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1. INTRODUCTION 

Marion and Temam [2], [3] recommend nonlinear Galer kin methods for the initial 
value problem of evolution equations of the type 

v+vAv+R(v)=fEH, 

where A is a linear unbounded positive definite self-adjoint operator in a Hilbert 
space H such that there is a Gelfand triple V C H C V' associated with the 
operator A. The nonlinear operator R( u) = B( u) +Gu consists of a quadratic term 
B( u) and a linear operator G E .C(V, H). Operators of this type with a positive 
number v appear in the N avier-Stokes equations. The Galer kin approximation of 
the Cauchy problem in a large space F C V get a block structure if the large space 
F is splitted up into a direct sum F = G EB E. In the finite-element case, e.g., 
F and G are the finite-element spaces on a fine or coarse grid, respectively, but 
the complement E is defined by the hierarchical basis. As in the case of multigrid 
methods it may be attractive to solve a cheaper variant of the equation on the fine 
grid, but the more expensive original problem on the coarse grid, i.e. 

w + vAw + Ra(u + w) =fa, w(O) = Pavo 
on the space G, but a modified equation 

vAEu + R(w + u) = fE 
on the space E. In [2], [3] the structure of v A + R is used rather intensively to 
show the 'equivalence' of the expensive original problem in the large space F with 
a cheaper modified coupled problem on G EBE. 
In this paper we describe nonlinear Galerkin methods for evolution problems with 
nonlinear strongly monotone. Lipschitz continuous operators. It will be shown that 
the solution of the Cauchy problem for the original operator can be approximated 
this way, but, in general, we can not prove the strong convergence in 1 2 ([0, T], V) as 
it holds for the usual Galerkin approximations in this case. Concerning monotone 
operators we refer to [1], but the reader is briefly remembered to some definitions 
or facts on monotone operators. 
Let (V, 11-11) be a real separable reflexive Banach space continuously embedded into 
a Hilbert space H such that V C H is a dense set. The scalar product and the 
norm in H are denoted by (., .) and 1-1, respectively. The natural duality pairing 
on V' x V is denoted by (., .). Let S = (0, T] (T > 0) be any compact interval. 
It is well known that the space W(S) = {v E L2(S, V) : v E L2 (S, V')} with 
the norm llvllw = ll~llL2 (s,v) + llvllL2 (S,V') is a Banach space, which is continuously 
embedded into G(S, H). 
Let A: V ~ V' be a Lipschitz continuous strongly monotone operator, i.e. there 
are constants 0 < m < M such that the estimates 

llA(v)-A(w)llv1:::; Mllv -wll and (A(v)-A(w),v -w) ~ mllv -wll 2 

( v, w E V) hold. The operator generates a Lipschitz continuous strongly monotone 
operator A: L 2(S, V) ~ L 2(S, V') by (Av)(t) = A[v(t)] a.e. on S. This operator 
has the same monotonicity constant and Lipschitz constant as A has. The following 
theorem is well known ( cf. [1], chap VI, Theorem 1.1). 
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Theorem 1.1. The Cauchy problem 

v + Av = f, v(O) = a (1.1) 
with given elements f E L00{ R+, V') and a E H has a unique solution u on R+ 
which belongs to W(S) C C(S, H) for any S. 

2. FINITE-ELEMENT SPACES AND THEIR HIERARCHICAL SPLITTING 

Let n c R2 denote a bounded polygonal domain. We consider the space V = 
HJ [n U (an \ rD )] of functions v E H 1(n) which vanish on a fixed relatively 
closed subset rD can of positive measure. The norm in Vis the usual HJ norm, 
llvll 2 = f0 Cvv) 2. The Hilbert space His the space L2(n) and thus 1-1 denotes the 
usual L2 norm. We consider triangulations T of n which are r D compatible, i.e. 
which satisfy the following conditions: There is a nonempty subset TD C T such 
that 

( 1) each triangle T E TD has one and only one side on r D, 

(2) rD = UTETD T n rD, 
(3). each triangle TE T \TD intersects rD at most in a single point. 

