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Abstract

Accurate modeling of heat transfer in high-temperatures situations requires to
account for the effect of heat radiation. In complex applications such as Czochralski’s
method for crystal growth, in which the conduction radiation heat transfer problem
couples to an induction heating problem and to the melt flow problem, we hardly
can expect from the mathematical theory that the heat sources will be in a better
space than L'. In such situations, the results of [LT01] on the unique solvability of
the heat conduction problem with surface radiation do not apply, since a right-hand
side in LP with p < g no longer belongs to the dual of the Banach space V' in which
coercivity is obtained. In this paper, we focus on a stationary heat equation with
non-local boundary conditions and LP right-hand side with 1 < p < oo arbitrary.
Essentially, we construct an approximation procedure and, thanks to new coercivity
results, we are able to produce energy estimates that involve only the LP-norm of
the heat-sources, and to pass to the limit.

Introduction

Accurate modeling of heat transfer in high-temperatures situations requires to account
for the effect of heat radiation. In the field of industrial applications, crystal growth,
for example, has motivated a lot of mathematical work on this topic (|[Phi03|, |KPS04],
[KP05], [IMPT06], [Mey06], [Voi01]). For this type of applications, situations are relevant
in which a transparent medium is enclosed by one or several opaque, or diffuse grey bodies,
such as in the following 2D-picture:

=)

When heat is supplied to the bodies, each point on the boundary of the transparent
cavity, denoted by €1y, emits radiation, and at the same time receives radiation emitted
at the other parts of the surface that it can see. This effect can be modeled by means

of nonlocal radiation boundary conditions for the conductive heat flux (see for example
([Voi01], [KPS04]).



From the point of view of mathematical analysis, an important result was attained in
the paper [LT01], in which existence and uniqueness of generalized solutions were proved
for the heat equation with radiation boundary conditions and heat sources in the class
[W1’2]*.

In the present paper, we want to extend these results to the case that the heat source
density might be less regular. In many applications, the heat sources have to be computed
from Maxwell’s equations (resistive/inductive heating) or from the Navier-Stokes equa-
tions (heat conducting fluids). From the viewpoint of the presently available regularity
theory, this leads in complex situations (temperature-dependent coefficients, nonsmooth
surfaces) to heat source densities that belong only to L', or at most to L'*¢. The latter
observations have motivated research on elliptic problems with L' right-hand sides (see
for example [BG92|, [Rak91]). A L'—theory is also particularly attractive for the heat
equation, in that it leads to natural energy estimates, that is, to estimates in terms of the
total heating power, the quantity which is actually controlled in applications.

The mathematical problem. We assume that €,..., €, are disjoint bounded do-
mains in R3, separated from each other by a transparent medium €)y. They represent
opaque bodies with different material properties. The bounded domain Q C R3 such that

a-Ja. (1

is assumed to be connected.

We assume that all materials involved are grey materials, see [LT98| or |[KPS04|. There-
fore, radiation only needs to be considered at the surface of the bodies Q; (i =1,...,m).
We define

ORaq = Oaﬁi,
i=1

as the surface where heat radiation occurs. Note that the interactions between the parts
of the surface that are located in the cavity {2y need to be taken into account.

To this aim, a kernel w : OQraq X OQraa — R, the so-called view factor, is introduced
by
fi(z) - (y — 2) n(y4) (z—y) O(sy) ifz4y,
w(z,y) = |z =y
0 ifz=1y,

(2)
where the wvisibility function

G(ij):{ 1 if ]2, y[NQ\ Q= 0,

0 else,

(3)

is penalizing the nonconvexity of the surface 0{2r.q as well as the presence of obstacles. In
these definitions, the symbol |z, y[ is an abbreviation for conv{z,y} \ {z,y}, and 7 is the



outward-pointing unit normal to 0{2g.q. Throughout the introduction, we assume that
Oflraq has a sufficient regularity for the kernel w to be everywhere well defined.

By straightforward geometrical considerations, one verifies that
w(z,y) >0 for all (z,y) € 0NRag X OQRad -

We introduce the set of all interacting points 3, C 0Qra.q by

ZO = {Z € 8QRad

Jy € 00Raq : w(z,y) > 0} , (4)

i.e. a point z € 0Qr.q will belong to ¥, if it can see at least one other point of 0€2g.q.
The splitting 0Qpag = ' U X, where

PIRES Z_O, I = aQRad \ Z, (5)

gives a disjoint decomposition of the boundary.

Throughout the paper, we will assume that heat-transfer in the transparent medium
Qp only occurs by radiation, or at least that the heat conduction taking place in g is
negligible, i.e. kK = 0 in ). We will address the problem of determining the temperature
in the opaque components Q1, ..., Q,, of the domain as (P).

The domain of computation  is thus given by Q := |J;", ;. As a matter of fact, Q2 is
disconnected. We consider the equations

—div (k(T)VT) = f in Q,
P
(P) —K(T)% = R—J on X,

where R denotes the radiosity (outgoing radiation), and J denotes the incoming heat
radiation J on the surface X.

The radiosity R has to be the sum of the radiation emitted according to the Stefan-
Boltzmann law, and of the reflected part of the incoming radiation J. Thus,

R=eo|TPT+(1—¢J onX. (6)

where the emissivity € is a material function that attains values in [0, 1], and o denotes
the Stefan-Boltzmann constant. In the chosen model, one has

J=K(R) onX, (7)

where K is the linear integral operator given by

(K()(z) = / w(z,y) f(y)dS, forzes, ®)

with the kernel (2). We also have to supply a boundary condition on the set I". For the
sake of generality, we assume the disjoint decomposition I' = I'y U I'y U I's, where I is
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relatively open for ¢ = 1,2, 3. We consider the boundary conditions

T
T=1T, onIy, —/ﬁ(T)%:a(T—TEm) on 'y,
i
oT
— K(T)%, =eco(T* —Tg,,) onI's, (9)

where the imposed temperature Tg, the external temperature Txy, as well as the coefficient
a > 0 are given. As above, € is the emissivity on the surface I's, and o is the Stefan-
Boltzmann constant.

Weak formulation of (P). Tt is possible to immediately eliminate the integral equa-
tions (6), (7) on X and to derive a weak formulation of (P) that only involves the unknown
T. This was shown in [Tii97b|. From the relations (6), (7), it follows that

(I—(1-eK)(R)=eo|T]PT,

Note that throughout the paper, occurrence of the functions € and 1 — € in connection
with an integral operator simply implies multiplication. Assuming that the operator
(I — (1 — ¢)K) is invertible in a suitable Banach space, we then can write

R=(I—-(1—-eK) e(a|TPT),
J=K(I—-(1—-eK) ' e(@|T’T).
We introduce the notation
G=I-K)I-(1-eK) " e. (10)
Then, we can rewrite the conditions on the boundary ¥ as follows:

—/{(T)% = G(o|TPT) on .

If v is a smooth function that vanishes on I'y, we find the relation

/Qf-c(T)VT~V1p +/2aT¢ +/F ae\T|3T1/1+/EG(a|T\3T)1/J

r
= [so+ [ aTueos [ oeion. )
Q Iy I3
We introduce the notations
0 on I'y,
(AT, ) ::/Qf-z(T)VT-ijL/F aTy, f=LaTly only, (12)
2

oeTg, onlj.
We rewrite (11) as

<AT,¢>+/

I's

ae|T|3Tw+/EG<a|T|3T>w=/Slfw+Afw. (13)



Definition 0.1. Let  C R? have the structure (1), where Q; are disjoint domains with
09Q; € C%L. If the decomposition 9Qg.q = LUT, which is given by (5), leads to X, T € C%1,
we set

VPI(Q) = {u e WH(Q) | y(u) € LY(Z U F?’)} ’

where 7 is the trace operator. The subscript I'; denotes the subspace of functions that
vanish on the surface I'y.

In order to define a weak solution, we still need assumptions on the coefficients &, e.
Throughout the paper, we assume that k; is a continuous function of temperature, and
that there exists positive constant x;, k, such that

0<r <Ki(s) <ky,<oo forseR, foreach ;. (14)

We assume that € is a measurable function of the position and that there exists a positive
number ¢; such that

0<e<ez)<1 forzel. (15)

For a real number p €]1, 00|, we use through the paper the notation p’ = p/p — 1 for the
conjugated exponent.

Definition 0.2. We call T € VP4(Q), 1 < p < oo a weak solution to (P) if T = Tj almost
everywhere on 'y, and if T satisfies the integral relation (13) for all ¢ € V().

