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AbstratAurate modeling of heat transfer in high-temperatures situations requires toaount for the e�et of heat radiation. In omplex appliations suh as Czohralski'smethod for rystal growth, in whih the ondution radiation heat transfer problemouples to an indution heating problem and to the melt �ow problem, we hardlyan expet from the mathematial theory that the heat soures will be in a betterspae than L1. In suh situations, the results of [LT01℄ on the unique solvability ofthe heat ondution problem with surfae radiation do not apply, sine a right-handside in Lp with p < 6
5 no longer belongs to the dual of the Banah spae V in whihoerivity is obtained. In this paper, we fous on a stationary heat equation withnon-loal boundary onditions and Lp right-hand side with 1 ≤ p ≤ ∞ arbitrary.Essentially, we onstrut an approximation proedure and, thanks to new oerivityresults, we are able to produe energy estimates that involve only the Lp-norm ofthe heat-soures, and to pass to the limit.IntrodutionAurate modeling of heat transfer in high-temperatures situations requires to aountfor the e�et of heat radiation. In the �eld of industrial appliations, rystal growth,for example, has motivated a lot of mathematial work on this topi ([Phi03℄, [KPS04℄,[KP05℄, [MPT06℄, [Mey06℄, [Voi01℄). For this type of appliations, situations are relevantin whih a transparent medium is enlosed by one or several opaque, or di�use grey bodies,suh as in the following 2D-piture:
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�)When heat is supplied to the bodies, eah point on the boundary of the transparentavity, denoted by Ω0, emits radiation, and at the same time reeives radiation emittedat the other parts of the surfae that it an see. This e�et an be modeled by meansof nonloal radiation boundary onditions for the ondutive heat �ux (see for example([Voi01℄, [KPS04℄). 1



From the point of view of mathematial analysis, an important result was attained inthe paper [LT01℄, in whih existene and uniqueness of generalized solutions were provedfor the heat equation with radiation boundary onditions and heat soures in the lass
[W 1,2]∗.In the present paper, we want to extend these results to the ase that the heat souredensity might be less regular. In many appliations, the heat soures have to be omputedfrom Maxwell's equations (resistive/indutive heating) or from the Navier-Stokes equa-tions (heat onduting �uids). From the viewpoint of the presently available regularitytheory, this leads in omplex situations (temperature-dependent oe�ients, nonsmoothsurfaes) to heat soure densities that belong only to L1, or at most to L1+ǫ. The latterobservations have motivated researh on ellipti problems with L1 right-hand sides (seefor example [BG92℄, [Rak91℄). A L1−theory is also partiularly attrative for the heatequation, in that it leads to natural energy estimates, that is, to estimates in terms of thetotal heating power, the quantity whih is atually ontrolled in appliations.The mathematial problem. We assume that Ω1, . . . ,Ωm are disjoint bounded do-mains in R

3, separated from eah other by a transparent medium Ω0. They representopaque bodies with di�erent material properties. The bounded domain Ω ⊂ R
3 suh that

Ω =

m
⋃

i=0

Ωi , (1)is assumed to be onneted.We assume that all materials involved are grey materials, see [LT98℄ or [KPS04℄. There-fore, radiation only needs to be onsidered at the surfae of the bodies Ωi (i = 1, . . . , m).We de�ne
∂ΩRad :=

m
⋃

i=1

∂Ωi ,as the surfae where heat radiation ours. Note that the interations between the partsof the surfae that are loated in the avity Ω0 need to be taken into aount.To this aim, a kernel w : ∂ΩRad × ∂ΩRad −→ R , the so-alled view fator, is introduedby
w(z, y) :=







~n(z) · (y − z) ~n(y) · (z − y)

π|z − y|4
Θ(z, y) if z 6= y ,

0 if z = y ,
(2)where the visibility funtion

Θ(z, y) =

{

1 if ]z, y[∩Ω \ Ω0 = ∅ ,

0 else, (3)is penalizing the nononvexity of the surfae ∂ΩRad as well as the presene of obstales. Inthese de�nitions, the symbol ]z, y[ is an abbreviation for onv{z, y} \ {z, y}, and ~n is the2



outward-pointing unit normal to ∂ΩRad. Throughout the introdution, we assume that
∂ΩRad has a su�ient regularity for the kernel w to be everywhere well de�ned.By straightforward geometrial onsiderations, one veri�es that

w(z, y) ≥ 0 for all (z, y) ∈ ∂ΩRad × ∂ΩRad .We introdue the set of all interating points Σo ⊂ ∂ΩRad by
Σo :=

{

z ∈ ∂ΩRad ∣∣∣ ∃ y ∈ ∂ΩRad : w(z, y) > 0
}

, (4)i.e. a point z ∈ ∂ΩRad will belong to Σo if it an see at least one other point of ∂ΩRad.The splitting ∂ΩRad = Γ ∪ Σ, where
Σ := Σo, Γ := ∂ΩRad \ Σ , (5)gives a disjoint deomposition of the boundary.Throughout the paper, we will assume that heat-transfer in the transparent medium

Ω0 only ours by radiation, or at least that the heat ondution taking plae in Ω0 isnegligible, i.e. κ = 0 in Ω0. We will address the problem of determining the temperaturein the opaque omponents Ω1, . . . ,Ωm of the domain as (P ).The domain of omputation Ω is thus given by Ω :=
⋃m
i=1 Ωi. As a matter of fat, Ω isdisonneted. We onsider the equations

(P )







− div (κ(T )∇T ) = f in Ω ,

−κ(T )
∂T

∂ ~n
= R− J on Σ ,where R denotes the radiosity (outgoing radiation), and J denotes the inoming heatradiation J on the surfae Σ.The radiosity R has to be the sum of the radiation emitted aording to the Stefan-Boltzmann law, and of the re�eted part of the inoming radiation J . Thus,

R = ǫ σ |T |3 T + (1 − ǫ) J on Σ. (6)where the emissivity ǫ is a material funtion that attains values in [0, 1], and σ denotesthe Stefan-Boltzmann onstant. In the hosen model, one has
J = K(R) on Σ , (7)where K is the linear integral operator given by

(K(f))(z) =

∫

Σ

w(z, y) f(y) dSy for z ∈ Σ , (8)with the kernel (2). We also have to supply a boundary ondition on the set Γ. For thesake of generality, we assume the disjoint deomposition Γ = Γ1 ∪ Γ2 ∪ Γ3, where Γi is3



relatively open for i = 1, 2, 3. We onsider the boundary onditions
T = T0 on Γ1 , −κ(T )

∂T

∂ ~n
= α (T − TExt) on Γ2 ,

− κ(T )
∂T

∂ ~n
= ǫ σ (T 4 − T 4Ext) on Γ3 , (9)where the imposed temperature T0, the external temperature TExt, as well as the oe�ient

α > 0 are given. As above, ǫ is the emissivity on the surfae Γ3, and σ is the Stefan-Boltzmann onstant.Weak formulation of (P). It is possible to immediately eliminate the integral equa-tions (6), (7) on Σ and to derive a weak formulation of (P ) that only involves the unknown
T . This was shown in [Tii97b℄. From the relations (6), (7), it follows that

(I − (1 − ǫ)K) (R) = ǫ σ |T |3 T ,Note that throughout the paper, ourrene of the funtions ǫ and 1 − ǫ in onnetionwith an integral operator simply implies multipliation. Assuming that the operator
(I − (1 − ǫ)K) is invertible in a suitable Banah spae, we then an write

R = (I − (1 − ǫ)K)−1 ǫ (σ |T |3 T ) ,

J = K(I − (1 − ǫ)K)−1 ǫ (σ |T |3 T ) .We introdue the notation
G := (I −K) (I − (1 − ǫ)K)−1 ǫ . (10)Then, we an rewrite the onditions on the boundary Σ as follows:
−κ(T )

∂T

∂ ~n
= G(σ|T |3 T ) on Σ .If ψ is a smooth funtion that vanishes on Γ1, we �nd the relation

∫

Ω

κ(T )∇T · ∇ψ +

∫

Γ2

αT ψ +

∫

Γ3

σ ǫ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ

=

∫

Ω

f ψ +

∫

Γ2

αTExt ψ +

∫

Γ3

σ ǫ T 4Ext ψ . (11)We introdue the notations
〈

AT , ψ
〉

:=

∫

Ω

κ(T )∇T · ∇ψ +

∫

Γ2

α T ψ , f̃ :=















0 on Γ1 ,

α TExt on Γ2 ,

σ ǫ T 4Ext on Γ3 .

(12)We rewrite (11) as
〈

AT , ψ
〉

+

∫

Γ3

σ ǫ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ . (13)4



De�nition 0.1. Let Ω ⊂ R
3 have the struture (1), where Ωi are disjoint domains with

∂Ωi ∈ C0,1. If the deomposition ∂ΩRad = Σ∪Γ, whih is given by (5), leads to Σ ,Γ ∈ C0,1,we set
V p,q(Ω) :=

{

u ∈ W 1,p(Ω)
∣

∣

∣
γ(u) ∈ Lq(Σ ∪ Γ3)

}

,where γ is the trae operator. The subsript Γ1 denotes the subspae of funtions thatvanish on the surfae Γ1.In order to de�ne a weak solution, we still need assumptions on the oe�ients κ, ǫ.Throughout the paper, we assume that κi is a ontinuous funtion of temperature, andthat there exists positive onstant κl, κu suh that
0 < κl ≤ κi(s) ≤ κu <∞ for s ∈ R, for eah Ωi . (14)We assume that ǫ is a measurable funtion of the position and that there exists a positivenumber ǫl suh that

0 < ǫl ≤ ǫ(z) ≤ 1 for z ∈ Σ . (15)For a real number p ∈]1,∞[, we use through the paper the notation p′ = p/p− 1 for theonjugated exponent.De�nition 0.2. We all T ∈ V p,4(Ω), 1 < p ≤ ∞ a weak solution to (P ) if T = T0 almosteverywhere on Γ1, and if T satis�es the integral relation (13) for all ψ ∈ V p′,∞(Ω).Situation and struture of the paper. In the papers [Tii97b℄, [Tii97a℄, [LT98℄ exis-tene and uniqueness of generalized solutions were proved for the problem (P ) in enlosure-free systems. In [LT01℄, the authors then found a more general way to obtain energyestimates, and were able to extend the previous results to general geometries, inludingenlosures. The two remaining fundamental assumptions of the paper [LT01℄, neessaryto obtain the results, are that the surfae Σ belongs to C1,α pieewise, and that the heatsoure density f belongs to [W 1,2(Ω)]∗.Our purpose and main fous is to extend these known results to the ase that the right-hand side f might be a less regular funtion. This is motivated by the fat that in onreteappliations (resistive / indutive heating, heat ondutive �uids), the mathematial the-ory often only provides L1, or at most L1+ǫ regularity for the heat soure density.Our plan is as follows.In the �rst setion we prove and reall some essential properties of the operators K and
G. These properties allow us to derive, in the seond setion, new oerivity inequalitiesfor the nonlinear form 〈AT , ψ〉 +

∫

Σ
G(σ |T |3 T )ψ. The �rst two setions are extendingthe available knowledge about the nonloal radiation operators and they may interest thereader in their own right.In the next setions, we turn to more spei�ally study the problem (P ). In the thirdsetion, the uniqueness issue is brie�y treated. The fourth setion is devoted to the proof5



of a general existene result for the problem (P ) in the ase that the right-hand side fbelongs to Lp, with p > 1 arbitrary. The ase p = 1 is treated separately in the �fthsetion.Sine the regularity of the interfae Σ is an important issue for appliations in rystalgrowth, we draw the attention of the reader to another by-produt of the disussion ofthe �rst two setions: the ompatness of the operator K (i.e. the restrition ∂Ω ∈ C1,αpieewise), turns out to be unneessary to prove the existene of weak solution for thestandard ase f ∈ [W 1,2(Ω)]∗.1 The Operators K and GWe use the following notations. If X, Y are Banah spaes, we denote by L(X, Y ) theBanah spae of the linear ontinuous mappings from X into Y . We denote by K(X, Y )the subspae of L(X, Y ) that ontains the ompat mappings from X into Y . For B ∈
L(X, Y ) and x ∈ X, we denote by B(x) ∈ Y the value of B at x. If B, C ∈ L(X,X), wedenote by B C(x) the element B(C(x)). As in the introdution, we will use the notation
∂ΩRad :=

⋃m
i=1 ∂Ωi.We start by studying the operators K and G. Parts of the following results have alreadybeen proved in [Tii97b℄, [Tii97a℄, [LT98℄, [LT01℄. Throughout this setion, we assumethat ∂Ωi ∈ C0,1 for i = 1 , . . . , m. We denote by S the orresponding surfae measure.Under these assumptions, it is well known that the outward-pointing unit normal to ∂Ω,whih we denote by ~n, is de�ned almost everywhere in the sense of the measure S on ∂Ω.In order to ensure good measurability properties of the kernel w, we in addition assumethat ~n is a S−almost everywhere ontinuous funtion. This is the ase, for instane, if

∂Ω is a pieewise C1 surfae.We at �rst onsider the integral operator K. For its study, we need to state a fewelementary properties of the kernel w. Under the ited assumptions, the proof of thefollowing Lemma is straighforward.Lemma 1.1. If ∂ΩRad ∈ Ck,α with k ∈ N and 0 < α ≤ 1, then the set
Σz := {y ∈ ∂ΩRad : w(z, y) 6= 0}is a Ck,α surfae for S−almost all z ∈ ∂ΩRad.Lemma 1.2. The view-fator given by (2) satis�es the onditions



















w(z, y) = w(y, z) ∀(z, y) ∈ Σ × Σ ,

w(z, y) ≥ 0 ∀(z, y) ∈ Σ × Σ ,
∫

Σ
w(z, y)dSy ≤ 1 ∀z ∈ Σ .