Let VT denote the vector (Vi, v;, vk) of the values of a linear function v on a triangle 
T = ( ij k) in the vertices of T. Then we have 

llvlli2(T) = ITlvT ·So· v~ and llvll~J(T) = ITlvT ·ST· v~ 

with the area ITI of the triangle and with the matrices 

1 ( 2 1 1 ) So= - 1 2 1 , 
.12 1 1 2 

where s1 = cot 81 with the angle 81 of T at the vertex l. We consider families T of 
triangulations T which have the following properties: 

(1) If TE T then T 1 ET, where T 1 consists of all triangles T/ (l = i,j,k,c) 
which are generated by dividing each side of T = (ijk) E T in two equal 
parts; 

(2) there is a constant C-r ;:::: 1 such that 

Cr := maxTEr ITI < C-r (TE T); and 
minTEr ITI -

(3) there is a constant T/T E]O, 1[ such that 

t:q:~ m.a.fC cos 81 :::; 1 - T/T 
T=( i3k )Er l=i,3,k 

(TE T). 

Families of triangulations which fulfill these conditions are called regular. For ele-
mentary domains there are triangulations To consisting of congruent triangles only. 
In such special cases a regular family To with Cro = 1 is generated by uniform 
refinement of To according to (1). More general, any family To which is generated 
by uniform refinement of a finite triangulation To according to (1) is regular. 
Sometimes we indicate the grid constant h = maxTEr ITl1/ 2 by T = Th· For a 
triangulation T = Th the standard finite-element space of continuous functions 
on n which are linear on each T E T is denoted by v,. = vh. We consider the 
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decomposition Vh == V2h ffi Wh with respect to the two-grid hierarchical basis. If T~ 
is the triangulation which is generated from a triangulation r 2h E T according to 
(1) and if WT== ( Wi, Wj, wk) denotes the vector of the values of a function w E wh 
in the midpoints on the sides of T == ( ij k) E r 2h opposite to the vertices (remember 
that the functions w E wh vanish in the grid points of T2h) then we have 

lwl 2 == L ITlwT. S1w~ and llwll 2 == L ITlwT. STw~, TE-r2h TE-r2h 
where 

1 (3 2 n, ( _:k 
-Sk -Sj) 

S1 == 24 ; 3 2ITIST == s -Si 
2 -s; -Si s 

with s == si+s;+sk. The property (3) of a regular family T implies the strengthened 
Schwarz inequality 

I j \Ju· Vwl::; ~llullllwll (u E V2h, w E Wh) (2.1) 

( cf. [3]). The property (3) also implies that there is a constant AT > 0 such that all 
eigenvalues A[ of S~112 ITISTS~112 (TE TE T) are bounded by A[ ::; AT and that 
there is a constant µT > 0 such that all eigenvalues µ[ of s;112 ITISTS;1!2 (T E 
TE T) are bounded byµ[ ~ µT, since the positive semidefinite matrices ITIST as 
well as the positive definite matrices ITIST depend analytically on the parameters 
Si, s;, Sk which vary in a compact set. These observations are summarized in the 
following 

Lemma 2.1. Let T be a regular family of triangulations with the constants GT, AT 
and µT. Then for any triangulation T2h E T the estimates 

2hllullH1 
0 

llwllL2 
(v == u + w E V2h E9 Wh == Vh) hold. 

3. THE FORMULATION OF THE PROBLEM. MAIN RESULT 

(2.2) 
(2.3) 

We return to abstract spaces V CH~ H' CV' with the norms II.II, I.I and ll·llv', 
respectively, and a strongly monotone Lipschitz continuous operator A : V f--7 V'. 
With regard to the preceding section, however, we additionally assume that 

( 1) V is a Hilbert space with the scalar product ( (., . ) ) , 
(2) there are families (Vh)h>O and (Wh)h>O of finite dimensional linear subspaces 