Situation and structure of the paper. In the papers |Tii97b|, |Tii97a|, |LT98| exis-
tence and uniqueness of generalized solutions were proved for the problem (P) in enclosure-
free systems. In |[LTO1]|, the authors then found a more general way to obtain energy
estimates, and were able to extend the previous results to general geometries, including
enclosures. The two remaining fundamental assumptions of the paper [LT01|, necessary

to obtain the results, are that the surface 3 belongs to CY® piecewise, and that the heat
source density f belongs to [W12(Q)]*.

Our purpose and main focus is to extend these known results to the case that the right-
hand side f might be a less regular function. This is motivated by the fact that in concrete
applications (resistive / inductive heating, heat conductive fluids), the mathematical the-
ory often only provides L', or at most L'*€ regularity for the heat source density.

Our plan is as follows.

In the first section we prove and recall some essential properties of the operators K and
G. These properties allow us to derive, in the second section, new coercivity inequalities
for the nonlinear form (AT, ¢) + [, G(o|T|*T) 4. The first two sections are extending
the available knowledge about the nonlocal radiation operators and they may interest the
reader in their own right.

In the next sections, we turn to more specifically study the problem (P). In the third
section, the uniqueness issue is briefly treated. The fourth section is devoted to the proof
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of a general existence result for the problem (P) in the case that the right-hand side f
belongs to LP, with p > 1 arbitrary. The case p = 1 is treated separately in the fifth
section.

Since the regularity of the interface X is an important issue for applications in crystal
growth, we draw the attention of the reader to another by-product of the discussion of
the first two sections: the compactness of the operator K (i.e. the restriction 9Q € C1
piecewise), turns out to be unnecessary to prove the existence of weak solution for the

standard case f € [W12(Q)]*.

1 The Operators K and G

We use the following notations. If X,Y are Banach spaces, we denote by L(X,Y") the
Banach space of the linear continuous mappings from X into Y. We denote by IC(X,Y)
the subspace of £(X,Y) that contains the compact mappings from X into Y. For B €
L(X,Y) and z € X, we denote by B(z) € Y the value of B at x. If B, C € L(X, X), we
denote by B C(x) the element B(C(z)). As in the introduction, we will use the notation
IRaa = Ui, 0.

We start by studying the operators K and G. Parts of the following results have already
been proved in [Tii97b|, [Tii97al, [LT98|, [LT01|. Throughout this section, we assume
that 9Q; € C%! for i = 1,...,m. We denote by S the corresponding surface measure.
Under these assumptions, it is well known that the outward-pointing unit normal to OS2,
which we denote by 72, is defined almost everywhere in the sense of the measure S on 0S).
In order to ensure good measurability properties of the kernel w, we in addition assume
that n is a S—almost everywhere continuous function. This is the case, for instance, if
00 is a piecewise C! surface.

We at first consider the integral operator K. For its study, we need to state a few
elementary properties of the kernel w. Under the cited assumptions, the proof of the
following Lemma is straighforward.

Lemma 1.1. If 0Qg,q € C** with k € N and 0 < o < 1, then the set
Y, ={y € 0 : w(z,y) # 0}

is a C* surface for S—almost all 2 € OQraq.

Lemma 1.2. The view-factor given by (2) satisfies the conditions
w(z,y) =w(y,z) V(z,y) € ExX,
w(z,y) >0 V(z,y) € ¥ x X, (16)
Jrw(z,y)dS, <1 VzeX.

Proof. We use the method proposed in |Tii97a|. With the notation of Lemma 1.1, we

write N .
/w(z,y)dSy:/ ni(z) - (y—2)7y) - (= —y) as,

Ty — 2|




We can also write the integrated function in the following way:

i(z) - (y—2)7iy) - (z—y) _ _cos(¢y) cos(¢:)

mly — z[* o mly =2

: (17)

where ¢, [ resp. ¢, is the angle between 7(y) [ resp. 7(2)] and (2 — y) [ resp. (y — 2)].
Representation (17) shows that w is invariant under rotations and translations. For this
reason, we can assume without loss of generality that z = 0 and 7(z) = (—1,0,0). For
obvious geometrical reasons, all points y € 3 such that w(z,y) # 0 belong to the half

space { (1,79, 73) € R3 ‘ x1 < 0}. Observe also that the ray through the origin and an

arbitrary point on the unit half-sphere {(xy, 72, 23) € R*| z; <0, |z| = 1} intersects X,

in at most one point, and in a unique point if we suppose that the surface is closed. Thus,
passing to polar coordinates, we can parameterize the surface by the mapping

U :|g,7T|:><]0,27T[ — X,

7(¢1, d2) cos(¢1)
=U(h1,02) = (1, ¢2) sin(ep1) cos(pz) )
(1, ¢2) sin(¢y) sin(epz)

where the function r :]3, 7[x]0,27[—— R is Lipschitz continuous according to Lemma
1.1. Straightforward computations lead to

() = ! i

(7’2 aEZ s1n2(gz51) + 7’2 67’ + rtsin (gbl)) ’

% sin(¢1) cos(dr) +r 2= sin®(¢)
X —T sin(¢g) — 87)1 sm(¢1) cos(¢1) cos(ga) + 72 sin?(¢1) cos(¢z) ,
—r 8¢> cos(pg) — T 8¢> sin(¢;) cos(¢1) sin(gy) + 72 sin?(¢1) sin(¢s)

2 2 3
\/52 (7’2ﬁ sin?(¢y) + 7 ﬁ + r*sin (gbl)) ,

0py (ol

) - — r3 sin(¢y)

1
. . ) 3
<r2 a{ip sin?(¢y) + r2 a{ip 4t sm2(¢1))

for A;—almost every (¢1, ¢2) €]5,7[x]0,27[. By the symbol Gy, we denote the Gram
determinant of the matrix W/. We thus have that

(=n(¥) - V) (n(y) - ¥) _ —r sin(¢1) cos(¢1)

71—|\I]|4 4 2 or 2 2 2 8r 4
T <7“ 3¢, Sin(¢1) +r2g" + rtsin (gbl))

w(y, V) =

N
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Taking into consideration that ¢; €]7, 7|, this proves the nonnegativity of w. We still
have to compute the integral. If 3, is a closed surface, we have

[ wtmas,= [ ) [ e ) Gy don do

2 T
=[] T oo = i)

proving the lemma in the case that the range of vision X, of the point z is a closed surface.
If the surface 3, is not closed, we can argue exactly as above with a smaller domain of
parameterization ¥ : O C ]%, 7T[ x10, 2w [— X. O

=1

Y

[NERE

Definition 1.3. (1) We say that two points z,y € 0Qgraq see each other if and only if
w(z,y) # 0.

(2) We call Q an enclosure if and only if for S—almost all z € ¥ we have [ w(z,y)dS, =
1.

Remark 1.4. If € is an enclosure, we can assume without loss of generality that the sur-
face X consists of one part, i.e. that X is the boundary of a unique connected transparent
cavity. Technically, we say if A C ¥ is such that for almost all z € A, [, w(z,y)dS, =1,
then we can assume that either A =Y or A = ().

In view of the integrability of w stated in Lemma 1.2, we see that the definition (8) of
the operator K is well-posed at least for f € L>(3).

In the next Lemma, we recall the basic properties of the operator K that were proved in

| Tii97h).

Lemma 1.5. (1) For every 1 < p < oo, the operator K extends to a linear bounded
operator from LP(X) into itself.

(2) The norm estimate || K ||z(zr(x),r(x) < 1 is valid.

(3) The operator K is positive, in the sense that K(f) > 0 almost everywhere on ¥ if
f > 0 almost everywhere on ¥; K is selfadjoint and positive semi-definite from L*()
into itself.

(4) If the emissivity € is a function such that (15) is satisfied, then for 1 < p < oo, the
operator (I — (1 — ¢)K) has an inverse in L(LP(X), LP (X)), with the representation

o0

(I-(1-eK)"=> (1-¢K' (18)

=0

Proof. See |Tii97b|. O



Thanks to Lemma 1.5, we see that the operator G introduced in (10) is well-defined as an
element of L(LP(X), LP(X)). Note the following equivalent representations of the operator
G:

G=I-K)I-(1-6K)'e=e—eK({I—(1-€eK) e (19)

Lemma 1.6. (1) The operator G can be represented as I — H, where the operator H is
positive and selfadjoint in L?(X).

(2) For 1 < p < oo, the norm estimate || H || zrr(x), o))< 1 is true.
Proof. See |LT98]. O

In the next Lemma, we present some further elementary properties of G, K, and H. They
turn out to be essential for the discussion of the coercivity. In the original version of the
preprint, and in the paper [Dru08] the point (5) of the next Lemma is incorrect.

Lemma 1.7. (1) The equivalence H(¢)) =1 <= K(¢) = is valid.
(2) Ity € LP(X) (1 < p < o0) satisfies K (1)) = 1, then v is a constant.

(3) If © is not an enclosure, then for 1 < p < oo, the strict estimate || H || z(r(n),zrm)) < 1
is true.