(16)Proof. We use the method proposed in [Tii97a℄. With the notation of Lemma 1.1, wewrite
∫

Σ

w(z, y) dSy =

∫

Σz

~n(z) · (y − z)~n(y) · (z − y)

π|y − z|4
dSy .6



We an also write the integrated funtion in the following way:
~n(z) · (y − z)~n(y) · (z − y)

π|y − z|4
= −

cos(φy) cos(φz)

π|y − z|2
, (17)where φy [ resp. φz] is the angle between ~n(y) [ resp. ~n(z)] and (z − y) [ resp. (y − z)].Representation (17) shows that w is invariant under rotations and translations. For thisreason, we an assume without loss of generality that z = 0 and ~n(z) = (−1, 0, 0). Forobvious geometrial reasons, all points y ∈ Σ suh that w(z, y) 6= 0 belong to the halfspae {(x1, x2, x3) ∈ R

3
∣

∣

∣
x1 < 0}. Observe also that the ray through the origin and anarbitrary point on the unit half-sphere {(x1, x2, x3) ∈ R

3
∣

∣

∣
x1 < 0 , |x| = 1} intersets Σzin at most one point, and in a unique point if we suppose that the surfae is losed. Thus,passing to polar oordinates, we an parameterize the surfae by the mapping

Ψ :
]π

2
, π
[

×]0, 2π[ −→ Σz ,

z = Ψ(φ1, φ2) :=







r(φ1, φ2) cos(φ1)

r(φ1, φ2) sin(φ1) cos(φ2)

r(φ1, φ2) sin(φ1) sin(φ2)






,where the funtion r : ]π

2
, π[×]0, 2π[7−→ R is Lipshitz ontinuous aording to Lemma1.1. Straightforward omputations lead to

~n(Ψ) =
1

(

r2 ∂r
∂φ1

2
sin2(φ1) + r2 ∂r

∂φ2

2
+ r4 sin2(φ1)

) 1
2

×









r2 sin(φ1) cos(φ1) + r ∂r
∂φ1

sin2(φ1)

r ∂r
∂φ2

sin(φ2) − r ∂r
∂φ1

sin(φ1) cos(φ1) cos(φ2) + r2 sin2(φ1) cos(φ2)

−r ∂r
∂φ2

cos(φ2) − r ∂r
∂φ1

sin(φ1) cos(φ1) sin(φ2) + r2 sin2(φ1) sin(φ2)









,

√

GΨ =

(

r2 ∂r

∂φ1

2

sin2(φ1) + r2 ∂r

∂φ2

2

+ r4 sin2(φ1)

)

1
2

,

~n(Ψ) · Ψ =
r3 sin(φ1)

(

r2 ∂r
∂φ1

2
sin2(φ1) + r2 ∂r

∂φ2

2
+ r4 sin2(φ1)

)
1
2

,for λ2−almost every (φ1, φ2) ∈]π
2
, π[×]0, 2π[. By the symbol GΨ, we denote the Gramdeterminant of the matrix Ψ′. We thus have that

w(y , Ψ) =
(−n(Ψ) · Ψ) (n(y) · Ψ)

π |Ψ|4
=

−r4 sin(φ1) cos(φ1)

π r4
(

r2 ∂r
∂φ1

2
sin2(φ1) + r2 ∂r

∂φ2

2
+ r4 sin2(φ1)

) 1
2

.7



Taking into onsideration that φ1 ∈]π
2
, π[, this proves the nonnegativity of w. We stillhave to ompute the integral. If Σz is a losed surfae, we have

∫

Σ

w(z, y) dSy =

∫ 2π

0

∫ π

π
2

w(z, Ψ)
√

GΨ dφ1 dφ2

=

∫ 2π

0

∫ π

π
2

− sin(φ1) cos(φ1)

π
dφ1 dφ2 = − sin2(φ1)|

π

π
2

= 1 ,proving the lemma in the ase that the range of vision Σz of the point z is a losed surfae.If the surfae Σz is not losed, we an argue exatly as above with a smaller domain ofparameterization Ψ : O ⊂
]

π
2
, π
[

×]0, 2π[−→ Σ.De�nition 1.3. (1) We say that two points z, y ∈ ∂ΩRad see eah other if and only if
w(z, y) 6= 0.(2) We all Ω an enlosure if and only if for S−almost all z ∈ Σ we have ∫

Σ
w(z, y) dSy =

1.Remark 1.4. If Ω is an enlosure, we an assume without loss of generality that the sur-fae Σ onsists of one part, i.e. that Σ is the boundary of a unique onneted transparentavity. Tehnially, we say if A ⊂ Σ is suh that for almost all z ∈ A, ∫
A
w(z, y) dSy = 1,then we an assume that either A = Σ or A = ∅.In view of the integrability of w stated in Lemma 1.2, we see that the de�nition (8) ofthe operator K is well-posed at least for f ∈ L∞(Σ).In the next Lemma, we reall the basi properties of the operator K that were proved in[Tii97b℄.Lemma 1.5. (1) For every 1 ≤ p ≤ ∞, the operator K extends to a linear boundedoperator from Lp(Σ) into itself.(2) The norm estimate ‖ K ‖L(Lp(Σ),Lp(Σ))≤ 1 is valid.(3) The operator K is positive, in the sense that K(f) ≥ 0 almost everywhere on Σ if

f ≥ 0 almost everywhere on Σ; K is selfadjoint and positive semi-de�nite from L2(Σ)into itself.(4) If the emissivity ǫ is a funtion suh that (15) is satis�ed, then for 1 ≤ p ≤ ∞, theoperator (I − (1 − ǫ)K) has an inverse in L(Lp(Σ), Lp(Σ)), with the representation
(I − (1 − ǫ)K)−1 =

∞
∑

i=0

(1 − ǫ)iKi . (18)Proof. See [Tii97b℄.
8



Thanks to Lemma 1.5, we see that the operator G introdued in (10) is well-de�ned as anelement of L(Lp(Σ), Lp(Σ)). Note the following equivalent representations of the operator
G:

G := (I −K) (I − (1 − ǫ)K)−1ǫ = ǫ− ǫK(I − (1 − ǫ)K)−1ǫ (19)Lemma 1.6. (1) The operator G an be represented as I −H , where the operator H ispositive and selfadjoint in L2(Σ).(2) For 1 ≤ p ≤ ∞, the norm estimate ‖ H ‖L(Lp(Σ),Lp(Σ))≤ 1 is true.Proof. See [LT98℄.In the next Lemma, we present some further elementary properties of G, K, and H . Theyturn out to be essential for the disussion of the oerivity. In the original version of thepreprint, and in the paper [Dru08℄ the point (5) of the next Lemma is inorret.Lemma 1.7. (1) The equivalene H(ψ) = ψ ⇐⇒ K(ψ) = ψ is valid.(2) If ψ ∈ Lp(Σ) (1 < p ≤ ∞) satis�es K(ψ) = ψ, then ψ is a onstant.(3) If Ω is not an enlosure, then for 1 ≤ p ≤ ∞, the strit estimate ‖ H ‖L(Lp(Σ),Lp(Σ))< 1is true.(4) Let Ω be an enlosure. For some r + s ≥ 1 (r, s > 0), let ψ ∈ Lr+s(Σ) satisfy
∫

Σ
G(|ψ|r−1 ψ) |ψ|s−1ψ = 0. Then ψ is a onstant.(5) Let Ω be an enlosure. De�ne sign(0) := 0. If ψ ∈ L1(Σ) satis�es ∫

Σ
G(ψ) sign(ψ) = 0,then sign(ψ) is almost everywhere a onstant on Σ.Proof. (1): Assume �rst thatH(ψ) = ψ. By de�nition, this means that (1−ǫ)ψ+ǫK (I−

(1 − ǫ)K)−1 ǫ (ψ) = ψ, whih implies that K (I − (1 − ǫ)K)−1 ǫ (ψ) = ψ. De�ne
v := (I − (1 − ǫ)K)−1ǫ (ψ) .We then have v − (1 − ǫ)K(v) = ǫ ψ and K(v) = ψ. Hene v = ψ and K(ψ) = ψ.If we now start from K(ψ) = ψ, then we immediately see that ǫK(ψ) = (I−(1−ǫ)K)(ψ),so that (I − (1− ǫ)K)−1ǫK(ψ) = ψ. It follows that H(ψ) = (1− ǫ)ψ+ ǫK(ψ) = ψ. Thisproves the �rst point.(2): By assumption, we have for almost all z ∈ Σ that ψ(z) =

∫

Σ
w(z, y)ψ(y) dSy. First,let p = 2. Then,

|ψ(z)|2 =

∣

∣

∣

∣

∫

Σ

w(z, y)ψ(y) dSy

∣

∣

∣

∣

2

≤

(
∫

Σ

w(z, y) dSy

) (
∫

Σ

w(z, y) |ψ(y)|2 dSy

)

≤

∫

Σ

w(z, y) |ψ(y)|2 dSy , (20)9



by the triangle inequality, the Cauhy-Shwarz inequality, and the elementary properties(16) of the kernel w. Suppose now that there exists a set M ⊂ Σ with positive surfaemeasure suh that strit inequality holds. This would imply that
|ψ(z)|2 <

∫

Σ

w(z, y) |ψ(y)|2 dSy on M, |ψ(z)|2 ≤

∫

Σ

w(z, y) |ψ(y)|2 dSy on Σ \M .Integrating over Σ, it follows that
∫

Σ

|ψ(z)|2 dSz <

∫

Σ

(
∫

M

w(z, y) dSz +

∫

Σ\M

w(z, y) dSz

)

|ψ(y)|2 dSy

≤

∫

Σ

|ψ(y)|2 dSy ,whih is a ontradition. Thus, for almost all z ∈ Σ we must have the equality sign in(20).This at �rst means that
∣

∣

∣

∣

∫

Σ

w(z, y)ψ(y) dSy

∣

∣

∣

∣

=

∫

Σ

w(z, y) |ψ(y)| dSy ,and for almost all z ∈ Σ we must have
w(z, y)ψ(y)− = 0, [resp. w(z, y)ψ(y)+ = 0] for almost all y ∈ Σ .Without loss of generality, let ψ− = 0.Seond, we have for almost all z the equality

∫

Σ

w(z, y)1/2w(z, y)1/2 ψ(y)dSy =

(
∫

Σ

w(z, y)dSy

)
1
2
(
∫

Σ

w(z, y)ψ2(y)dSy

)
1
2

.By a well-known property of the Cauhy-Shwarz inequality, this implies that
w(z, y)

1
2 = λ(z)w(z, y)

1
2 ψ(y) ,with a real number λ(z), for almost all z. Thus, for almost all y and z that an see eahother, we get ψ(y) = λ(z)−1, whih obviously leads to the laim.In the ase 1 < p < 2, we an argue just the same. For almost all z ∈ Σ, we must havethe equation

