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Abstra
tA

urate modeling of heat transfer in high-temperatures situations requires toa

ount for the e�e
t of heat radiation. In 
omplex appli
ations su
h as Czo
hralski'smethod for 
rystal growth, in whi
h the 
ondu
tion radiation heat transfer problem
ouples to an indu
tion heating problem and to the melt �ow problem, we hardly
an expe
t from the mathemati
al theory that the heat sour
es will be in a betterspa
e than L1. In su
h situations, the results of [LT01℄ on the unique solvability ofthe heat 
ondu
tion problem with surfa
e radiation do not apply, sin
e a right-handside in Lp with p < 6
5 no longer belongs to the dual of the Bana
h spa
e V in whi
h
oer
ivity is obtained. In this paper, we fo
us on a stationary heat equation withnon-lo
al boundary 
onditions and Lp right-hand side with 1 ≤ p ≤ ∞ arbitrary.Essentially, we 
onstru
t an approximation pro
edure and, thanks to new 
oer
ivityresults, we are able to produ
e energy estimates that involve only the Lp-norm ofthe heat-sour
es, and to pass to the limit.Introdu
tionA

urate modeling of heat transfer in high-temperatures situations requires to a

ountfor the e�e
t of heat radiation. In the �eld of industrial appli
ations, 
rystal growth,for example, has motivated a lot of mathemati
al work on this topi
 ([Phi03℄, [KPS04℄,[KP05℄, [MPT06℄, [Mey06℄, [Voi01℄). For this type of appli
ations, situations are relevantin whi
h a transparent medium is en
losed by one or several opaque, or di�use grey bodies,su
h as in the following 2D-pi
ture:

Ω0

Ω1,...,4XXXXXXXXXXXXXXXXXXXXy

�
�

�
�

�
���

��
�

��
�

��
�

��
�

��
�

�)When heat is supplied to the bodies, ea
h point on the boundary of the transparent
avity, denoted by Ω0, emits radiation, and at the same time re
eives radiation emittedat the other parts of the surfa
e that it 
an see. This e�e
t 
an be modeled by meansof nonlo
al radiation boundary 
onditions for the 
ondu
tive heat �ux (see for example([Voi01℄, [KPS04℄). 1



From the point of view of mathemati
al analysis, an important result was attained inthe paper [LT01℄, in whi
h existen
e and uniqueness of generalized solutions were provedfor the heat equation with radiation boundary 
onditions and heat sour
es in the 
lass
[W 1,2]∗.In the present paper, we want to extend these results to the 
ase that the heat sour
edensity might be less regular. In many appli
ations, the heat sour
es have to be 
omputedfrom Maxwell's equations (resistive/indu
tive heating) or from the Navier-Stokes equa-tions (heat 
ondu
ting �uids). From the viewpoint of the presently available regularitytheory, this leads in 
omplex situations (temperature-dependent 
oe�
ients, nonsmoothsurfa
es) to heat sour
e densities that belong only to L1, or at most to L1+ǫ. The latterobservations have motivated resear
h on ellipti
 problems with L1 right-hand sides (seefor example [BG92℄, [Rak91℄). A L1−theory is also parti
ularly attra
tive for the heatequation, in that it leads to natural energy estimates, that is, to estimates in terms of thetotal heating power, the quantity whi
h is a
tually 
ontrolled in appli
ations.The mathemati
al problem. We assume that Ω1, . . . ,Ωm are disjoint bounded do-mains in R

3, separated from ea
h other by a transparent medium Ω0. They representopaque bodies with di�erent material properties. The bounded domain Ω ⊂ R
3 su
h that

Ω =

m
⋃

i=0

Ωi , (1)is assumed to be 
onne
ted.We assume that all materials involved are grey materials, see [LT98℄ or [KPS04℄. There-fore, radiation only needs to be 
onsidered at the surfa
e of the bodies Ωi (i = 1, . . . , m).We de�ne
∂ΩRad :=

m
⋃

i=1

∂Ωi ,as the surfa
e where heat radiation o

urs. Note that the intera
tions between the partsof the surfa
e that are lo
ated in the 
avity Ω0 need to be taken into a

ount.To this aim, a kernel w : ∂ΩRad × ∂ΩRad −→ R , the so-
alled view fa
tor, is introdu
edby
w(z, y) :=







~n(z) · (y − z) ~n(y) · (z − y)

π|z − y|4
Θ(z, y) if z 6= y ,

0 if z = y ,
(2)where the visibility fun
tion

Θ(z, y) =

{

1 if ]z, y[∩Ω \ Ω0 = ∅ ,

0 else, (3)is penalizing the non
onvexity of the surfa
e ∂ΩRad as well as the presen
e of obsta
les. Inthese de�nitions, the symbol ]z, y[ is an abbreviation for 
onv{z, y} \ {z, y}, and ~n is the2



outward-pointing unit normal to ∂ΩRad. Throughout the introdu
tion, we assume that
∂ΩRad has a su�
ient regularity for the kernel w to be everywhere well de�ned.By straightforward geometri
al 
onsiderations, one veri�es that

w(z, y) ≥ 0 for all (z, y) ∈ ∂ΩRad × ∂ΩRad .We introdu
e the set of all intera
ting points Σo ⊂ ∂ΩRad by
Σo :=

{

z ∈ ∂ΩRad ∣∣∣ ∃ y ∈ ∂ΩRad : w(z, y) > 0
}

, (4)i.e. a point z ∈ ∂ΩRad will belong to Σo if it 
an see at least one other point of ∂ΩRad.The splitting ∂ΩRad = Γ ∪ Σ, where
Σ := Σo, Γ := ∂ΩRad \ Σ , (5)gives a disjoint de
omposition of the boundary.Throughout the paper, we will assume that heat-transfer in the transparent medium

Ω0 only o

urs by radiation, or at least that the heat 
ondu
tion taking pla
e in Ω0 isnegligible, i.e. κ = 0 in Ω0. We will address the problem of determining the temperaturein the opaque 
omponents Ω1, . . . ,Ωm of the domain as (P ).The domain of 
omputation Ω is thus given by Ω :=
⋃m
i=1 Ωi. As a matter of fa
t, Ω isdis
onne
ted. We 
onsider the equations

(P )







− div (κ(T )∇T ) = f in Ω ,

−κ(T )
∂T

∂ ~n
= R− J on Σ ,where R denotes the radiosity (outgoing radiation), and J denotes the in
oming heatradiation J on the surfa
e Σ.The radiosity R has to be the sum of the radiation emitted a

ording to the Stefan-Boltzmann law, and of the re�e
ted part of the in
oming radiation J . Thus,

R = ǫ σ |T |3 T + (1 − ǫ) J on Σ. (6)where the emissivity ǫ is a material fun
tion that attains values in [0, 1], and σ denotesthe Stefan-Boltzmann 
onstant. In the 
hosen model, one has
J = K(R) on Σ , (7)where K is the linear integral operator given by

(K(f))(z) =

∫

Σ

w(z, y) f(y) dSy for z ∈ Σ , (8)with the kernel (2). We also have to supply a boundary 
ondition on the set Γ. For thesake of generality, we assume the disjoint de
omposition Γ = Γ1 ∪ Γ2 ∪ Γ3, where Γi is3



relatively open for i = 1, 2, 3. We 
onsider the boundary 
onditions
T = T0 on Γ1 , −κ(T )

∂T

∂ ~n
= α (T − TExt) on Γ2 ,

− κ(T )
∂T

∂ ~n
= ǫ σ (T 4 − T 4Ext) on Γ3 , (9)where the imposed temperature T0, the external temperature TExt, as well as the 
oe�
ient

α > 0 are given. As above, ǫ is the emissivity on the surfa
e Γ3, and σ is the Stefan-Boltzmann 
onstant.Weak formulation of (P). It is possible to immediately eliminate the integral equa-tions (6), (7) on Σ and to derive a weak formulation of (P ) that only involves the unknown
T . This was shown in [Tii97b℄. From the relations (6), (7), it follows that

(I − (1 − ǫ)K) (R) = ǫ σ |T |3 T ,Note that throughout the paper, o

urren
e of the fun
tions ǫ and 1 − ǫ in 
onne
tionwith an integral operator simply implies multipli
ation. Assuming that the operator
(I − (1 − ǫ)K) is invertible in a suitable Bana
h spa
e, we then 
an write

R = (I − (1 − ǫ)K)−1 ǫ (σ |T |3 T ) ,

J = K(I − (1 − ǫ)K)−1 ǫ (σ |T |3 T ) .We introdu
e the notation
G := (I −K) (I − (1 − ǫ)K)−1 ǫ . (10)Then, we 
an rewrite the 
onditions on the boundary Σ as follows:
−κ(T )

∂T

∂ ~n
= G(σ|T |3 T ) on Σ .If ψ is a smooth fun
tion that vanishes on Γ1, we �nd the relation

∫

Ω

κ(T )∇T · ∇ψ +

∫

Γ2

αT ψ +

∫

Γ3

σ ǫ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ

=

∫

Ω

f ψ +

∫

Γ2

αTExt ψ +

∫

Γ3

σ ǫ T 4Ext ψ . (11)We introdu
e the notations
〈

AT , ψ
〉

:=

∫

Ω

κ(T )∇T · ∇ψ +

∫

Γ2

α T ψ , f̃ :=















0 on Γ1 ,

α TExt on Γ2 ,

σ ǫ T 4Ext on Γ3 .

(12)We rewrite (11) as
〈

AT , ψ
〉

+

∫

Γ3

σ ǫ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ . (13)4



De�nition 0.1. Let Ω ⊂ R
3 have the stru
ture (1), where Ωi are disjoint domains with

∂Ωi ∈ C0,1. If the de
omposition ∂ΩRad = Σ∪Γ, whi
h is given by (5), leads to Σ ,Γ ∈ C0,1,we set
V p,q(Ω) :=

{

u ∈ W 1,p(Ω)
∣

∣

∣
γ(u) ∈ Lq(Σ ∪ Γ3)

}

,where γ is the tra
e operator. The subs
ript Γ1 denotes the subspa
e of fun
tions thatvanish on the surfa
e Γ1.In order to de�ne a weak solution, we still need assumptions on the 
oe�
ients κ, ǫ.Throughout the paper, we assume that κi is a 
ontinuous fun
tion of temperature, andthat there exists positive 
onstant κl, κu su
h that
0 < κl ≤ κi(s) ≤ κu <∞ for s ∈ R, for ea
h Ωi . (14)We assume that ǫ is a measurable fun
tion of the position and that there exists a positivenumber ǫl su
h that

0 < ǫl ≤ ǫ(z) ≤ 1 for z ∈ Σ . (15)For a real number p ∈]1,∞[, we use through the paper the notation p′ = p/p− 1 for the
onjugated exponent.De�nition 0.2. We 
all T ∈ V p,4(Ω), 1 < p ≤ ∞ a weak solution to (P ) if T = T0 almosteverywhere on Γ1, and if T satis�es the integral relation (13) for all ψ ∈ V p′,∞(Ω).Situation and stru
ture of the paper. In the papers [Tii97b℄, [Tii97a℄, [LT98℄ exis-ten
e and uniqueness of generalized solutions were proved for the problem (P ) in en
losure-free systems. In [LT01℄, the authors then found a more general way to obtain energyestimates, and were able to extend the previous results to general geometries, in
ludingen
losures. The two remaining fundamental assumptions of the paper [LT01℄, ne
essaryto obtain the results, are that the surfa
e Σ belongs to C1,α pie
ewise, and that the heatsour
e density f belongs to [W 1,2(Ω)]∗.Our purpose and main fo
us is to extend these known results to the 
ase that the right-hand side f might be a less regular fun
tion. This is motivated by the fa
t that in 
on
reteappli
ations (resistive / indu
tive heating, heat 
ondu
tive �uids), the mathemati
al the-ory often only provides L1, or at most L1+ǫ regularity for the heat sour
e density.Our plan is as follows.In the �rst se
tion we prove and re
all some essential properties of the operators K and
G. These properties allow us to derive, in the se
ond se
tion, new 
oer
ivity inequalitiesfor the nonlinear form 〈AT , ψ〉 +

∫

Σ
G(σ |T |3 T )ψ. The �rst two se
tions are extendingthe available knowledge about the nonlo
al radiation operators and they may interest thereader in their own right.In the next se
tions, we turn to more spe
i�
ally study the problem (P ). In the thirdse
tion, the uniqueness issue is brie�y treated. The fourth se
tion is devoted to the proof5



of a general existen
e result for the problem (P ) in the 
ase that the right-hand side fbelongs to Lp, with p > 1 arbitrary. The 
ase p = 1 is treated separately in the �fthse
tion.Sin
e the regularity of the interfa
e Σ is an important issue for appli
ations in 
rystalgrowth, we draw the attention of the reader to another by-produ
t of the dis
ussion ofthe �rst two se
tions: the 
ompa
tness of the operator K (i.e. the restri
tion ∂Ω ∈ C1,αpie
ewise), turns out to be unne
essary to prove the existen
e of weak solution for thestandard 
ase f ∈ [W 1,2(Ω)]∗.1 The Operators K and GWe use the following notations. If X, Y are Bana
h spa
es, we denote by L(X, Y ) theBana
h spa
e of the linear 
ontinuous mappings from X into Y . We denote by K(X, Y )the subspa
e of L(X, Y ) that 
ontains the 
ompa
t mappings from X into Y . For B ∈
L(X, Y ) and x ∈ X, we denote by B(x) ∈ Y the value of B at x. If B, C ∈ L(X,X), wedenote by B C(x) the element B(C(x)). As in the introdu
tion, we will use the notation
∂ΩRad :=