(4) Let © be an enclosure. For some r +s > 1 (r,s > 0), let ¢» € L"5(X) satisfy
J5 G(|]"" ) [9[*~'4p = 0. Then ¢ is a constant.

(5) Let Q be an enclosure. Define sign(0) := 0. If ¢» € L'(X) satisfies [, G(1)) sign(z)) = 0,
then sign(¢) is almost everywhere a constant on .

Proof. (1): Assume first that H(y) = . By definition, this means that (1—e¢) ¢ +e K (I —
(1 —¢e)K) L e(p) =, which implies that K (I — (1 —€)K) e (¢p) = 9. Define

v o= (I—-(1—-eaK) e(y).

We then have v — (1 — €) K (v) = et and K(v) = 1. Hence v =1 and K(¢) = 1.

) =
If we now start from K( ) 1, then we immediately see that e K () = (I —(1—¢€)K)(),
so that (I — (1 —€)K) 'K () = 1. It follows that H(¢)) = (1 —€) ¥ + eK () = . This
proves the first point.

(2): By assumption, we have for almost all z € 3 that ¢(z) = [ w( y) dS,. First,
let p = 2. Then,
2
2 _ 2
o = | [ vmasy| < ( [ ulesy) ( [t 6t0) dSy)
< [ wie) o) Pasy, (20)
2



by the triangle inequality, the Cauchy-Schwarz inequality, and the elementary properties
(16) of the kernel w. Suppose now that there exists a set M C ¥ with positive surface
measure such that strict inequality holds. This would imply that

(=) < / w(zyy) W) PdSy on M, (=) < / w(z,y) ()2 dSy on S\ M |

Integrating over X2, it follows that

[werass< [ ([ weasz+ [ \Mw<z,y>d5z) ()P dSy

2d
s/zwz(y)\ Sy.

which is a contradiction. Thus, for almost all z € ¥ we must have the equality sign in
(20).

This at first means that

/Ew(z,y)w(y)dsy'Z/Zw(z,y)\w(y)ldé”y,

and for almost all z € ¥ we must have
w(z,y)U(y)” =0, [resp. w(z,y)¥(y)" =0] for almost all y € ¥.

Without loss of generality, let ¢~ = 0.

Second, we have for almost all z the equality

/Ew(z,y)l/Qw(z,y)1/2¢(y)d5y= (/Ew(z,y)dSy); (/Ew(z,y)wz(y)dsy); :

By a well-known property of the Cauchy-Schwarz inequality, this implies that

w(z,y) = A\z) w(z,y)2 YY),

with a real number A(z), for almost all z. Thus, for almost all y and z that can see each
other, we get ¥ (y) = A(z)~!, which obviously leads to the claim.

In the case 1 < p < 2, we can argue just the same. For almost all z € Y, we must have
the equation

~l

S
7

[t uteat vwasy= [wcnasy)” ([ wGnporasy),

L
7

which implies, with some A(z), the equality w(z,y)» = A(2) [w(z, y)% U(y)]
follows analogously.

v’ . The claim

(3): The third claim was proved in [Tii97a|, [LT98]. We give an analogous simpler proof.
Since € is no enclosure, we have K(1) # 1. Thus, by (2), there exists no ¢ € L*(%)
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such that K (i) = 1. By (1), we obtain that also H () # ¢ for all b € L*(X), i. e. 1 is
not an eigenvalue of H. But as H is selfadjoint in L*(X), || H ||z(z2(s),22(x)) must be an
eigenvalue of H. It follows that

| H 2,2 < 1,

and by classical interpolation arguments for linear positive operators, the claim even
follows for all 1 < p < oo.

(4): By the triangle inequality and Holder’s inequality, we at first have
0= [eturrrowitez [ore | [ ooy

> [ o= [ |EGer oo
> [ L 0) e 68 1 e

>(1- || H rts rs s 21
2 (1 | H ot o2 y) [ 191 21)
Thus, we must have everywhere the equality sign. This at first means that

H(l" ) [~y >0, resp. H([™ 9) [ < 0] a.e.onX,  (22)

and, at second, that we have in particular

JH 0 1t = Q0 e ) 1108 1 e

T

The latter point immediately implies that

([ )] = e[Jo 17 = ey (23)

Because of (21), we clearly have |¢| < 1. Since —1 < ¢ < 1 implies ¢ = 0 again by (21),
we just have to discuss the case ¢ = 1.

Now, (23) gives that [|" = |H(|¢|""'¥)| < H(|¥|"), so by definition G(|y|") < 0.
Since € is an enclosure, G(1) = 0. By the fact that G is selfadjoint, we can write
0> [, G(|¢]") = [, G(1) || = 0. The first and second points of this lemma now imply
that |¢|" = C", for some positive constant C.

Returning to (23), where we can assume ¢ = 1, with this information, we get that |¢| =

C = |H(v)|. Using (22), we have in addition sign(H (¢)) = £sign(¢). Thus, H(¢)) = £.

Again, because of the first line in relation (21), we see that H(¢)) = —t implies that
1) = 0. On the other hand, because of (1) and (2), H(v) = ¢ implies that 1 is constant.

This proves point (4).
(5): Observe that

¥ Gsign(v) = 9] — ¥ H(sign() = (1 — | B cquoes.me) 1] = 0.

11



almost everywhere on . On the other hand, since G is selfadjoint, we have

0= / G() sign(1)) = / ¥ Gsign()) > 0,

and we see that ¢ G(sign(¢)) vanishes almost everywhere on 3. This means that || =
Y H(sign(v)), and we deduce that

H(sign(v)) = sign(¢))  for almost all z € 3 such that |(z)| > 0.

In particular, we have for z € ¥ such that ¢(z) > 0

1 = H(sign(¢))(2) = H(X{zex:9>01)(2) — H(X{zex:p<0})(2) -

Since H is a positive operator, the last idendity is only possible assuming that for almost
all z € ¥ such that ¥(z) >0

1= H(X{zez:wo})(z), 0= H(X{zezz¢<o})(z) .
Thus, we can write that
H(X{zex:950}) = X{zex:¢>0;  almost everywhere on X,

and it follows that G(X{ex:p>0y) < 0 on X. But G(x{zex.y>0}) has mean-value zero
on ¥, and thus, G(x{zex:y>01) = 0 almost everywhere on X. Owing to (1) and (2), it
follows that x{.cx:y>0y is almost everywhere a constant. Analogously, we can deduce that
X{zex:v<o0y 18 almost everywhere a constant. The claim follows. O

We recall that for Banach spaces X, Y, we denote by K(X,Y") the set of all linear bounded
compact mappings from X into Y.

Lemma 1.8. Let ¥ € C'* TFor 1 < p < oo, the operator K belongs to the class
K(LP (%), L7 (X))

Proof. This assertion was stated in |Tii97b|, |[LT98| and follows from classical arguments
about weakly singular integral operators. O

For the discussion of L' right-hand sides, another compactness property of K turns out
to be important.

Lemma 1.9. Let ¥ € C*. Then for 1 < p, we have K € K(LP(X), C(X)).

Proof. The continuity and the compactness of K into C'(X) follow from standard argu-
ments about weakly singular integral operators (see for example the part about Schur

integral operators of the book |Alt85|) in the case of a convex surface 3. The proof relies
on the one hand on the estimate

1/p’
(K (D) (e — K < 1l ( 1w ) - ot )l dsy) ,

12



for z1, 2o € Y, and on the other hand on the uniform continuity

1/p’
max (/ lw(z1, y) — w(zg, y)|p/ dSy) — 0,
»

|z1—22|<d

as 0 — 0.

Due to the discontinuous factor © in the definition (2) of the kernel w, the proof is slightly
more involved in the case of nonconvex Y. Note that for each z € X, the set of the jumps
of the function O(z, ) is a one-dimensional submanifold of ¥, that is, a set of zero surface
measure. At the expense of some technical complications, we thus can adapt the standard
arguments to this situation. 0

Lemma 1.10. (1) The operator G has the representation G = ¢ (I — H). If © e Che,
then for 1 < p < oo, the operator H belongs to K(LP(X), LP(X)).

(2) For 1 <p<oolet 1/p+1/p’ = 1. Define
Hy = e K(I—(1—eK) " e .
Then, the norm estimate ||f~fp||£(Lp(2)7Lp(z)) < 1 is valid.

(3) Let € < 1 almost everywhere on . Let ¢ € L>°(X) satisfy [¢/| < 1 almost everywhere
on 3. Then, if neither ¢ = 1 nor ¢» = —1 almost everywhere on I, we must have
|H(¢)| < 1 almost everywhere on X.