∫

Σ

w(z, y)
1
p′ w(z, y)

1
p ψ(y) dSy =

(
∫

Σ

w(z, y) dSy

)
p
p′
(
∫

Σ

w(z, y) |ψ(y)|p dSy

)

,whih implies, with some λ(z), the equality w(z, y)
1
p′ = λ(z)

[

w(z, y)
1
p ψ(y)

]
p
p′ . The laimfollows analogously.(3): The third laim was proved in [Tii97a℄, [LT98℄. We give an analogous simpler proof.Sine Ω is no enlosure, we have K(1) 6≡ 1. Thus, by (2), there exists no ψ ∈ L2(Σ)10



suh that K(ψ) = ψ. By (1), we obtain that also H(ψ) 6= ψ for all ψ ∈ L2(Σ), i. e. 1 isnot an eigenvalue of H . But as H is selfadjoint in L2(Σ), ‖ H ‖L(L2(Σ),L2(Σ)) must be aneigenvalue of H . It follows that
‖ H ‖L(L2(Σ),L2(Σ))< 1 ,and by lassial interpolation arguments for linear positive operators, the laim evenfollows for all 1 ≤ p ≤ ∞.(4): By the triangle inequality and Hölder's inequality, we at �rst have

0 =

∫

Σ

G(|ψ|r−1 ψ) |ψ|s−1 ψ ≥

∫

Σ

|ψ|r+s −

∣

∣

∣

∣

∫

Σ

H(|ψ|r−1 ψ) |ψ|s−1ψ

∣

∣

∣

∣

≥

∫

Σ

|ψ|r+s −

∫

Σ

∣

∣H(|ψ|r−1ψ)
∣

∣ |ψ|s

≥

∫

Σ

|ψ|r+s− ‖ H(|ψ|r−1 ψ) ‖
L

r+s
r (Σ)

‖ |ψ|s ‖
L

r+s
s (Σ)

≥ (1− ‖ H ‖
L(L

r+s
r (Σ),L

r+s
r (Σ))

)

∫

Σ

|ψ|r+s . (21)Thus, we must have everywhere the equality sign. This at �rst means that
H(|ψ|r−1 ψ) |ψ|s−1ψ ≥ 0, [resp. H(|ψ|r−1 ψ) |ψ|s−1ψ ≤ 0] a. e. on Σ , (22)and, at seond, that we have in partiular

∫

Σ

H(|ψ|r−1ψ) |ψ|s =‖ H(|ψ|r−1 ψ) ‖
L

r+s
r (Σ)

‖ |ψ|s ‖
L

r+s
s (Σ)

.The latter point immediately implies that
|H(|ψ|r−1ψ)| = c [|ψ|s]

(r+s)/s
(r+s)/r = c |ψ|r . (23)Beause of (21), we learly have |c| ≤ 1. Sine −1 ≤ c < 1 implies ψ ≡ 0 again by (21),we just have to disuss the ase c = 1.Now, (23) gives that |ψ|r = |H(|ψ|r−1ψ)| ≤ H(|ψ|r), so by de�nition G(|ψ|r) ≤ 0.Sine Ω is an enlosure, G(1) = 0. By the fat that G is selfadjoint, we an write

0 ≥
∫

Σ
G(|ψ|r) =

∫

Σ
G(1) |ψ|r = 0. The �rst and seond points of this lemma now implythat |ψ|r ≡ Cr, for some positive onstant C.Returning to (23), where we an assume c = 1, with this information, we get that |ψ| =

C = |H(ψ)|. Using (22), we have in addition sign(H(ψ)) = ±sign(ψ). Thus, H(ψ) = ±ψ.Again, beause of the �rst line in relation (21), we see that H(ψ) = −ψ implies that
ψ = 0. On the other hand, beause of (1) and (2), H(ψ) = ψ implies that ψ is onstant.This proves point (4).(5): Observe that

ψG(sign(ψ)) = |ψ| − ψH(sign(ψ)) ≥ (1 − ‖H‖L(L∞(Σ),L∞(Σ))) |ψ| ≥ 0 ,11



almost everywhere on Σ. On the other hand, sine G is selfadjoint, we have
0 =

∫

Σ

G(ψ) sign(ψ) =

∫

Σ

ψG(sign(ψ)) ≥ 0 ,and we see that ψG(sign(ψ)) vanishes almost everywhere on Σ. This means that |ψ| =
ψH(sign(ψ)), and we dedue that

H(sign(ψ)) = sign(ψ) for almost all z ∈ Σ suh that |ψ(z)| > 0 .In partiular, we have for z ∈ Σ suh that ψ(z) > 0

1 = H(sign(ψ))(z) = H(χ{z∈Σ :ψ>0})(z) −H(χ{z∈Σ :ψ<0})(z) .Sine H is a positive operator, the last idendity is only possible assuming that for almostall z ∈ Σ suh that ψ(z) > 0

1 = H(χ{z∈Σ :ψ>0})(z), 0 = H(χ{z∈Σ :ψ<0})(z) .Thus, we an write that
H(χ{z∈Σ :ψ>0}) ≥ χ{z∈Σ :ψ>0} almost everywhere on Σ ,and it follows that G(χ{z∈Σ :ψ>0}) ≤ 0 on Σ. But G(χ{z∈Σ :ψ>0}) has mean-value zeroon Σ, and thus, G(χ{z∈Σ :ψ>0}) = 0 almost everywhere on Σ. Owing to (1) and (2), itfollows that χ{z∈Σ :ψ>0} is almost everywhere a onstant. Analogously, we an dedue that

χ{z∈Σ :ψ<0} is almost everywhere a onstant. The laim follows.We reall that for Banah spaes X, Y , we denote by K(X, Y ) the set of all linear boundedompat mappings from X into Y .Lemma 1.8. Let Σ ∈ C1,α. For 1 < p < ∞, the operator K belongs to the lass
K(Lp(Σ), Lp(Σ)).Proof. This assertion was stated in [Tii97b℄, [LT98℄ and follows from lassial argumentsabout weakly singular integral operators.For the disussion of L1 right-hand sides, another ompatness property of K turns outto be important.Lemma 1.9. Let Σ ∈ C1,α. Then for 1

α
< p, we have K ∈ K(Lp(Σ), C(Σ)).Proof. The ontinuity and the ompatness of K into C(Σ) follow from standard argu-ments about weakly singular integral operators (see for example the part about Shurintegral operators of the book [Alt85℄) in the ase of a onvex surfae Σ. The proof relieson the one hand on the estimate

|(K(f))(z1) − (K(f))(z2)| ≤ ‖f‖Lp(Σ)

(
∫

Σ

|w(z1, y) − w(z2, y)|
p′ dSy

)1/p′

,12



for z1, z2 ∈ Σ, and on the other hand on the uniform ontinuity
max

|z1−z2|≤δ

(
∫

Σ

|w(z1, y) − w(z2, y)|
p′ dSy

)1/p′

→ 0 ,as δ → 0.Due to the disontinuous fator Θ in the de�nition (2) of the kernel w, the proof is slightlymore involved in the ase of nononvex Σ. Note that for eah z ∈ Σ, the set of the jumpsof the funtion Θ(z, ·) is a one-dimensional submanifold of Σ, that is, a set of zero surfaemeasure. At the expense of some tehnial ompliations, we thus an adapt the standardarguments to this situation.Lemma 1.10. (1) The operator G has the representation G = ǫ (I − H̃). If Σ ∈ C1,α,then for 1 < p <∞, the operator H̃ belongs to K(Lp(Σ), Lp(Σ)).(2) For 1 ≤ p ≤ ∞ let 1/p+ 1/p′ = 1. De�ne
H̃p := ǫ

1
p K (I − (1 − ǫ)K)−1 ǫ

1
p′ .Then, the norm estimate ‖H̃p‖L(Lp(Σ),Lp(Σ)) ≤ 1 is valid.(3) Let ǫ < 1 almost everywhere on Σ. Let ψ ∈ L∞(Σ) satisfy |ψ| ≤ 1 almost everywhereon Σ. Then, if neither ψ = 1 nor ψ = −1 almost everywhere on Σ, we must have

|H̃(ψ)| < 1 almost everywhere on Σ.Proof. (1): The �rst laim follows from representation (19) and Lemma 1.8, setting H̃ :=
K (I − (1 − ǫ)K)−1 ǫ.(2): We readily verify that

(I −K(1 − ǫ))−1K = K (I − (1 − ǫ)K)−1 . (24)For an arbitrary f ∈ L2(Σ), de�ne (I − (1 − ǫ)K)−1(f) =: v. Then, obviously, (1 −
ǫ)K(v) = v − f . This enables us to write that
[

(

I −K(1 − ǫ)
)

K
]

(v) = K(v) −K
(

(1 − ǫ)K(v)
)

= K(v) − (K(v) −K(f)) = K(f) .It follows that (I −K(1 − ǫ))K (I − (1 − ǫ)K)−1 (f) = K(f) , whih proves (24).We at �rst onsider the ase 1 < p <∞.By de�nition, we have H̃p = ǫ
1
pK (I − (1 − ǫ)K)−1 ǫ

1
p′ , and beause of the relation (24),we an also write this in the form

H̃p = ǫ
1
p (I −K(1 − ǫ))−1K ǫ

1
p′ .For an arbitrary f ∈ Lp(Σ), we de�ne

R :=
[

ǫ
1
p (I −K(1 − ǫ))−1K ǫ

1
p′
]

(f) .13



This de�nition allows to write that R
ǫ1/p −K

(

1−ǫ
ǫ1/p R

)

= K
(

ǫ1/p
′

f
), whih is equivalent tothe equality R

ǫ1/p = K
(

ǫ1/p
′

f + 1−ǫ
ǫ1/p R

). Thus, using the fat that ‖K‖L(Lp(Σ), Lp(Σ)) ≤ 1,we dedue the inequality
∫

Σ

|R|p

ǫ
=

∫

Σ

∣

∣

∣

∣

K
(

ǫ1/p
′

f +
1 − ǫ

ǫ1/p
R
)

∣

∣

∣

∣

p

≤

∫

Σ

∣

∣

∣

∣

ǫ
1
p′ f +

(1 − ǫ)

ǫ1/p
R

∣

∣

∣

∣

p

=

∫

Σ

1

ǫ
|ǫ f + (1 − ǫ)R|p .Using the onvexity of the funtion g(s) = sp and the triangle inequality, we obtain that

∫

Σ

|R|p

ǫ
≤

∫

Σ

1

ǫ
(ǫ |f |p + (1 − ǫ) |R|p) .It follows that

‖ H̃p(f) ‖pLp(Σ) = ‖ R ‖pLp(Σ) ≤‖ f ‖pLp(Σ) ,proving the result. The ases p = 1 and p = ∞ are straightforward exerises.(3): Consider an arbitrary funtion ψ ∈ L∞(Σ) suh that |ψ| ≤ 1 almost everywhere on
Σ. We introdue two funtions R, J by

R = ǫ ψ + (1 − ǫ)J, J = K(R) . (25)Note that H̃(ψ) = J . In view of (2), we thus have |J | ≤ 1 almost everywhere on Σ. Sineby assumption 0 < ǫ < 1 on Σ, our de�nition (25) obviously implies the set identity
A :=

{

z ∈ Σ : R(z) = 1
}

=
{

z ∈ Σ : R(z) = 1 = ψ(z) = J(z)
}

. (26)Taking z ∈ A arbitrary, we an write, on the other hand,
1 = J(z) =

∫

Σ

w(z, y)R(y) dSy =

∫

A

w(z, y) dSy +

∫

{R<1}

w(z, y)R(y) dSy . (27)The latter equality is only possible if ∫
A
w(z, y) dSy = 1. Sine this is valid for any z ∈ A,we have by de�nition that the set A sees only itself. Therefore, by Remark 1.4, it followseither that meas(A) = 0, or that meas(Σ \A) = 0.Assume �nally that J(z) = 1 for a z ∈ Σ. Writing (27) in this point gives a ontradition ifmeas(A) = 0. This means that either H̃(ψ)(z) = J(z) < 1 a. e. on Σ or meas(Σ\A) = 0.We an argue analogously with the set B := {z ∈ Σ : R(z) = −1}. We onlude that ifneither A nor B are the whole of Σ, then they must both have zero measure, and that

