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AbstratWe study Ostwald ripening of two-dimensional adatom and advaany islands ona rystal surfae by means of kineti Monte Carlo simulations. At large bond energiesthe islands are square-shaped, whih qualitatively hanges the oarsening kinetis.The Gibbs�Thomson hemial potential is violated: the oarsening proeeds througha sequene of `magi' sizes orresponding to square or retangular islands. Theoarsening beomes attahment-limited, but Wagner's asymptoti law is reahedonly after a very long transient time. The unusual oarsening kinetis obtained inthe Monte Carlo simulations are well desribed by the Beker�Döring equations ofnuleation kinetis. These equations an be applied to a wide range of oarseningproblems.1 IntrodutionDomains of a guest phase inside a matrix tend to oarsen, thus reduing their spei�interfae energy. The prominent mehanism of oarsening was proposed by Ostwald [1℄more than hundred years ago: larger domains grow at the expense of smaller ones byexhanging atoms. The net atom �ux is direted to larger domains sine they possesssmaller interfae energy per atom. The seminal theory of Ostwald ripening was proposedby Lifshitz and Slyozov [2℄ and by Wagner [3℄. They showed that, at late times, the systemis haraterized by a single harateristi sale, namely, the average domain size R(t). Thetime evolution of the system onsists in hanging the sale: the domain distribution, shapeof the di�ration peaks, et. remain unhanged when saled by R(t). The average domainsize follows, in turn, universal laws, R(t) ∝ t1/3 if the atom di�usion is the rate limitingproess [2℄ and R(t) ∝ t1/2 if the attahment-detahment at the domain interfae is thelimiting one [3℄.The kineti saling is essentially based on the Gibbs�Thomson formula µ = γ/R for theexess hemial potential of a gas that is in equilibrium at the urved surfae of a liquiddroplet (the onstant γ is proportional to the surfae tension). The aim of the present workis to study the Ostwald ripening kinetis at low temperatures (or large bond energies)when the rystalline droplets are faeted. The energy of a small rystalline droplet isminimum at `magi' sizes when all faets are ompleted. The oarsening proeeds as asequene of jumps from one magi size to the next. We perform kineti Monte Carlosimulations of Ostwald ripening kinetis for faeted two-dimensional (2D) islands and�nd a very long transient behavior of the system, so that the universal asymptoti lawsare still not reahed. We develop a mean-�eld theory for Ostwald ripening, based on theBeker�Döring [4℄ equations. We show that these equations, being the basi equations ofnuleation theory [5, 6℄ an be used to desribe the oarsening kinetis in a wide range ofsizes, starting from monomers up to the long-time asymptotis that are not available in1



Monte Carlo simulations. Both the Lifshitz�Slyozov�Wagner regime and the oarseningthrough a sequene of magi sizes are well desribed. This approah requires only theknowledge of the luster energy dependene on the number of atoms in the luster andan be applied to a wide range of oarsening problems in other systems as well.The original analytial theories of nuleation [5, 6℄ and Ostwald ripeing [2, 3℄ are based ondistint assumptions and desribe di�erent kineti proesses: nuleation theory preditsthe rate of formation of stable embryos, while Ostwald ripening theory follows the oars-ening of large lusters. Langer and Shwartz [7℄ proposed a mean-�eld approah to studythe nonlinear dynamial equations of motion for a phase separating system with bothnuleation and growth of droplets. The uni�ed theory of nuleation and oarsening wasfurther developed by Sagui and Grant [8℄ by taking into aount the orrelation e�etsin a Thomas-Fermi approximation. We show in the present paper that the ordinary dif-ferential equations by Beker and Döring are well suited to desribe both nuleation andoarsening kinetis. One an proeed, by solving a system of ordinary di�erential equa-tions, from monomers to lusters ontaining millions of atoms. Although this approahannot be extended to arbitrarily large lusters, it an be used to test theories that intendto desribe both nuleation and oarsening proesses. We restrit ourselves to small on-entrations and take into aount the sreening e�ets [9℄ to avoid divergene of solutionsof the two-dimensional di�usion equation. A more aurate desription of sreening thattakes into aount spatial orrelations [10℄ only slightly hanges the sreening length inthe ase of small onentrations.From the experimental studies of two-dimensional (2D) oarsening, we mention the onesthat report time exponents n in the oarsening law R(t) ∝ tn. These inlude low-energyeletron di�ration from a hemisorbed monolayer of oxygen on W(110), [11℄, [12℄, heliumatom beam di�ration from 0.5 monolayer (ML) of Cu on Cu(100) [13℄, optial mirosopyof a thin layer of suinonitrile within the liquid-solid oexistene region [14℄, [15℄, a binarymixture of amphiphili moleules [16℄ and low-energy eletron mirosopy of Si on Si(001)[17℄, [18℄. In these works, [11, 12, 13, 14, 15, 16℄ time exponents somewhat smaller than
1/3 were found and explained by the Lifshitz�Slyozov law with �nite-size orretions. Thetime exponent 1/2 obtained for Si on Si(001) [17, 18℄ was treated as the ase of kinetislimited by the attahment and detahment of adatoms to steps [3℄. Our reent x-raydi�ration study of oarsening of 2D GaAs islands on GaAs(001), [19℄ whih showed anapparent time exponent lose to 1, was the experimental inspiration for the present work.Two-dimensional islands of `magi' sizes were observed on several surfaes, suh as Pt(111)[20℄, Si(111) [21℄ and Ag(111) [22℄ (see also a review [23℄). Calulations with realistimodel potentials show that magi sizes are inherent to metal f (001) surfaes [24℄. Itwas shown theoretially that the presene of magi island sizes disrupts the saling lawof submonolayer moleular beam epitaxy growth [25℄. Magi sizes of three-dimensionalPb nanorystals on Si(111) lead to a breakdown of the lassial Ostwald ripening laws[26℄. The magi thiknesses of three-dimensional islands arise from a ompetition betweenquantum on�nement, harge spilling, and interfae-indued Friedel osillation [27℄. Themagi sizes of two-dimensional islands are due to lateral eletron on�nement [22℄. Inour kineti Monte Carlo study, the energies of 2D islands are obtained simply by bondounting, and the magi sizes are the ones of squared or retangular islands. However,we formulate the Beker�Döring equations in suh a way that they are appliable to any(possibly non-regular) disrete dependene of the island energy on the number of atoms2