Proof. (1): The first claim follows from representation (19) and Lemma 1.8, setting H :=
K(I-(1-¢K) e

(2): We readily verify that
I-KQl—-e) 'K = K(I—-(1-¢K)™". (24)

For an arbitrary f € L*(X), define (I — (1 — ¢)K)™'(f) =: v. Then, obviously, (1 —
€)K(v) = v — f. This enables us to write that

(= K(1-0) K| () = K(v) = K((1 - 9K (v)) = K(0) = (K(v) = K() = K(f).

It follows that (I — K(1 —¢)) K (I — (1 —€)K)™'(f) = K(f), which proves (24).
We at first consider the case 1 < p < oco.

By definition, we have [, = v K (I-(1—-eK)! ei, and because of the relation (24),
we can also write this in the form

Hy=er(I-K1-e) Kev
For an arbitrary f € LP(X), we define
Ri=[es(I—K(1—e) ' Ke]|(f).

13



This definition allows to write that l/p — K (11_/2 R) = K(el/p/f), which is equivalent to

the equality -2 a5 = K(el/p f+ 11/p R) Thus, using the fact that | K||zr(z), rx)) < 1,
we deduce the inequality
P
<
by

/E@: <1/pf+ ER) p:/zé‘ef—l-(l_E)R‘p-

el/p
Using the convexity of the function g(s) = sP and the triangle inequality, we obtain that
L
[ [Celrra-aimn.

I ﬁp(f) ||12p(2) =R ||I£p(2) <I|f ||I£p(2)

proving the result. The cases p =1 and p = oo are straightforward exercises.

(-9,

1
ev f+ 7

It follows that

(3): Consider an arbitrary function ¢ € L>(X) such that |[¢/| < 1 almost everywhere on
Y. We introduce two functions R, J by

R=¢eyp+(1—¢€)J J=K(R). (25)
Note that H (i) = J. In view of (2), we thus have |.J| < 1 almost everywhere on 3. Since
by assumption 0 < € < 1 on X, our definition (25) obviously implies the set identity

A= {ZEZ : R(z):l}:{zeZ : R(z)=1:¢(z):J(z)}. (26)
Taking z € A arbitrary, we can write, on the other hand,
1=J(z) = / w(z,y) R(y) dS, = / w(z,y)dS, +/ w(z,y) R(y)dS,. (27)
by A {R<1}

The latter equality is only possible if [, w(z,y)dS, = 1. Since this is valid for any z € A,
we have by definition that the set A sees only itself. Therefore, by Remark 1.4, it follows
either that meas(A) = 0, or that meas(X\ A) = 0.

Assume finally that J(z) = 1 fora z € X. Writing (27) in this point gives a contradiction if
meas(A) = 0. This means that either H(¢)(z) = J(z) < 1 a. e. on ¥ or meas(3X\ A) = 0.

We can argue analogously with the set B := {z € ¥ : R(z) = —1}. We conclude that if
neither A nor B are the whole of ¥, then they must both have zero measure, and that
—1 < H(¢) <1 a. e. on X, proving the claim. O

2 Coercivity Inequalities

For the remainder of the paper, we assume that the boundary I' is not empty. In this
section we want to study the coercivity of the operator

(AT, ¢>+/ ae|T|3T¢+/G(a|T|3T)w
>

s

14



Here, the symbol (-, -) denotes the duality product between a suitable Banach space and
its dual. The operator A was defined in (12) in the following way:

(AT, ¢>:/Q/<;(T)VT-vw+/anT¢.

Note that, the domain € being disconnected, the expression (AT, T) does not define an
equivalent norm on W'%(Q) as soon as there exists some domain ©; C Q that does not
touch I's. However, as was shown in |Tii97al, one easily obtains coercivity if the domain
Q is not an enclosure. In the latter case, || H || z(z5/4(s) 15/4(s)< 1, and one has

LG@WWDTZ@—WHWWWMMQyLWR

(see also Lemma 1.7, (3) above). For the case that € might be an enclosure, we now prove
a first general coercivity result.

Lemma 2.1. Assume that ¥ € C%'. Let r,s > 0 be two numbers such that r + s < 4.
Then there exists a constant ¢ = ¢, ¢ > 0 such that

(A, 1p>+/F

for all ¢ € W;f(ﬂ)

relil ™+ [ GUor o) 0z emin {16 g 10 15T, -
1

3

Proof. We at first show that there exists a constant ¢ > 0 such that

Aoy [ aers Qoo e 10 By,

I's

for all ¢ € Wlllz(Q) such that

| ¥ ||WF1712(Q) > 1. (28)

Suppose that the latter claim is not true. Then we can find a sequence {1, } C W;f(ﬂ)
such that

(Athn, ) +/F

Setting ¢, := 1/1n/||1pn||WF1,12(Q), we observe that || ¢, Herf(Q): 1. Thus, ¢, — ¢ in W;;Q(Q),

and for a subsequence 1), — 1 almost everywhere on ¥ U I's. Considering the property
(28), we find that

TS r— S— 1
relinl ™+ [ G i)l o < 1 g -

3

T 7| r+s 7 =17 7o1s—1,7 1
A B+ [ el [ GURBIT B B (29)

I's

15



Since the choice r + s < 4 implies that 4% < 4, we can again pass to a subsequence to
obtain that

[0n|" " 4y = []" 4 in L (S U Ty),
|0 Py — []° 14 in L (S U Ty),

which allows us to pass to the limit in (29). Taking into account Lemma 1.7, we now have

1 = ¢; in each €); , Yv=cony, Yv=0onTl.

This leads to ’lZJ = 0. As a matter of fact, we can always find a part ;, C € such that both
0, N Y and 09, NI are not empty. Considering (29), we find that ¢, — 0 € WI}f(Q),
which is a contradiction.

In the case that || ¥ ||W12 < 1, we use an analogous argument replacing || ¥, || W)
1
by || ¥n, ||’"+5 . The clalm follows. O

Remark 2.2. For 1 < p < oo, define the Sobolev embedding exponent for traces p; by

;Tpp if p<3,
py = {1<s< oo arbitraryif p=3,
+00 if p>3.

Then, we can show by analogous arguments that for any r, s > 0 such that r + s < pj,
there exists a constant ¢, 5, > 0 such that for all ¢ in WI};”(Q),

AwwwaW+ASMW%+Lmﬂw*wwww

> cnin {101y 100y IOl | -

In the case that the operator K, is compact a better coercivity result was proven in [LT01].

Lemma 2.3. Let ¥ € C"®. Let r,s > 0. Then there exists a constant ¢ = ¢rs > 0 such
that for all ¢ € V2""*(Q),

(A, w>+/F

1

adW“ﬁLﬂWHMWFW

3

Proof. See |LTO01]. O

The inequalities in Lemma 2.1 and Lemma 2.3 establish coercivity properties of the oper-
ator of heat radiation taken in connection with the heat conduction. The next statements
show that the radiation operator by itself already exerts some coercivity.

16



Lemma 2.4. Let ¥ € Cb®. Let r, s > 0 be to numbers with s < r+1. Then the following
statements are valid:

(1) There exists a positive constant ¢, ; such that for all ¢» € L"(X),

[ cturoy ( / |w|) A
»

(2) If the domain €2 is an enclosure, there exists a positive constant ¢, s such that

[Ger oo ze 16 iy,
for all ¢ € L™ (X) such that [ dS = 0.

Proof. (1): We assume that the assertion is false, and we seek a contradiction. We can
construct a sequence {¢,} C L' (Z) such that || ¢, |zr+1(zy=1 and

Tor=1.7 N7 TS Ttl 1
[atarranins (1) " <1 (30

Extracting subsequences, we find that

U — 1 in LX), n|" "y — win L' (2).

Passing to the limit in (30), we can write

Jim sup / G~ lim / ("™ 6) 0 < 0,

n—oo

and, using the compactness of H from L'*/7(X) into itself, we get

limsup/e|12n|’"+1—/eﬁ(w)@ﬁo
n—00 > 2

On the other hand, we have by the same tools that

n—oo

/eﬁ](w)@z:liminf/efl(h/;nr_l@/;n)?z
) s

o g T 1
€71 H(|tn|"™" ) [ e [ - (31)

< lim inf
n—oo

L1+1/r(2)

In view of Lemma 1.10 we can write

| 205,71 6)

= || e (75 )

= (fetir)”
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Thus, we can continue the estimate (31) by

. - - - s
/eH(w)w < | et Y ||pr1(x) liminf (/ € |wn|’"+1)
b n—oo >

It follows that

- . 5 T
li]fnsup/€|@/)n|7”rl <|| €77 4 | r1(z) (thUP/EWnVH) ;
» Y

n—oo n—~0o0

1 ~ 1 ~
which implies that limsup,,_, || €77 ¥, ||2ﬂ1(2)§|| €+ 1) ||2ﬂ1(2). Combining this with
the usual lower semicontinuity of the norm, we obtain for a subsequence that lim,, ... ||
1 ~ 1 ~
€+ 4y, ||2ﬂ1(2):|| SRR ||2ﬁ1(2), which, in its turn, yields

Un — 1 in L'TY(D). (32)

Reconsidering (30) for this subsequence, we now obtain that
[ etirii-o. 33
by

By Lemma 1.7, it follows that 22 is constant. But since s < r + 1, (30) also gives that

r=41

(fz |@E|S) " =0. Thus, » = 0 on X, a contradiction by the strong convergence (32).