−1 < H̃(ψ) < 1 a. e. on Σ, proving the laim.2 Coerivity InequalitiesFor the remainder of the paper, we assume that the boundary Γ is not empty. In thissetion we want to study the oerivity of the operator
〈

AT, ψ
〉

+

∫

Γ3

σ ǫ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ .14



Here, the symbol 〈·, ·〉 denotes the duality produt between a suitable Banah spae andits dual. The operator A was de�ned in (12) in the following way:
〈

AT, ψ
〉

=

∫

Ω

κ(T )∇T · ∇ψ +

∫

Γ2

αT ψ .Note that, the domain Ω being disonneted, the expression 〈AT, T 〉 does not de�ne anequivalent norm on W 1,2(Ω) as soon as there exists some domain Ωi ⊂ Ω that does nottouh Γ2. However, as was shown in [Tii97a℄, one easily obtains oerivity if the domain
Ω is not an enlosure. In the latter ase, ‖ H ‖L(L5/4(Σ),L5/4(Σ))< 1, and one has

∫

Σ

G(σ |T |3 T )T ≥ (1− ‖ H ‖L(L5/4(Σ),L5/4(Σ)))

∫

Σ

|T |5 ,(see also Lemma 1.7, (3) above). For the ase that Ω might be an enlosure, we now provea �rst general oerivity result.Lemma 2.1. Assume that Σ ∈ C0,1. Let r, s > 0 be two numbers suh that r + s < 4.Then there exists a onstant c = cr,s > 0 suh that
〈

Aψ, ψ
〉

+

∫

Γ3

σ ǫ |ψ|r+s +

∫

Σ

G(|ψ|r−1 ψ) |ψ|s−1ψ ≥ c min
{

‖ ψ ‖2
W 1,2

Γ1
(Ω)
, ‖ ψ ‖r+s

W 1,2
Γ1

(Ω)

}

,for all ψ ∈W 1,2
Γ1

(Ω).Proof. We at �rst show that there exists a onstant c̄ > 0 suh that
〈

Aψ, ψ
〉

+

∫

Γ3

σ ǫ |ψ|r+s +

∫

Σ

G(|ψ|r−1 ψ) |ψ|s−1ψ ≥ c̄ ‖ ψ ‖2
W 1,2

Γ1
(Ω)

,for all ψ ∈W 1,2
Γ1

(Ω) suh that
‖ ψ ‖W 1,2

Γ1
(Ω) ≥ 1 . (28)Suppose that the latter laim is not true. Then we an �nd a sequene {ψn} ⊂ W 1,2

Γ1
(Ω)suh that

〈

Aψn, ψn
〉

+

∫

Γ3

σ ǫ |ψn|
r+s +

∫

Σ

G(|ψn|
r−1 ψn) |ψn|

s−1 ψn ≤
1

n
‖ ψn ‖2

W 1,2
Γ1

(Ω)
.Setting ψ̃n := ψn/‖ψn‖W 1,2

Γ1
(Ω), we observe that ‖ ψ̃n ‖W 1,2

Γ1
(Ω)= 1. Thus, ψ̃n ⇀ ψ̃ in W 1,2

Γ1
(Ω),and for a subsequene ψ̃n → ψ̃ almost everywhere on Σ ∪ Γ3. Considering the property(28), we �nd that

〈

A ψ̃n, ψ̃n
〉

+

∫

Γ3

σ ǫ |ψ̃n|
r+s +

∫

Σ

G(|ψ̃n|
r−1 ψ̃n) |ψ̃n|

s−1 ψ̃n ≤
1

n
. (29)15



Sine the hoie r + s < 4 implies that 4s
4−r

< 4, we an again pass to a subsequene toobtain that
|ψ̃n|

r−1 ψ̃n ⇀ |ψ̃|r−1 ψ̃ in L 4
r (Σ ∪ Γ3) ,

|ψ̃n|
s−1 ψ̃n → |ψ̃|s−1 ψ̃ in L 4

4−r (Σ ∪ Γ3) ,whih allows us to pass to the limit in (29). Taking into aount Lemma 1.7, we now have
ψ̃ = ci in eah Ωi , ψ̃ = c on Σ, ψ̃ = 0 on Γ .This leads to ψ̃ = 0. As a matter of fat, we an always �nd a part Ωi0 ⊂ Ω suh that both

∂Ωi0 ∩ Σ and ∂Ωi0 ∩ Γ are not empty. Considering (29), we �nd that ψ̃n → 0 ∈W 1,2
Γ1

(Ω),whih is a ontradition.In the ase that ‖ ψ ‖W 1,2
Γ1

(Ω)< 1, we use an analogous argument replaing ‖ ψn ‖2
W 1,2

Γ1
(Ω)by ‖ ψn ‖r+s

W 1,2
Γ1

(Ω)
. The laim follows.Remark 2.2. For 1 ≤ p ≤ ∞, de�ne the Sobolev embedding exponent for traes p∗b by

p∗b :=











2 p
3−p

if p < 3 ,

1 ≤ s <∞ arbitrary if p = 3 ,

+∞ if p > 3 .Then, we an show by analogous arguments that for any r, s > 0 suh that r + s < p∗b ,there exists a onstant cr,s,p > 0 suh that for all ψ in W 1,p
Γ1

(Ω),
∫

Ω

|∇ψ|p +

∫

Γ2

αψ2 +

∫

Γ3

ǫ σ |ψ|r+s +

∫

Σ

G(σ |ψ|r−1 ψ) |ψ|s−1 ψ

≥ c min

{

‖ψ‖2
W 1,p

Γ1
(Ω)

, ‖ψ‖p
W 1,p

Γ1
(Ω)
, ‖ψ‖r+s

W 1,p
Γ1

(Ω)

}

.In the ase that the operatorK, is ompat a better oerivity result was proven in [LT01℄.Lemma 2.3. Let Σ ∈ C1,α. Let r, s > 0. Then there exists a onstant c = cr,s > 0 suhthat for all ψ ∈ V 2,r+s
Γ1

(Ω),
〈

Aψ, ψ
〉

+

∫

Γ3

σ ǫ |ψ|r+s +

∫

Σ

G(|ψ|r−1 ψ) |ψ|s−1 ψ

≥ c min
{

‖ ψ ‖2
V 2,r+s
Γ1

(Ω)
, ‖ ψ ‖r+s

V 2,r+s
Γ1

(Ω)

}

.Proof. See [LT01℄.The inequalities in Lemma 2.1 and Lemma 2.3 establish oerivity properties of the oper-ator of heat radiation taken in onnetion with the heat ondution. The next statementsshow that the radiation operator by itself already exerts some oerivity.16



Lemma 2.4. Let Σ ∈ C1,α. Let r, s > 0 be to numbers with s ≤ r+1. Then the followingstatements are valid:(1) There exists a positive onstant cr,s suh that for all ψ ∈ Lr+1(Σ),
∫

Σ

G(|ψ|r−1 ψ)ψ +

(
∫

Σ

|ψ|s
)

r+1
s

≥ c ‖ ψ ‖r+1
Lr+1(Σ) .(2) If the domain Ω is an enlosure, there exists a positive onstant c̄r,s suh that

∫

Σ

G(|ψ|r−1 ψ)ψ ≥ c̄ ‖ ψ ‖r+1
Lr+1(Σ) ,for all ψ ∈ Lr+1(Σ) suh that ∫

Σ
ψ dS = 0.Proof. (1): We assume that the assertion is false, and we seek a ontradition. We anonstrut a sequene {ψ̃n} ⊂ Lr+1(Σ) suh that ‖ ψ̃n ‖Lr+1(Σ)= 1 and

∫

Σ

G(|ψ̃n|
r−1 ψ̃n) ψ̃n +

(
∫

Σ

|ψ̃n|
s

)
r+1

s

<
1

n
. (30)Extrating subsequenes, we �nd that

ψ̃n ⇀ ψ̃ in Lr+1(Σ) , |ψ̃n|
r−1 ψ̃n ⇀ w in L r+1

r (Σ) .Passing to the limit in (30), we an write
lim sup
n→∞

∫

Σ

ǫ |ψ̃n|
r+1 − lim

n→∞

∫

Σ

ǫ H̃(|ψ̃n|
r−1 ψ̃n) ψ̃n ≤ 0 ,and, using the ompatness of H̃ from L1+1/r(Σ) into itself, we get

lim sup
n→∞

∫

Σ

ǫ |ψ̃n|
r+1 −

∫

Σ

ǫ H̃(w) ψ̃ ≤ 0 .On the other hand, we have by the same tools that
∫

Σ

ǫ H̃(w) ψ̃ = lim inf
n→∞

∫

Σ

ǫ H̃(|ψ̃n|
r−1 ψ̃n) ψ̃

≤ lim inf
n→∞

∥

∥

∥
ǫ

r
r+1 H̃(|ψ̃n|

r−1 ψ̃n)
∥

∥

∥

L1+1/r(Σ)
‖ ǫ

1
r+1 ψ̃ ‖Lr+1(Σ) . (31)In view of Lemma 1.10 we an write

∥

∥

∥
ǫ

r
r+1 H̃(|ψ̃n|

r−1 ψ̃n)
∥

∥

∥

L1+1/r(Σ)
=
∥

∥

∥
H̃ r+1

r
(ǫ

r
r+1 |ψ̃n|

r−1 ψ̃n)
∥

∥

∥

L1+1/r(Σ)
≤‖ ǫ

r
r+1 |ψ̃n|

r ‖L1+1/r(Σ)

=

(
∫

Σ

ǫ |ψ̃n|
r+1

) r
r+1

.17



Thus, we an ontinue the estimate (31) by
∫

Σ

ǫ H̃(w) ψ̃ ≤ ‖ ǫ
1

r+1 ψ̃ ‖Lr+1(Σ) lim inf
n→∞

(
∫

Σ

ǫ |ψ̃n|
r+1

)
r

r+1It follows that
lim sup
n→∞

∫

Σ

ǫ |ψ̃n|
r+1 ≤‖ ǫ

1
r+1 ψ̃ ‖Lr+1(Σ)

(

lim sup
n→∞

∫

Σ

ǫ |ψ̃n|
r+1

)
r

r+1

,whih implies that lim supn→∞ ‖ ǫ
1

r+1 ψ̃n ‖r+1
Lr+1(Σ)≤‖ ǫ

1
r+1 ψ̃ ‖r+1

Lr+1(Σ). Combining this withthe usual lower semiontinuity of the norm, we obtain for a subsequene that limn→∞ ‖

ǫ
1

r+1 ψ̃n ‖r+1
Lr+1(Σ)=‖ ǫ

1
r+1 ψ̃ ‖r+1

Lr+1(Σ), whih, in its turn, yields
ψ̃n → ψ̃ in Lr+1(Σ) . (32)Reonsidering (30) for this subsequene, we now obtain that
∫

Σ

G(|ψ̃|r−1 ψ̃) ψ̃ = 0 . (33)By Lemma 1.7, it follows that ψ̃ is onstant. But sine s ≤ r + 1, (30) also gives that
(

∫

Σ
|ψ̃|s

)
r+1

s
= 0. Thus, ψ ≡ 0 on Σ, a ontradition by the strong onvergene (32).(2): We prove the seond estimate by the same arguments, obtaining the onsequene(33). Then, by the strong onvergene (32), we �nd that ψ̃ has mean value zero on Σ.We an �nish the proof analogously.We now prove a last oerivity result, whih will in partiular help us to produe estimatesin the ase that f belongs only to L1.Lemma 2.5. Let Σ ∈ C1,α, and let the emissivity satisfy ǫ < 1 on Σ. Then there existsa positive onstant c suh that

∫

Σ

G(ψ) sign(ψ) ≥ c ‖ ψ ‖L1(Σ) ,for all ψ ∈ L1(Σ) suh that ∫
Σ
ψ dS = 0.Proof. Again, suppose that the laim is not true. Then, it is possible to onstrut asequene {ψn} ⊂ L1(Σ) with the properties

‖ ψn ‖L1(Σ)= 1 ,

∫

Σ

ψn = 0 ,

∫

Σ

G(ψn) sign(ψn) ≤ 1

n
.