Wh C Vh C V such that LJh>O Vh C V is dense, Vh == V2h ffi Wh and that the 
following estimates hold: 

s(h)llull ::; Colul 
lwl ::; .S(h)llwll 

with a constant Co > 0 and with a function s( h) ~ 0 as h ~ 0 and 

((u,w))::; ~llullllwll 

3 

(3.1) 
(3.2) 

(3.3) 



with some 'f/ E]O, 1(. 
Let us denote 

Bw(u) := A(u + w)lv2h and cu(w) := A(u + w)lwh. 
We note that the operators Bw and cu are strongly monotone and Lipschitz con-
tinuous with the same constants m and Mas A (maybe even better ones). Instead 
of the Galer kin approximation on Vh of the Cauchy problem ( 1.1) we consider the 
following system which consists of a Cauchy problem 

(3.4) 

and the equations 

cu(t)[w(t)] = g(t) (3.-5) 
for almost all t E S. Here e E L 00 (R+, v;h) and g E L 00 (R+, W~) denote the 
restrictions of f onto L2(S, V2h) or L2(S, Wh), respectively, and P2h denotes the 
orthogonal projection of H onto V2h· We ask for functions u E L2(S, V2h) which 
satisfy u := ft u E L 2(S, v;h). Such functions belong to C(S, V2h)· 
We observe that the system (3.4), (3.5) can be interpreted as the Cauchy problem 

(3.6) 
with a radially continuous strongly monotone Volterra operator £9 : L2(S, V2h) r--+ 

L 2 ( S, v;h)· Indeed, let g E Wh be any fixed functional. The equation Cu( w) = g 
has an uniqely determined solution w = S9 ( u) for any u E V2h, since the Operator 
cu is strongly monotone and Lipschitz continuous. 

Lemma 3.1. The operator 

u r--+ E9 (u) := B 59(u)(u) = A[u + Sg(u)]lv2h 
with a given g E Wh is radially continuous and strongly monotone. The strong 
monotonicity holds uniformly with respect to g E Wh. 
Proof. We prove the strong monotonicity at first. Let Ui E V2h (i = 1, 2) be given 
and let Wi E Wh denote the corresponding solutions. Then we have with u = u 1 -u2 
and with w = W1 - w2 

(A( Ui + Wi), w) 
(Eg( u1) - E9 ( u2), u) 

(A( u1 + w1) - A( u2 + w2), u) 
= (A(u1 + w1) - A(u2 + w2) 

2:'.: mllu1 + W1 - (u2 + w2)ll 2 

2:'.: m(llu1 - u2ll2 + llw1 - w211 2 

= (g' w) ( i = 1, 2)' 
- (A(u1 + w1) - A(u2 + w2), u) 
+ (A(u1 + w1) - A(u2 + w2), w) 
, U1 + W1 - U2 - W2) 

mjju1 - u2 + W1 - w2ll 2 

2~llu1 - u2llllw1 -w2ll) 

> m(l - ~)llu1 - u2jj 2. 
We remember that E9 is radially continuous if for any two elements u, v E V2h the 
functions r--+ (E9 (u + sv),v) is continuous on (0,1]. We consider fixed elements 
u, v E V2h and a convergent sequences;~ s0 in [O, l]. Let w; denote the solutions 
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of the equations A( u + SjV + Wj) = g on wh for j = 0, 1, 2, .... The Wj satisfy the a 
priori estimate 

1 
llwill ::; -(llf - A(O)llv1 + Mllull + Mllvll sup sk), m k 

since they are solutions of A( u + SjV + w) - A( u + SjV) = g - A( u + SjV) on wh 
and since A is strongly monotone and Lipschitz continuous. Thus the set { wi : j = 
1, 2, ... } of solutions is bounded in Wh, i.e. the sequence ( Wj) contains a convergent 
subsequence Wjk -t w*' since wh has finite dimension. Because of the Lipschitz 
continuity of A we have 

g = A(u + s;1cv + w;,J -t A(u + s0 v + w*) 