(2): We prove the second estimate by the same arguments, obtaining the consequence
(33). Then, by the strong convergence (32), we find that ¢ has mean value zero on .
We can finish the proof analogously. O

We now prove a last coercivity result, which will in particular help us to produce estimates
in the case that f belongs only to L.

Lemma 2.5. Let ¥ € CY®, and let the emissivity satisfy € < 1 on X. Then there exists
a positive constant ¢ such that

/E Gw)sign(®) > ¢ || ¥ L) -
for all ) € L'(X) such that [ ¢ dS = 0.

Proof. Again, suppose that the claim is not true. Then, it is possible to construct a
sequence {1, } C L'(X) with the properties

S|

| Y lrey=1, /Ewn =0, /EG(@ZJH) sign(1,) <

18



Now, since 1, G(sign(¢,)) = |tn| — 1, H(sign(¢,)) > 0, and using also the fact that G is
selfadjoint, we can write that

+ > [ Gwn)siont) = [ v, Gsien(w)) = [ 1] Glsigne))

- / € [l Isign(ipn) — H (sign(n)]. (34)

Choosing a ¢ > %, we can find a subsequence sign(y,) — u € L%(¥). We have, in

particular, that |u| < 1 almost everywhere on 3. By Lemma 1.9, we can again pass to a
subsequence if necessary to find that

H(sign(vy)) — H(u) in C(X). (35)

We distinguish two cases.

For the first case, we assume that u = 1 almost everywhere on 3. By the uniform
convergence of {H(sign(v,,))}, and by (34), we obtain that

tim [ ] = lim / ] — b = Tim / [ [sign(n) — 1

n—~00

= Jim [ o] lign) = Al = i [ 0] sign(us) — Hisign(s)] = 0.

This is a contradiction. We argue analogously if u = —1 almost everywhere on 3.

Thus, we must have the second case u # 1,—1. In this case we know, thanks to
Lemma 1.10, that [H(u)] < 1 on X. This implies, by the continuity of H(u), that
1 > maxy |H(u)| =: 70. We have

0= lim [ clunlsign(us) ~ Hisign(w, )] = lim [ elulsin(us) - f(0)

> € (1—) lim / |thn] -
n—oo »
U

The following Lemma is usefull when we want to use test functions that depend non
linearly on temperature. It generalizes properties proved in [LT01], [Mey06|.

Lemma 2.6. Let €2 be an enclosure. Let ' : R — R be a nondecreasing, continuous
function with F'(0) = 0 and |F(¢)| < Cy (1+]t]°) as [t]| — 00 (0 < s < o00). Let 0 <r < o0
be an arbitrary number. Then for all ¢ € L™"5(3),

/E (o 4) F() > 0.
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Proof. We fixn € N. Fori=1,2,..., we define

) | L ) o B
a§>::F<ﬁ)—F<Z ) ai}::F( ! )—F(—Z).
n n n n

Since F' is nondecreasing, we obviously have al(- ") > 0 and a( ") < 0. Denoting by X[ the
characteristic function of the interval [a, b], we introduce

Z 0™ Xfi/ntool(£) + @) X)—oor—ifm) (£)

We can write

Leww*wﬂww

:;{agm /Z G %) Xijnrooi(¥) + a) /Z GO ) 3ot/ d})} |

Now, since 2 is an enclosure, G(1) = 0, and we have

[ 600 xmni9) = [ (100~ ) i
P Py
= [ (1ere - 1) Gt
Py

(@) <0G < i/

This means that sign((|w|7’_l Y — L) G(X[i/n7+oo[(¢))) = 1, whence

As usual, we observe that

G (Xji/n,4o0o[ (V) =

o / GO ) gy (8) = 0,
>

for all i = 1,2,.... In the same way we show that a"" fz (|11 ) X)—o0,—i/m (¥0) > 0.
We thus proved that

Leww*wwmwzo. (36)

Observe that for any ¢ € R¥, we can find 45" € N such that ¢t € |2 2—— | We have

F(t) = Fo(t) = F(t) — g:al("’ Xiifn+ool(t) = F(t) — i F (%) - F (Z m 1)

(n)

:F(t)—F<ZO>—>0 as n — 00,

n
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which is true for all £ € R. By an analogous consideration for ¢ € R™, we easily obtain
that F,(t) — F(t) for all t € R. We also immediately see that |F,(t)| < |F(t)| for all
t € R. It follows that

Fo(1) — F(y) in L*(X) for all ¢ € L*(X) .

Passage to the limit as n — oo in (36) proves the assertion. O

3 A Uniqueness Result

In the context of (P1), (P2) the heat conductivity is material dependent, and given as a
function of the temperature k; in each subdomain €2; for © = 0, ..., m. Thus, our function
k is defined piecewise, and has the form

k=rk;in€ 1=0,....m.

Due to the correction made to Lemma 1.7, (5), the simplified proof of uniqueness in the
paper |[Dru08| is incomplete. We therefore come back to the more complicated method of
proof employed in the original version of the preprint.

Lemma 3.1. Let x; : R — R be globally Lipschitz continuous for ¢ = 1,...,m, and
satisfy (14). Then there exists at most one weak solution of (P1), (P2) in the class
V24(Q).

Proof. The uniqueness of the solution is proved using the same method as in |[LTO1].
However, note that since x depends on temperature, we must estimate some new terms.

Suppose that 77 and T3 are two weak solutions of (P1), (P2). Subtracting the respective
integral identities, we obtain that

/QK(TQ) V(T = Ty) - Vi +/

1)

a@—ﬂw+/adﬁﬂbﬂﬂMw

+ [ GOUTIT = T v = = [ (B = xT) VT Vo, (3)
for all ¥ € Wi*(Q) N L®(X U T's). Define
(= {a: €0 ) To(z) — Ty(z) > o} LS = {z ey ) ATy — T1)(2) > o} ,
Qp = {x =0 ) To(z) — Ty(z) > 5} R S {z > ‘ ATy — T1)(2) > 5} ,

and observe that € / Qo, and Sg /! Sy as é N\, 0. Here, v denotes the trace operator.
We introduce a function

Vs = Il’llIl{(TQ — T1)+, 5} .
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We easily can show that v(vs) = min{[y(T2—T})]*,d}. Thus, writing also on the boundary
vs instead of vy(vs), we have
§ — H(vs) on s

>0
vs >0 in Q, vs =0 on I'y, G(vs) = .
0—H(vs) <0 on X\ Xg.

(38)

Testing with ¢ = vs in (37) is possible, since this function is bounded. Observing that
(Ty = T1) vs > v§, and that the term — [. o€ [|T23| Ty — | T3 TI} vs is negative we get the

inequality

/QH(TQ)\W(;PJF/ avi < (39)

T2

- [o [ 317~ 18] Gtes) — [ [6(22) = (1) V1 T,

Q

By adding the term [, G(0 vs) vs on both sides of this equation, we obtain that

/in(Tg)\Vv(;P—i-/EG(UU&)U& <

— / o [|T23| Ty —|T7] Tl] G(vs) + / G0 vs) vs — /[FL(TQ) — #(TV)] VTy - Vs .
b b Q
Now, we use the disjoint decomposition of 3,
D=\ U S\ U S,

and we observe that
—/ o (1317 — 7911 G(ws) <0, / o G(vg)v5 < 0. (40)
Z\io E\20

On the other hand, using the inequality
[Pt — [t ta] <4 (|2 + [t2]?) [t1 — t2|, forall g, &, € R, (41)

we can write

[ Ao—[|T23\T2—|T13|T1] G(05)§405/ (112 + |T1]*) |G(vs)|
3o\Xs

20\25
: :
<soi([ e nl) Nusleeses ([ meni) ol
Yo\Xs Yo\Xs !
(12)

We find easily that

=

[ - 0G(vs)vs < cd || s erl,z(ﬂ) meas(2 \ X5) (43)
20\25 1
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In order to estimate the last terms on X, we introduce the set
S5 = {z =5 ‘ TP Ty — TP T < 5} .
Recalling that G(v;) > 0 in X5 we have

oo —mim-mm) e < [ ofus— (1317 - 1917 Gl

25025

< / 005 G(v5) < ¢8| vs || L2(x) meas(S5 N 55)7 .
25025
(44)

Summing up the results (40), (42), (43) and (44), we can write down the estimate
- [ (1117~ 111 Glwn) + [ Glovvs b v g fr (49)
s s
with the sequence

A

3
1 N N ~
f5 = (/ A |T2+T1|4> + meas(So \ 55)7 + meas(Ss 1 55)7
by

0\Xs

that converges to zero as 0 — 0. Finally,

/Q[K(TQ) - H(Tl)] VTl : V’U(g = / [K(Tg) - H(Tl)] VTl : V’U(g

Q0\ Qs

%
<L,¢ (/ ) \VT1|2) Il vs Iz s (46)
Q0\ Qs b

L, being a Lipschitz constant of k.