18



Now, sine ψnG(sign(ψn)) = |ψn| −ψnH(sign(ψn)) ≥ 0, and using also the fat that G isselfadjoint, we an write that
1

n
≥

∫

Σ

G(ψn) sign(ψn) =

∫

Σ

ψnG(sign(ψn)) =

∫

Σ

|ψn| |G(sign(ψn))|
=

∫

Σ

ǫ |ψn| |sign(ψn) − H̃(sign(ψn))| . (34)Choosing a q > 1
α
, we an �nd a subsequene sign(ψn) ⇀ u ∈ Lq(Σ). We have, inpartiular, that |u| ≤ 1 almost everywhere on Σ. By Lemma 1.9, we an again pass to asubsequene if neessary to �nd that

H̃(sign(ψn)) −→ H̃(u) in C(Σ) . (35)We distinguish two ases.For the �rst ase, we assume that u = 1 almost everywhere on Σ. By the uniformonvergene of {H̃(sign(ψn))}, and by (34), we obtain that
lim
n→∞

∫

Σ

|ψn| = lim
n→∞

∫

Σ

|ψn| − ψn = lim
n→∞

∫

Σ

|ψn| |sign(ψn) − 1|

= lim
n→∞

∫

Σ

|ψn| |sign(ψn) − H̃(u)| = lim
n→∞

∫

Σ

|ψn| |sign(ψn) − H̃(sign(ψn))| = 0 .This is a ontradition. We argue analogously if u = −1 almost everywhere on Σ.Thus, we must have the seond ase u 6≡ 1,−1. In this ase we know, thanks toLemma 1.10, that |H̃(u)| < 1 on Σ. This implies, by the ontinuity of H̃(u), that
1 > maxΣ |H̃(u)| =: γ0. We have

0 = lim
n→∞

∫

Σ

ǫ |ψn| |sign(ψn) − H̃(sign(ψn))| = lim
n→∞

∫

Σ

ǫ |ψn| |sign(ψn) − H̃(u)|

≥ ǫl (1 − γ0) lim
n→∞

∫

Σ

|ψn| .The following Lemma is usefull when we want to use test funtions that depend nonlinearly on temperature. It generalizes properties proved in [LT01℄, [Mey06℄.Lemma 2.6. Let Ω be an enlosure. Let F : R → R be a nondereasing, ontinuousfuntion with F (0) = 0 and |F (t)| ≤ C0 (1+|t|s) as |t| → ∞ (0 ≤ s <∞). Let 0 ≤ r <∞be an arbitrary number. Then for all ψ ∈ Lr+s(Σ),
∫

Σ

G(|ψ|r−1 ψ)F (ψ) ≥ 0 .19



Proof. We �x n ∈ N. For i = 1, 2, . . ., we de�ne
a

(n)
i := F

(

i

n

)

− F

(

i− 1

n

)

, a
(n)
−i := F

(

−i− 1

n

)

− F

(

−i

n

)

.Sine F is nondereasing, we obviously have a(n)
i ≥ 0 and a(n)

−i ≤ 0. Denoting by χ[a,b] theharateristi funtion of the interval [a, b], we introdue
Fn(t) :=

∞
∑

i=1

a
(n)
i χ[i/n,+∞[(t) + a

(n)
−i χ]−∞,−i/n](t) .We an write

∫

Σ

G(|ψ|r−1 ψ)Fn(ψ)

=

∞
∑

i=1

{

a
(n)
i

∫

Σ

G(|ψ|r−1 ψ)χ[i/n,+∞[(ψ) + a
(n)
−i

∫

Σ

G(|ψ|r−1ψ)χ]−∞,−i/n](ψ)

}

.Now, sine Ω is an enlosure, G(1) = 0, and we have
∫

Σ

G(|ψ|r−1 ψ)χ[i/n,+∞[(ψ) =

∫

Σ

G

(

|ψ|r−1 ψ −
ir

nr

)

χ[i/n,+∞[(ψ)

=

∫

Σ

(

|ψ|r−1 ψ −
ir

nr

)

G(χ[i/n,+∞[(ψ)) .As usual, we observe that
G(χ[i/n,+∞[(ψ)) =







1 −H(χ[i/n,+∞[(ψ)) ≥ 0 if ψ ≥ i/n ,

−H(χ[i/n,+∞[(ψ)) ≤ 0 if ψ < i/n .This means that sign((|ψ|r−1 ψ − ir

nr )G(χ[i/n,+∞[(ψ))
)

= 1, whene
a

(n)
i

∫

Σ

G(|ψ|r−1 ψ)χ[i/n,∞[(ψ) ≥ 0 ,for all i = 1, 2, . . . . In the same way we show that a(n)
−i

∫

Σ
G(|ψ|r−1 ψ)χ]−∞,−i/n](ψ) ≥ 0.We thus proved that

∫

Σ

G(|ψ|r−1 ψ)Fn(ψ) ≥ 0 . (36)Observe that for any t ∈ R
+, we an �nd i(n)

0 ∈ N suh that t ∈ [ i(n)
0

n
,
i
(n)
0 +1

n

[. We have
F (t) − Fn(t) = F (t) −

i0
∑

i=1

a
(n)
i χ[i/n,+∞[(t) = F (t) −

i
(n)
0
∑

i=1

F

(

i

n

)

− F

(

i− 1

n

)

= F (t) − F

(

i
(n)
0

n

)

→ 0 as n→ ∞ ,20



whih is true for all t ∈ R. By an analogous onsideration for t ∈ R
−, we easily obtainthat Fn(t) → F (t) for all t ∈ R. We also immediately see that |Fn(t)| ≤ |F (t)| for all

t ∈ R. It follows that
Fn(ψ) → F (ψ) in Ls(Σ) for all ψ ∈ Ls(Σ) .Passage to the limit as n→ ∞ in (36) proves the assertion.3 A Uniqueness ResultIn the ontext of (P1), (P2) the heat ondutivity is material dependent, and given as afuntion of the temperature κi in eah subdomain Ωi for i = 0, . . . , m. Thus, our funtion

κ is de�ned pieewise, and has the form
κ = κi in Ωi i = 0, . . . , m .Due to the orretion made to Lemma 1.7, (5), the simpli�ed proof of uniqueness in thepaper [Dru08℄ is inomplete. We therefore ome bak to the more ompliated method ofproof employed in the original version of the preprint.Lemma 3.1. Let κi : R −→ R be globally Lipshitz ontinuous for i = 1, . . . , m, andsatisfy (14). Then there exists at most one weak solution of (P1), (P2) in the lass

V 2,4(Ω).Proof. The uniqueness of the solution is proved using the same method as in [LT01℄.However, note that sine κ depends on temperature, we must estimate some new terms.Suppose that T1 and T2 are two weak solutions of (P1), (P2). Subtrating the respetiveintegral identities, we obtain that
∫

Ω

κ(T2)∇(T2 − T1) · ∇ψ +

∫

Γ2

α (T2 − T1)ψ +

∫

Γ3

σ ǫ
[

|T 3
2 | T2 − |T 3

1 | T1

]

ψ

+

∫

Σ

G
(

σ[ |T 3
2 | T2 − |T 3

1 | T1]
)

ψ = −

∫

Ω

[κ(T2) − κ(T1)]∇T1 · ∇ψ , (37)for all ψ ∈W 1,2
Γ1

(Ω) ∩ L∞(Σ ∪ Γ3). De�ne
Ω̂0 :=

{

x ∈ Ω
∣

∣

∣T2(x) − T1(x) > 0
}

, Σ̂0 :=
{

z ∈ Σ
∣

∣

∣ γ(T2 − T1)(z) > 0
}

,

Ω̂δ :=
{

x ∈ Ω
∣

∣

∣
T2(x) − T1(x) > δ

}

, Σ̂δ :=
{

z ∈ Σ
∣

∣

∣
γ(T2 − T1)(z) > δ

}

,and observe that Ω̂δ ր Ω̂0, and Σ̂δ ր Σ̂0 as δ ց 0. Here, γ denotes the trae operator.We introdue a funtion
vδ := min{(T2 − T1)

+, δ} .21



We easily an show that γ(vδ) = min{[γ(T2−T1)]
+, δ}. Thus, writing also on the boundary

vδ instead of γ(vδ), we have
vδ ≥ 0 in Ω , vδ = 0 on Γ1 , G(vδ) =







δ −H(vδ) ≥ 0 on Σ̂δ

0 −H(vδ) ≤ 0 on Σ \ Σ̂0 .
(38)Testing with ψ = vδ in (37) is possible, sine this funtion is bounded. Observing that

(T2 − T1) vδ ≥ v2
δ , and that the term −

∫

Γ3
σ ǫ
[

|T 3
2 | T2 − |T 3

1 | T1

]

vδ is negative we get theinequality
∫

Ω

κ(T2) |∇vδ|
2 +

∫

Γ2

α v2
δ ≤ (39)

−

∫

Σ

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) −

∫

Ω

[κ(T2) − κ(T1)]∇T1 · ∇vδ .By adding the term ∫

Σ
G(σ vδ) vδ on both sides of this equation, we obtain that

∫

Ω

κ(T2) |∇vδ|
2 +

∫

Σ

G(σ vδ) vδ ≤

−

∫

Σ

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) +

∫

Σ

G(σ vδ) vδ −

∫

Ω

[κ(T2) − κ(T1)]∇T1 · ∇vδ .Now, we use the disjoint deomposition of Σ,
Σ = Σ \ Σ̂0 ∪ Σ̂0 \ Σ̂δ ∪ Σ̂δ ,and we observe that

−

∫

Σ\Σ̂0

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) ≤ 0 ,

∫

Σ\Σ̂0

σG(vδ)vδ ≤ 0 . (40)On the other hand, using the inequality
∣

∣|t1|
3 t1 − |t2|

3 t2
∣

∣ ≤ 4
(

|t1|
3 + |t2|

3
)

|t1 − t2| , for all t1, t2 ∈ R , (41)we an write
∫

Σ̂0\Σ̂δ

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) ≤ 4 σ δ

∫

Σ̂0\Σ̂δ

(

|T2|
3 + |T1|

3
) ∣

∣G(vδ)
∣

∣

≤ 8 σ δ

(
∫

Σ̂0\Σ̂δ

|T2 + T1|
4

) 3
4

‖ vδ ‖L4(Σ)≤ c δ

(
∫

Σ̂0\Σ̂δ

|T2 + T1|
4

) 3
4

‖ vδ ‖W 1,2
Γ1

(Ω) .(42)We �nd easily that
∫

Σ̂0\Σ̂δ

σ G(vδ) vδ ≤ c δ ‖ vδ ‖W 1,2
Γ1

(Ω) meas(Σ̂0 \ Σ̂δ)
1
2 . (43)22



In order to estimate the last terms on Σ, we introdue the set
Σ̃δ :=

{

z ∈ Σ
∣

∣

∣
|T2|

3 T2 − |T1|
3 T1 < δ

}

.Realling that G(vδ) ≥ 0 in Σ̂δ we have
∫

Σ̂δ

σ
[

vδ − ( |T 3
2 | T2 − |T 3

1 | T1)
]

G(vδ) ≤

∫

Σ̃δ∩Σ̂δ

σ
[

vδ − ( |T 3
2 | T2 − |T 3

1 | T1)
]

G(vδ)

≤

∫

Σ̃δ∩Σ̂δ

σ vδ G(vδ) ≤ c δ ‖ vδ ‖L2(Σ) meas(Σ̃δ ∩ Σ̂δ)
1
2 .(44)Summing up the results (40), (42), (43) and (44), we an write down the estimate

−

∫

Σ

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) +

∫

Σ

G(σ vδ) vδ ≤ c δ ‖ vδ ‖W 1,2
Γ1

(Ω) fδ , (45)with the sequene
fδ :=

(
∫

Σ̂0\Σ̂δ

|T2 + T1|
4

)
3
4

+ meas(Σ̂0 \ Σ̂δ)
1
2 + meas(Σ̃δ ∩ Σ̂δ)

1
2 ,that onverges to zero as δ → 0. Finally,

∫

Ω

[κ(T2) − κ(T1)]∇T1 · ∇vδ =

∫

Ω̂0\Ω̂δ

[κ(T2) − κ(T1)]∇T1 · ∇vδ

≤ Lκ δ

(
∫

Ω̂0\Ω̂δ

|∇T1|
2

)
1
2

‖ vδ ‖W 1,2
Γ1

, (46)
Lκ being a Lipshitz onstant of κ.By the inequalities (45) and (46), and taking into aount Lemma 2.1, we an onludethat