in it. The proposed approah allows to desribe the Ostwald ripening kinetis one theisland energetis is established.Faeted islands are ommonly observed on metal surfaes. The adatom and vaanyislands on the (111) surfaes of Cu, Ag, and Au are equilateral hexagons, while theseon the (100) surfaes are squares (see [28℄ for a review). Studies of these islands areperformed mostly by sanning tunneling mirosopy, whih is well suited to provide adetailed mirosopi view of the individual proesses. However, the data are not su�ientto obtain the time evolution of average quantities, suh as the mean island size, duringOstwald ripening. In our kineti Monte Carlo simulations, the equilibrium island shapeevolves from rounded to square, as the bond energy is inreased. We do not analyze theindividual events, suh as sintering [29℄ but onentrate on the average quantities (meanisland size and size distribution) in the proess of Ostwald ripening.Monte Carlo simulations of Ostwald ripening were performed using the 2D Ising model[30, 31, 32℄. Spin onservation was ahieved by �ipping pairs of neighboring opposite spins(Kawasaki spin-exhange dynamis). The simulations were limited to rather small valuesof the oupling onstant, so that the domains are rounded and faeting is absent. Timeexponents were found to be smaller than 1/3, whih was explained by �nite-size orretionsto the Lifshitz�Slyozov law. Further disussion of theoretial and simulation studies anbe found in several reviews [33, 34, 35℄. Despite kineti Monte Carlo simulations areroutinely used to model epitaxial growth, [36, 37, 38, 39, 40, 41℄ we are aware of only onesuh study of oarsening of 2D islands on a rystal surfae [42℄. This latter simulationwas limited to small bond energies and rounded islands, similar to the simulations in theIsing model.Faeting e�ets were found in the kinetis of non-onserved systems. Here, the veloityof a domain wall v is proportional to its urvature K, v = αK, whih gives rise to kinetisaling with a universal law R(t) ∝ t1/2 for the domain oarsening [43, 44, 45, 46℄. In theseminal Allen and Cahn theory [44℄ the oe�ient α does not depend on temperature.However, kineti Monte Carlo simulations of the non-onserved Ising model (the Glaubersingle-spin-�ip dynamis) show that, at low temperatures, the anisotropy of surfae ten-sion gives rise to square-shaped domains (in aordane with the Wul� onstrution) andresults in smaller α [47℄. In the opposite ase of high temperatures, thermal roughen-ing redues α [48℄. Both e�ets do not alter the oarsening law. In somewhat moreompliated models, allowing soft domain walls [49℄ or both ferromagneti and antifer-romagneti ordering, [50℄ the time exponent dereases with dereasing temperature andreahes a universal value of 1/4 at T = 0. In the latter model, the domain walls onsistof urved parts and straight staking faults (faets) with zero urvature, whih move byreation and propagation of kinks.A physial di�erene between the oarsening kinetis of 2D epitaxial islands and thatof Ising spins beomes evident when we ompare adatoms and advaanies with up anddown spins. The �rst two objets possess qualitatively di�erent kinetis (motion of anadvaany is a result of the olletive motion of atoms), while up and down spins areequivalent. This distintion manifests itself in the transition probabilities, as disussedbelow. The fundamental laws of Ostwald ripening are expeted to be independent ofthe transition probability distribution, so that a kineti Monte Carlo simulation of theoarsening of epitaxial islands allows one to test this predition. Here, we perform kineti3