⋃m
i=1 ∂Ωi.We start by studying the operators K and G. Parts of the following results have alreadybeen proved in [Tii97b℄, [Tii97a℄, [LT98℄, [LT01℄. Throughout this se
tion, we assumethat ∂Ωi ∈ C0,1 for i = 1 , . . . , m. We denote by S the 
orresponding surfa
e measure.Under these assumptions, it is well known that the outward-pointing unit normal to ∂Ω,whi
h we denote by ~n, is de�ned almost everywhere in the sense of the measure S on ∂Ω.In order to ensure good measurability properties of the kernel w, we in addition assumethat ~n is a S−almost everywhere 
ontinuous fun
tion. This is the 
ase, for instan
e, if

∂Ω is a pie
ewise C1 surfa
e.We at �rst 
onsider the integral operator K. For its study, we need to state a fewelementary properties of the kernel w. Under the 
ited assumptions, the proof of thefollowing Lemma is straighforward.Lemma 1.1. If ∂ΩRad ∈ Ck,α with k ∈ N and 0 < α ≤ 1, then the set
Σz := {y ∈ ∂ΩRad : w(z, y) 6= 0}is a Ck,α surfa
e for S−almost all z ∈ ∂ΩRad.Lemma 1.2. The view-fa
tor given by (2) satis�es the 
onditions



















w(z, y) = w(y, z) ∀(z, y) ∈ Σ × Σ ,

w(z, y) ≥ 0 ∀(z, y) ∈ Σ × Σ ,
∫

Σ
w(z, y)dSy ≤ 1 ∀z ∈ Σ .

(16)Proof. We use the method proposed in [Tii97a℄. With the notation of Lemma 1.1, wewrite
∫

Σ

w(z, y) dSy =

∫

Σz

~n(z) · (y − z)~n(y) · (z − y)

π|y − z|4
dSy .6



We 
an also write the integrated fun
tion in the following way:
~n(z) · (y − z)~n(y) · (z − y)

π|y − z|4
= −

cos(φy) cos(φz)

π|y − z|2
, (17)where φy [ resp. φz] is the angle between ~n(y) [ resp. ~n(z)] and (z − y) [ resp. (y − z)].Representation (17) shows that w is invariant under rotations and translations. For thisreason, we 
an assume without loss of generality that z = 0 and ~n(z) = (−1, 0, 0). Forobvious geometri
al reasons, all points y ∈ Σ su
h that w(z, y) 6= 0 belong to the halfspa
e {(x1, x2, x3) ∈ R

3
∣

∣

∣
x1 < 0}. Observe also that the ray through the origin and anarbitrary point on the unit half-sphere {(x1, x2, x3) ∈ R

3
∣

∣

∣
x1 < 0 , |x| = 1} interse
ts Σzin at most one point, and in a unique point if we suppose that the surfa
e is 
losed. Thus,passing to polar 
oordinates, we 
an parameterize the surfa
e by the mapping

Ψ :
]π

2
, π
[

×]0, 2π[ −→ Σz ,

z = Ψ(φ1, φ2) :=







r(φ1, φ2) cos(φ1)

r(φ1, φ2) sin(φ1) cos(φ2)

r(φ1, φ2) sin(φ1) sin(φ2)






,where the fun
tion r : ]π

2
, π[×]0, 2π[7−→ R is Lips
hitz 
ontinuous a

ording to Lemma1.1. Straightforward 
omputations lead to

~n(Ψ) =
1

(

r2 ∂r
∂φ1

2
sin2(φ1) + r2 ∂r

∂φ2

2
+ r4 sin2(φ1)

) 1
2

×









r2 sin(φ1) cos(φ1) + r ∂r
∂φ1

sin2(φ1)

r ∂r
∂φ2

sin(φ2) − r ∂r
∂φ1

sin(φ1) cos(φ1) cos(φ2) + r2 sin2(φ1) cos(φ2)

−r ∂r
∂φ2

cos(φ2) − r ∂r
∂φ1

sin(φ1) cos(φ1) sin(φ2) + r2 sin2(φ1) sin(φ2)









,

√

GΨ =

(

r2 ∂r

∂φ1

2

sin2(φ1) + r2 ∂r

∂φ2

2

+ r4 sin2(φ1)

)

1
2

,

~n(Ψ) · Ψ =
r3 sin(φ1)

(

r2 ∂r
∂φ1

2
sin2(φ1) + r2 ∂r

∂φ2

2
+ r4 sin2(φ1)

)
1
2

,for λ2−almost every (φ1, φ2) ∈]π
2
, π[×]0, 2π[. By the symbol GΨ, we denote the Gramdeterminant of the matrix Ψ′. We thus have that

w(y , Ψ) =
(−n(Ψ) · Ψ) (n(y) · Ψ)

π |Ψ|4
=

−r4 sin(φ1) cos(φ1)

π r4
(

r2 ∂r
∂φ1

2
sin2(φ1) + r2 ∂r

∂φ2

2
+ r4 sin2(φ1)

) 1
2

.7



Taking into 
onsideration that φ1 ∈]π
2
, π[, this proves the nonnegativity of w. We stillhave to 
ompute the integral. If Σz is a 
losed surfa
e, we have

∫

Σ

w(z, y) dSy =

∫ 2π

0

∫ π

π
2

w(z, Ψ)
√

GΨ dφ1 dφ2

=

∫ 2π

0

∫ π

π
2

− sin(φ1) cos(φ1)

π
dφ1 dφ2 = − sin2(φ1)|

π

π
2

= 1 ,proving the lemma in the 
ase that the range of vision Σz of the point z is a 
losed surfa
e.If the surfa
e Σz is not 
losed, we 
an argue exa
tly as above with a smaller domain ofparameterization Ψ : O ⊂
]

π
2
, π
[

×]0, 2π[−→ Σ.De�nition 1.3. (1) We say that two points z, y ∈ ∂ΩRad see ea
h other if and only if
w(z, y) 6= 0.(2) We 
all Ω an en
losure if and only if for S−almost all z ∈ Σ we have ∫

Σ
w(z, y) dSy =

1.Remark 1.4. If Ω is an en
losure, we 
an assume without loss of generality that the sur-fa
e Σ 
onsists of one part, i.e. that Σ is the boundary of a unique 
onne
ted transparent
avity. Te
hni
ally, we say if A ⊂ Σ is su
h that for almost all z ∈ A, ∫
A
w(z, y) dSy = 1,then we 
an assume that either A = Σ or A = ∅.In view of the integrability of w stated in Lemma 1.2, we see that the de�nition (8) ofthe operator K is well-posed at least for f ∈ L∞(Σ).In the next Lemma, we re
all the basi
 properties of the operator K that were proved in[Tii97b℄.Lemma 1.5. (1) For every 1 ≤ p ≤ ∞, the operator K extends to a linear boundedoperator from Lp(Σ) into itself.(2) The norm estimate ‖ K ‖L(Lp(Σ),Lp(Σ))≤ 1 is valid.(3) The operator K is positive, in the sense that K(f) ≥ 0 almost everywhere on Σ if

f ≥ 0 almost everywhere on Σ; K is selfadjoint and positive semi-de�nite from L2(Σ)into itself.(4) If the emissivity ǫ is a fun
tion su
h that (15) is satis�ed, then for 1 ≤ p ≤ ∞, theoperator (I − (1 − ǫ)K) has an inverse in L(Lp(Σ), Lp(Σ)), with the representation
(I − (1 − ǫ)K)−1 =

∞
∑

i=0

(1 − ǫ)iKi . (18)Proof. See [Tii97b℄.
8



Thanks to Lemma 1.5, we see that the operator G introdu
ed in (10) is well-de�ned as anelement of L(Lp(Σ), Lp(Σ)). Note the following equivalent representations of the operator
G:

G := (I −K) (I − (1 − ǫ)K)−1ǫ = ǫ− ǫK(I − (1 − ǫ)K)−1ǫ (19)Lemma 1.6. (1) The operator G 
an be represented as I −H , where the operator H ispositive and selfadjoint in L2(Σ).(2) For 1 ≤ p ≤ ∞, the norm estimate ‖ H ‖L(Lp(Σ),Lp(Σ))≤ 1 is true.Proof. See [LT98℄.In the next Lemma, we present some further elementary properties of G, K, and H . Theyturn out to be essential for the dis
ussion of the 
oer
ivity. In the original version of thepreprint, and in the paper [Dru08℄ the point (5) of the next Lemma is in
orre
t.Lemma 1.7. (1) The equivalen
e H(ψ) = ψ ⇐⇒ K(ψ) = ψ is valid.(2) If ψ ∈ Lp(Σ) (1 < p ≤ ∞) satis�es K(ψ) = ψ, then ψ is a 
onstant.(3) If Ω is not an en
losure, then for 1 ≤ p ≤ ∞, the stri
t estimate ‖ H ‖L(Lp(Σ),Lp(Σ))< 1is true.(4) Let Ω be an en
losure. For some r + s ≥ 1 (r, s > 0), let ψ ∈ Lr+s(Σ) satisfy
∫

Σ
G(|ψ|r−1 ψ) |ψ|s−1ψ = 0. Then ψ is a 
onstant.(5) Let Ω be an en
losure. De�ne sign(0) := 0. If ψ ∈ L1(Σ) satis�es ∫

Σ
G(ψ) sign(ψ) = 0,then sign(ψ) is almost everywhere a 
onstant on Σ.Proof. (1): Assume �rst thatH(ψ) = ψ. By de�nition, this means that (1−ǫ)ψ+ǫK (I−

(1 − ǫ)K)−1 ǫ (ψ) = ψ, whi
h implies that K (I − (1 − ǫ)K)−1 ǫ (ψ) = ψ. De�ne
v := (I − (1 − ǫ)K)−1ǫ (ψ) .We then have v − (1 − ǫ)K(v) = ǫ ψ and K(v) = ψ. Hen
e v = ψ and K(ψ) = ψ.If we now start from K(ψ) = ψ, then we immediately see that ǫK(ψ) = (I−(1−ǫ)K)(ψ),so that (I − (1− ǫ)K)−1ǫK(ψ) = ψ. It follows that H(ψ) = (1− ǫ)ψ+ ǫK(ψ) = ψ. Thisproves the �rst point.(2): By assumption, we have for almost all z ∈ Σ that ψ(z) =

∫

Σ
w(z, y)ψ(y) dSy. First,let p = 2. Then,

|ψ(z)|2 =

∣

∣

∣

∣

∫

Σ

w(z, y)ψ(y) dSy

∣

∣

∣

∣

2

≤

(
∫

Σ

w(z, y) dSy

) (
∫

Σ

w(z, y) |ψ(y)|2 dSy

)

≤

∫

Σ

w(z, y) |ψ(y)|2 dSy , (20)9



by the triangle inequality, the Cau
hy-S
hwarz inequality, and the elementary properties(16) of the kernel w. Suppose now that there exists a set M ⊂ Σ with positive surfa
emeasure su
h that stri
t inequality holds. This would imply that
|ψ(z)|2 <

∫

Σ

w(z, y) |ψ(y)|2 dSy on M, |ψ(z)|2 ≤

∫

Σ

w(z, y) |ψ(y)|2 dSy on Σ \M .Integrating over Σ, it follows that
∫

Σ

|ψ(z)|2 dSz <

∫

Σ

(
∫

M

w(z, y) dSz +

∫

Σ\M

w(z, y) dSz

)

|ψ(y)|2 dSy

≤

∫

Σ

|ψ(y)|2 dSy ,whi
h is a 
ontradi
tion. Thus, for almost all z ∈ Σ we must have the equality sign in(20).This at �rst means that
∣

∣

∣

∣

∫

Σ

w(z, y)ψ(y) dSy

∣

∣

∣

∣

=

∫

Σ

w(z, y) |ψ(y)| dSy ,and for almost all z ∈ Σ we must have
w(z, y)ψ(y)− = 0, [resp. w(z, y)ψ(y)+ = 0] for almost all y ∈ Σ .Without loss of generality, let ψ− = 0.Se
ond, we have for almost all z the equality

∫

Σ

w(z, y)1/2w(z, y)1/2 ψ(y)dSy =

(
∫

Σ

w(z, y)dSy

)
1
2
(
∫

Σ

w(z, y)ψ2(y)dSy

)
1
2

.By a well-known property of the Cau
hy-S
hwarz inequality, this implies that
w(z, y)