By the inequalities (45) and (46), and taking into account Lemma 2.1, we can conclude

that
%
|| vs ||WF1»2§ co <f6 + f5+ </ ) |VT1|2> ) :
1 A0\ Qs

It follows that

1
R 1 2 1
|QHQ5|:— / 52 S— || Vs ||L2(Q)—>O
5 Qﬂﬁg 5

This gives |2N QO| =0, that is, T, < Ty a.e. in €. By exchanging the roles of T, and 717,
one gets their equality in €. O
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4 Existence Results

We recall our purpose to obtain estimates that involve the LP—norm of the heat sources.
Throughout this section, we assume that there exist an extension of the imposed temper-
ature Ty on I'y, that we still denote by Tj, such that

To(x) > ess %nf To(z)  almost everywhere in . (47)
zely

We also assume that €2 is such that
dist(I", ) > 0. (48)

This assumption implies no loss of generality in the type of applications considered (see
the Introduction). If the assumption (48) is satisfied, we choose a fixed ¢y € C*°(Q2) such
that oo =1 on I' and ¢y = 0 on X, and we set

To = TQ ¢0 . (49)

The function TO is an extension of Tj that does not perturb the non local terms on . We
can state our first main result.

Theorem 4.1. Let the heat conductivity  satisfy (14) and assume that e satisfies (15).
Assume that f € LP(Q) with 1 < p < 0o, and let the assumptions (47) on Ty and (48) on
the domain 2 be satisfied.

(1) If ¥ € C®" and p > 2, then Problem (P) has a weak solution 7". In addition we have
the following a pmom estimates. If p > %, then for all 1 < r < oo, we can find a
continuous function P, such that

Jirv

If p €19/7,3/2], then

12(9) ( || f ”LP(Q || f ||L2(F)a ||TO||W1v2(Q)> ||T0||L5(I‘3)> .

Tl s, y2 <||f||m AT 2o I Tollwa ||ToHL5<r3)-

Tr = (Q L37(F

(2) If X € C, Problem (P) has a weak solution T. If p > 9/7, then (1) is valid. In
addition, we find that for p € [6/5,9/7],

1T 1 sege oS PO Nascors 0PIz WTolbwnssn s ITllisce )
and that for p € [1,6/5[

171, g o < PO Do 07 g T o W05 )
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Here P, P, are continuous functions, which depend on p, dist(I', ¥) and on ess irnf To(2).
zels

If the right-hand side f is positive in €2, then 7" > inf{ess inf T(z), ess ilpf Trxt(2)}
ze

zely
almost everywhere in (2.

We essentially carry out the proof in the next two propositions. We will make use of the
following notations. The space W;lp(Q) contains the elements of W1?(Q) whose trace
vanishes on the boundary part I';. Recalling the notation (49), we define for T € Wllip(Q)

(1<p<o0) A A
T:T+T0

For 6 > 0, we introduce the operators
(AT, ) = / K(T) vcﬁ.w+/ al
Q Iy
~|P—2 o
(AsT, ) =6 / ‘VT‘ VT -V
Q

Proposition 4.2. We fix 3 < p < oco. For an arbitrary number § > 0 there exists
T e Wllip(Q) such that

- A _
(AsT, ¢>+<AT,¢>+/F360—\T| T¢+/EG(J\T| T)w_/ﬂfw +/Ff¢, (50)
for all v € WrP(Q).
Proof. For T, € Wﬁip(Q), define
(AT, ) = (AsT, ¢>+/F co|TPT, (BT, ) ;:/EG(U|T|3T)¢.

We show that the sum A + A + B defines a coercive, pseudomonotone operator from
W;lp(Q) into [W;lp(Q)} . We at first discuss coercivity. In view of (49) we have

(BT, T) = / Go|TPT)T = / Glo|TPT)T.
) )
Using Remark 2.2, we easily find that
~ o . 9 5 ~
<(A + A + B)T7 T> > 5 l'Illl'l{H T ||W1}71P(Q) ) || T ||€Vl}1p(9) ) || T ||WI}1P(Q)} - 00,57

with a positive constant Cj s that depends on § whose exact value is not needed. This
proves the coercivity.

In order to show the pseudomonotonicity of A+ A+ B, we at first prove that B is compact.
Let
Ty — T in WpP(Q). (51)
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For ¢ € Wéip(ﬂ), we have the estimate

)(B T — BT,¢>) - ‘/E [G(o|Tx* Ty) — G(o| TP T)] w' _

Aﬂ@ﬁn—ﬁﬁﬂmw
< 4o max{ [T + |71} / T, — T |G($)
Q >

< CP N G lewemyoemy | ¥ ”Wl}’lp(Q)H T =T )

where ¢ is the embedding constant Wllip(Q) — (C(Q), and C is a bound for the norm of
the sequence {T}} in Wllip(Q). We thus can write that

I BTy = BTl < € I Tk = T ey — 0,

since the embedding W () < L'(Z) is compact.

We now show that A is pseudomonotone. For the sequence (51) we assume that

limsup (A(T},), T, = T) <0. (52)

k—o0

From straightforward manipulations we get, using the monotonicity of the p-Laplace part,
that

AK(Tk)|V(Tk—T)|2+/ o (T, —T)?

1)
<(A(T}), T = T) — / K(T) VT -V (T, = T) —/ aT (T, —T).
Q Iy
Thanks also to (51) and (52), this yields

limsup/ (T} [V (T), — T)|? +/ a(Ty—T)*<0.
k—oo JQ I

This provides us with a (not relabelled) subsequence such that V71}, — VT in [L*(Q)]3.
For this subsequence and ¢ € WI};p(Q), one gets

lim (AT, , T, — ) = (AT, T —¢).

k—o0

Thus A is pseudomonotone. Since it is well known that A is monotone, we also get that
A+ A is pseudomonotone (see [Lio69], remark 2.12). Since B is compact, we finally obtain
that A+ A + B is pseudomonotone.

The assertion now follows from standard arguments. O

Remark 4.3. Proposition 4.2 states the existence of a solution of (P) with the following
nonlinear Fourier law with respect to VT for the heat flux ¢:

q=—(5|VT|""*+ k(1)) VT .
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In the next proposition, we obtain uniform estimates on the sequence of approximate
solutions {7} constructed in Proposition 4.2.

Proposition 4.4. (1) If ¥ € C%! we get, for all 2 < ¢ < co, the estimate

g+1
| T5 ]| w2y + H\Ta\ 2

)WW(Q) + (|75 2 (a+1)(IsUx)

<p( I olbwieey, [ Tollzsy) +C,

[ ETET DN A Y

with a continuous function P, of the data and a sequence Cj of positive numbers that
converge to zero for § — 0.

(2) If ¥ € C*, we have, for all 1 < ¢ < oo,

i
I Tsllw e + |1 7517

a1 Tl o)

<SPI0 sgen ST
L72aF3 (Q) L

g+1)
2 a2 (I

Tl [1Tollssw ) + s,
and for all 0 < ¢ < 1,

atl
IT5llwrqe + {1751 + 1T eraraum)

‘Wlﬂ(g)

<P (071 sy oo 171 g Doy I Tollrcey) +C,

with s = 32%:;1), and Cs — 0 as 0 — 0.

Proof. For the sake of clarity, we present the proof in the homogeneous case Ty = 0 and
Tiy = 0. The general estimates follow by similar techniques.

We would like to use v = |T5|7"! T as test function in (50). We first consider a ¢ > 1.
As one easily computes,

v(m\q—lﬂ) = q|T5]*"' VT} € LP(Q)

since Ty € L>*(2). Thus, we can test with this function. Consider also the relation

V<|T5|q_1 T5> -VTs =

(g +1)
We can write
4 qg+1
/7q2 {6IVTs/P% + k(T5)} ‘V|T5|%
Q (q 1)
It follows that

4q g+1
/Qm/f(fs) ‘V|T6| 2

2
+/ G(o|T}| Ts) |T5| " T :/f|T5|‘1‘1T5.
» Q

2
+/G(0|T§|T5)|T5|q‘1T5 S/f|T6|q_lT6- (53)
> 0
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Now, if we want to consider a 0 < g < 1, we choose an arbitrary small a > 0, and we test
with the function T (a + |T5])7"'. We obtain the inequality

/ K(T) (T3] + )2 (q|Ts| + ) [V T3 + / G(o|T2\ Ty) (T3] + a)*' T
Q )

< [ rmi+ar m.