Monte Carlo simulations of Ostwald ripening of 2D adatom islands (surfae overage0.1 ML) and 2D advaany islands (surfae overage 0.9 ML) in a wide range of bondenergies (or temperatures). Our partiular aim is to perform simulations in the aseof large bond energies (low temperatures) when the islands are faeted, whih was notstudied previously.In our simulations, no step edge barrier is imposed. The atoms an freely detah froman island and attah, after di�usion on the upper or lower levels, to the same or anotherisland. The mirosopi probability of an atom movement is given by the number of bondsin its initial state before the movement. The resulting net �ux of atoms from smaller tolarger islands dereases the total energy of surfae steps (island borders). The simulationmodel is similar to the one used in our preeding work [51℄, but with a fundamental di�er-ene that leads to a di�erent oarsening mehanism. In [51℄, the esape of an atom froma vaany island to the higher level was prohibited by an in�nite step edge barrier. Thatresulted in Brownian motion and oalesene of whole islands due to atom detahmentand reattahment within an island. Suh oarsening by dynami oalesene is muh lesse�etive than Ostwald ripening onsidered in the present paper, and beomes essentialonly when the detahment of atoms from islands is prohibited.2 Monte Carlo simulations2.1 Simulation methodWe employ the well-established generi model developed for kineti Monte Carlo simu-lations of moleular beam epitaxy [36, 37, 38, 39, 40, 41, 42℄. Atoms oupy a simpleubi lattie and interat with a pair energy that depends only on the number of bonds.An alternative approah to simulate surfae kinetis is a detailed Monte Carlo simula-tion of a partiular surfae with energeti parameters taken from ab initio alulations,as it was done for GaAs(001) or InAs(001) [52, 53, 54, 55, 56℄. Suh simulations arevery time-onsuming and hene are limited to small time and spatial sales. They anhardly be applied to study the oarsening proess. Some harateristi features of om-pound semiondutors an, however, be inluded in the generi model as a ompromise[57, 58, 59℄.We use an algorithm [60℄ that advanes simulated time depending on the probability ofthe hosen event. This algorithm is ommonly used in epitaxial growth simulations. Wenote that the Ostwald ripening simulations of the 2D Ising model [30, 31, 32℄ have em-ployed the Metropolis aept�rejet algorithm. This algorithm beomes ine�ient at lowtemperatures, sine most of the attempts are rejeted and omputer time is wasted. Thatis why previous simulations [30, 31, 32℄ were performed at relatively high temperatures
T > 0.5Tc, where Tc is the Ising phase transition temperature. Of ourse, both algorithmsgive the same results and di�er only in the omputation time.The hoie of the probability w(x → y) for the transition from the state x to the state yintrodues the physis of the system into the simulations. The hoie is made di�erentlyfor the epitaxial growth and the Ising model simulations. It is worthwhile to omparethese probabilites brie�y. A su�ient ondition that the system evolves to thermodynami4



equilibrium is the detailed balane ondition, w(x → y)/w(y → x) = exp(−∆E/kBT ).Here ∆E = E(y) − E(x) is the energy di�erene between the states x and y, kB is theBoltzmann onstant and T is the temperature. The simulations of the Ising model usea probability that depends on ∆E (either the Metropolis or the Glauber probability).These probabilities favor transitions whih redue the energy of the system, ∆E < 0. Onthe other hand, for an atom jump on the rystal surfae, the transition probability doesnot depend on the �nal state y but only on the height of the energy barrier that needsto be overome [61℄. The probability is w(x → y) ∝ exp[E(x)/kBT ], where E(x) < 0 isthe energy of the initial state with respet to the barrier. Suh a probability obviouslysatis�es the detailed balane ondition. The system evolves into a lower-energy state sineit esapes higher-energy initial states with larger probabilities.In the present study, no step edge barrier is imposed. An atom detahing from a stepedge an go to the lower or the upper terrae with equal probabilities. In partiular, atomexhange between advaany islands is ahieved predominantly by adatoms di�using onthe top level rather than by the di�usion of vaanies, despite that the latter proess isnot forbidden. Similar simulations, but with an in�nite step edge barrier, were performedin our preeding work [51℄. The in�nite step edge barrier leads to Brownian motion ofthe islands and their dynami oalesene, whih is a muh slower proess than Ostwaldripening and leads to muh less e�etive oarsening. It beomes essential only if theexhange of atoms between islands is prohibited, e.g., by a step edge barrier. In thepresent simulations, the dynami oalesene proess is not forbidden but its ontributionis negligible.An atom that has n neighbors in the initial state with equal bond energies Eb to theseneighbors possesses an energy E(x) = −(nEb + ED), where the ativation energy ofsurfae di�usion ED is the barrier height. It determines the time sale τ of the problem,
τ−1 = ν exp(−ED/kBT ), where ν ≈ 1013 s−1 is the vibrational frequeny of atoms ina rystal. In the epitaxial growth simulations, the time sale τ is to be ompared withthe deposition �ux, whih determines an appropriate hoie of ED. We do not onsiderdeposition, and the hoie of ED is arbitrary. Note that the works on the Ising modelkinetis measure time simply in the �ip attempts (sweeps) per lattie site. We take thesame values of ED as in the preeding work, [51℄ with the aim to ompare time sales ofOstwald ripening (in absene of the step edge barrier) with that of dynami oalesene(in�nite step edge barrier). Namely, we hoose ED = 0.2; 0.1; 0 eV for Eb = 0.2; 0.3;
0.4 eV, respetively.The ratio of the interation energy between neighboring atoms to the temperature Eb/kBTis the only essential parameter for the oarsening problem. We �x the temperature at400 K and vary the bond energy Eb from 0.2 eV to 0.4 eV. In terms of our model, theIsing phase transition takes plae at Eb/kBT = 2 ln(1 +