on Wh, i.e. w* = Wo, Wj -t Wo and 

E9 (u + s;v) = A(u + s;v + w;) -t A(u + sov + wo) = E9 (u + s0 v), 

i.e. in particular, 

D 

For g E L00 (R+, wn and u E L2(S, V2h) the integrand in 

(£9 ( u), v) = f {Eg(t)[u(t)], v(t))dt = (A(u + w ), v) 

is defined for almost all t E S. A priori estimates like above provide an integrable 
upper bound for l(Eg(t)[u(t) + s;v(t)],v(t))I such that Lebesgue's convergence the-
orem can be applied. Thus we have seen that £9 is a radially continuous strongly 
monotone operator. Now the Lemma 1.2 in [1], chap. VI can be applied, i.e. 

Lemma 3.2. The Cauchy problem (3.6) has exactly one solution uh in W(S) n 
L 2(S, V2h)· The set {uh: h > O} is bounded in C(S,H) and in L2(S, V), and the 
set {A( uh+ wh): h > 0, wh = S9 (uh)} is bounded in L 2(S, V'). 

Our main result is 

Theorem 3.1. The system (3.4) 1 (3.5) is uniquely solvable for any h > 0. The 
first component uh of its solution (uh, wh) is just the solution of the Cauchy problem 
(3.6). For any finite time interval S = [O, T] it converges to the solution v of the 
Cauchy problem strongly in C(S, H) and weakly in L2(S, V). The family of the wh 
is bounded in L 00 (R+, H), converges to 0 strongly in L2(S, H), weakly in L 2(S, V) 
and weakly* in L 00 (R+, H) ash -t 0. Furthermore, A(uh + wh) converges weakly 
toA(v) inL2(S,V'). 

Remark. The operator A can be substituted by a family (A(t))t>o of operators 
A(t) = A(t, .) which are uniformly strongly monotone and unifo~mly Lipschitz 
continuous and which satisfies the condition A(., 0) E L 00 (R+, V'). All assertions 
except the boundedness in L 00 ( R+, V') and the weak* convergence in this space 
remain valid, if we only assume that f, A(., 0) E L2,1oc(R+, V') and that the strong 
monotonicity and the Lipschitz continuity hold uniformly on each bounded interval 
s. 
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Remark. The solutions (uh, wh) of the system (3.4), (3.5) for strongly monotone 
Lipschitz continuous operators A seem to be not so good as the usual Galerkin 
approximations ( vh) of (3.6) are. We were not able to prove 

(T > 0) in general, meanwhile the corresponding convergence for the Vh is well 
known. Nevertheless, it might be worthwhile to look for strongly monotone Lips-
chitz continuous operators having the property (3.7). In this case the following two 
corollaries would be applicable. 

Corollary 3.1. If (3. 7) is satisfied then the sequences uh ~ v, wh ~ 0 and A( uh+ 
wh) ~A( v) strongly converge in L 2(S, V) or in L 2(S, V'), respectively, as h ~ 0. 

Proof. According to the assumption the uh +wh strongly converge to v in L2(S, V). 
Therefore ui+wi :=uh; +wh; form a Cauchy sequence in L 2(S, V) for any sequence 
hj ~ 0. The strengthened Schwarz inequality (3.3) implies the estimate 

llui + wi - uk - wk llLcs,v) = 
llu; - uklli,(s,v) + { 2((u;(t)- uk(t),w;(t)- wk(t)))dt + llw; -wklli,(s,v) 

;::: llu;-uk II Lcs,vi-2~ foT llu;-uk llL,(S, VJllw;-wk llL,(s,v)dt+ llw;-wk II L (s,v) 

~ (1 - ~)(llui - ukllLcs,v) + llwi - wklli2cs,v)), (3.8) 

i.e. both the sequences (u3) and (w3) are strong Cauchy sequences in L2(S, V). 
Therefore the weak convergences uh -1. v and wh -1. 0 in L 2(S, V) imply even the 
strong convergences. 0 

Corollary 3.2. Let vh denote the solution of the Galerkin approximation of the 
Cauchy problem (1.1) with respect to the subspace Vh. If (3.7) is satisfied then the 
error estimates 

hold. 