1
2 = λ(z)w(z, y)

1
2 ψ(y) ,with a real number λ(z), for almost all z. Thus, for almost all y and z that 
an see ea
hother, we get ψ(y) = λ(z)−1, whi
h obviously leads to the 
laim.In the 
ase 1 < p < 2, we 
an argue just the same. For almost all z ∈ Σ, we must havethe equation

∫

Σ

w(z, y)
1
p′ w(z, y)

1
p ψ(y) dSy =

(
∫

Σ

w(z, y) dSy

)
p
p′
(
∫

Σ

w(z, y) |ψ(y)|p dSy

)

,whi
h implies, with some λ(z), the equality w(z, y)
1
p′ = λ(z)

[

w(z, y)
1
p ψ(y)

]
p
p′ . The 
laimfollows analogously.(3): The third 
laim was proved in [Tii97a℄, [LT98℄. We give an analogous simpler proof.Sin
e Ω is no en
losure, we have K(1) 6≡ 1. Thus, by (2), there exists no ψ ∈ L2(Σ)10



su
h that K(ψ) = ψ. By (1), we obtain that also H(ψ) 6= ψ for all ψ ∈ L2(Σ), i. e. 1 isnot an eigenvalue of H . But as H is selfadjoint in L2(Σ), ‖ H ‖L(L2(Σ),L2(Σ)) must be aneigenvalue of H . It follows that
‖ H ‖L(L2(Σ),L2(Σ))< 1 ,and by 
lassi
al interpolation arguments for linear positive operators, the 
laim evenfollows for all 1 ≤ p ≤ ∞.(4): By the triangle inequality and Hölder's inequality, we at �rst have

0 =

∫

Σ

G(|ψ|r−1 ψ) |ψ|s−1 ψ ≥

∫

Σ

|ψ|r+s −

∣

∣

∣

∣

∫

Σ

H(|ψ|r−1 ψ) |ψ|s−1ψ

∣

∣

∣

∣

≥

∫

Σ

|ψ|r+s −

∫

Σ

∣

∣H(|ψ|r−1ψ)
∣

∣ |ψ|s

≥

∫

Σ

|ψ|r+s− ‖ H(|ψ|r−1 ψ) ‖
L

r+s
r (Σ)

‖ |ψ|s ‖
L

r+s
s (Σ)

≥ (1− ‖ H ‖
L(L

r+s
r (Σ),L

r+s
r (Σ))

)

∫

Σ

|ψ|r+s . (21)Thus, we must have everywhere the equality sign. This at �rst means that
H(|ψ|r−1 ψ) |ψ|s−1ψ ≥ 0, [resp. H(|ψ|r−1 ψ) |ψ|s−1ψ ≤ 0] a. e. on Σ , (22)and, at se
ond, that we have in parti
ular

∫

Σ

H(|ψ|r−1ψ) |ψ|s =‖ H(|ψ|r−1 ψ) ‖
L

r+s
r (Σ)

‖ |ψ|s ‖
L

r+s
s (Σ)

.The latter point immediately implies that
|H(|ψ|r−1ψ)| = c [|ψ|s]

(r+s)/s
(r+s)/r = c |ψ|r . (23)Be
ause of (21), we 
learly have |c| ≤ 1. Sin
e −1 ≤ c < 1 implies ψ ≡ 0 again by (21),we just have to dis
uss the 
ase c = 1.Now, (23) gives that |ψ|r = |H(|ψ|r−1ψ)| ≤ H(|ψ|r), so by de�nition G(|ψ|r) ≤ 0.Sin
e Ω is an en
losure, G(1) = 0. By the fa
t that G is selfadjoint, we 
an write

0 ≥
∫

Σ
G(|ψ|r) =

∫

Σ
G(1) |ψ|r = 0. The �rst and se
ond points of this lemma now implythat |ψ|r ≡ Cr, for some positive 
onstant C.Returning to (23), where we 
an assume c = 1, with this information, we get that |ψ| =

C = |H(ψ)|. Using (22), we have in addition sign(H(ψ)) = ±sign(ψ). Thus, H(ψ) = ±ψ.Again, be
ause of the �rst line in relation (21), we see that H(ψ) = −ψ implies that
ψ = 0. On the other hand, be
ause of (1) and (2), H(ψ) = ψ implies that ψ is 
onstant.This proves point (4).(5): Observe that

ψG(sign(ψ)) = |ψ| − ψH(sign(ψ)) ≥ (1 − ‖H‖L(L∞(Σ),L∞(Σ))) |ψ| ≥ 0 ,11



almost everywhere on Σ. On the other hand, sin
e G is selfadjoint, we have
0 =

∫

Σ

G(ψ) sign(ψ) =

∫

Σ

ψG(sign(ψ)) ≥ 0 ,and we see that ψG(sign(ψ)) vanishes almost everywhere on Σ. This means that |ψ| =
ψH(sign(ψ)), and we dedu
e that

H(sign(ψ)) = sign(ψ) for almost all z ∈ Σ su
h that |ψ(z)| > 0 .In parti
ular, we have for z ∈ Σ su
h that ψ(z) > 0

1 = H(sign(ψ))(z) = H(χ{z∈Σ :ψ>0})(z) −H(χ{z∈Σ :ψ<0})(z) .Sin
e H is a positive operator, the last idendity is only possible assuming that for almostall z ∈ Σ su
h that ψ(z) > 0

1 = H(χ{z∈Σ :ψ>0})(z), 0 = H(χ{z∈Σ :ψ<0})(z) .Thus, we 
an write that
H(χ{z∈Σ :ψ>0}) ≥ χ{z∈Σ :ψ>0} almost everywhere on Σ ,and it follows that G(χ{z∈Σ :ψ>0}) ≤ 0 on Σ. But G(χ{z∈Σ :ψ>0}) has mean-value zeroon Σ, and thus, G(χ{z∈Σ :ψ>0}) = 0 almost everywhere on Σ. Owing to (1) and (2), itfollows that χ{z∈Σ :ψ>0} is almost everywhere a 
onstant. Analogously, we 
an dedu
e that

χ{z∈Σ :ψ<0} is almost everywhere a 
onstant. The 
laim follows.We re
all that for Bana
h spa
es X, Y , we denote by K(X, Y ) the set of all linear bounded
ompa
t mappings from X into Y .Lemma 1.8. Let Σ ∈ C1,α. For 1 < p < ∞, the operator K belongs to the 
lass
K(Lp(Σ), Lp(Σ)).Proof. This assertion was stated in [Tii97b℄, [LT98℄ and follows from 
lassi
al argumentsabout weakly singular integral operators.For the dis
ussion of L1 right-hand sides, another 
ompa
tness property of K turns outto be important.Lemma 1.9. Let Σ ∈ C1,α. Then for 1

α
< p, we have K ∈ K(Lp(Σ), C(Σ)).Proof. The 
ontinuity and the 
ompa
tness of K into C(Σ) follow from standard argu-ments about weakly singular integral operators (see for example the part about S
hurintegral operators of the book [Alt85℄) in the 
ase of a 
onvex surfa
e Σ. The proof relieson the one hand on the estimate

|(K(f))(z1) − (K(f))(z2)| ≤ ‖f‖Lp(Σ)

(
∫

Σ

|w(z1, y) − w(z2, y)|
p′ dSy

)1/p′

,12



for z1, z2 ∈ Σ, and on the other hand on the uniform 
ontinuity
max

|z1−z2|≤δ

(
∫

Σ

|w(z1, y) − w(z2, y)|
p′ dSy

)1/p′

→ 0 ,as δ → 0.Due to the dis
ontinuous fa
tor Θ in the de�nition (2) of the kernel w, the proof is slightlymore involved in the 
ase of non
onvex Σ. Note that for ea
h z ∈ Σ, the set of the jumpsof the fun
tion Θ(z, ·) is a one-dimensional submanifold of Σ, that is, a set of zero surfa
emeasure. At the expense of some te
hni
al 
ompli
ations, we thus 
an adapt the standardarguments to this situation.Lemma 1.10. (1) The operator G has the representation G = ǫ (I − H̃). If Σ ∈ C1,α,then for 1 < p <∞, the operator H̃ belongs to K(Lp(Σ), Lp(Σ)).(2) For 1 ≤ p ≤ ∞ let 1/p+ 1/p′ = 1. De�ne
H̃p := ǫ

1
p K (I − (1 − ǫ)K)−1 ǫ

1
p′ .Then, the norm estimate ‖H̃p‖L(Lp(Σ),Lp(Σ)) ≤ 1 is valid.(3) Let ǫ < 1 almost everywhere on Σ. Let ψ ∈ L∞(Σ) satisfy |ψ| ≤ 1 almost everywhereon Σ. Then, if neither ψ = 1 nor ψ = −1 almost everywhere on Σ, we must have

|H̃(ψ)| < 1 almost everywhere on Σ.Proof. (1): The �rst 
laim follows from representation (19) and Lemma 1.8, setting H̃ :=
K (I − (1 − ǫ)K)−1 ǫ.(2): We readily verify that

(I −K(1 − ǫ))−1K = K (I − (1 − ǫ)K)−1 . (24)For an arbitrary f ∈ L2(Σ), de�ne (I − (1 − ǫ)K)−1(f) =: v. Then, obviously, (1 −
ǫ)K(v) = v − f . This enables us to write that
[

(

I −K(1 − ǫ)
)

K
]

(v) = K(v) −K
(

(1 − ǫ)K(v)
)

= K(v) − (K(v) −K(f)) = K(f) .It follows that (I −K(1 − ǫ))K (I − (1 − ǫ)K)−1 (f) = K(f) , whi
h proves (24).We at �rst 
onsider the 
ase 1 < p <∞.By de�nition, we have H̃p = ǫ
1
pK (I − (1 − ǫ)K)−1 ǫ

1
p′ , and be
ause of the relation (24),we 
an also write this in the form

H̃p = ǫ
1
p (I −K(1 − ǫ))−1K ǫ

1
p′ .For an arbitrary f ∈ Lp(Σ), we de�ne

R :=
[

ǫ
1
p (I −K(1 − ǫ))−1K ǫ

1
p′
]

(f) .13



This de�nition allows to write that R
ǫ1/p −K

(

1−ǫ
ǫ1/p R

)

= K
(

ǫ1/p
′

f
), whi
h is equivalent tothe equality R

ǫ1/p = K
(

ǫ1/p
′

f + 1−ǫ
ǫ1/p R

). Thus, using the fa
t that ‖K‖L(Lp(Σ), Lp(Σ)) ≤ 1,we dedu
e the inequality
∫

Σ

|R|p

ǫ
=

∫

Σ

∣

∣

∣

∣

K
(

ǫ1/p
′

f +
1 − ǫ

ǫ1/p
R
)

∣

∣

∣

∣

p

≤

∫

Σ

∣

∣

∣

∣

ǫ
1
p′ f +

(1 − ǫ)

ǫ1/p
R

∣

∣

∣

∣

p

=

∫

Σ

1

ǫ
|ǫ f + (1 − ǫ)R|p .Using the 
onvexity of the fun
tion g(s) = sp and the triangle inequality, we obtain that

∫

Σ

|R|p

ǫ
≤

∫

Σ

1

ǫ
(ǫ |f |p + (1 − ǫ) |R|p) .It follows that

‖ H̃p(f) ‖pLp(Σ) = ‖ R ‖pLp(Σ) ≤‖ f ‖pLp(Σ) ,proving the result. The 
ases p = 1 and p = ∞ are straightforward exer
ises.(3): Consider an arbitrary fun
tion ψ ∈ L∞(Σ) su
h that |ψ| ≤ 1 almost everywhere on
Σ. We introdu
e two fun
tions R, J by

R = ǫ ψ + (1 − ǫ)J, J = K(R) . (25)Note that H̃(ψ) = J . In view of (2), we thus have |J | ≤ 1 almost everywhere on Σ. Sin
eby assumption 0 < ǫ < 1 on Σ, our de�nition (25) obviously implies the set identity
A :=

{

z ∈ Σ : R(z) = 1
}

=
{

z ∈ Σ : R(z) = 1 = ψ(z) = J(z)
}

. (26)Taking z ∈ A arbitrary, we 
an write, on the other hand,
1 = J(z) =

∫

Σ

w(z, y)R(y) dSy =

∫

A

w(z, y) dSy +

∫

{R<1}

w(z, y)R(y) dSy . (27)The latter equality is only possible if ∫
A
w(z, y) dSy = 1. Sin
e this is valid for any z ∈ A,we have by de�nition that the set A sees only itself. Therefore, by Remark 1.4, it followseither that meas(A) = 0, or that meas(Σ \A) = 0.Assume �nally that J(z) = 1 for a z ∈ Σ. Writing (27) in this point gives a 
ontradi
tion ifmeas(A) = 0. This means that either H̃(ψ)(z) = J(z) < 1 a. e. on Σ or meas(Σ\A) = 0.We 
an argue analogously with the set B := {z ∈ Σ : R(z) = −1}. We 
on
lude that ifneither A nor B are the whole of Σ, then they must both have zero measure, and that