√
2). Our hoie of bond energiesorresponds to T/Tc varying from 0.15 to 0.3, temperatures muh lower than the onesused in previous kineti Monte Carlo studies of Ostwald ripening [30, 31, 32, 42℄. Here,

Tc is the Ising phase transition temperature.We perform kineti Monte Carlo simulations on a 1000×1000 square grid with periodiboundary onditions. Eah simulation is repeated 25 times, to obtain su�ient statistisfor the island size distribution. In the initial state, either 0.1 ML or 0.9 ML are randomlydeposited. Adatom islands form in the �rst ase and advaany islands in the seond.5



2.2 Simulation resultsSnapshots of the simulated system at the end of a simulation are presented in Fig. 1(a).As the bond energy Eb is inreased (from left to right), the island shape ontinuouslytransforms from more irular to almost square. Sine faeting transitions are absentin 2D systems, we refer to the almost square islands as faeted in order to stress thequalitative shape di�erene at small and large bond energies. Apart from the hange inshape, the equilibrium density of adatoms between islands exponentially dereases as thebond energy inreases.Figures 1(b) and () show time variations of average island diameters 2R(t) in logarithmiand linear sales, respetively. The sizes of all islands in the simulated system are obtainedby using an algorithm[62℄ that allows to ount all topologially onneted lusters in thesystem. The radii of individual islands are alulated as rn =
√

n/π, where n is thenumber of atoms in a luster. At small bond energies (left olumn in Fig. 1), the proessof Ostwald ripening follows the Lifshitz�Slyozov law R(t) ∝ t1/3. As the bond energyinreases, the oarsening law for advaany islands deviates from that for adatom islandsand from the expeted t1/3 law. At large bond energies (right olumn in Fig. 1), theoarsening behavior of advaany islands is qualitatively di�erent and lose to a lineardependene, in a wide range of island sizes. The oarsening of adatom islands also notablydeviates from the Lifshitz�Slyozov law. The attahment-limited asymptoti t1/2 an beinferred from the �gure, but it is not really reahed.Figure 1(d) shows the island size distributions at di�erent times. The uniformly spaedtime instanes are marked on the urves in Fig. 1() by the same symbols as used forthe orresponding size distributions. The distributions are saled by the average size
R(t): instead of the probability p(r), we plot the saled probability P (r) = Rp(r) versus
r/R. The saled distributions do not hange in time even at large bond energies, wherethe average island sizes do not show a power law behavior. However, the island sizedistribution does hange with inreasing bond energy, Fig. 1(d). The distribution developsa tail extended to 2R, while at smaller bond energies it is limited to 1.5R.We also use the Monte Carlo simulations to verify the average island size determinationin di�ration studies. In a di�ration experiment, one has aess to the peak pro�leonly and obtains the average size from its width. Using the island distribution obtainedin the simulation and alulating the peak pro�les, we an ompare the average sizesobtained from the real spae and the reiproal spae distributions. The di�ration peaks(struture fators) obtained from the simulations are presented in Fig. 2(a). We onsiderthe anti-Bragg ondition (adjaent atomi layers ontribute to the sattering funtionwith a phase shift of π) and obtain two-dimensional intensity distributions I(qx, qy) fromFourier transformation of exp[iπh(x, y)]. Here an integer funtion h(x, y) is the surfaeheight. Then, we take into aount that in a di�ration experiment, the sattered intensityis usually olleted by a wide open detetor that integrates over one of the omponentsof the sattering vetor q [19℄. Hene, we integrate the distributions I(qx, qy) over one ofthe omponents of the sattering vetor, either qx or qy. The resulting di�ration peaks
I(q) are presented in Fig. 2(a). The peaks orresponding to di�erent time moments [thesame time moments as in Fig. 1(d)℄ oinide one the wave vetors q are saled by theaverage island size. Kineti saling is thus on�rmed. The shapes of the peaks depend onthe bond energy Eb, thus showing that the island size distribution and the orrelations6
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between the islands hange.The quantity most ommonly measured in a di�ration experiment is the full width at halfmaximum (FWHM) of a peak obtained by an appropriate �t. Considering islands of linearsize 2R, one obtains a struture fator sin2(qR)/ sin2(qa), whih an be approximated by
exp(−q2R2/π) [63℄. Here, a is the lattie spaing. We obtain the average size 2R by�tting the peaks to this Gaussian funtion, despite the peaks are not Gaussian, espeiallyfor small bond energies. Figure 2(b) ompares these sizes with the ones obtained from thereal-spae island size analysis desribed above. The values are in good agreement, thuson�rming that the average quantities an be obtained from the di�ration peak widthseven if the pro�les deviate notably from Gaussian.3 Coarsening equations3.1 The Beker�Döring equations for the 3D problemThe proess of Ostwald ripening an be desribed by two alternative approahes, either interms of a ontinuous funtion f(r) representing the number density of lusters of radius
r, or in terms of disrete numbers cn representing the densities of lusters ontaining natoms (nmers). The �rst approah was employed by Lifshitz and Slyozov[2℄ and Wagner[3℄. The equations for disrete quantities cn were �rst formulated by Beker and Döring[4℄and ever sine form the basis of nuleation theory [5, 6℄. Closely related equations, therate equations, were used in the desription of rystal growth [64, 65, 66℄. They ontainan additional deposition term, while the detahment proess is not essential and theorresponding terms in the equations are frequently omitted. Similar disrete equations forthe Ostwald ripening proess were introdued under the names of mirosopi ontinuityequations [67, 68℄ population balane equations, [69, 70, 71℄ or rate equation approah[72℄. Mathematial aspets of the relationship between the disrete and the ontinuousequations were also onsidered [73, 74℄. The aim of the present setion is to link thedisrete and ontinuous approahes and obtain equations that an be used for a numerialstudy of the Ostwald ripening proess.The number of atoms n in a luster inreases or dereases by one when an atom is attahedto the luster or detahed from it. Let Jn be the net rate of transformation of nmers into
(n + 1)mers. The number cn of nmers inreases due to the transformation of (n− 1)mersinto nmers and dereases beause of the transformation of nmers into (n + 1)mers:

dcn/dt = Jn−1 − Jn. (1)This equation is valid for n ≥ 2. The equation desribing the number of monomers c1 isobtained by requiring that the total number of atoms in the system
N =

∞
∑

n=1

ncn (2)does not hange in time. The ondition dN/dt = 0 gives, after substitution of Eqs. (1)9



and rearrangement of the terms,
dc1/dt = −2J1 −

∞
∑

n=2

Jn. (3)This equation takes into aount that eah transformation of an nmer into an (n + 1)merdereases the number of monomers by one, exept in the ase n = 1, where two monomersform a dimer.The net rate Jn is a result of two proesses. First, an nmer athes a monomer. Therate of this proess is proportional to the densities of the nmers and the monomers andan be written as anc1cn, where an is a time-independent oe�ient that remains tobe determined. The seond proess is a spontaneous detahment of a monomer from a
(n + 1)mer. It is proportional to the density of (n + 1)mers solely and an be written as
bncn+1, where bn is another time-independent oe�ient to be spei�ed. Hene, we obtain

Jn = anc1cn − bn+1cn+1. (4)Equations (1), (3), and (4) are the Beker�Döring equations.If the time limiting proess is the adatom di�usion between lusters, the attahment anddetahment oe�ients an and bn for the 3D problem are alulated, for large n, as follows.The luster of n atoms is onsidered as a sphere of radius rn, so that n = 4πr3
n/3. Toalulate the attahment oe�ient, we solve the steady-state di�usion equation ∇2c(r) =

0 with two boundary onditions: the onentration of the monomers far away from theluster is equal to their mean onentration, c(r) |r=∞
= c1, while the onentration of themonomers at the luster surfae is zero, c(r) |r=rn

= 0, sine the monomers are attahedto the luster as soon as they reah it. The solution is c(r) = (1 − rn/r)c1. The totalatom �ux at the luster surfae
jn = 4πr2

nD∇c(r) |r=rn
, (5)where D is the di�usion oe�ient of the monomers, is equal to 4πDrnc1, and hene theattahment oe�ient is

an = 4πDrn. (6)The detahment oe�ient is alulated assuming that the onentration of the monomersat the luster surfae is equal to the equilibrium monomer onentration cneq, while thereis an ideal sink for monomers at in�nity, c(r) |r=∞
= 0. The solution of the steady-statedi�usion equation with these boundary onditions is c(r) = cneqrn/r, and the orrespond-ing detahment �ux of the monomers is bn+1 = 4πDrncneq. Here we take into aountthat this �ux refers to the detahment from the (n + 1)mer. The ratio of the detahmentand the attahment oe�ients is then

bn+1/an = cneq. (7)The equilibrium density of monomers at the surfae of a luster is given by the Gibbs�Thomson formula
cneq = c

∞eq exp(γ/rn) ≈ c
∞eq(1 + γ/rn), (8)where γ is a onstant proportional to the surfae tension. The expliit expression for γ isgiven in the next setion. A orretion to Eq. (8) for small lusters onsisting of very few10



atoms, while being important for the nuleation theory, is not essential for the Ostwaldripening problem. Then, equations (1)�(8) form a omplete set that desribes the proessof Ostwald ripening.When the lusters are large enough, n an be treated as a ontinuous variable. Letus verify that the ontinuous equations derived from the set of equations above are theLifshitz�Slyozov equations. The luster size distribution funtion f(r, t) is de�ned so that
f(r, t)dr is the number of lusters per unit volume in an interval from r to r + dr. Then,
f(r, t)dr = cn(t)dn and, keeping in mind that n = 4πr3/3, we obtain f(r, t) = 4πr2cn(t).The mass onservation law (2) an be rewritten, by separating monomers and largerlusters, as

c1(t) +
4π

3

∫

∞

0

r3f(r, t)dr = N = const. (9)The �nite-di�erene equation (1) transforms into the ontinuity equation
∂f/dt + ∂J/∂r = 0. (10)To alulate the �ux in the luster size spae J(r, t), one an neglet the di�erene between

cn and cn+1 in Eq. (4). Then, substituting Eqs. (7) and (8), one obtains
J(r, t) =

