û is of ∼ ε. Hence, if e.g., h ∼ εκ, κ > 0, then ρ ∼ ε1−κ/2, i.e., κ should
be less than 2.

6. Testing

All procedures of evaluating prices and in particular sensitivities of Bermudan options
contain a lot of errors of different nature and it is almost impossible to take them satis-
factorily into account. We therefore propose a test procedure which allows for estimating
the quality of either procedure. Equalities (5.1)-(5.2) or the equivalent equality

du =
1

Bt

(u(Xt)−
d∑

j=1

∂u

∂xj
(Xt)X

j
t )dB +

d∑
j=1

∂u

∂xj
(Xt)dX

j(6.1)

=
1

Bt

(u(Xt)− [∂t(Xt)]
ᵀXt)dB + [∂t(Xt)]

ᵀdX

give good opportunities for such testing.

Let X be the solution of (2.1) starting from x0 at t0 and Ht(x) be a d-dimensional vector-
function. Consider the hedging strategy ϕ := (H0

t , Ht(Xt)) with

H0
t =

1

Bt

(Vt −Hᵀ
t (Xt)Xt),

where Vt is determined by the equation

dV =
1

Bt

(V −Hᵀ
t (Xt)Xt)dB +Hᵀ

t (Xt)dX, Vt0 = ut0(x0).

Clearly, the corresponding portfolio has the form

Vt(ϕ) = H0
t Bt +Hᵀ

t (Xt)Xt =
1

B
(Vt −Hᵀ

t (Xt)Xt)Bt +Hᵀ
t (Xt)Xt

and the strategy ϕ is self-financing. It is not difficult to prove that Vt = ut if and only if
Ht(x) = ∂t(x).

Let ût(Xt) and ∂̂t(Xt) be constructed due to some procedure. Consider the equation

(6.2) dV =
1

Bt

(V − [∂̂t(Xt)]
ᵀXt)dB + [∂̂t(Xt)]

ᵀdX, Vt0 = ût0(x0),

and the portfolio

(6.3) Vt =
1

Bt

(Vt − [∂̂t(Xt)]
ᵀXt)Bt + [∂̂t(Xt)]

ᵀXt.

Let Tν be the first time from {T0, ..., TI} for which û coincides with f, i.e., ûTi
(XTi

) >
fi(XTi

) for i = 0, ..., ν − 1 and ûTν (XTν ) = fν(XTν ). Now let us compare Vt and ût(Xt)
on the interval [T0, Tν ]. Tightness of these quantities is a necessary condition for the
considered procedure to be ’good’. As a criterion of tightness one may take, for instance,
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the difference at Tν : VTν − ûTν (XTν ) = VTν − fν(XTν ), or some integral criterion on the
time interval [T0, Tν ]. Of course, we assume that û is a satisfactorily accurate estimate of

u. The above mentioned testing is rather efficient because we need ût(x) and ∂̂t(x) only
on an individual trajectory.

If we are equipped at any position (t, x) with ût(x) and ∂̂t(x) constructed by one of the
regression methods (Section 4) or by using the direct method of least squares (Section 5)
basing on a sample set of trajectories, we may introduce some new criterions of tightness.
In such cases we apply again equation (6.2) to any trajectory of the considered set or to
a new independent set of trajectories. The latter is necessary if deltas are constructed
via direct least squares. After computing lVTν(l)

for every trajectory lXt, l = 1, ..., L, it is
natural to introduce, for example, the following criterions

Cr2 := [E(VTν − fν(XTν ))
2]1/2 '

(
1

L

L∑
l=1

(lVTν(l)
− fν(l)(lXTν(l)

))2

)1/2

,

Cr+ := E(VTν − fν(XTν ))
+ ' 1

L

L∑
l=1

(lVTν(l)
− fν(l)(lXTν(l)

))+ ,

Cr− := E(fν(XTν )− VTν )
+ ' 1

L

L∑
l=1

(fν(l)(lXTν(l)
)−l VTν(l)

)+ .

7. Calibration

Given market prices {C1, . . . , Cn} at t = 0 for a set of liquid benchmark options (typically
call options with different strikes Ki and maturities Ti) one looks for a risk-neutral model
Q which prices these options correctly:

Ci = EQ [B−1
i (XTi

−Ki)
+
]
, i = 1, . . . , n.

The idea is the following: one calibrates a risk-neutral model to a set of observed market
prices of liquid options and then uses this model to price exotic, illiquid or ‘Over The
Counter’ (OTC) options and to compute hedge ratios. If we parameterize our class of
models by θ ∈ Θ (e.g. (2.1) with σ(t,X) = σ(t,X; θ)), then a practical solution to the
calibration problem is to minimize the in-sample weighted quadratic pricing error:

(7.1) O(θ) =
n∑

i=1

wi|Cθ(Ti, Ki)− Ci|2,

where Cθ(Ti, Ki) are the model prices and wi are nonnegative weights. Given that the
number of calibration constraints (option prices) is finite, there may be many models
reproducing the option prices with equal precision, which means that the error object
function (7.1) may have many local minima. Typically, the error landscape may have flat
regions in which the error has a low sensitivity to variations in model parameters. Since
a good hedging performance is a desired feature of the model to be calibrated (which is
not taken into account in (7.1)), it is natural to consider instead of O another objective
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function

OH(θ) =
n∑

i=1

wi|Cθ(Ti, Ki)− Ci|2 + αCr2(θ), α > 0

and define
θ̂ = arg inf

θ∈Θ
OH(θ),

where the “lack of hedge” Cr2(θ) can be cheaply computed using regression as described
in the previous section.
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