−1 < H̃(ψ) < 1 a. e. on Σ, proving the 
laim.2 Coer
ivity InequalitiesFor the remainder of the paper, we assume that the boundary Γ is not empty. In thisse
tion we want to study the 
oer
ivity of the operator
〈

AT, ψ
〉

+

∫

Γ3

σ ǫ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ .14



Here, the symbol 〈·, ·〉 denotes the duality produ
t between a suitable Bana
h spa
e andits dual. The operator A was de�ned in (12) in the following way:
〈

AT, ψ
〉

=

∫

Ω

κ(T )∇T · ∇ψ +

∫

Γ2

αT ψ .Note that, the domain Ω being dis
onne
ted, the expression 〈AT, T 〉 does not de�ne anequivalent norm on W 1,2(Ω) as soon as there exists some domain Ωi ⊂ Ω that does nottou
h Γ2. However, as was shown in [Tii97a℄, one easily obtains 
oer
ivity if the domain
Ω is not an en
losure. In the latter 
ase, ‖ H ‖L(L5/4(Σ),L5/4(Σ))< 1, and one has

∫

Σ

G(σ |T |3 T )T ≥ (1− ‖ H ‖L(L5/4(Σ),L5/4(Σ)))

∫

Σ

|T |5 ,(see also Lemma 1.7, (3) above). For the 
ase that Ω might be an en
losure, we now provea �rst general 
oer
ivity result.Lemma 2.1. Assume that Σ ∈ C0,1. Let r, s > 0 be two numbers su
h that r + s < 4.Then there exists a 
onstant c = cr,s > 0 su
h that
〈

Aψ, ψ
〉

+

∫

Γ3

σ ǫ |ψ|r+s +

∫

Σ

G(|ψ|r−1 ψ) |ψ|s−1ψ ≥ c min
{

‖ ψ ‖2
W 1,2

Γ1
(Ω)
, ‖ ψ ‖r+s

W 1,2
Γ1

(Ω)

}

,for all ψ ∈W 1,2
Γ1

(Ω).Proof. We at �rst show that there exists a 
onstant c̄ > 0 su
h that
〈

Aψ, ψ
〉

+

∫

Γ3

σ ǫ |ψ|r+s +

∫

Σ

G(|ψ|r−1 ψ) |ψ|s−1ψ ≥ c̄ ‖ ψ ‖2
W 1,2

Γ1
(Ω)

,for all ψ ∈W 1,2
Γ1

(Ω) su
h that
‖ ψ ‖W 1,2

Γ1
(Ω) ≥ 1 . (28)Suppose that the latter 
laim is not true. Then we 
an �nd a sequen
e {ψn} ⊂ W 1,2

Γ1
(Ω)su
h that

〈

Aψn, ψn
〉

+

∫

Γ3

σ ǫ |ψn|
r+s +

∫

Σ

G(|ψn|
r−1 ψn) |ψn|

s−1 ψn ≤
1

n
‖ ψn ‖2

W 1,2
Γ1

(Ω)
.Setting ψ̃n := ψn/‖ψn‖W 1,2

Γ1
(Ω), we observe that ‖ ψ̃n ‖W 1,2

Γ1
(Ω)= 1. Thus, ψ̃n ⇀ ψ̃ in W 1,2

Γ1
(Ω),and for a subsequen
e ψ̃n → ψ̃ almost everywhere on Σ ∪ Γ3. Considering the property(28), we �nd that

〈

A ψ̃n, ψ̃n
〉

+

∫

Γ3

σ ǫ |ψ̃n|
r+s +

∫

Σ

G(|ψ̃n|
r−1 ψ̃n) |ψ̃n|

s−1 ψ̃n ≤
1

n
. (29)15



Sin
e the 
hoi
e r + s < 4 implies that 4s
4−r

< 4, we 
an again pass to a subsequen
e toobtain that
|ψ̃n|

r−1 ψ̃n ⇀ |ψ̃|r−1 ψ̃ in L 4
r (Σ ∪ Γ3) ,

|ψ̃n|
s−1 ψ̃n → |ψ̃|s−1 ψ̃ in L 4

4−r (Σ ∪ Γ3) ,whi
h allows us to pass to the limit in (29). Taking into a

ount Lemma 1.7, we now have
ψ̃ = ci in ea
h Ωi , ψ̃ = c on Σ, ψ̃ = 0 on Γ .This leads to ψ̃ = 0. As a matter of fa
t, we 
an always �nd a part Ωi0 ⊂ Ω su
h that both

∂Ωi0 ∩ Σ and ∂Ωi0 ∩ Γ are not empty. Considering (29), we �nd that ψ̃n → 0 ∈W 1,2
Γ1

(Ω),whi
h is a 
ontradi
tion.In the 
ase that ‖ ψ ‖W 1,2
Γ1

(Ω)< 1, we use an analogous argument repla
ing ‖ ψn ‖2
W 1,2

Γ1
(Ω)by ‖ ψn ‖r+s

W 1,2
Γ1

(Ω)
. The 
laim follows.Remark 2.2. For 1 ≤ p ≤ ∞, de�ne the Sobolev embedding exponent for tra
es p∗b by

p∗b :=











2 p
3−p

if p < 3 ,

1 ≤ s <∞ arbitrary if p = 3 ,

+∞ if p > 3 .Then, we 
an show by analogous arguments that for any r, s > 0 su
h that r + s < p∗b ,there exists a 
onstant cr,s,p > 0 su
h that for all ψ in W 1,p
Γ1

(Ω),
∫

Ω

|∇ψ|p +

∫

Γ2

αψ2 +

∫

Γ3

ǫ σ |ψ|r+s +

∫

Σ

G(σ |ψ|r−1 ψ) |ψ|s−1 ψ

≥ c min

{

‖ψ‖2
W 1,p

Γ1
(Ω)

, ‖ψ‖p
W 1,p

Γ1
(Ω)
, ‖ψ‖r+s

W 1,p
Γ1

(Ω)

}

.In the 
ase that the operatorK, is 
ompa
t a better 
oer
ivity result was proven in [LT01℄.Lemma 2.3. Let Σ ∈ C1,α. Let r, s > 0. Then there exists a 
onstant c = cr,s > 0 su
hthat for all ψ ∈ V 2,r+s
Γ1

(Ω),
〈

Aψ, ψ
〉

+

∫

Γ3

σ ǫ |ψ|r+s +

∫

Σ

G(|ψ|r−1 ψ) |ψ|s−1 ψ

≥ c min
{

‖ ψ ‖2
V 2,r+s
Γ1

(Ω)
, ‖ ψ ‖r+s

V 2,r+s
Γ1

(Ω)

}

.Proof. See [LT01℄.The inequalities in Lemma 2.1 and Lemma 2.3 establish 
oer
ivity properties of the oper-ator of heat radiation taken in 
onne
tion with the heat 
ondu
tion. The next statementsshow that the radiation operator by itself already exerts some 
oer
ivity.16



Lemma 2.4. Let Σ ∈ C1,α. Let r, s > 0 be to numbers with s ≤ r+1. Then the followingstatements are valid:(1) There exists a positive 
onstant cr,s su
h that for all ψ ∈ Lr+1(Σ),
∫

Σ

G(|ψ|r−1 ψ)ψ +

(
∫

Σ

|ψ|s
)

r+1
s

≥ c ‖ ψ ‖r+1
Lr+1(Σ) .(2) If the domain Ω is an en
losure, there exists a positive 
onstant c̄r,s su
h that

∫

Σ

G(|ψ|r−1 ψ)ψ ≥ c̄ ‖ ψ ‖r+1
Lr+1(Σ) ,for all ψ ∈ Lr+1(Σ) su
h that ∫

Σ
ψ dS = 0.Proof. (1): We assume that the assertion is false, and we seek a 
ontradi
tion. We 
an
onstru
t a sequen
e {ψ̃n} ⊂ Lr+1(Σ) su
h that ‖ ψ̃n ‖Lr+1(Σ)= 1 and

∫

Σ

G(|ψ̃n|
r−1 ψ̃n) ψ̃n +

(
∫

Σ

|ψ̃n|
s

)
r+1

s

<
1

n
. (30)Extra
ting subsequen
es, we �nd that

ψ̃n ⇀ ψ̃ in Lr+1(Σ) , |ψ̃n|
r−1 ψ̃n ⇀ w in L r+1

r (Σ) .Passing to the limit in (30), we 
an write
lim sup
n→∞

∫

Σ

ǫ |ψ̃n|
r+1 − lim

n→∞

∫

Σ

ǫ H̃(|ψ̃n|
r−1 ψ̃n) ψ̃n ≤ 0 ,and, using the 
ompa
tness of H̃ from L1+1/r(Σ) into itself, we get

lim sup
n→∞

∫

Σ

ǫ |ψ̃n|
r+1 −

∫

Σ

ǫ H̃(w) ψ̃ ≤ 0 .On the other hand, we have by the same tools that
∫

Σ

ǫ H̃(w) ψ̃ = lim inf
n→∞

∫

Σ

ǫ H̃(|ψ̃n|
r−1 ψ̃n) ψ̃

≤ lim inf
n→∞

∥

∥

∥
ǫ

r
r+1 H̃(|ψ̃n|

r−1 ψ̃n)
∥

∥

∥

L1+1/r(Σ)
‖ ǫ

1
r+1 ψ̃ ‖Lr+1(Σ) . (31)In view of Lemma 1.10 we 
an write

∥

∥

∥
ǫ

r
r+1 H̃(|ψ̃n|

r−1 ψ̃n)
∥

∥

∥

L1+1/r(Σ)
=
∥

∥

∥
H̃ r+1

r
(ǫ

r
r+1 |ψ̃n|

r−1 ψ̃n)
∥

∥

∥

L1+1/r(Σ)
≤‖ ǫ

r
r+1 |ψ̃n|

r ‖L1+1/r(Σ)

=

(
∫

Σ

ǫ |ψ̃n|
r+1

) r
r+1

.17



Thus, we 
an 
ontinue the estimate (31) by
∫

Σ

ǫ H̃(w) ψ̃ ≤ ‖ ǫ
1

r+1 ψ̃ ‖Lr+1(Σ) lim inf
n→∞

(
∫

Σ

ǫ |ψ̃n|
r+1

)
r

r+1It follows that
lim sup
n→∞

∫

Σ

ǫ |ψ̃n|
r+1 ≤‖ ǫ

1
r+1 ψ̃ ‖Lr+1(Σ)

(

lim sup
n→∞

∫

Σ

ǫ |ψ̃n|
r+1

)
r

r+1

,whi
h implies that lim supn→∞ ‖ ǫ
1

r+1 ψ̃n ‖r+1
Lr+1(Σ)≤‖ ǫ

1
r+1 ψ̃ ‖r+1

Lr+1(Σ). Combining this withthe usual lower semi
ontinuity of the norm, we obtain for a subsequen
e that limn→∞ ‖

ǫ
1

r+1 ψ̃n ‖r+1
Lr+1(Σ)=‖ ǫ

1
r+1 ψ̃ ‖r+1

Lr+1(Σ), whi
h, in its turn, yields
ψ̃n → ψ̃ in Lr+1(Σ) . (32)Re
onsidering (30) for this subsequen
e, we now obtain that
∫

Σ

G(|ψ̃|r−1 ψ̃) ψ̃ = 0 . (33)By Lemma 1.7, it follows that ψ̃ is 
onstant. But sin
e s ≤ r + 1, (30) also gives that
(

∫

Σ
|ψ̃|s

)
r+1

s
= 0. Thus, ψ ≡ 0 on Σ, a 
ontradi
tion by the strong 
onvergen
e (32).(2): We prove the se
ond estimate by the same arguments, obtaining the 
onsequen
e(33). Then, by the strong 
onvergen
e (32), we �nd that ψ̃ has mean value zero on Σ.We 
an �nish the proof analogously.We now prove a last 
oer
ivity result, whi
h will in parti
ular help us to produ
e estimatesin the 
ase that f belongs only to L1.Lemma 2.5. Let Σ ∈ C1,α, and let the emissivity satisfy ǫ < 1 on Σ. Then there existsa positive 
onstant c su
h that

∫

Σ

G(ψ) sign(ψ) ≥ c ‖ ψ ‖L1(Σ) ,for all ψ ∈ L1(Σ) su
h that ∫
Σ
ψ dS = 0.Proof. Again, suppose that the 
laim is not true. Then, it is possible to 
onstru
t asequen
e {ψn} ⊂ L1(Σ) with the properties

‖ ψn ‖L1(Σ)= 1 ,

∫

Σ

ψn = 0 ,

∫

Σ

G(ψn) sign(ψn) ≤ 1

n
.