Letting o — 0, we get, by Fatou’s lemma,

/K(Ta)Q|Ta|q_1 IVT6|2+/G(UlTé)’lTa)|T<s|q_1T<S = / FITs]" (54)
Q 2 Q
Denoting by xa() the characteristic function of the set A(0) := {z € Q : |Ts(z)| > 0},
and considering the relation V |T5|M =l \T5|QT*1 sign(T5) xa(0) V15, we see that we can
write (53) also if 0 < ¢ < 1.
Define w; := |T5|"= n . Applying Young’s inequality, we can write down the estimate
2q 2q
q __ q+1 q+1 q+1
1= [ U1 <ls Uit £ s <A1 s s Dt
a+ 2
< Cy || f || 32(31:1))) @ +7 || Ws ||Wl}»12(Q)> (55)

where 7 is an arbitrary small positive number. Analogously, we prove the estimate

2(g+4)

I < el f 1%, e Y s g (56)
% We (@)

We also note that G(o|Ts|> Ts)|T5|7 Ts > G(o|Ts|*)|T5|?, since the operator H is positive.
First Case: X € C%! only.

In view of the definition of ws, and of the estimates (53) and (55), we have

4q 2 a+1 q+1 2
V ( ' < a+ .
/Q (¢ +1)? #(Ta) [V +/2 <0w5 o I/ 3§Zi§) (@) 7 1

If we choose 2 < ¢ < oo, we have 2‘1 + q+—1 < 4. Then, Lemma 2.1 is applicable with

r=2q/(qg+1),s=8/(q+1). First assuming that |||Tj|"z ||Wr1’2(9) > 1, we obtain from
1
+1
(57) that |||T5|q2 H%/Vl 2(Q) <c |l f ||q3(q+1)
Iy L7243 (Q)

If |||T5] " ||W1 2(q) < 1, we obtain, replacing (55) by (56) and using the same argument,

2( 14)
that [||75]"2" | V;FE(Q) <ec, || f ||L3(q+;)) o We conclude asserting that
1 2q+
T P .
Tty < P S 1 )
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for all 2 < ¢ < 0.
Second Case: X € Cle,

We can apply Lemma 2.3 instead of Lemma 2.1. By the same techniques, we achieve the
better estimate

H|T6|%

a1 75 sy < Polll £ sgen ). (58)

for all 0 < ¢ < o0.
On the other hand, one has for 1 <s <2, 1 <r,and v =r/(r —1), that

\VT5|®
VTs|® = VTs|® = [ ————=
/Q\ 5] /Ql 5° Xa0) RTAIIE

s/2 (1—g) ot (2—s)/2 /2 P (1—q)s
< q —q)5= < s as .
< ([rm) ([mom) T < | Tl 1T 1 e

For 0 < ¢ < 1 and for the choice
~3(g+1) S_3(q+1)

)

q N q+2

s

)

)

we see that ' = 32(3151,)), and, using the embedding theorems, we obtain from (58) that

| VTs || o< Py(ll f ||L3(gi1) (Q)), which finally gives that

a+1
I T5 Mgy + 1T lwrae) + 1 Ts ooy = B(ll f HL%(Z_i%_)(Q)).

In the general, nonhomogeneous case, we have to consider test functions of the type
|Ts|9 Ts — Ty o, where Ty, = Ty ¢, with the function ¢y according to (49). Making use of
the assumption (47), we can then prove the general estimate stated by the proposition. [

Proof of Theorem 4.1. Suppose that f € LP(Q). Tt is straightforward to calculate for
which range of ¢ > 0 we can obtain the estimates of Proposition 4.4. This are precisely
the estimates stated by the theorem. In each case we get

Ty — T in Vo7 (Q) (59)

with s > % and r > 4. The passage to the limit with the sequence of approximate solutions
constructed in Proposition 4.2 is then a straightforward exercise.

If f>0inQ, we set ky := inf{ess ian To(z), ess ilpf Tixi(2)} and use in (50) the test
zely ze
function (75 — ko)~. It follows that

lim sup (/ \V(T5 — ko)~ |* + / a(Ts — Txt) (Ts — ko)~
Q 1)

6—0

‘l'/ o (|T5]> Ts — |Tuxs|® Toxe) (Ts — ko)~ —|—/ G(o |T5> Ty) (Ts — k:o)_> <0.
I's %
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Thus, by (59), and since by Lemma 2.6,
[ GIT L) (T~ ko) = [ Gl 1T ) (T = ko) + ko) 2 0.
% by

we get that (T — ko)~ = constant in €, and that (7' — ko)~ = 0 on I" and the claim is
proved. O

5 L-Estimates

Since for the right-hand side f, we only want to assume the regularity f € L'(Q), the
theory of the precedent section do no longer apply. We have to look for other techniques
in order to pass to the limit with approximate solutions. Throughout this section we will
assume that ¥ € Cb®, and that e < 1 almost everywhere on X.

Theorem 5.1. Let f € L'(Q) and f € LY(T'). If (48) is satisfied for the domain Q, then
there exists T € V54(Q), 1 < s < 2 arbitrary, such that 7' = Tj, almost everywhere on I'y
and such that

(AT,¢>+/

s

eﬂﬂ”%+/GWHPﬂw=/fw+/fm
> Q I
for all ¢ € WIEIT(Q) (r > 3). In addition, one has the estimate
17 gy + I T llscraom= P (1S lrs I ey s ITollwnacey s | To lleacrsy )
with a continuous function Py, for all 1 < s < %

It is easy to construct approximate solutions. Setting fI := sign(f) min{|f|, 0}, we
find by Theorem 4.1 a T € V*5() such that T'= T, on T'; and

AT TI*T Glo|TIPT) ¢ = (9] Flo]
( ,w+/eﬂ| wﬁé<ﬂ|>¢ Afw+Afw, (60)

s

for all ¢ € VF21’5(Q). We define a sequence of numbers { My} by
1
My = ——— [ T3’ Ts. 61
’ meas(X) /E TS s (61)

Proposition 5.2. Under the assumptions of Theorem 5.1, we have or any sequence of
approximate solutions {75} according to (60) the following uniform estimates:

(1) For the temperature on the boundaries I'; ¥, we have:

I Ts ey + | T5 lpaey) + | T3 Ts — M |l

< P(If oo I F iy 1 To s ) + G,

where C5 — 0 as § — 0.
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(2) Forall 1 <s < 3, the temperature gradient is estimated by
L5 M= Ps( | llzs (1 ey s [ Tollwregy || To [leaces) ) +Cs,
where the sequence {Cs} converges to zero.

In these estimates P, P, are continuous functions of the data.

Proof. Again, we prove the propostion for the homogeneous case, and we only indicate
how to obtain the general result. In relation (60) we use the test function

Wb = 1,5 = sign(Ty) min{[75], v} ’

where 7y is a positive number. Note that Vi), s = %VT(; X{zeq:|T5|<y}- Therefore, we have
that V7 - Vi, s > 0 almost everywhere in Q. Since |t 5| < 1 almost everywhere in €,
we obtain the inequality

/FzOéTHP»,,a+A460\T5|3T5¢y,5+/ZG(0'|T5|3T5)1/17,5 S/Q\f|+/r|f|- (62)

We see that 1., 5 — sign(7s) almost everywhere in €.

Observe also that [ G(o |Ts]* Tj) sign(T5) > 0. Letting + tend to zero in (62), we obtain
from the dominated convergence theorem that

min{e; o, o} (|5l 21 ra) + 15l acrgy) < I erey + 1 1o - (63)
Now, we consider the test function

min{||Ts|° T5 — M;|,~} 41

’QZ)%(; = sign(|T5|3T5 — M(;) ~

Y

where v is a positive number.

Note that Vi, 5 = % | T51° VT5 X(wea: 1153 T — Ms| <~} almost everywhere in Q. Therefore,

4T3
/F&(T(s) VT5- -V, s :/ |76| K(T5) X {ze: T2 Ty— My <} V> >0,
0 0

and since |1, 5] < 2, we obtain that

in{||T5]® T5s — M,
/G(U|T5|3T5) {sign(|T5|3T5—M5) min{||75[" 75 51,7} +1}
>

v
<c(l fllzve HIfllerm) -

Here, we also made use of (63).
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Now, since 2 is an enclosure and G(1) = 0 almost everywhere on 3, we can also write

min{||T;|* Ty — M), v}
Y

/ G(O’ (|T5‘3T5 — M5)) sign(|T5\3T5 — M5)
by

<c(| £l Nl -

Letting v — 0 we obtain that

/G(U(\T5\3T5 — Mj)) sign(|T5|* Ts — Ms) < e (|| £ oy +I Fllery) -
¥

Lemma 2.5 applies and gives the first estimate.