D

r
(c1 − c

∞eq −
γc

∞eq

r
)f. (11)Equations (9)�(11) oinide with the Lifshitz�Slyozov equations [2℄.
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Figure 3: (a) The luster size distribution obtained by numerial solution of the Beker�Döring equations at di�erent times (thin blak lines, the lines loser to the gray lineorrespond to later times) and the analytial solution by Lifshitz and Slyozov (thik grayline). (b) The time dependeny of R3. A linear asymptoti is evident from the plot.As an example, we ompare in Fig. 3 numerial solutions of the ordinary di�erentialequations (1)�(8) with the analytial result [2℄. To solve the Beker�Döring system,we employ a seond-order Rosenbrok method, whih is essentially based on a Pade-approximation of the transition operator (see, e.g., itehairer96). A version of this method[76℄ that �ts well to sti� systems of di�erential-algebrai equations was used. Pratially,11



we solve a set of up to one million ordinary di�erential equations on a personal omputer.The solutions in Fig. 3 are obtained by taking γ = 5 and, as the initial ondition at t = 0,only monomers with the initial supersaturation c1/c∞eq = 105. The �gure shows that thenumerial solutions asymptotially onverge to the analytial formula, whih validatesour approah.3.2 Attahment and detahment oe�ientsEquation (7) an be derived in a more general form that will be useful for the onsidera-tions below. In equilibrium, all �uxes Jn are identially equal to zero. Then, denoting by
Cn the equilibrium onentrations of the nmers, we have from Eq. (4)

bn+1/an = C1Cn/Cn+1. (12)The equilibrium onentrations alulated in the framework of equilibrium thermodynam-is are [77℄
Cn = Cn

1 exp[−(En − nE1)/kBT ], (13)where En is the energy of an nmer and E1 is the energy of a monomer. This relationan be treated as the mass ation law for the equilibrium between nmers and monomers,
Cn ⇆ nC1. Substitution into Eq. (12) gives

bn+1/an = c
∞eq exp[(En+1 − En)/kBT ], (14)where c

∞eq = exp(−E1/kT ) is the onentration of monomers that are in equilibrium withan in�nite luster. For spherial lusters, Eq. (14) redues to the Gibbs�Thomson formula.The energy of a spherial luster is En = 4πr2σ, where σ is the surfae tension, with theradius r de�ned by nv = 4πr3/3, where v = a3 is the volume per atom. The radiusinrease due to the attahment of an atom to a nmer is given by v = 4πr2∆r. The hangeof the energy due to the attahment of a single atom is En+1 − En = 8πσr∆r = 2vσ/r.Thus, we arrive at Eq. (8) with γ = 2vσ/kBT . A similar alulation for the 2D ase gives
γ = sσ/kBT , where s is the area per atom.Equation (14) is more general than the Gibbs�Thomson formula and an be used in situ-ations when the latter is not appliable. Figure 4(a) presents the island size distributionobtained in our kineti Monte Carlo simulations at an early stage of oarsening for thelargest bond energy we have studied, Eb = 0.4 eV. The distribution is not smooth butonsists of peaks at `magi' island sizes orresponding to a produt of two lose integers,like 30 = 6×5. Aordingly, the insert in the �gure shows that the islands are mainly ret-angles with an aspet ratio lose to 1. The origin of suh a distribution is evident: whenan island onsisting, for example, of 30 atoms, grows by one atom, its energy inreasesby 2Eb, while further growth to 36 atoms does not hange its energy at all. Thus, wesolve the Beker�Döring equations with the energy of a 2D island of n atoms alulatedas follows. First, we �nd the largest square that still ontains fewer atoms than n. Thenwe add, as long as the number of atoms does not exeed n, rows of atoms to the sideof the square. The last row may be inomplete. The number of broken bonds for suhan island is alulated. Figure 4(b) presents a numerial solution of the Beker�Döringequations with the island energies En thus alulated and the attahment�detahmentoe�ient ratio given by Eq. (14). The approximation for an appropriate for the 2D ase12
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equation behaves as c(r) ∝ ln r and the boundary ondition c(r) |r=∞
= c1 annot beimposed. A simple approximation is to plae this ondition at a �nite distane l, given byan average distane between the islands [78, 79, 80, 68, 81℄. Then, in the ase of di�usion-limited kinetis, the attahment oe�ient an does not depend on n and is proportionalto (ln l)−1. Proeeding to the ontinuous distribution funtion, one arrives at Eq. (11),with the onservation law (9) rewritten for the 2D ase. The oarsening equations aresolved analytially in this ase [82, 79, 80℄.A self-onsistent desription of two-dimensional di�usion an be obtained by taking intoaount its sreening by the island distribution [9℄. A solution of the 2D sreened di�usionequation, satisfying the boundary onditions c(r) |r=∞

= c1 and c(r) |r=rn
= 0, is c(r) =

c1[1−K0(r/ξ)/K0(rn/ξ)], where K0(x) is the zeroth modi�ed Bessel funtion and ξ is thesreening length that remains to be de�ned. Then, one obtains the attahment oe�ient
an = DK(rn/ξ), (15)where