‖ vδ ‖W 1,2
Γ1

≤ c δ

(

fδ + f̃δ +

(
∫

Ω̂0\Ω̂δ

|∇T1|
2

)
1
2

)

.It follows that
|Ω ∩ Ω̂δ| =

1

δ

(∫

Ω∩Ω̂δ

δ2

)
1
2

≤
1

δ
‖ vδ ‖L2(Ω)−→ 0 .This gives |Ω∩ Ω̂0| = 0, that is, T2 ≤ T1 a. e. in Ω. By exhanging the roles of T2 and T1,one gets their equality in Ω. 23



4 Existene ResultsWe reall our purpose to obtain estimates that involve the Lp−norm of the heat soures.Throughout this setion, we assume that there exist an extension of the imposed temper-ature T0 on Γ1, that we still denote by T0, suh that
T0(x) ≥ ess inf

z∈Γ1

T0(z) almost everywhere in Ω . (47)We also assume that Ω is suh that dist(Γ , Σ) > 0 . (48)This assumption implies no loss of generality in the type of appliations onsidered (seethe Introdution). If the assumption (48) is satis�ed, we hoose a �xed φ0 ∈ C∞(Ω) suhthat φ0 ≡ 1 on Γ and φ0 ≡ 0 on Σ, and we set
T̂0 := T0 φ0 . (49)The funtion T̂0 is an extension of T0 that does not perturb the non loal terms on Σ. Wean state our �rst main result.Theorem 4.1. Let the heat ondutivity κ satisfy (14) and assume that ǫ satis�es (15).Assume that f ∈ Lp(Ω) with 1 < p ≤ ∞, and let the assumptions (47) on T0 and (48) onthe domain Ω be satis�ed.(1) If Σ ∈ C0,1 and p > 9

7
, then Problem (P ) has a weak solution T . In addition we havethe following a priori estimates. If p ≥ 3

2
, then for all 1 ≤ r < ∞, we an �nd aontinuous funtion Pr suh that

∥

∥

∥
|T |r

∥

∥

∥

W 1,2(Ω)
≤ Pr

(

‖ f ‖Lp(Ω) , ‖ f̃ ‖L2(Γ) , ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

.If p ∈ ]9/7, 3/2[, then
‖ T ‖

V
2,

2p
3−2p (Ω)

≤ P
(

‖ f ‖Lp(Ω) , ‖ f̃ ‖
L

2 p
3−p (Γ)

, ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

.(2) If Σ ∈ C1,α, Problem (P ) has a weak solution T . If p > 9/7, then (1) is valid. Inaddition, we �nd that for p ∈ [6/5, 9/7],
‖ T ‖

V
2,

9−5p
3−2p (Ω)

≤ P
(

‖ f ‖Lp(Ω) , ‖ f̃ ‖
L

2 p
3−p (Γ)

, ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

,and that for p ∈ ]1, 6/5[
‖ T ‖

V
3p

3−p ,
9−5p
3−2p (Ω)

≤ P
(

‖ f ‖Lp(Ω) , ‖ f̃ ‖
L

2 p
3−p (Γ)

, ‖T0‖
W

1,
3p

4p−3 (Ω)
, ‖T0‖

L
9−5p
3−2p (Γ3)

)

.24



Here P, Pr are ontinuous funtions, whih depend on p , dist(Γ, Σ) and on ess inf
z∈Γ1

T0(z).If the right-hand side f is positive in Ω, then T ≥ inf{ess inf
z∈Γ1

T0(z), ess inf
z∈Γ

TExt(z)}almost everywhere in Ω.We essentially arry out the proof in the next two propositions. We will make use of thefollowing notations. The spae W 1,p
Γ1

(Ω) ontains the elements of W 1,p(Ω) whose traevanishes on the boundary part Γ1. Realling the notation (49), we de�ne for T ∈ W 1,p
Γ1

(Ω)(1 < p <∞)
T̂ := T + T̂0 .For δ > 0, we introdue the operators

〈

AT , ψ
〉

:=

∫

Ω

κ(T̂ )∇T̂ · ∇ψ +

∫

Γ2

α T̂ ψ

〈

Aδ T, ψ
〉

:= δ

∫

Ω

∣

∣

∣
∇T̂
∣

∣

∣

p−2

∇T̂ · ∇ψ .Proposition 4.2. We �x 3 < p < ∞. For an arbitrary number δ > 0 there exists
T ∈W 1,p

Γ1
(Ω) suh that

〈

Aδ T, ψ
〉

+
〈

AT , ψ
〉

+

∫

Γ3

ǫ σ |T̂ |3 T̂ ψ +

∫

Σ

G(σ |T̂ |3 T̂ )ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ , (50)for all ψ ∈W 1,p
Γ1

(Ω).Proof. For T, ψ ∈W 1,p
Γ1

(Ω), de�ne
〈

Ã T , ψ
〉

:=
〈

Aδ T, ψ
〉

+

∫

Γ3

ǫ σ |T̂ |3 T̂ ψ ,
〈

B T , ψ
〉

:=

∫

Σ

G(σ|T̂ |3 T̂ )ψ .We show that the sum Ã + A + B de�nes a oerive, pseudomonotone operator from
W 1,p

Γ1
(Ω) into [W 1,p

Γ1
(Ω)
]∗. We at �rst disuss oerivity. In view of (49) we have

〈

B T , T
〉

=

∫

Σ

G(σ|T̂ |3 T̂ ) T̂ =

∫

Σ

G(σ|T |3 T )T .Using Remark 2.2, we easily �nd that
〈

(Ã+ A+B)T , T
〉

≥
δ

2
min

{

‖ T ‖2
W 1,p

Γ1
(Ω)

, ‖ T ‖p
W 1,p

Γ1
(Ω)
, ‖ T ‖5

W 1,p
Γ1

(Ω)

}

− C̃0,δ ,with a positive onstant C0,δ that depends on δ whose exat value is not needed. Thisproves the oerivity.In order to show the pseudomonotoniity of Ã+A+B, we at �rst prove that B is ompat.Let
Tk ⇀ T in W 1,p

Γ1
(Ω) . (51)25



For ψ ∈W 1,p
Γ1

(Ω), we have the estimate
∣

∣

∣

〈

B Tk −B T, ψ
〉

∣

∣

∣
=

∣

∣

∣

∣

∫

Σ

[

G(σ|T̂k|
3 T̂k) −G(σ|T̂ |3 T̂ )

]

ψ

∣

∣

∣

∣

= σ

∣

∣

∣

∣

∫

Σ

[

|T̂k|
3 T̂k − |T̂ |3 T̂

]

G(ψ)

∣

∣

∣

∣

≤ 4 σ max
Ω

{|T̂k|
3 + |T̂ |3}

∫

Σ

|Tk − T | |G(ψ)|

≤ c4C3 ‖ G ‖L(L∞(Σ),L∞(Σ)) ‖ ψ ‖W 1,p
Γ1

(Ω)‖ Tk − T ‖L1(Σ) ,where c is the embedding onstant W 1,p
Γ1

(Ω) →֒ C(Ω), and C is a bound for the norm ofthe sequene {Tk} in W 1,p
Γ1

(Ω). We thus an write that
‖ B Tk − B T ‖[W 1,p

Γ1
(Ω)]

∗≤ C̄ ‖ Tk − T ‖L1(Σ)−→ 0 ,sine the embedding W 1,p
Γ1

(Ω) →֒ L1(Σ) is ompat.We now show that A is pseudomonotone. For the sequene (51) we assume that
lim sup
k→∞

〈

A(Tk) , Tk − T
〉

≤ 0 . (52)From straightforward manipulations we get, using the monotoniity of the p-Laplae part,that
∫

Ω

κ(T̂k) |∇(Tk − T )|2 +

∫

Γ2

α (Tk − T )2

≤
〈

A(Tk) , Tk − T
〉

−

∫

Ω

κ(T̂k)∇T̂ · ∇(Tk − T ) −

∫

Γ2

α T̂ (Tk − T ) .Thanks also to (51) and (52), this yields
lim sup
k→∞

∫

Ω

κ(T̂k) |∇(Tk − T )|2 +

∫

Γ2

α (Tk − T )2 ≤ 0 .This provides us with a (not relabelled) subsequene suh that ∇Tk −→ ∇T in [L2(Ω)]3.For this subsequene and ψ ∈W 1,p
Γ1

(Ω), one gets
lim
k→∞

〈

ATk , Tk − ψ
〉

=
〈

AT , T − ψ
〉

.Thus A is pseudomonotone. Sine it is well known that Ã is monotone, we also get that
Ã+A is pseudomonotone (see [Lio69℄, remark 2.12). Sine B is ompat, we �nally obtainthat Ã+ A+B is pseudomonotone.The assertion now follows from standard arguments.Remark 4.3. Proposition 4.2 states the existene of a solution of (P ) with the followingnonlinear Fourier law with respet to ∇T for the heat �ux q:

q = −
(

δ |∇T |p−2 + κ(T )
)

∇T .26



In the next proposition, we obtain uniform estimates on the sequene of approximatesolutions {Tδ} onstruted in Proposition 4.2.Proposition 4.4. (1) If Σ ∈ C0,1 we get, for all 2 < q <∞, the estimate
‖Tδ‖W 1,2(Ω) +

∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2(Ω)
+ ‖Tδ‖L2 (q+1)(Γ3∪Σ)

≤ Pq

(

‖ f ‖
L

3 (q+1)
2q+3 (Ω)

, ‖ f̃ ‖
L

2 (q+1)
q+2 (Γ)

, ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

+ Cδ ,with a ontinuous funtion Pq of the data and a sequene Cδ of positive numbers thatonverge to zero for δ → 0.(2) If Σ ∈ C1,α, we have, for all 1 ≤ q <∞,
‖Tδ‖W 1,2(Ω) +

∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2(Ω)
+ ‖Tδ‖Lq+4(Γ3 ∪Σ)

≤ P̄q

(

‖ f ‖
L

3(q+1)
2q+3 (Ω)

, ‖ f̃ ‖
L

2(q+1)
q+2 (Γ)

, ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

+ Cδ ,and for all 0 < q < 1,
‖Tδ‖W 1,s(Ω) +

∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2(Ω)
+ ‖Tδ‖Lq+4(Γ3 ∪Σ)

≤ P̄q

(

‖ f ‖
L

3(q+1)
2q+3 (Ω)

, ‖ f̃ ‖
L

2(q+1)
q+2 (Γ)

, ‖T0‖W 1,s′(Ω) , ‖T0‖Lq+4(Γ3)

)

+ Cδ ,with s = 3 (q+1)
q+2

, and Cδ → 0 as δ → 0.Proof. For the sake of larity, we present the proof in the homogeneous ase T0 = 0 and
TExt = 0. The general estimates follow by similar tehniques.We would like to use ψ = |Tδ|

q−1 Tδ as test funtion in (50). We �rst onsider a q ≥ 1.As one easily omputes,
∇
(

|Tδ|
q−1 Tδ

)

= q |Tδ|
q−1 ∇Tδ ∈ Lp(Ω) ,sine Tδ ∈ L∞(Ω). Thus, we an test with this funtion. Consider also the relation

∇
(

|Tδ|
q−1 Tδ

)

· ∇Tδ =
4q

(q + 1)2

∣

∣

∣
∇|Tδ|

q+1
2

∣

∣

∣

2

.We an write
∫

Ω

4q

(q + 1)2

{

δ |∇Tδ|
p−2 + κ(Tδ)

}

∣

∣

∣
∇|Tδ|

q+1
2

∣

∣

∣

2

+

∫

Σ

G(σ|T 3
δ | Tδ) |Tδ|

q−1 Tδ =

∫

Ω

f |Tδ|
q−1 Tδ .It follows that

∫

Ω

4q

(q + 1)2
κ(Tδ)

∣

∣

∣
∇|Tδ|

q+1
2

∣

∣

∣

2

+

∫

Σ

G(σ|T 3
δ | Tδ) |Tδ|

q−1 Tδ ≤

∫

Ω

f |Tδ|
q−1 Tδ . (53)27



Now, if we want to onsider a 0 < q < 1, we hoose an arbitrary small α > 0, and we testwith the funtion Tδ (α + |Tδ|)
q−1. We obtain the inequality