M2 lat m < - exp [-2(t - s)]llwh(s)ll 2ds, 
m 0 Cy 

la - P2hal 2 exp [-~ t] 
Cy 

M2 lat m + - exp [-2(t - s)]llwh(s)ll 2ds 
m 0 Cy 

6 



Proof. Let ii denote either vh or the solution v of the Cauchy problem (1.1 ). Choos-
ing uh - ii as a test function one gets 

1 d [ 2 

2 dt luh(t) - ii(t)I l + (A[uh(t) + wh(t)] - A[v(t)], uh(t) - ii(t)) 0, 

~ ~[Juh(t) - V(t)J 2
] + (A[uh(t)] - A[v(t)] , uh(t) - v(t)) 

(A[uh(t)] - A[uh(t) + wh(t)] , uh(t) - v(t)), 
1 d I ( 2 -- uh t) - v(t)I 
2 dt + mlluh(t)- v(t)ll 2

:::; Mllwh(t)lllluh(t) - v(t)ll 

< M[m I ( 2 M 2 2 M luh t) - v(t)ll + m llwh(t)ll ]. 

Integrating the inequality 

one gets the assertion. D 

The right-hand sides of the two error estimates converge to 0 with h ~ 0 for each 
t, since wh tends strongly to 0 in L2(S, V). 

Remark. The basis of the nonlinear Galerkin method for strongly Lipschitz contin-
uous operators A is the decomposition of the Galerkin spaces Vh c V into almost 
orthogonal· subspaces. The operator in the nonlinear Galerkin approximation is 
also strongly monotone, but with a worse constant depending on the factor Jf=77 
in the strengthened Schwarz inequality (3.3). As the Cauchy problem (3.6) and 
its Galerkin approximations are uniquely solvable for radially continuous coercive 
monotone operators, the nonlinear Galerkin approximation for the Cauchy problem 
(1.1) might be of interest for such operators, too. 

4. PROOF OF THE THEOREM 3.1 

The proof follows closely the proofs of the theorems 1.1 and 1.2 in [1], chap. VI, 
and of the lemmata there. A crucial role in our proof plays switching from £9 
to A( u + w) which is realized by adding the identity (A( u + w ), w) = (!, w) or 
something like that in some places. 
Let u = uh denote the solution of (3.6), w = wh the solution of (3.5) with the 
solution u as the parameter, and let m = m(l - Jl=77) be the monotonicity 
constant of the Eg(t)· We observe that E9 (t)(O) = A[wo(t)] lv2h, where wo denotes 
the solution of (3.5) with the parameter u = 0. Then the following estimates or 
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identities hold: 

llwo(t)ll 
1 < -(llJllLoo(R+,V') + llA(O)llv1 ), m 

llE9(t)(O)llv;h::; II A[wo( t )] II V' 
M ( 4.1) < -(llJllLoo(R+,V') + llA(O)llv1 ), m 

1 d M 
-dlu(t)l2 + mllu(t)112 < [(1 + -)llfllLoo(R+,V') 2 t m 

M ( 4.2) + -llA(O)llv1] llu(t)ll, m 

1 laT 1 laT -lu(T)l2 + ( E9(t)[u(t)] - E9 (t)[O], u(t)) = -
2 

jaj2 + (f(t) - E9(t)(O), u(t)), 
2 0 0 ( 4.3) 

llullLcs,v) < lal2 1 2 m + m,2 llf - A(wo)llL2(S,V') =: C1, ( 4.4) 

II &g( u) l!L2(s,v;h) < llA(u+w)llL2(S,V')::; C2 (w = S9 (u)), ( 4.5) 

llw(t)ll 
1 < -[llf(t) - A(O)llv1 + Mllu(t)il] m a.e. on R+, ( 4.6) 

llwllL2(S,V) < 1 M 
m llf - A(O)llL2(S,V1) + m llullL2(S,V) ::; C3. (4.7) 