K(x) = 2πxK1(x)/K0(x) (16)and K1(x) is the �rst modi�ed Bessel funtion. The self-onsisteny ondition for thesreening length ξ is [9℄
ξ−1 =

∫

∞

0

K(r/ξ)f(r, t)dr. (17)Expressions very similar to Eqs. (15) and (16) are used in studies of rystal growth fromthe gas phase[6, 65, 66℄, with one essential di�erene: for the latter problem, the length ξis the mean di�usion length of an adatom on the surfae before its reevaporation. It is awell-de�ned time-independent onstant, so that no self-onsisteny ondition is involved.In the ase of attahment-limited kinetis, the boundary ondition for the onentration�eld c(r) at the island surfae is the absene of the �ux, ∇c |r=rn
= 0, whih gives aonstant solution, c(r) = c1. Then, the attahment oe�ient is

an = 2πKrn, (18)where K is the attahment oe�ient. The result is independent of sreening in this ase.The same expression is obtained in the approximation of a onstant sreening distaneequal to the mean distane between islands [78, 79, 80, 68, 81℄.3.4 Coarsening equations for advaany islandsIn our Monte Carlo simulations, a step edge barrier is absent and an atom detahingfrom a vaany island asends to the higher terrae. The vaany island size inreases byone vaany at the same time. The oarsening proeeds by exhange of adatoms betweenvaany islands and an be desribed by equations similar to the Beker�Döring equations.Let us denote by g(t) the onentration of adatoms, while cn are the onentrations of2D islands of n vaanies. Then, the ontinuity equation (1) for the density of lusters
cn(t) remains unhanged. The �uxes Jn in these equations desribe two proesses. The�rst proess is the spontaneous emission of an adatom. Its rate is proportional to thedensity of nmers. The seond proess is the absorption of an adatom by the vaany14



type (n + 1)mer, whih gives rise to an nmer. Its rate is proportional to the density g ofadatoms and the density of (n + 1)mers, so that
Jn = bncn − an+1gcn+1. (19)The annihilation of an atom and a single vaany is desribed by the �ux J0 = −a1gc1.Then, the set of equations (1) is valid for n ≥ 1. The reation of an adatom�vaany pairfrom a �at surfae is prohibited in our model.Sine the growth of a vaany luster by one vaany is aompanied with the emissionof an adatom, the onserved total amount of atoms in the system is given by

N =
∞

∑

n=1

nJn − g, (20)whih replaes Eq. (2). By di�erentiating this equation with respet to time and rear-ranging the terms, the ondition dN/dt = 0 leads to an equation for the time variation ofthe adatom density:
dg/dt =

∞
∑

n=0

Jn. (21)The mass ation law now has to be written for an equilibrium between an advaanyisland and adatoms that annihilate, Cn + ng ⇆ 0. Hene, instead of Eq. (13) we have
Cng

n = exp[−(En + nE1)/kBT ]. (22)The requirement of zero �uxes at equilibrium gives rise to the detailed balane ondition
bn/an+1 = c

∞eq exp[−(En+1 − En)/kBT ] (23)that di�ers from Eq. (14) by the sign in the exponent. For irular islands, the samealulation as above leads to the Gibbs�Thomson formula (8) with negative γ, whihorresponds to a negative urvature of the vaany island surfae.3.5 Solutions of the oarsening equationsFigure 5 presents the results of the numerial solution of the Beker�Döring equationsfor adatom and advaany islands. With the aim to quantitatively ompare the solutionswith the results of kineti Monte Carlo simulations in the whole time interval, we use thesame initial onditions. The initial random adatom distribution with the overage 0.1ML ontains not only monomers, but also dimers, trimers, et., the densities of whihquikly derease with inreasing luster sizes. By simple statistial analysis of the initialdistribution in kineti Monte Carlo simulations, we �nd that at t = 0, cn ≈ c1 ×10(n−1)/2.This distribution was used as the initial ondition for the Beker�Döring equations. Theinitial onditions are essential only at the initial stages of oarsening. The results of thealulations do not depend on the initial monomer onentration c1, as long as the initialsupersaturation c1(t = 0)/c
∞eq is muh larger than unity. The time sale of the solutionsis adjusted to these of the Monte Carlo simulations.15
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The ase of small bond energies (left olumn in Fig. 5) is well desribed by the 2D di�u-sion limited kinetis with sreening (15) and the ratio of the detahment and attahmentoe�ients given by the Gibbs�Thomson formula (8). The alulations in the left olumnof Fig. 5 are made with γ = 3.7. The solutions of the Beker�Döring equations (blaklines) are in a good agreement with the results of the kineti Monte Carlo simulations(gray lines), repeated from Fig. 1. The oarsening laws for adatom and advaany islandsalmost oinide and quikly reah the Lifshitz�Slyozov t1/3 asymptoti. The island sizedistributions, Fig. 5(), also almost oinide for adatom and advaany islands, obey ki-neti saling, and agree well with the ones obtained in the kineti Monte Carlo simulations,f. Fig. 1(d).For large bond energies (right olumn in Fig. 5), the alulations are performed withattahment-limited kinetis, Eq. (18), sine the kineti Monte Carlo simulations point tothe Wagner's t1/2 asymptoti. We ompare the disrete distribution of island energiesthat takes into aount the `magi' island sizes as desribed in Se. 3.2 (full blak lines)with the ontinuous distribution, given by the Gibbs�Thomson formula (broken lines).The relationship between the disrete and the ontinuous models is established by alu-lating the energy of a square island and a irular one with the same number of atoms:
Eb/kBT =