18



Now, sin
e ψnG(sign(ψn)) = |ψn| −ψnH(sign(ψn)) ≥ 0, and using also the fa
t that G isselfadjoint, we 
an write that
1

n
≥

∫

Σ

G(ψn) sign(ψn) =

∫

Σ

ψnG(sign(ψn)) =

∫

Σ

|ψn| |G(sign(ψn))|
=

∫

Σ

ǫ |ψn| |sign(ψn) − H̃(sign(ψn))| . (34)Choosing a q > 1
α
, we 
an �nd a subsequen
e sign(ψn) ⇀ u ∈ Lq(Σ). We have, inparti
ular, that |u| ≤ 1 almost everywhere on Σ. By Lemma 1.9, we 
an again pass to asubsequen
e if ne
essary to �nd that

H̃(sign(ψn)) −→ H̃(u) in C(Σ) . (35)We distinguish two 
ases.For the �rst 
ase, we assume that u = 1 almost everywhere on Σ. By the uniform
onvergen
e of {H̃(sign(ψn))}, and by (34), we obtain that
lim
n→∞

∫

Σ

|ψn| = lim
n→∞

∫

Σ

|ψn| − ψn = lim
n→∞

∫

Σ

|ψn| |sign(ψn) − 1|

= lim
n→∞

∫

Σ

|ψn| |sign(ψn) − H̃(u)| = lim
n→∞

∫

Σ

|ψn| |sign(ψn) − H̃(sign(ψn))| = 0 .This is a 
ontradi
tion. We argue analogously if u = −1 almost everywhere on Σ.Thus, we must have the se
ond 
ase u 6≡ 1,−1. In this 
ase we know, thanks toLemma 1.10, that |H̃(u)| < 1 on Σ. This implies, by the 
ontinuity of H̃(u), that
1 > maxΣ |H̃(u)| =: γ0. We have

0 = lim
n→∞

∫

Σ

ǫ |ψn| |sign(ψn) − H̃(sign(ψn))| = lim
n→∞

∫

Σ

ǫ |ψn| |sign(ψn) − H̃(u)|

≥ ǫl (1 − γ0) lim
n→∞

∫

Σ

|ψn| .The following Lemma is usefull when we want to use test fun
tions that depend nonlinearly on temperature. It generalizes properties proved in [LT01℄, [Mey06℄.Lemma 2.6. Let Ω be an en
losure. Let F : R → R be a nonde
reasing, 
ontinuousfun
tion with F (0) = 0 and |F (t)| ≤ C0 (1+|t|s) as |t| → ∞ (0 ≤ s <∞). Let 0 ≤ r <∞be an arbitrary number. Then for all ψ ∈ Lr+s(Σ),
∫

Σ

G(|ψ|r−1 ψ)F (ψ) ≥ 0 .19



Proof. We �x n ∈ N. For i = 1, 2, . . ., we de�ne
a

(n)
i := F

(

i

n

)

− F

(

i− 1

n

)

, a
(n)
−i := F

(

−i− 1

n

)

− F

(

−i

n

)

.Sin
e F is nonde
reasing, we obviously have a(n)
i ≥ 0 and a(n)

−i ≤ 0. Denoting by χ[a,b] the
hara
teristi
 fun
tion of the interval [a, b], we introdu
e
Fn(t) :=

∞
∑

i=1

a
(n)
i χ[i/n,+∞[(t) + a

(n)
−i χ]−∞,−i/n](t) .We 
an write

∫

Σ

G(|ψ|r−1 ψ)Fn(ψ)

=

∞
∑

i=1

{

a
(n)
i

∫

Σ

G(|ψ|r−1 ψ)χ[i/n,+∞[(ψ) + a
(n)
−i

∫

Σ

G(|ψ|r−1ψ)χ]−∞,−i/n](ψ)

}

.Now, sin
e Ω is an en
losure, G(1) = 0, and we have
∫

Σ

G(|ψ|r−1 ψ)χ[i/n,+∞[(ψ) =

∫

Σ

G

(

|ψ|r−1 ψ −
ir

nr

)

χ[i/n,+∞[(ψ)

=

∫

Σ

(

|ψ|r−1 ψ −
ir

nr

)

G(χ[i/n,+∞[(ψ)) .As usual, we observe that
G(χ[i/n,+∞[(ψ)) =







1 −H(χ[i/n,+∞[(ψ)) ≥ 0 if ψ ≥ i/n ,

−H(χ[i/n,+∞[(ψ)) ≤ 0 if ψ < i/n .This means that sign((|ψ|r−1 ψ − ir

nr )G(χ[i/n,+∞[(ψ))
)

= 1, when
e
a

(n)
i

∫

Σ

G(|ψ|r−1 ψ)χ[i/n,∞[(ψ) ≥ 0 ,for all i = 1, 2, . . . . In the same way we show that a(n)
−i

∫

Σ
G(|ψ|r−1 ψ)χ]−∞,−i/n](ψ) ≥ 0.We thus proved that

∫

Σ

G(|ψ|r−1 ψ)Fn(ψ) ≥ 0 . (36)Observe that for any t ∈ R
+, we 
an �nd i(n)

0 ∈ N su
h that t ∈ [ i(n)
0

n
,
i
(n)
0 +1

n

[. We have
F (t) − Fn(t) = F (t) −

i0
∑

i=1

a
(n)
i χ[i/n,+∞[(t) = F (t) −

i
(n)
0
∑

i=1

F

(

i

n

)

− F

(

i− 1

n

)

= F (t) − F

(

i
(n)
0

n

)

→ 0 as n→ ∞ ,20



whi
h is true for all t ∈ R. By an analogous 
onsideration for t ∈ R
−, we easily obtainthat Fn(t) → F (t) for all t ∈ R. We also immediately see that |Fn(t)| ≤ |F (t)| for all

t ∈ R. It follows that
Fn(ψ) → F (ψ) in Ls(Σ) for all ψ ∈ Ls(Σ) .Passage to the limit as n→ ∞ in (36) proves the assertion.3 A Uniqueness ResultIn the 
ontext of (P1), (P2) the heat 
ondu
tivity is material dependent, and given as afun
tion of the temperature κi in ea
h subdomain Ωi for i = 0, . . . , m. Thus, our fun
tion

κ is de�ned pie
ewise, and has the form
κ = κi in Ωi i = 0, . . . , m .Due to the 
orre
tion made to Lemma 1.7, (5), the simpli�ed proof of uniqueness in thepaper [Dru08℄ is in
omplete. We therefore 
ome ba
k to the more 
ompli
ated method ofproof employed in the original version of the preprint.Lemma 3.1. Let κi : R −→ R be globally Lips
hitz 
ontinuous for i = 1, . . . , m, andsatisfy (14). Then there exists at most one weak solution of (P1), (P2) in the 
lass

V 2,4(Ω).Proof. The uniqueness of the solution is proved using the same method as in [LT01℄.However, note that sin
e κ depends on temperature, we must estimate some new terms.Suppose that T1 and T2 are two weak solutions of (P1), (P2). Subtra
ting the respe
tiveintegral identities, we obtain that
∫

Ω

κ(T2)∇(T2 − T1) · ∇ψ +

∫

Γ2

α (T2 − T1)ψ +

∫

Γ3

σ ǫ
[

|T 3
2 | T2 − |T 3

1 | T1

]

ψ

+

∫

Σ

G
(

σ[ |T 3
2 | T2 − |T 3

1 | T1]
)

ψ = −

∫

Ω

[κ(T2) − κ(T1)]∇T1 · ∇ψ , (37)for all ψ ∈W 1,2
Γ1

(Ω) ∩ L∞(Σ ∪ Γ3). De�ne
Ω̂0 :=

{

x ∈ Ω
∣

∣

∣T2(x) − T1(x) > 0
}

, Σ̂0 :=
{

z ∈ Σ
∣

∣

∣ γ(T2 − T1)(z) > 0
}

,

Ω̂δ :=
{

x ∈ Ω
∣

∣

∣
T2(x) − T1(x) > δ

}

, Σ̂δ :=
{

z ∈ Σ
∣

∣

∣
γ(T2 − T1)(z) > δ

}

,and observe that Ω̂δ ր Ω̂0, and Σ̂δ ր Σ̂0 as δ ց 0. Here, γ denotes the tra
e operator.We introdu
e a fun
tion
vδ := min{(T2 − T1)

+, δ} .21



We easily 
an show that γ(vδ) = min{[γ(T2−T1)]
+, δ}. Thus, writing also on the boundary

vδ instead of γ(vδ), we have
vδ ≥ 0 in Ω , vδ = 0 on Γ1 , G(vδ) =







δ −H(vδ) ≥ 0 on Σ̂δ

0 −H(vδ) ≤ 0 on Σ \ Σ̂0 .
(38)Testing with ψ = vδ in (37) is possible, sin
e this fun
tion is bounded. Observing that

(T2 − T1) vδ ≥ v2
δ , and that the term −

∫

Γ3
σ ǫ
[

|T 3
2 | T2 − |T 3

1 | T1

]

vδ is negative we get theinequality
∫

Ω

κ(T2) |∇vδ|
2 +

∫

Γ2

α v2
δ ≤ (39)

−

∫

Σ

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) −

∫

Ω

[κ(T2) − κ(T1)]∇T1 · ∇vδ .By adding the term ∫

Σ
G(σ vδ) vδ on both sides of this equation, we obtain that

∫

Ω

κ(T2) |∇vδ|
2 +

∫

Σ

G(σ vδ) vδ ≤

−

∫

Σ

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) +

∫

Σ

G(σ vδ) vδ −

∫

Ω

[κ(T2) − κ(T1)]∇T1 · ∇vδ .Now, we use the disjoint de
omposition of Σ,
Σ = Σ \ Σ̂0 ∪ Σ̂0 \ Σ̂δ ∪ Σ̂δ ,and we observe that

−

∫

Σ\Σ̂0

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) ≤ 0 ,

∫

Σ\Σ̂0

σG(vδ)vδ ≤ 0 . (40)On the other hand, using the inequality
∣

∣|t1|
3 t1 − |t2|

3 t2
∣

∣ ≤ 4
(

|t1|
3 + |t2|

3
)

|t1 − t2| , for all t1, t2 ∈ R , (41)we 
an write
∫

Σ̂0\Σ̂δ

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) ≤ 4 σ δ

∫

Σ̂0\Σ̂δ

(

|T2|
3 + |T1|

3
) ∣

∣G(vδ)
∣

∣

≤ 8 σ δ

(
∫

Σ̂0\Σ̂δ

|T2 + T1|
4

) 3
4

‖ vδ ‖L4(Σ)≤ c δ

(
∫

Σ̂0\Σ̂δ

|T2 + T1|
4

) 3
4

‖ vδ ‖W 1,2
Γ1

(Ω) .(42)We �nd easily that
∫

Σ̂0\Σ̂δ

σ G(vδ) vδ ≤ c δ ‖ vδ ‖W 1,2
Γ1

(Ω) meas(Σ̂0 \ Σ̂δ)
1
2 . (43)22



In order to estimate the last terms on Σ, we introdu
e the set
Σ̃δ :=

{

z ∈ Σ
∣

∣

∣
|T2|

3 T2 − |T1|
3 T1 < δ

}

.Re
alling that G(vδ) ≥ 0 in Σ̂δ we have
∫

Σ̂δ

σ
[

vδ − ( |T 3
2 | T2 − |T 3

1 | T1)
]

G(vδ) ≤

∫

Σ̃δ∩Σ̂δ

σ
[

vδ − ( |T 3
2 | T2 − |T 3

1 | T1)
]

G(vδ)

≤

∫

Σ̃δ∩Σ̂δ

σ vδ G(vδ) ≤ c δ ‖ vδ ‖L2(Σ) meas(Σ̃δ ∩ Σ̂δ)
1
2 .(44)Summing up the results (40), (42), (43) and (44), we 
an write down the estimate

−

∫

Σ

σ
[

|T 3
2 | T2 − |T 3

1 | T1

]

G(vδ) +

∫

Σ

G(σ vδ) vδ ≤ c δ ‖ vδ ‖W 1,2
Γ1

(Ω) fδ , (45)with the sequen
e
fδ :=

(
∫

Σ̂0\Σ̂δ

|T2 + T1|
4

)
3
4

+ meas(Σ̂0 \ Σ̂δ)
1
2 + meas(Σ̃δ ∩ Σ̂δ)

1
2 ,that 
onverges to zero as δ → 0. Finally,

∫

Ω

[κ(T2) − κ(T1)]∇T1 · ∇vδ =

∫

Ω̂0\Ω̂δ

[κ(T2) − κ(T1)]∇T1 · ∇vδ

≤ Lκ δ

(
∫

Ω̂0\Ω̂δ

|∇T1|
2

)
1
2

‖ vδ ‖W 1,2
Γ1

, (46)
Lκ being a Lips
hitz 
onstant of κ.By the inequalities (45) and (46), and taking into a

ount Lemma 2.1, we 
an 
on
ludethat

‖ vδ ‖W 1,2
Γ1

≤ c δ

(

fδ + f̃δ +

(
∫

Ω̂0\Ω̂δ

|∇T1|
2

)
1
2

)