∫

Ω

κ(Tδ) (|Tδ| + α)q−2 (q|Tδ| + α) |∇Tδ|
2 +

∫

Σ

G(σ|T 3
δ | Tδ) (|Tδ| + α)q−1 Tδ

≤

∫

Ω

f (|Tδ| + α)q−1 |Tδ| .Letting α → 0, we get, by Fatou's lemma,
∫

Ω

κ(Tδ) q |Tδ|
q−1 |∇Tδ|

2 +

∫

Σ

G(σ|T 3
δ | Tδ) |Tδ|

q−1 Tδ ≤

∫

Ω

f |Tδ|
q . (54)Denoting by χA(0) the harateristi funtion of the set A(0) := {x ∈ Ω : |Tδ(x)| > 0},and onsidering the relation ∇ |Tδ|

q+1
2 = q+1

2
|Tδ|

q−1
2 sign(Tδ)χA(0) ∇Tδ, we see that we anwrite (53) also if 0 < q < 1.De�ne wδ := |Tδ|

q+1
2 . Applying Young's inequality, we an write down the estimate

∫

Ω

f |Tδ|
q =

∫

Ω

|f |w
2q

q+1

δ ≤‖ wδ ‖
2q

q+1

L6(Ω) ‖ f ‖
L

3(q+1)
2q+3 (Ω)

≤ c ‖ f ‖
L

3(q+1)
2q+3 (Ω)

‖ wδ ‖
2q

q+1

W 1,2
Γ1

(Ω)

≤ cγ ‖ f ‖q+1

L
3(q+1)
2q+3 (Ω)

+γ ‖ wδ ‖
2
W 1,2

Γ1
(Ω)
, (55)where γ is an arbitrary small positive number. Analogously, we prove the estimate

∫

Ω

f |Tδ|
q ≤ cγ ‖ f ‖

q+4
4

L
3(q+1)
2q+3 (Ω)

+γ ‖ wδ ‖
2(q+4)

q+1

W 1,2
Γ1

(Ω)
. (56)We also note that G(σ|Tδ|

3 Tδ)|Tδ|
q−1 Tδ ≥ G(σ|Tδ|

4)|Tδ|
q, sine the operatorH is positive.First Case: Σ ∈ C0,1 only.In view of the de�nition of wδ, and of the estimates (53) and (55), we have

∫

Ω

4q

(q + 1)2
κ(Tδ) |∇wδ|

2 +

∫

Σ

G

(

σ w
8

q+1

δ

)

w
2q

q+1

δ ≤ cγ ‖ f ‖q+1

L
3(q+1)
2q+3 (Ω)

+γ ‖ wδ ‖
2
W 1,2

Γ1
(Ω)

.(57)If we hoose 2 < q < ∞, we have 2q
q+1

+ 8
q+1

< 4. Then, Lemma 2.1 is appliable with
r = 2q/(q + 1), s = 8/(q + 1). First assuming that ‖|Tδ| q+1

2 ‖W 1,2
Γ1

(Ω) ≥ 1, we obtain from(57) that ‖|Tδ| q+1
2 ‖2

W 1,2
Γ1

(Ω)
≤ cq ‖ f ‖q+1

L
3(q+1)
2q+3 (Ω)

.If ‖|Tδ| q+1
2 ‖W 1,2

Γ1
(Ω) < 1, we obtain, replaing (55) by (56) and using the same argument,that ‖|Tδ| q+1

2 ‖
2(q+4)

q+1

W 1,2
Γ1

(Ω)
≤ cq ‖ f ‖

q+4
4

L
3(q+1)
2q+3 (Ω)

. We onlude asserting that
∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2
Γ1

(Ω)
≤ Pq(‖ f ‖

L
3(q+1)
2q+3 (Ω)

) .28



for all 2 < q <∞.Seond Case: Σ ∈ C1,α.We an apply Lemma 2.3 instead of Lemma 2.1. By the same tehniques, we ahieve thebetter estimate
∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2(Ω)
+ ‖ Tδ ‖Lq+4(Σ)≤ Pq(‖ f ‖

L
3(q+1)
2q+3 (Ω)

) , (58)for all 0 < q <∞.On the other hand, one has for 1 ≤ s < 2, 1 < r, and r′ = r/(r − 1), that
∫

Ω

|∇Tδ|
s =

∫

Ω

|∇Tδ|
s χA(0) =

∫

Ω

|∇Tδ|
s

|Tδ|
(1−q) s

2

|Tδ|
(1−q) s

2 χA(0)

≤

(
∫

Ω

f |Tδ|
q

)s/2 (∫

Ω

|Tδ|
(1−q) s

2−s

)(2−s)/2

≤‖ f ‖
s/2

Lr′(Ω)
‖ Tδ ‖

q s/2
Lq r(Ω) ‖ Tδ ‖

(1−q)s
2

L
(1−q) s

2−s (Ω)
.For 0 < q < 1 and for the hoie

r =
3(q + 1)

q
, s =

3(q + 1)

q + 2
,we see that r′ = 3(q+1)

2q+3
, and, using the embedding theorems, we obtain from (58) that

‖ ∇Tδ ‖Ls(Ω)≤ Pq(‖ f ‖
L

3(q+1)
2q+3 (Ω)

), whih �nally gives that
‖ Tδ ‖W 1,s

Γ1
(Ω) + ‖ |Tδ|

q+1
2 ‖W 1,2(Ω) + ‖ Tδ ‖Lq+4(Σ)≤ Pq(‖ f ‖

L
3(q+1)
2q+3 (Ω)

) .In the general, nonhomogeneous ase, we have to onsider test funtions of the type
|Tδ|

q−1 Tδ−T0,q, where T0,q = T q0 φ0, with the funtion φ0 aording to (49). Making use ofthe assumption (47), we an then prove the general estimate stated by the proposition.Proof of Theorem 4.1. Suppose that f ∈ Lp(Ω). It is straightforward to alulate forwhih range of q > 0 we an obtain the estimates of Proposition 4.4. This are preiselythe estimates stated by the theorem. In eah ase we get
Tδ ⇀ T in V s,r(Ω) (59)with s > 3

2
and r > 4. The passage to the limit with the sequene of approximate solutionsonstruted in Proposition 4.2 is then a straightforward exerise.If f ≥ 0 in Ω, we set k0 := inf{ess inf

z∈Γ1

T0(z), ess inf
z∈Γ

TExt(z)} and use in (50) the testfuntion (Tδ − k0)
−. It follows that

lim sup
δ→0

(

∫

Ω

|∇(Tδ − k0)
−|2 +

∫

Γ2

α (Tδ − TExt) (Tδ − k0)
−

+

∫

Γ3

ǫ σ (|Tδ|
3 Tδ − |TExt|3 TExt) (Tδ − k0)

− +

∫

Σ

G(σ |Tδ|
3 Tδ) (Tδ − k0)

−
)

≤ 0 .29



Thus, by (59), and sine by Lemma 2.6,
∫

Σ

G(σ |Tδ|
3 Tδ) (Tδ − k0)

− =

∫

Σ

G(σ |Tδ|
3 Tδ)

(

(Tδ − k0)
− + k0

)

≥ 0 ,we get that (T − k0)
− = onstant in Ω, and that (T − k0)

− = 0 on Γ and the laim isproved.5 L1-EstimatesSine for the right-hand side f , we only want to assume the regularity f ∈ L1(Ω), thetheory of the preedent setion do no longer apply. We have to look for other tehniquesin order to pass to the limit with approximate solutions. Throughout this setion we willassume that Σ ∈ C1,α, and that ǫ < 1 almost everywhere on Σ.Theorem 5.1. Let f ∈ L1(Ω) and f̃ ∈ L1(Γ). If (48) is satis�ed for the domain Ω, thenthere exists T ∈ V s,4(Ω), 1 ≤ s < 3
2
arbitrary, suh that T = T0 almost everywhere on Γ1and suh that

〈

AT , ψ
〉

+

∫

Γ3

ǫ σ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ ,for all ψ ∈W 1,r
Γ1

(Ω) (r > 3). In addition, one has the estimate
‖ T ‖W 1,s

Γ1
(Ω) + ‖ T ‖L4(Γ3∪Σ)≤ Ps

(

‖ f ‖L1(Ω) , ‖ f̃ ‖L1(Γ) , ‖T0‖W 1,2(Ω) , ‖ T0 ‖L4(Γ3)

)

,with a ontinuous funtion Ps, for all 1 ≤ s < 3
2
.It is easy to onstrut approximate solutions. Setting f [δ] := sign(f) min{|f | , δ}, we�nd by Theorem 4.1 a T ∈ V 2,5(Ω) suh that T = T0 on Γ1 and

〈

AT , ψ
〉

+

∫

Γ3

ǫ σ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ =

∫

Ω

f [δ] ψ +

∫

Γ

f̃ [δ] ψ , (60)for all ψ ∈ V 2,5
Γ1

(Ω). We de�ne a sequene of numbers {Mδ} by
Mδ :=

1meas(Σ)

∫

Σ

|Tδ|
3 Tδ . (61).Proposition 5.2. Under the assumptions of Theorem 5.1, we have or any sequene ofapproximate solutions {Tδ} aording to (60) the following uniform estimates:(1) For the temperature on the boundaries Γ, Σ, we have:

‖ Tδ ‖L1(Γ2) + ‖ Tδ ‖L4(Γ3) + ‖ T 3
δ Tδ − Mδ ‖L1(Σ)

≤ P
(

‖ f ‖L1(Ω) , ‖ f̃ ‖L1(Γ) , ‖ T0 ‖L4(Γ3)

)

+ Cδ ,where Cδ → 0 as δ → 0. 30



(2) For all 1 ≤ s < 3
2
, the temperature gradient is estimated by

‖ Tδ ‖W 1,s
Γ1

(Ω)≤ Ps

(

‖ f ‖L1 , ‖ f̃ ‖L1(Γ) , ‖T0‖W 1,2(Ω) , ‖ T0 ‖L4(Γ3)

)

+ C̃δ ,where the sequene {C̃δ} onverges to zero.In these estimates P, Ps are ontinuous funtions of the data.Proof. Again, we prove the propostion for the homogeneous ase, and we only indiatehow to obtain the general result. In relation (60) we use the test funtion
ψ = ψγ,δ = sign(Tδ) min{|Tδ|, γ}

γ
,where γ is a positive number. Note that ∇ψγ,δ = 1

γ
∇Tδ χ{x∈Ω : |Tδ|<γ}. Therefore, we havethat ∇Tδ · ∇ψγ,δ ≥ 0 almost everywhere in Ω. Sine |ψγ,δ| ≤ 1 almost everywhere in Ω,we obtain the inequality

∫

Γ2

α Tδ ψγ,δ +

∫

Γ4

ǫ σ |Tδ|
3 Tδ ψγ,δ +

∫

Σ

G(σ |Tδ|
3 Tδ)ψγ,δ ≤

∫

Ω

|f | +

∫

Γ

|f̃ | . (62)We see that ψγ,δ → sign(Tδ) almost everywhere in Ω.Observe also that ∫
Σ
G(σ |Tδ|

3 Tδ) sign(Tδ) ≥ 0. Letting γ tend to zero in (62), we obtainfrom the dominated onvergene theorem that
min{ǫl σ, α} (‖Tδ‖L1(Γ2) + ‖Tδ‖

4
L4(Γ3)) ≤ ‖f‖L1(Ω) + ‖f‖L1(Γ) . (63)Now, we onsider the test funtion

ψγ,δ = sign(|Tδ|3 Tδ −Mδ)
min{||Tδ|

3 Tδ −Mδ|, γ}

γ
+ 1 ,where γ is a positive number.Note that ∇ψγ,δ = 4

γ
|Tδ|

3 ∇Tδ χ{x∈Ω : ||Tδ|3 Tδ−Mδ|<γ} almost everywhere in Ω. Therefore,
∫

Ω

κ(Tδ)∇Tδ · ∇ψγ,δ =

∫

Ω

4 |Tδ|
3

γ
κ(Tδ)χ{x∈Ω : ||Tδ|3 Tδ−Mδ|<γ} |∇Tδ|

2 ≥ 0 ,and sine |ψγ,δ| ≤ 2, we obtain that
∫

Σ

G(σ |Tδ|
3 Tδ)

{sign(|Tδ|3 Tδ −Mδ)
min{||Tδ|

3 Tδ −Mδ|, γ}

γ
+ 1

}

≤ c (‖ f ‖L1(Ω) +‖f̃‖L1(Γ)) .Here, we also made use of (63). 31



Now, sine Ω is an enlosure and G(1) = 0 almost everywhere on Σ, we an also write
∫