√
πγ/2. The alulations are performed for γ = 9. The e�et of magi sizes isslightly di�erent for adatom and advaany islands. For adatom islands, the detahmentoe�ients bn given by Eq. (14) are exeptionally large for n = m+1, where m is a maginumber. Thus, a monomer that has attahed to a magi island detahes again with ahigh probability. For advaany islands, the detahment oe�ients bm for magi islandsare exeptionally small, so that the detahment of an atom from a vaany island (thisatom beomes an adatom on the higher level) proeeds at a small rate. Both proessesmake eah magi size a trap for further island growth, giving rise to the disrete islandsize distribution peaked at the magi sizes shown in Fig. 4. The island size distributionspresented in Fig. 5() for this ase are obtained by averaging over �nite ranges of thesizes, just as for the kineti Monte Carlo simulations.The time dependene of the average island sizes obtained for oarsening through thesequene of magi islands (full blak lines in right olumn of Fig. 5) are in good agreementwith the results of kineti Monte Carlo simulations (gray lines). For vaany islands, theontinuous island size distribution with the Gibbs�Thomson formula gives rise to a notablydi�erent oarsening behavior (broken lines), with a very fast inrease of the island sizesin the intermediate range. The island size distributions obtained in the disrete (withmagi sizes) and the ontinuous models are also notably di�erent, see Fig. 5(). Thedistribution obtained in the disrete model is symmetri with respet to the maximum,similar to the one obtained in the Monte Carlo simulations, but notably narrower, f.Fig. 1(d). It is worth to note that the distribution saled by the average island size doesnot hange in time and is the same for the adatom and advaany islands, despite thetime evolutions of the average island sizes not oiniding and not following a power law.In other words, the solution of the Beker�Döring equation obeys kineti saling in thesense that the island size distribution is a funtion of r/R(t) that does not depend ontime. However, R(t) is not desribed by a power law. The ontinuous model gives a muhbroader and asymmetri island size distribution, shown by broken lines in Fig. 5(). Thebroken-bond ounting sheme desribed in Se. 3.2 adequately represents the energies Enof small islands and quantitatively desribes the island size distribution at the initial stage17



of oarsening, see Fig. 4. However, for larger islands it oversimpli�es the island energydistribution and gives rise to a more narrow distribution than found in the simulations.A better model for the island energies En is needed to desribe this distribution orretly.To summarize this setion, we show that the Ostwald ripening kinetis an be desribed asan initial value problem for the ordinary di�erential equations (1)�(8) that an be solvedby standard numerial methods. This approah an be applied to various oarseningproblems by replaing the Gibbs�Thomson formula (8) with Eqs. (14), (23) that admitany dependene of the island energy En on the number of atoms n in it. The alternativeapproah, a numerial implementation of the integro-di�erential equations (9)�(11),[83,84℄ seems muh more di�ult.4 ConlusionsOur kineti Monte Carlo simulations show that the Ostwald ripening of 2D islands qual-itatively hanges with inreasing bond energy (or dereasing temperature). The islandsbeome faeted and the oarsening proeeds through a sequene of magi sizes. TheGibbs-Thomson hemial potential is not appliable and the detahment of monomersfrom islands is governed by the disrete energies of the islands. The oarsening is dif-fusion limited at small bond energies and beomes attahment limited at large bondenergies. In this latter ase, Wagner's asymptoti law is reahed only after a very longtransient regime.We show that the Beker�Döring equations of nuleation kinetis are well suited to studythe proess of Ostwald ripening. Two- and three-dimensional oarsening proesses withdiverse limiting mehanisms an be simulated by solving a system of ordinary di�erentialequations. Conentrations of lusters of all sizes, from monomers to ones onsisting ofmillions of atoms, an be traed simultaneously. The alulations are not neessarilybased on the Gibbs�Thomson formula but adopt any ontinuous or singular dependeneof the luster energy on the number of atoms in it. This approah an be applied to awide range of oarsening problems for two- and three-dimensional islands on a surfae.Referenes[1℄ W. Ostwald, Z. Phys. Chem. 34, 495 (1900).[2℄ I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).[3℄ C. Wagner, Z. Elektrohem. 65, 581 (1961).[4℄ R. Beker and W. Döring, Ann. Phys. 24, 719 (1935).[5℄ J. Frenkel, Kineti Theory of Liquids (Clarendon, Oxford, 1946).[6℄ B. Lewis and J. C. Anderson, Nuleation and Growth of Thin Films (Aademi Press,N. Y., 1978).[7℄ J. S. Langer and A. J. Shwartz, Phys. Rev. A 21, 948 (1980).18
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