For v €]0, 1[, we finally use the test function 1, 5 = sign(7}) <1 — m) This leads to

|VT;)? _
— <
e /Q (1+Ty)+t = (I f llzr@y I fllzray) s

where we made use of Lemma 2.6 in order to verify that

)

Now, using the arguments of [Rak91], we get for 1 < s < 2 and v = 22% the estimate

/EG(U\TJPT&) sign(T5) (1 -

| VT

~ ~ 2(3—s)
Ls(@) < Cs <|| f oy ey + U llevey o)) ™ ) :

O

Proof of Theorem 5.1. From Proposition 5.2, we get for any sequence of approximate
solutions {75} according to (60) the existence of a subsequence such that

Ts — T in WY(Q), Ts— Tin L¥(0Q), Ts— T in L¥(Q),
Ts — T almost everywhere in €2 and on 3,

with 1 <s<32,1<35<2 and 1 < s* < 3 arbitrary.
B y

The difficult point is the passage to the limit in the nonlocal boundary terms. For the
sake of clarity, we prove the theorem in the case that I'y = ) = I's, i. e. I' = I';. The
general result is proved by the same method. Starting from Proposition 5.2, we can write,
by Fatou’s lemma,

C' > lim inf | 5] Ts — Ms || 21(s)> / lim inf ‘T5\3T5 — M5) : (64)
— » —

Now, suppose that there exists a subsequence |Ms| — oco. Then, for this subsequence, we
have almost everywhere on X that

li in |75/ 75 MJ) = lim ‘|T5\3T5 - M5) = lim )\T|3T - MJ) _—
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since the pointwise limes 7" must be finite almost everywhere on the boundary. This
contradicts (64). Thus, the whole sequence {M;s} must be bounded by some constant,
and we have, by the definition (61), that || 75 || L1 < C.

Now, in view of Lemma 1.10, we write G(o |T5|* T) = eo (|T5* Ts — I:I(|T5\3T5)). Con-
sidering y 4, the characteristic function of an arbitrary measurable subset A C X, we can
write

J1mze z) < [ B2 xa= [ 1= 0= 08) 0T Ko
< || T3 o max K (xa) < O max K (va).

If we now assume that meas(A) — 0, that is x4 — 0 in L9(X) for ¢ < oo arbitrary, then
by Lemma 1.9, we obtain that K(x4) — 0 in L>°(X). This yields

sup/ ‘IZI(\T5|3T5)’ X4 — 0 asmeas(A) — 0.
s

6eR

Thus, the sequence {H(|T5]*Ts)} is equi-integrable, and therefore weakly compact in
LY(X). We now find u € L'(X) and a subsequence such that

H(|T5P Ty) — win LM(D). (65)

Passing to the limit in (60), we obtain, for all ¢ € W;:(Q), r > 3 arbitrary, that

/Q/-f(T)VT-V¢+A2aTw+%%/Eae|T5|3T5w—/Eeauw:/wavt/rfgb.
(66)

We now want to compute lims_g [, G(o |T5|° T5) 1. For t € R and v > 0, we introduce

the function
(1) = 1 ift <0,
P e itezo0,

For an arbitrary ¢» € C*°(Q2), such that ¢» > 0 in Q, and ¢» = 0 on I', we use in (60) the
test function g,(75) 1. We obtain

/ w(Ty) VT; - Vb g, (Ty) + / (o |To* Ts) 9+(Ty) v + R s
Q b

- / £ g (Ty) + / 74 g, (T).
Q T

with the notation R, 5 := [, k(Ts)|VT;|* ¢/, (T5)%. Since for each v > 0, the function g,
is monotonely decreasing, we have that R, s < 0. This gives that

/Q K(T5) VTs - Vib g, (T5) + /E G(o |Ts]* Ts) ¥ g, (T5) > /Q FOl% g, (Ts) + /F F9 g, (T5) .
(67)
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We can write

(o [T5 Ty) 9,(Ty) = (e [T5P Ts — ea H(IT[* T3) ) 9,(T5)
B ea Ty

1—|—’yT +€0’|T5‘3 —60’H(|T5‘3T5> gfy(T(;)

For fixed v, g, is contiunous and bounded. Using the dominated convergence theorem
and Lemma 5.3 at the end of this proof, we can take the limit § — 0 in (67) and obtain
that

| R VT Vog, @+ [ oo

/fw% /fw%

Letting now v — 0 and observing that g, /" 1, we find that

/QK(T)VT~le+/206T+41/1+}$EI(1)/260|T5|3T6_¢—/Eaeuw z/gfw +/Ff¢.

(68)

+4

+4¢+hm/ea\T5| Ty ¢ — /aeuwg,y T)

Recalling our choice of ¢, we compare (66) and (68) to find that

/06T+4¢Zlim/aeT;4¢.
> 6—0 >

for all ¢» € C°°(Q)) such that ¢» > 0 in Q and ¢» = 0 on I'. Fatou’s lemma gives for such v
that even

/06T+4¢:1im/aeT5+4¢. (69)
> 6—0 »
In order to study the convergence of the negative part, we can for v > 0 consider the

functions
—1
gﬂy(t) — W fortSO,
—1 fort > 0.

Using the test function g, (75) 1 for ¢ € C*°(Q) such that ¢ > 0 in Q and ¢» = 0 on T,
we obtain in a similar manner that fz celT™" Y > limg_g fz o €T5_4 1, which implies that

/JGT‘4w:1im/JeT6_4w. (70)
> =0 Jx

In view of (69) and (70), we obtain that [ oeT* ¢ = lims_o [;, 0 € Ty ¥. Because of (48),
we can, in particular, choose ¥y = 1 on %, which yields fzaeT‘1 = lims_. fEUeTf. In
view of Lemma 5.4 at the end of this proof, this suffices to establish the strong convergence

Ts — T in LY(X). (71)
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As a matter of consequence, we now have u = [ (|T|>T). Coming back to (66) with this
knowledge, we find that

[ ROV vos [ Gemprie= [ fo+ [ o,
Q b Q r
proving the integral relation. 0

The two following Lemmas are proved in [GMS98|.

Lemma 5.3. Let ag, a € L>(2) such that ||ag||p~@) < Aforallk € N. Let by, b € L'().
Suppose that a; — a almost everywhere and that b, — b in L*(2). Then, a, b, — ab in
LY(9).

Lemma 5.4. Let uy, u € L'(2) be such that uy — w almost everywhere and [Jug|| 1) —
|ul/r1(@). Then uy — u strongly in L'(€2).

6 Concluding Remarks

In the two main theorems 4.1 and 5.1 of the paper, we have presented new results on
the weak solvability of the stationary heat conduction-radiation problem. The practically
relevant case of LP— heat source densities, with p close to one is covered by the theory.
Continuous estimates in terms of the data are obtained in each case for the temperature
gradient, and for the total emitted heat radiation on the surface 3. The estimates of the
fifth section only involve the term || f||11(q). They are especially attractive, since the total
heating power is the quantity that is actually controlled in industrial applications.

The proof of these theorems relies on coercivity properties of the nonlocal radiation op-
erators that had not been stated before (in particular Lemma 2.4, 2.5 and 2.6) and have
been derived in the first two sections.

Throughout the paper, the regularity of the surface X has also been an issue. Theorem 4.1
shows that the existence of weak solutions can be proved in the case of general Lipschitz
boundaries, which is a small improvement on previous results. However, if the heat
sources are in L', we cannot prove existence if the surface X is less than C®. In the case
of interfaces that are only piecewise smooth, the smoothing properties of the operator K
are much more difficult to establish, so that a further publication would be necessary to
discuss that case.

Finally, note that the regularity of the solution has not been at discussion in the paper.
In the standard case of say a L?—right-hand side, further regularity results, such as
boundedness and continuity of weak solutions are known (see |[LT01|, [Mey06|), which we
have not recalled here. Thus, it should be emphasized that Theorem 4.1 does not state
optimal results concerning regularity. On the contrary, the integrability s < 3/2 stated
for the temperature gradient in Theorem 5.1 is known to constitute an upper bound for
the regularity of elliptic problems with L'— right-hand sides (|BG92|, [Rak91]), and is
therefore optimal.
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The question of the uniqueness of the weak solution in the case that f & [Wh2(Q)]* is
closely related to the regularity issue, and is still open to discussion.
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