Σ

G
(

σ (|Tδ|
3 Tδ −Mδ)

) sign(|Tδ|3 Tδ −Mδ)
min{||Tδ|

3 Tδ −Mδ|, γ}

γ

≤ c (‖ f ‖L1 +‖f̃‖L1(Γ)) .Letting γ → 0 we obtain that
∫

Σ

G(σ (|Tδ|
3 Tδ −Mδ)) sign(|Tδ|3 Tδ −Mδ) ≤ c (‖ f ‖L1(Ω) +‖f̃‖L1(Γ)) .Lemma 2.5 applies and gives the �rst estimate.For γ ∈]0, 1[, we �nally use the test funtion ψγ,δ = sign(Tδ)

(

1 − 1
(1+Tδ)γ

). This leads to
κl γ

∫

Ω

|∇Tδ|
2

(1 + Tδ)γ+1
≤ (‖ f ‖L1(Ω) +‖f̃‖L1(Γ)) ,where we made use of Lemma 2.6 in order to verify that

∫

Σ

G(σ |Tδ|
3 Tδ) sign(Tδ) (1 −

1

(1 + Tδ)γ

)

≥ 0 .Now, using the arguments of [Rak91℄, we get for 1 ≤ s < 3
2
and γ = 3−2 s

3−s
the estimate

‖ ∇Tδ ‖Ls(Ω)≤ cs

(

‖ f ‖L1(Ω) +‖f̃‖L1(Γ) + (‖ f ‖L1(Ω) +‖f̃‖L1(Γ))
2 (3−s)

s

)

.Proof of Theorem 5.1. From Proposition 5.2, we get for any sequene of approximatesolutions {Tδ} aording to (60) the existene of a subsequene suh that
Tδ ⇀ T in W 1,s(Ω) , Tδ → T in Ls̃(∂Ω) , Tδ → T in Ls∗(Ω) ,

Tδ → T almost everywhere in Ω and on Σ ,with 1 ≤ s < 3
2
, 1 ≤ s̃ < 2, and 1 ≤ s∗ < 3 arbitrary.The di�ult point is the passage to the limit in the nonloal boundary terms. For thesake of larity, we prove the theorem in the ase that Γ2 = ∅ = Γ3, i. e. Γ = Γ1. Thegeneral result is proved by the same method. Starting from Proposition 5.2, we an write,by Fatou's lemma,

C ≥ lim inf
δ→0

‖ |Tδ|
3 Tδ −Mδ ‖L1(Σ)≥

∫

Σ

lim inf
δ→0

∣

∣

∣
Tδ|

3 Tδ −Mδ

∣

∣

∣
. (64)Now, suppose that there exists a subsequene |Mδ| → ∞. Then, for this subsequene, wehave almost everywhere on Σ that

lim inf
δ→0

∣

∣

∣
|Tδ|

3 Tδ −Mδ

∣

∣

∣
= lim

δ→0

∣

∣

∣
|Tδ|

3 Tδ −Mδ

∣

∣

∣
= lim

δ→0

∣

∣

∣
|T |3 T −Mδ

∣

∣

∣
= +∞ ,32



sine the pointwise limes T must be �nite almost everywhere on the boundary. Thisontradits (64). Thus, the whole sequene {Mδ} must be bounded by some onstant,and we have, by the de�nition (61), that ‖ Tδ ‖L4(Σ)≤ C.Now, in view of Lemma 1.10, we write G(σ |Tδ|
3 Tδ) = ǫ σ

(

|Tδ|
3 Tδ − H̃(|Tδ|

3 Tδ)
). Con-sidering χA, the harateristi funtion of an arbitrary measurable subset A ⊆ Σ, we anwrite

∫

Σ

∣

∣

∣
H̃(|Tδ|

3 Tδ)
∣

∣

∣
χA ≤

∫

Σ

H̃(|Tδ|
4)χA =

∫

Σ

[

(I − (1 − ǫ)K)−1 ǫ
]

(|Tδ|
4) K(χA)

≤ c ‖ T 4
δ ‖L1 max

Σ
K(χA) ≤ C max

Σ
K(χA) .If we now assume that meas(A) → 0, that is χA −→ 0 in Lq(Σ) for q <∞ arbitrary, thenby Lemma 1.9, we obtain that K(χA) → 0 in L∞(Σ). This yields

sup
δ∈R

∫

Σ

∣

∣

∣
H̃(|Tδ|

3 Tδ)
∣

∣

∣
χA → 0 as meas(A) → 0 .Thus, the sequene {H̃(|Tδ|

3 Tδ)} is equi-integrable, and therefore weakly ompat in
L1(Σ). We now �nd u ∈ L1(Σ) and a subsequene suh that

H̃(|Tδ|
3 Tδ) ⇀ u in L1(Σ) . (65)Passing to the limit in (60), we obtain, for all ψ ∈W 1,r

Γ1
(Ω), r > 3 arbitrary, that

∫

Ω

κ(T )∇T · ∇ψ +

∫

Γ2

αT ψ + lim
δ→0

∫

Σ

σ ǫ |Tδ|
3 Tδ ψ −

∫

Σ

ǫ σ u ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ .(66)We now want to ompute limδ→0

∫

Σ
G(σ |Tδ|

3 Tδ)ψ. For t ∈ R and γ > 0, we introduethe funtion
gγ(t) :=

{

1 if t < 0 ,
1

1+γ t4
if t ≥ 0 .For an arbitrary ψ ∈ C∞(Ω), suh that ψ ≥ 0 in Ω, and ψ = 0 on Γ, we use in (60) thetest funtion gγ(Tδ)ψ. We obtain

∫

Ω

κ(Tδ)∇Tδ · ∇ψ gγ(Tδ) +

∫

Σ

G(σ |Tδ|
3 Tδ) gγ(Tδ)ψ +Rγ,δ

=

∫

Ω

f [δ] ψ gγ(Tδ) +

∫

Γ

f̃ [δ] ψ gγ(Tδ) ,with the notation Rγ,δ :=
∫

Ω
κ(Tδ) |∇Tδ|

2 g′γ(Tδ)ψ. Sine for eah γ > 0, the funtion gγis monotonely dereasing, we have that Rγ,δ ≤ 0. This gives that
∫

Ω

κ(Tδ)∇Tδ · ∇ψ gγ(Tδ) +

∫

Σ

G(σ |Tδ|
3 Tδ)ψ gγ(Tδ) ≥

∫

Ω

f [δ] ψ gγ(Tδ) +

∫

Γ

f̃ [δ] ψ gγ(Tδ) .(67)33



We an write
G(σ |Tδ|

3 Tδ) gγ(Tδ) =
(

ǫ σ |Tδ|
3 Tδ − ǫ σ H̃

(

|Tδ|
3 Tδ
)

)

gγ(Tδ)

=
ǫ σ T+4

δ

1 + γ T+4

δ

+ ǫ σ |Tδ|
3 T−

δ − ǫ σ H̃
(

|Tδ|
3 Tδ
)

gγ(Tδ)For �xed γ, gγ is ontiunous and bounded. Using the dominated onvergene theoremand Lemma 5.3 at the end of this proof, we an take the limit δ → 0 in (67) and obtainthat
∫

Ω

κ(T )∇T · ∇ψ gγ(T ) +

∫

Σ

σ ǫ
T+4

1 + γ T+4 ψ + lim
δ→0

∫

Σ

ǫ σ |Tδ|
3 T−

δ ψ −

∫

Σ

σ ǫ u ψ gγ(T )

≥

∫

Ω

f ψ gγ(T ) +

∫

Γ

f̃ ψ gγ(T ) .Letting now γ → 0 and observing that gγ ր 1, we �nd that
∫

Ω

κ(T )∇T · ∇ψ +

∫

Σ

σ ǫ T+4

ψ + lim
δ→0

∫

Σ

ǫ σ |Tδ|
3 T−

δ ψ −

∫

Σ

σ ǫ u ψ ≥

∫

Ω

f ψ +

∫

Γ

f̃ ψ .(68)Realling our hoie of ψ, we ompare (66) and (68) to �nd that
∫

Σ

σ ǫ T+4

ψ ≥ lim
δ→0

∫

Σ

σ ǫ T+4

δ ψ .for all ψ ∈ C∞(Ω) suh that ψ ≥ 0 in Ω and ψ = 0 on Γ. Fatou's lemma gives for suh ψthat even
∫

Σ

σ ǫ T+4

ψ = lim
δ→0

∫

Σ

σ ǫ T+4

δ ψ . (69)In order to study the onvergene of the negative part, we an for γ > 0 onsider thefuntions
ĝγ(t) :=

{

−1
1+γ t4

for t ≤ 0 ,

−1 for t > 0 .Using the test funtion ĝγ(Tδ)ψ for ψ ∈ C∞(Ω) suh that ψ ≥ 0 in Ω and ψ = 0 on Γ,we obtain in a similar manner that ∫
Σ
σ ǫ T−4

ψ ≥ limδ→0

∫

Σ
σ ǫ T−4

δ ψ, whih implies that
∫

Σ

σ ǫ T−4

ψ = lim
δ→0

∫

Σ

σ ǫ T−4

δ ψ . (70)In view of (69) and (70), we obtain that ∫
Σ
σ ǫ T 4 ψ = limδ→0

∫

Σ
σ ǫ T 4

δ ψ. Beause of (48),we an, in partiular, hoose ψ ≡ 1 on Σ, whih yields ∫
Σ
σ ǫ T 4 = limδ→0

∫

Σ
σ ǫ T 4

δ . Inview of Lemma 5.4 at the end of this proof, this su�es to establish the strong onvergene
Tδ → T in L4(Σ) . (71)34



As a matter of onsequene, we now have u = H̃
(

|T |3 T
). Coming bak to (66) with thisknowledge, we �nd that

∫

Ω

κ(T )∇T · ∇ψ +

∫

Σ

G(σ |T |3 T )ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ ,proving the integral relation.The two following Lemmas are proved in [GMS98℄.Lemma 5.3. Let ak, a ∈ L∞(Ω) suh that ‖ak‖L∞(Ω) ≤ A for all k ∈ N. Let bk, b ∈ L1(Ω).Suppose that ak → a almost everywhere and that bk ⇀ b in L1(Ω). Then, ak bk ⇀ ab in
L1(Ω).Lemma 5.4. Let uk, u ∈ L1(Ω) be suh that uk → u almost everywhere and ‖uk‖L1(Ω) →
‖u‖L1(Ω). Then uk → u strongly in L1(Ω).6 Conluding RemarksIn the two main theorems 4.1 and 5.1 of the paper, we have presented new results onthe weak solvability of the stationary heat ondution-radiation problem. The pratiallyrelevant ase of Lp− heat soure densities, with p lose to one is overed by the theory.Continuous estimates in terms of the data are obtained in eah ase for the temperaturegradient, and for the total emitted heat radiation on the surfae Σ. The estimates of the�fth setion only involve the term ‖f‖L1(Ω). They are espeially attrative, sine the totalheating power is the quantity that is atually ontrolled in industrial appliations.The proof of these theorems relies on oerivity properties of the nonloal radiation op-erators that had not been stated before (in partiular Lemma 2.4, 2.5 and 2.6) and havebeen derived in the �rst two setions.Throughout the paper, the regularity of the surfae Σ has also been an issue. Theorem 4.1shows that the existene of weak solutions an be proved in the ase of general Lipshitzboundaries, whih is a small improvement on previous results. However, if the heatsoures are in L1, we annot prove existene if the surfae Σ is less than C1,α. In the aseof interfaes that are only pieewise smooth, the smoothing properties of the operator Kare muh more di�ult to establish, so that a further publiation would be neessary todisuss that ase.Finally, note that the regularity of the solution has not been at disussion in the paper.In the standard ase of say a L2−right-hand side, further regularity results, suh asboundedness and ontinuity of weak solutions are known (see [LT01℄, [Mey06℄), whih wehave not realled here. Thus, it should be emphasized that Theorem 4.1 does not stateoptimal results onerning regularity. On the ontrary, the integrability s < 3/2 statedfor the temperature gradient in Theorem 5.1 is known to onstitute an upper bound forthe regularity of ellipti problems with L1− right-hand sides ([BG92℄, [Rak91℄), and istherefore optimal. 35
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