.It follows that
|Ω ∩ Ω̂δ| =

1

δ

(∫

Ω∩Ω̂δ

δ2

)
1
2

≤
1

δ
‖ vδ ‖L2(Ω)−→ 0 .This gives |Ω∩ Ω̂0| = 0, that is, T2 ≤ T1 a. e. in Ω. By ex
hanging the roles of T2 and T1,one gets their equality in Ω. 23



4 Existen
e ResultsWe re
all our purpose to obtain estimates that involve the Lp−norm of the heat sour
es.Throughout this se
tion, we assume that there exist an extension of the imposed temper-ature T0 on Γ1, that we still denote by T0, su
h that
T0(x) ≥ ess inf

z∈Γ1

T0(z) almost everywhere in Ω . (47)We also assume that Ω is su
h that dist(Γ , Σ) > 0 . (48)This assumption implies no loss of generality in the type of appli
ations 
onsidered (seethe Introdu
tion). If the assumption (48) is satis�ed, we 
hoose a �xed φ0 ∈ C∞(Ω) su
hthat φ0 ≡ 1 on Γ and φ0 ≡ 0 on Σ, and we set
T̂0 := T0 φ0 . (49)The fun
tion T̂0 is an extension of T0 that does not perturb the non lo
al terms on Σ. We
an state our �rst main result.Theorem 4.1. Let the heat 
ondu
tivity κ satisfy (14) and assume that ǫ satis�es (15).Assume that f ∈ Lp(Ω) with 1 < p ≤ ∞, and let the assumptions (47) on T0 and (48) onthe domain Ω be satis�ed.(1) If Σ ∈ C0,1 and p > 9

7
, then Problem (P ) has a weak solution T . In addition we havethe following a priori estimates. If p ≥ 3

2
, then for all 1 ≤ r < ∞, we 
an �nd a
ontinuous fun
tion Pr su
h that

∥

∥

∥
|T |r

∥

∥

∥

W 1,2(Ω)
≤ Pr

(

‖ f ‖Lp(Ω) , ‖ f̃ ‖L2(Γ) , ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

.If p ∈ ]9/7, 3/2[, then
‖ T ‖

V
2,

2p
3−2p (Ω)

≤ P
(

‖ f ‖Lp(Ω) , ‖ f̃ ‖
L

2 p
3−p (Γ)

, ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

.(2) If Σ ∈ C1,α, Problem (P ) has a weak solution T . If p > 9/7, then (1) is valid. Inaddition, we �nd that for p ∈ [6/5, 9/7],
‖ T ‖

V
2,

9−5p
3−2p (Ω)

≤ P
(

‖ f ‖Lp(Ω) , ‖ f̃ ‖
L

2 p
3−p (Γ)

, ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

,and that for p ∈ ]1, 6/5[
‖ T ‖

V
3p

3−p ,
9−5p
3−2p (Ω)

≤ P
(

‖ f ‖Lp(Ω) , ‖ f̃ ‖
L

2 p
3−p (Γ)

, ‖T0‖
W

1,
3p

4p−3 (Ω)
, ‖T0‖

L
9−5p
3−2p (Γ3)

)

.24



Here P, Pr are 
ontinuous fun
tions, whi
h depend on p , dist(Γ, Σ) and on ess inf
z∈Γ1

T0(z).If the right-hand side f is positive in Ω, then T ≥ inf{ess inf
z∈Γ1

T0(z), ess inf
z∈Γ

TExt(z)}almost everywhere in Ω.We essentially 
arry out the proof in the next two propositions. We will make use of thefollowing notations. The spa
e W 1,p
Γ1

(Ω) 
ontains the elements of W 1,p(Ω) whose tra
evanishes on the boundary part Γ1. Re
alling the notation (49), we de�ne for T ∈ W 1,p
Γ1

(Ω)(1 < p <∞)
T̂ := T + T̂0 .For δ > 0, we introdu
e the operators

〈

AT , ψ
〉

:=

∫

Ω

κ(T̂ )∇T̂ · ∇ψ +

∫

Γ2

α T̂ ψ

〈

Aδ T, ψ
〉

:= δ

∫

Ω

∣

∣

∣
∇T̂
∣

∣

∣

p−2

∇T̂ · ∇ψ .Proposition 4.2. We �x 3 < p < ∞. For an arbitrary number δ > 0 there exists
T ∈W 1,p

Γ1
(Ω) su
h that

〈

Aδ T, ψ
〉

+
〈

AT , ψ
〉

+

∫

Γ3

ǫ σ |T̂ |3 T̂ ψ +

∫

Σ

G(σ |T̂ |3 T̂ )ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ , (50)for all ψ ∈W 1,p
Γ1

(Ω).Proof. For T, ψ ∈W 1,p
Γ1

(Ω), de�ne
〈

Ã T , ψ
〉

:=
〈

Aδ T, ψ
〉

+

∫

Γ3

ǫ σ |T̂ |3 T̂ ψ ,
〈

B T , ψ
〉

:=

∫

Σ

G(σ|T̂ |3 T̂ )ψ .We show that the sum Ã + A + B de�nes a 
oer
ive, pseudomonotone operator from
W 1,p

Γ1
(Ω) into [W 1,p

Γ1
(Ω)
]∗. We at �rst dis
uss 
oer
ivity. In view of (49) we have

〈

B T , T
〉

=

∫

Σ

G(σ|T̂ |3 T̂ ) T̂ =

∫

Σ

G(σ|T |3 T )T .Using Remark 2.2, we easily �nd that
〈

(Ã+ A+B)T , T
〉

≥
δ

2
min

{

‖ T ‖2
W 1,p

Γ1
(Ω)

, ‖ T ‖p
W 1,p

Γ1
(Ω)
, ‖ T ‖5

W 1,p
Γ1

(Ω)

}

− C̃0,δ ,with a positive 
onstant C0,δ that depends on δ whose exa
t value is not needed. Thisproves the 
oer
ivity.In order to show the pseudomonotoni
ity of Ã+A+B, we at �rst prove that B is 
ompa
t.Let
Tk ⇀ T in W 1,p

Γ1
(Ω) . (51)25



For ψ ∈W 1,p
Γ1

(Ω), we have the estimate
∣

∣

∣

〈

B Tk −B T, ψ
〉

∣

∣

∣
=

∣

∣

∣

∣

∫

Σ

[

G(σ|T̂k|
3 T̂k) −G(σ|T̂ |3 T̂ )

]

ψ

∣

∣

∣

∣

= σ

∣

∣

∣

∣

∫

Σ

[

|T̂k|
3 T̂k − |T̂ |3 T̂

]

G(ψ)

∣

∣

∣

∣

≤ 4 σ max
Ω

{|T̂k|
3 + |T̂ |3}

∫

Σ

|Tk − T | |G(ψ)|

≤ c4C3 ‖ G ‖L(L∞(Σ),L∞(Σ)) ‖ ψ ‖W 1,p
Γ1

(Ω)‖ Tk − T ‖L1(Σ) ,where c is the embedding 
onstant W 1,p
Γ1

(Ω) →֒ C(Ω), and C is a bound for the norm ofthe sequen
e {Tk} in W 1,p
Γ1

(Ω). We thus 
an write that
‖ B Tk − B T ‖[W 1,p

Γ1
(Ω)]

∗≤ C̄ ‖ Tk − T ‖L1(Σ)−→ 0 ,sin
e the embedding W 1,p
Γ1

(Ω) →֒ L1(Σ) is 
ompa
t.We now show that A is pseudomonotone. For the sequen
e (51) we assume that
lim sup
k→∞

〈

A(Tk) , Tk − T
〉

≤ 0 . (52)From straightforward manipulations we get, using the monotoni
ity of the p-Lapla
e part,that
∫

Ω

κ(T̂k) |∇(Tk − T )|2 +

∫

Γ2

α (Tk − T )2

≤
〈

A(Tk) , Tk − T
〉

−

∫

Ω

κ(T̂k)∇T̂ · ∇(Tk − T ) −

∫

Γ2

α T̂ (Tk − T ) .Thanks also to (51) and (52), this yields
lim sup
k→∞

∫

Ω

κ(T̂k) |∇(Tk − T )|2 +

∫

Γ2

α (Tk − T )2 ≤ 0 .This provides us with a (not relabelled) subsequen
e su
h that ∇Tk −→ ∇T in [L2(Ω)]3.For this subsequen
e and ψ ∈W 1,p
Γ1

(Ω), one gets
lim
k→∞

〈

ATk , Tk − ψ
〉

=
〈

AT , T − ψ
〉

.Thus A is pseudomonotone. Sin
e it is well known that Ã is monotone, we also get that
Ã+A is pseudomonotone (see [Lio69℄, remark 2.12). Sin
e B is 
ompa
t, we �nally obtainthat Ã+ A+B is pseudomonotone.The assertion now follows from standard arguments.Remark 4.3. Proposition 4.2 states the existen
e of a solution of (P ) with the followingnonlinear Fourier law with respe
t to ∇T for the heat �ux q:

q = −
(

δ |∇T |p−2 + κ(T )
)

∇T .26



In the next proposition, we obtain uniform estimates on the sequen
e of approximatesolutions {Tδ} 
onstru
ted in Proposition 4.2.Proposition 4.4. (1) If Σ ∈ C0,1 we get, for all 2 < q <∞, the estimate
‖Tδ‖W 1,2(Ω) +

∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2(Ω)
+ ‖Tδ‖L2 (q+1)(Γ3∪Σ)

≤ Pq

(

‖ f ‖
L

3 (q+1)
2q+3 (Ω)

, ‖ f̃ ‖
L

2 (q+1)
q+2 (Γ)

, ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

+ Cδ ,with a 
ontinuous fun
tion Pq of the data and a sequen
e Cδ of positive numbers that
onverge to zero for δ → 0.(2) If Σ ∈ C1,α, we have, for all 1 ≤ q <∞,
‖Tδ‖W 1,2(Ω) +

∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2(Ω)
+ ‖Tδ‖Lq+4(Γ3 ∪Σ)

≤ P̄q

(

‖ f ‖
L

3(q+1)
2q+3 (Ω)

, ‖ f̃ ‖
L

2(q+1)
q+2 (Γ)

, ‖T0‖W 1,2(Ω) , ‖T0‖L5(Γ3)

)

+ Cδ ,and for all 0 < q < 1,
‖Tδ‖W 1,s(Ω) +

∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2(Ω)
+ ‖Tδ‖Lq+4(Γ3 ∪Σ)

≤ P̄q

(

‖ f ‖
L

3(q+1)
2q+3 (Ω)

, ‖ f̃ ‖
L

2(q+1)
q+2 (Γ)

, ‖T0‖W 1,s′(Ω) , ‖T0‖Lq+4(Γ3)

)

+ Cδ ,with s = 3 (q+1)
q+2

, and Cδ → 0 as δ → 0.Proof. For the sake of 
larity, we present the proof in the homogeneous 
ase T0 = 0 and
TExt = 0. The general estimates follow by similar te
hniques.We would like to use ψ = |Tδ|

q−1 Tδ as test fun
tion in (50). We �rst 
onsider a q ≥ 1.As one easily 
omputes,
∇
(

|Tδ|
q−1 Tδ

)

= q |Tδ|
q−1 ∇Tδ ∈ Lp(Ω) ,sin
e Tδ ∈ L∞(Ω). Thus, we 
an test with this fun
tion. Consider also the relation

∇
(

|Tδ|
q−1 Tδ

)

· ∇Tδ =
4q

(q + 1)2

∣

∣

∣
∇|Tδ|

q+1
2

∣

∣

∣

2

.We 
an write
∫

Ω

4q

(q + 1)2

{

δ |∇Tδ|
p−2 + κ(Tδ)

}

∣

∣

∣
∇|Tδ|

q+1
2

∣

∣

∣

2

+

∫

Σ

G(σ|T 3
δ | Tδ) |Tδ|

q−1 Tδ =

∫

Ω

f |Tδ|
q−1 Tδ .It follows that

∫

Ω

4q

(q + 1)2
κ(Tδ)

∣

∣

∣
∇|Tδ|

q+1
2

∣

∣

∣

2

+

∫

Σ

G(σ|T 3
δ | Tδ) |Tδ|

q−1 Tδ ≤

∫

Ω

f |Tδ|
q−1 Tδ . (53)27



Now, if we want to 
onsider a 0 < q < 1, we 
hoose an arbitrary small α > 0, and we testwith the fun
tion Tδ (α + |Tδ|)
q−1. We obtain the inequality