Let cv denote the constant of the continuous embedding V C H. Integrating the 
consequence 

d )12 m ( )12 2 -d lu(t + 2lu t ::; -::-C4 t cv m 

of ( 4.2) and ( 4.1) one gets 

lu(t)l 2 
::; lal2 exp (-~ t) + 2~~ [1 - exp (-~ t)]C4, ( 4.8) 

Cy m Cy 

with 
M2 M2 

C4 = (1+2 m 2 )llflli00 (R+,V') + 2 m 2 llA(O)ll~'' 

i.e. u E L00 (R+, H). Combining (3.1) and (3.2) with ( 4.6) and ( 4.8) one gets w E 
L00 (R+, H). So far all estimates of this section hold uniformly with respect to the 
omitted parameter h. Combining (3.1) and (3.2) with (4.7) one gets the strong 
convergence wh ~ 0 in L2 ( S, H). 
The strong convergence of the wh in L2( S, H) in connection with the boundedness 
of {wh : h > O} in L2(S, V) and in L00 (R+, H) also imply the weak convergence 
wh ___.). 0 in L2(S, V) and the weak* convergence wh ___.).• 0 in L00 (R+, H) as h ~ 0. 
Convergence of uh. The boundedness of {uh: h > O} in L2(S, V) and in L00 (R+, H), 
the uniform (with respect to t) boundedness of {uh(t) : h > O} in H and the 
boundedness of {A( uh +wh) : h > O} in L2(S, V') imply the existence of a sequence 
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hi ~ 0 such that 

- * Uj == Uhj ~ U Ill L2(S, V), 
Uj ~ u* weak* Ill Loo(R+, H), 

Uj(t) ~ u(t) Ill H for all t E S and 
A(uj + Wj) ~ e Ill L2(S, V'). 

Choosing test functions bef;, b E LJh>o V2h and ef; E C0 (intS) and (T - t)b one 
proves 

u* E W(S), u*(O) ==a, u*(t) = u(t), and u* + e =f. 

as in [1], chap. VI, Lemma 1.4. We observe 

Then we get the estimate 

lim(A( Uj + Wj), Uj + Wj) = lim[(f, Uj + w;) + ~(luj(O)l 2 
- lu;(T)l2 )] 

:S: (!, u*) + ~(lal 2 
- lu*(T)l2

)] = (! - U*, u*) = (e, u*), 

which provides u* + A( u*) == f according to [1], chap.III, Lemma 1.3. 
Since the Cauchy problem (1.1) has an unique solution v, we have v == u*, uh and 
uh+ Wh ~ v in L2(S, V) as well as A(uh + wh) ~ A(v) in L(S, V'). Let (vh)h>O be 
a family of functions Vh E C1(S, V2h) converging to v in W(S). Then 

!1uh(t) - vh(t)l 2 
- !1uh(O) - vh(O)l 2 = r (uh - v + v - vh, Uh - vh) 

2 2 Jo 
= l (-A(uh +wh)+A(v)V-Vh,uh-vh) =la' (-A(uh +wh)+A(v), uh +wh-v) + 

l (-A(uh + wh) + A(v), uh+ Wh -v) + l (V -Vh, uh - vh) 

:S: l (-A(uh + wh) + A(v), uh+ wh -v) + Kollv -vhllL,(S,V) + KillV -VhllL,(5,V') 

::; r (-A( Uh+ wh) +A( v ), Uh+ Wh - v) + mµ Killv - vhllw(S)· 
Jo ' 

Since W(S) C C(S, H) is continuously embedded the estimates or limit values 

lim luh(O) - vh(O)I ::; lim(IP2ha - al + lv(O) - vh(O)I) == 0, h-o h-o 
l~ lluh - vllc(S,H) ::; l~(llvh - vllccs,H) + lluh - vhllccs,H)) == 0, 

lim r(-A(uh + wh) + A(v) ' Uh+ Wh - v) == 0 h-oJo 

hold. This completes the proof of 3.1. 
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