∫

Ω

κ(Tδ) (|Tδ| + α)q−2 (q|Tδ| + α) |∇Tδ|
2 +

∫

Σ

G(σ|T 3
δ | Tδ) (|Tδ| + α)q−1 Tδ

≤

∫

Ω

f (|Tδ| + α)q−1 |Tδ| .Letting α → 0, we get, by Fatou's lemma,
∫

Ω

κ(Tδ) q |Tδ|
q−1 |∇Tδ|

2 +

∫

Σ

G(σ|T 3
δ | Tδ) |Tδ|

q−1 Tδ ≤

∫

Ω

f |Tδ|
q . (54)Denoting by χA(0) the 
hara
teristi
 fun
tion of the set A(0) := {x ∈ Ω : |Tδ(x)| > 0},and 
onsidering the relation ∇ |Tδ|

q+1
2 = q+1

2
|Tδ|

q−1
2 sign(Tδ)χA(0) ∇Tδ, we see that we 
anwrite (53) also if 0 < q < 1.De�ne wδ := |Tδ|

q+1
2 . Applying Young's inequality, we 
an write down the estimate

∫

Ω

f |Tδ|
q =

∫

Ω

|f |w
2q

q+1

δ ≤‖ wδ ‖
2q

q+1

L6(Ω) ‖ f ‖
L

3(q+1)
2q+3 (Ω)

≤ c ‖ f ‖
L

3(q+1)
2q+3 (Ω)

‖ wδ ‖
2q

q+1

W 1,2
Γ1

(Ω)

≤ cγ ‖ f ‖q+1

L
3(q+1)
2q+3 (Ω)

+γ ‖ wδ ‖
2
W 1,2

Γ1
(Ω)
, (55)where γ is an arbitrary small positive number. Analogously, we prove the estimate

∫

Ω

f |Tδ|
q ≤ cγ ‖ f ‖

q+4
4

L
3(q+1)
2q+3 (Ω)

+γ ‖ wδ ‖
2(q+4)

q+1

W 1,2
Γ1

(Ω)
. (56)We also note that G(σ|Tδ|

3 Tδ)|Tδ|
q−1 Tδ ≥ G(σ|Tδ|

4)|Tδ|
q, sin
e the operatorH is positive.First Case: Σ ∈ C0,1 only.In view of the de�nition of wδ, and of the estimates (53) and (55), we have

∫

Ω

4q

(q + 1)2
κ(Tδ) |∇wδ|

2 +

∫

Σ

G

(

σ w
8

q+1

δ

)

w
2q

q+1

δ ≤ cγ ‖ f ‖q+1

L
3(q+1)
2q+3 (Ω)

+γ ‖ wδ ‖
2
W 1,2

Γ1
(Ω)

.(57)If we 
hoose 2 < q < ∞, we have 2q
q+1

+ 8
q+1

< 4. Then, Lemma 2.1 is appli
able with
r = 2q/(q + 1), s = 8/(q + 1). First assuming that ‖|Tδ| q+1

2 ‖W 1,2
Γ1

(Ω) ≥ 1, we obtain from(57) that ‖|Tδ| q+1
2 ‖2

W 1,2
Γ1

(Ω)
≤ cq ‖ f ‖q+1

L
3(q+1)
2q+3 (Ω)

.If ‖|Tδ| q+1
2 ‖W 1,2

Γ1
(Ω) < 1, we obtain, repla
ing (55) by (56) and using the same argument,that ‖|Tδ| q+1

2 ‖
2(q+4)

q+1

W 1,2
Γ1

(Ω)
≤ cq ‖ f ‖

q+4
4

L
3(q+1)
2q+3 (Ω)

. We 
on
lude asserting that
∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2
Γ1

(Ω)
≤ Pq(‖ f ‖

L
3(q+1)
2q+3 (Ω)

) .28



for all 2 < q <∞.Se
ond Case: Σ ∈ C1,α.We 
an apply Lemma 2.3 instead of Lemma 2.1. By the same te
hniques, we a
hieve thebetter estimate
∥

∥

∥
|Tδ|

q+1
2

∥

∥

∥

W 1,2(Ω)
+ ‖ Tδ ‖Lq+4(Σ)≤ Pq(‖ f ‖

L
3(q+1)
2q+3 (Ω)

) , (58)for all 0 < q <∞.On the other hand, one has for 1 ≤ s < 2, 1 < r, and r′ = r/(r − 1), that
∫

Ω

|∇Tδ|
s =

∫

Ω

|∇Tδ|
s χA(0) =

∫

Ω

|∇Tδ|
s

|Tδ|
(1−q) s

2

|Tδ|
(1−q) s

2 χA(0)

≤

(
∫

Ω

f |Tδ|
q

)s/2 (∫

Ω

|Tδ|
(1−q) s

2−s

)(2−s)/2

≤‖ f ‖
s/2

Lr′(Ω)
‖ Tδ ‖

q s/2
Lq r(Ω) ‖ Tδ ‖

(1−q)s
2

L
(1−q) s

2−s (Ω)
.For 0 < q < 1 and for the 
hoi
e

r =
3(q + 1)

q
, s =

3(q + 1)

q + 2
,we see that r′ = 3(q+1)

2q+3
, and, using the embedding theorems, we obtain from (58) that

‖ ∇Tδ ‖Ls(Ω)≤ Pq(‖ f ‖
L

3(q+1)
2q+3 (Ω)

), whi
h �nally gives that
‖ Tδ ‖W 1,s

Γ1
(Ω) + ‖ |Tδ|

q+1
2 ‖W 1,2(Ω) + ‖ Tδ ‖Lq+4(Σ)≤ Pq(‖ f ‖

L
3(q+1)
2q+3 (Ω)

) .In the general, nonhomogeneous 
ase, we have to 
onsider test fun
tions of the type
|Tδ|

q−1 Tδ−T0,q, where T0,q = T q0 φ0, with the fun
tion φ0 a

ording to (49). Making use ofthe assumption (47), we 
an then prove the general estimate stated by the proposition.Proof of Theorem 4.1. Suppose that f ∈ Lp(Ω). It is straightforward to 
al
ulate forwhi
h range of q > 0 we 
an obtain the estimates of Proposition 4.4. This are pre
iselythe estimates stated by the theorem. In ea
h 
ase we get
Tδ ⇀ T in V s,r(Ω) (59)with s > 3

2
and r > 4. The passage to the limit with the sequen
e of approximate solutions
onstru
ted in Proposition 4.2 is then a straightforward exer
ise.If f ≥ 0 in Ω, we set k0 := inf{ess inf

z∈Γ1

T0(z), ess inf
z∈Γ

TExt(z)} and use in (50) the testfun
tion (Tδ − k0)
−. It follows that

lim sup
δ→0

(

∫

Ω

|∇(Tδ − k0)
−|2 +

∫

Γ2

α (Tδ − TExt) (Tδ − k0)
−

+

∫

Γ3

ǫ σ (|Tδ|
3 Tδ − |TExt|3 TExt) (Tδ − k0)

− +

∫

Σ

G(σ |Tδ|
3 Tδ) (Tδ − k0)

−
)

≤ 0 .29



Thus, by (59), and sin
e by Lemma 2.6,
∫

Σ

G(σ |Tδ|
3 Tδ) (Tδ − k0)

− =

∫

Σ

G(σ |Tδ|
3 Tδ)

(

(Tδ − k0)
− + k0

)

≥ 0 ,we get that (T − k0)
− = 
onstant in Ω, and that (T − k0)

− = 0 on Γ and the 
laim isproved.5 L1-EstimatesSin
e for the right-hand side f , we only want to assume the regularity f ∈ L1(Ω), thetheory of the pre
edent se
tion do no longer apply. We have to look for other te
hniquesin order to pass to the limit with approximate solutions. Throughout this se
tion we willassume that Σ ∈ C1,α, and that ǫ < 1 almost everywhere on Σ.Theorem 5.1. Let f ∈ L1(Ω) and f̃ ∈ L1(Γ). If (48) is satis�ed for the domain Ω, thenthere exists T ∈ V s,4(Ω), 1 ≤ s < 3
2
arbitrary, su
h that T = T0 almost everywhere on Γ1and su
h that

〈

AT , ψ
〉

+

∫

Γ3

ǫ σ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ ,for all ψ ∈W 1,r
Γ1

(Ω) (r > 3). In addition, one has the estimate
‖ T ‖W 1,s

Γ1
(Ω) + ‖ T ‖L4(Γ3∪Σ)≤ Ps

(

‖ f ‖L1(Ω) , ‖ f̃ ‖L1(Γ) , ‖T0‖W 1,2(Ω) , ‖ T0 ‖L4(Γ3)

)

,with a 
ontinuous fun
tion Ps, for all 1 ≤ s < 3
2
.It is easy to 
onstru
t approximate solutions. Setting f [δ] := sign(f) min{|f | , δ}, we�nd by Theorem 4.1 a T ∈ V 2,5(Ω) su
h that T = T0 on Γ1 and

〈

AT , ψ
〉

+

∫

Γ3

ǫ σ |T |3 T ψ +

∫

Σ

G(σ |T |3 T )ψ =

∫

Ω

f [δ] ψ +

∫

Γ

f̃ [δ] ψ , (60)for all ψ ∈ V 2,5
Γ1

(Ω). We de�ne a sequen
e of numbers {Mδ} by
Mδ :=

1meas(Σ)

∫

Σ

|Tδ|
3 Tδ . (61).Proposition 5.2. Under the assumptions of Theorem 5.1, we have or any sequen
e ofapproximate solutions {Tδ} a

ording to (60) the following uniform estimates:(1) For the temperature on the boundaries Γ, Σ, we have:

‖ Tδ ‖L1(Γ2) + ‖ Tδ ‖L4(Γ3) + ‖ T 3
δ Tδ − Mδ ‖L1(Σ)

≤ P
(

‖ f ‖L1(Ω) , ‖ f̃ ‖L1(Γ) , ‖ T0 ‖L4(Γ3)

)

+ Cδ ,where Cδ → 0 as δ → 0. 30



(2) For all 1 ≤ s < 3
2
, the temperature gradient is estimated by

‖ Tδ ‖W 1,s
Γ1

(Ω)≤ Ps

(

‖ f ‖L1 , ‖ f̃ ‖L1(Γ) , ‖T0‖W 1,2(Ω) , ‖ T0 ‖L4(Γ3)

)

+ C̃δ ,where the sequen
e {C̃δ} 
onverges to zero.In these estimates P, Ps are 
ontinuous fun
tions of the data.Proof. Again, we prove the propostion for the homogeneous 
ase, and we only indi
atehow to obtain the general result. In relation (60) we use the test fun
tion
ψ = ψγ,δ = sign(Tδ) min{|Tδ|, γ}

γ
,where γ is a positive number. Note that ∇ψγ,δ = 1

γ
∇Tδ χ{x∈Ω : |Tδ|<γ}. Therefore, we havethat ∇Tδ · ∇ψγ,δ ≥ 0 almost everywhere in Ω. Sin
e |ψγ,δ| ≤ 1 almost everywhere in Ω,we obtain the inequality

∫

Γ2

α Tδ ψγ,δ +

∫

Γ4

ǫ σ |Tδ|
3 Tδ ψγ,δ +

∫

Σ

G(σ |Tδ|
3 Tδ)ψγ,δ ≤

∫

Ω

|f | +

∫

Γ

|f̃ | . (62)We see that ψγ,δ → sign(Tδ) almost everywhere in Ω.Observe also that ∫
Σ
G(σ |Tδ|

3 Tδ) sign(Tδ) ≥ 0. Letting γ tend to zero in (62), we obtainfrom the dominated 
onvergen
e theorem that
min{ǫl σ, α} (‖Tδ‖L1(Γ2) + ‖Tδ‖

4
L4(Γ3)) ≤ ‖f‖L1(Ω) + ‖f‖L1(Γ) . (63)Now, we 
onsider the test fun
tion

ψγ,δ = sign(|Tδ|3 Tδ −Mδ)
min{||Tδ|

3 Tδ −Mδ|, γ}

γ
+ 1 ,where γ is a positive number.Note that ∇ψγ,δ = 4

γ
|Tδ|

3 ∇Tδ χ{x∈Ω : ||Tδ|3 Tδ−Mδ|<γ} almost everywhere in Ω. Therefore,
∫

Ω

κ(Tδ)∇Tδ · ∇ψγ,δ =

∫

Ω

4 |Tδ|
3

γ
κ(Tδ)χ{x∈Ω : ||Tδ|3 Tδ−Mδ|<γ} |∇Tδ|

2 ≥ 0 ,and sin
e |ψγ,δ| ≤ 2, we obtain that
∫

Σ

G(σ |Tδ|
3 Tδ)

{sign(|Tδ|3 Tδ −Mδ)
min{||Tδ|

3 Tδ −Mδ|, γ}

γ
+ 1

}

≤ c (‖ f ‖L1(Ω) +‖f̃‖L1(Γ)) .Here, we also made use of (63). 31



Now, sin
e Ω is an en
losure and G(1) = 0 almost everywhere on Σ, we 
an also write
∫

Σ

G
(

σ (|Tδ|
3 Tδ −Mδ)

) sign(|Tδ|3 Tδ −Mδ)
min{||Tδ|

3 Tδ −Mδ|, γ}

γ

≤ c (‖ f ‖L1 +‖f̃‖L1(Γ)) .Letting γ → 0 we obtain that
∫

Σ

G(σ (|Tδ|
3 Tδ −Mδ)) sign(|Tδ|3 Tδ −Mδ) ≤ c (‖ f ‖L1(Ω) +‖f̃‖L1(Γ)) .Lemma 2.5 applies and gives the �rst estimate.For γ ∈]0, 1[, we �nally use the test fun
tion ψγ,δ = sign(Tδ)

(

1 − 1
(1+Tδ)γ

). This leads to
κl γ

∫

Ω

|∇Tδ|
2

(1 + Tδ)γ+1
≤ (‖ f ‖L1(Ω) +‖f̃‖L1(Γ)) ,where we made use of Lemma 2.6 in order to verify that

∫

Σ

G(σ |Tδ|
3 Tδ) sign(Tδ) (1 −

1

(1 + Tδ)γ

)

≥ 0 .Now, using the arguments of [Rak91℄, we get for 1 ≤ s < 3
2
and γ = 3−2 s

3−s
the estimate

‖ ∇Tδ ‖Ls(Ω)≤ cs

(

‖ f ‖L1(Ω) +‖f̃‖L1(Γ) + (‖ f ‖L1(Ω) +‖f̃‖L1(Γ))
2 (3−s)

s

)

.Proof of Theorem 5.1. From Proposition 5.2, we get for any sequen
e of approximatesolutions {Tδ} a

ording to (60) the existen
e of a subsequen
e su
h that
Tδ ⇀ T in W 1,s(Ω) , Tδ → T in Ls̃(∂Ω) , Tδ → T in Ls∗(Ω) ,

Tδ → T almost everywhere in Ω and on Σ ,with 1 ≤ s < 3
2
, 1 ≤ s̃ < 2, and 1 ≤ s∗ < 3 arbitrary.The di�
ult point is the passage to the limit in the nonlo
al boundary terms. For thesake of 
larity, we prove the theorem in the 
ase that Γ2 = ∅ = Γ3, i. e. Γ = Γ1. Thegeneral result is proved by the same method. Starting from Proposition 5.2, we 
an write,by Fatou's lemma,

C ≥ lim inf
δ→0

‖ |Tδ|
3 Tδ −Mδ ‖L1(Σ)≥

∫

Σ

lim inf
δ→0

∣

∣

∣
Tδ|

3 Tδ −Mδ

∣

∣

∣
. (64)Now, suppose that there exists a subsequen
e |Mδ| → ∞. Then, for this subsequen
e, wehave almost everywhere on Σ that

lim inf
δ→0

∣

∣

∣
|Tδ|

3 Tδ −Mδ

∣

∣

∣
= lim

δ→0

∣

∣

∣
|Tδ|

3 Tδ −Mδ

∣

∣

∣
= lim

δ→0

∣

∣

∣
|T |3 T −Mδ

∣

∣

∣
= +∞ ,32



sin
e the pointwise limes T must be �nite almost everywhere on the boundary. This
ontradi
ts (64). Thus, the whole sequen
e {Mδ} must be bounded by some 
onstant,and we have, by the de�nition (61), that ‖ Tδ ‖L4(Σ)≤ C.Now, in view of Lemma 1.10, we write G(σ |Tδ|
3 Tδ) = ǫ σ

(

|Tδ|
3 Tδ − H̃(|Tδ|

3 Tδ)
). Con-sidering χA, the 
hara
teristi
 fun
tion of an arbitrary measurable subset A ⊆ Σ, we 
anwrite

∫

Σ

∣

∣

∣
H̃(|Tδ|

3 Tδ)
∣

∣

∣
χA ≤

∫

Σ

H̃(|Tδ|
4)χA =

∫

Σ

[

(I − (1 − ǫ)K)−1 ǫ
]

(|Tδ|
4) K(χA)

≤ c ‖ T 4
δ ‖L1 max

Σ
K(χA) ≤ C max

Σ
K(χA) .If we now assume that meas(A) → 0, that is χA −→ 0 in Lq(Σ) for q <∞ arbitrary, thenby Lemma 1.9, we obtain that K(χA) → 0 in L∞(Σ). This yields

sup
δ∈R

∫

Σ

∣

∣

∣
H̃(|Tδ|

3 Tδ)
∣

∣

∣
χA → 0 as meas(A) → 0 .Thus, the sequen
e {H̃(|Tδ|

3 Tδ)} is equi-integrable, and therefore weakly 
ompa
t in
L1(Σ). We now �nd u ∈ L1(Σ) and a subsequen
e su
h that

H̃(|Tδ|
3 Tδ) ⇀ u in L1(Σ) . (65)Passing to the limit in (60), we obtain, for all ψ ∈W 1,r

Γ1
(Ω), r > 3 arbitrary, that

∫

Ω

κ(T )∇T · ∇ψ +

∫

Γ2

αT ψ + lim
δ→0

∫

Σ

σ ǫ |Tδ|
3 Tδ ψ −

∫

Σ

ǫ σ u ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ .(66)We now want to 
ompute limδ→0

∫

Σ
G(σ |Tδ|

3 Tδ)ψ. For t ∈ R and γ > 0, we introdu
ethe fun
tion
gγ(t) :=

{

1 if t < 0 ,
1

1+γ t4
if t ≥ 0 .For an arbitrary ψ ∈ C∞(Ω), su
h that ψ ≥ 0 in Ω, and ψ = 0 on Γ, we use in (60) thetest fun
tion gγ(Tδ)ψ. We obtain

∫

Ω

κ(Tδ)∇Tδ · ∇ψ gγ(Tδ) +

∫

Σ

G(σ |Tδ|
3 Tδ) gγ(Tδ)ψ +Rγ,δ

=

∫

Ω

f [δ] ψ gγ(Tδ) +

∫

Γ

f̃ [δ] ψ gγ(Tδ) ,with the notation Rγ,δ :=
∫

Ω
κ(Tδ) |∇Tδ|

2 g′γ(Tδ)ψ. Sin
e for ea
h γ > 0, the fun
tion gγis monotonely de
reasing, we have that Rγ,δ ≤ 0. This gives that
∫

Ω

κ(Tδ)∇Tδ · ∇ψ gγ(Tδ) +

∫

Σ

G(σ |Tδ|
3 Tδ)ψ gγ(Tδ) ≥

∫

Ω

f [δ] ψ gγ(Tδ) +

∫

Γ

f̃ [δ] ψ gγ(Tδ) .(67)33



We 
an write
G(σ |Tδ|

3 Tδ) gγ(Tδ) =
(

ǫ σ |Tδ|
3 Tδ − ǫ σ H̃

(

|Tδ|
3 Tδ
)

)

gγ(Tδ)

=
ǫ σ T+4

δ

1 + γ T+4

δ

+ ǫ σ |Tδ|
3 T−

δ − ǫ σ H̃
(

|Tδ|
3 Tδ
)

gγ(Tδ)For �xed γ, gγ is 
ontiunous and bounded. Using the dominated 
onvergen
e theoremand Lemma 5.3 at the end of this proof, we 
an take the limit δ → 0 in (67) and obtainthat
∫

Ω

κ(T )∇T · ∇ψ gγ(T ) +

∫

Σ

σ ǫ
T+4

1 + γ T+4 ψ + lim
δ→0

∫

Σ

ǫ σ |Tδ|
3 T−

δ ψ −

∫

Σ

σ ǫ u ψ gγ(T )

≥

∫

Ω

f ψ gγ(T ) +

∫

Γ

f̃ ψ gγ(T ) .Letting now γ → 0 and observing that gγ ր 1, we �nd that
∫

Ω

κ(T )∇T · ∇ψ +

∫

Σ

σ ǫ T+4

ψ + lim
δ→0

∫

Σ

ǫ σ |Tδ|
3 T−

δ ψ −

∫

Σ

σ ǫ u ψ ≥

∫

Ω

f ψ +

∫

Γ

f̃ ψ .(68)Re
alling our 
hoi
e of ψ, we 
ompare (66) and (68) to �nd that
∫

Σ

σ ǫ T+4

ψ ≥ lim
δ→0

∫

Σ

σ ǫ T+4

δ ψ .for all ψ ∈ C∞(Ω) su
h that ψ ≥ 0 in Ω and ψ = 0 on Γ. Fatou's lemma gives for su
h ψthat even
∫

Σ

σ ǫ T+4

ψ = lim
δ→0

∫

Σ

σ ǫ T+4

δ ψ . (69)In order to study the 
onvergen
e of the negative part, we 
an for γ > 0 
onsider thefun
tions
ĝγ(t) :=

{

−1
1+γ t4

for t ≤ 0 ,

−1 for t > 0 .Using the test fun
tion ĝγ(Tδ)ψ for ψ ∈ C∞(Ω) su
h that ψ ≥ 0 in Ω and ψ = 0 on Γ,we obtain in a similar manner that ∫
Σ
σ ǫ T−4

ψ ≥ limδ→0

∫

Σ
σ ǫ T−4

δ ψ, whi
h implies that
∫

Σ

σ ǫ T−4

ψ = lim
δ→0

∫

Σ

σ ǫ T−4

δ ψ . (70)In view of (69) and (70), we obtain that ∫
Σ
σ ǫ T 4 ψ = limδ→0

∫

Σ
σ ǫ T 4

δ ψ. Be
ause of (48),we 
an, in parti
ular, 
hoose ψ ≡ 1 on Σ, whi
h yields ∫
Σ
σ ǫ T 4 = limδ→0

∫

Σ
σ ǫ T 4

δ . Inview of Lemma 5.4 at the end of this proof, this su�
es to establish the strong 
onvergen
e
Tδ → T in L4(Σ) . (71)34



As a matter of 
onsequen
e, we now have u = H̃
(

|T |3 T
). Coming ba
k to (66) with thisknowledge, we �nd that

∫

Ω

κ(T )∇T · ∇ψ +

∫

Σ

G(σ |T |3 T )ψ =

∫

Ω

f ψ +

∫

Γ

f̃ ψ ,proving the integral relation.The two following Lemmas are proved in [GMS98℄.Lemma 5.3. Let ak, a ∈ L∞(Ω) su
h that ‖ak‖L∞(Ω) ≤ A for all k ∈ N. Let bk, b ∈ L1(Ω).Suppose that ak → a almost everywhere and that bk ⇀ b in L1(Ω). Then, ak bk ⇀ ab in
L1(Ω).Lemma 5.4. Let uk, u ∈ L1(Ω) be su
h that uk → u almost everywhere and ‖uk‖L1(Ω) →
‖u‖L1(Ω). Then uk → u strongly in L1(Ω).6 Con
luding RemarksIn the two main theorems 4.1 and 5.1 of the paper, we have presented new results onthe weak solvability of the stationary heat 
ondu
tion-radiation problem. The pra
ti
allyrelevant 
ase of Lp− heat sour
e densities, with p 
lose to one is 
overed by the theory.Continuous estimates in terms of the data are obtained in ea
h 
ase for the temperaturegradient, and for the total emitted heat radiation on the surfa
e Σ. The estimates of the�fth se
tion only involve the term ‖f‖L1(Ω). They are espe
ially attra
tive, sin
e the totalheating power is the quantity that is a
tually 
ontrolled in industrial appli
ations.The proof of these theorems relies on 
oer
ivity properties of the nonlo
al radiation op-erators that had not been stated before (in parti
ular Lemma 2.4, 2.5 and 2.6) and havebeen derived in the �rst two se
tions.Throughout the paper, the regularity of the surfa
e Σ has also been an issue. Theorem 4.1shows that the existen
e of weak solutions 
an be proved in the 
ase of general Lips
hitzboundaries, whi
h is a small improvement on previous results. However, if the heatsour
es are in L1, we 
annot prove existen
e if the surfa
e Σ is less than C1,α. In the 
aseof interfa
es that are only pie
ewise smooth, the smoothing properties of the operator Kare mu
h more di�
ult to establish, so that a further publi
ation would be ne
essary todis
uss that 
ase.Finally, note that the regularity of the solution has not been at dis
ussion in the paper.In the standard 
ase of say a L2−right-hand side, further regularity results, su
h asboundedness and 
ontinuity of weak solutions are known (see [LT01℄, [Mey06℄), whi
h wehave not re
alled here. Thus, it should be emphasized that Theorem 4.1 does not stateoptimal results 
on
erning regularity. On the 
ontrary, the integrability s < 3/2 statedfor the temperature gradient in Theorem 5.1 is known to 
onstitute an upper bound forthe regularity of ellipti
 problems with L1− right-hand sides ([BG92℄, [Rak91℄), and istherefore optimal. 35



The question of the uniqueness of the weak solution in the 
ase that f 6∈ [W 1,2(Ω)]∗ is
losely related to the regularity issue, and is still open to dis
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