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1Abstrat. Let S0 = 0, {Sn}n≥1 be a random walk generated by a sequeneof i.i.d. random variables X1, X2, ... and let τ− := min {n ≥ 1 : Sn ≤ 0} and
τ+ := min {n ≥ 1 : Sn > 0}. Assuming that the distribution of X1 belongs to thedomain of attration of an α-stable law, α 6= 1, we study the asymptoti behaviorof P(τ± = n) as n → ∞.1. Introdution and main resultLet X, X1, X2, ... be a sequene of independent identially distributed random vari-ables. Denote S0 = 0, Sn = X1 + X2 + ... + Xn. We assume that

∞
∑

n=1

1

n
P(Sn > 0) =

∞
∑

n=1

1

n
P(Sn ≤ 0) = ∞.This ondition means that {Sn}n≥0 is an osillating random walk, and, in partiular,the stopping moments

τ− := min {n ≥ 1 : Sn ≤ 0} and τ+ := min {n ≥ 1 : Sn > 0}are well-de�ned proper random variables. Furthermore, it follows from the Wiener-Hopf fatorization (see, for example, [3, Theorem 8.9.1, p. 376℄) that for all z ∈ (0, 1),
1 − Ezτ−

= exp

{

−
∞
∑

n=1

zn

n
P(Sn ≤ 0)

} (1)and
1 − Ezτ+

= exp

{

−
∞
∑

n=1

zn

n
P(Sn > 0)

}

. (2)Rogozin [15℄ has shown that the Spitzer ondition
n−1

n
∑

k=1

P (Sk > 0) → ρ ∈ (0, 1) as n → ∞ (3)holds if and only if τ+ belongs to the domain of attration of a spetrally positivestable law with parameter ρ. Sine (1) and (2) imply the equality
(1 − Ezτ+

)(1 − Ezτ−

) = 1 − z for all z ∈ (0, 1),one an dedue from the Rogozin result that (3) holds if and only if there exists afuntion l(n) slowly varying at in�nity suh that, as n → ∞,
P
(

τ− > n
)

∼ l(n)

n1−ρ
, P

(

τ+ > n
)

∼ 1

Γ(ρ)Γ(1 − ρ)nρl(n)
. (4)Doney [11℄ proved that the Spitzer ondition is equivalent to

P (Sn > 0) → ρ ∈ (0, 1) as n → ∞. (5)Therefore, both relations in (4) are valid under ondition (5).



2To get a more detailed information about the asymptoti properties of l(x) it isneessary to impose additional hypotheses on the distribution of X. Rogozin [15℄has shown that l(x) is asymptotially a onstant if and only if
∞
∑

n=1

1

n

(

P (Sn > 0) − ρ
)

< ∞. (6)It follows from the Spitzer-Rósen theorem (see [3, Theorem 8.9.23, p. 382℄) that if
EX2 is �nite, then (6) holds with ρ = 1/2, and, onsequently,

P(τ± > n) ∼ C±

n1/2
as n → ∞, (7)where C± are positive onstants. If EX2 = ∞ muh less is known about the formof l(x). For instane, if the distribution of X is symmetri, then, learly,

∣

∣

∣

∣

P (Sn > 0) − 1

2

∣

∣

∣

∣

=
1

2
P (Sn = 0) . (8)Furthermore, aording to [14, Theorem III.9, p. 49℄, there exists C > 0 suh thatfor all n ≥ 1,

P (Sn = 0) ≤ C√
n

.By this estimate and (8) we onlude that (6) holds with ρ = 1/2. Thus, (7) is validfor all symmetri random walks. Assuming that P(X > x) = (xαl0(x))−1 , x > 0,with 1 < α < 2 and l0(x) slowly varying at in�nity, Doney [8℄ established for anumber of ases relationships between the asymptoti behavior of l0(x) and l(x) atin�nity.The aim of the present paper is to study the asymptoti behavior of the probabilities
P (τ± = n) as n → ∞.We assume throughout that the distribution of X is either non-lattie or arithmetiwith span h > 0, i.e. the h is the maximal number suh that the support of thedistribution of X is ontained in the set {kh, k = 0,±1,±2, ...} .Let

A := {0 < α < 1; |β| < 1} ∪ {1 < α < 2; |β| ≤ 1} ∪ {α = 2, β = 0}be a subset in R
2. For (α, β) ∈ A we write X ∈ D (α, β) if the distribution of Xbelongs to the domain of attration of a stable law with harateristi funtion
Ψ(t) := exp

{

−c|t|α
(

1 − iβ
t

|t| tan
πα

2

)}

, c > 0, (9)and, in addition, EX = 0 if 1 < α ≤ 2. One an show (see, for instane, [16℄) thatif X ∈ D (α, β), then ondition (5) holds with
ρ =

1

2
+

1

πα
arctan

(

β tan
πα

2

)

∈ (0, 1). (10)Here is our main result.



3Theorem 1. Assume X ∈ D (α, β). If α ≤ 2 and β < 1, then, as n → ∞,
P
(

τ− = n
)

= (1 − ρ)
l(n)

n2−ρ
(1 + o(1)). (11)In the ase {1 < α < 2, β = 1} equality (11) remains valid under the additionalhypothesis

∫ ∞

1

F (−x)

x(1 − F (x))
dx < ∞. (12)Denote T− := min{n ≥ 1 : Sn < 0} and set

Ω(z) = exp

{

∞
∑

n=1

zn

n
P(Sn = 0)

}

=:

∞
∑

k=0

ωkz
k. (13)The next statement relates the asymptoti behavior of P (τ− = n) and P (T− = n).Theorem 2. If (11) holds, then

lim
n→∞

P (T− = n)

P (τ− = n)
= Ω(1).Applying Theorems 1 and 2 to the random walk {−Sn}n≥0, one an easily �nd anasymptoti representation for P (τ+ = n):Theorem 3. Assume X ∈ D (α, β). If α ≤ 2 and β > −1, then, as n → ∞,

P
(

τ+ = n
)

=
ρ

Γ(ρ)Γ(1 − ρ)n1+ρl(n)
(1 + o(1)). (14)In the ase {1 < α < 2, β = −1} equality (14) remains valid under the additionalhypothesis

∫ ∞

1

1 − F (x)

xF (−x)
dx < ∞. (15)In some speial ases the asymptoti behavior of P (τ± = n) as n → ∞ is alreadyknown from the literature. Eppel [12℄ proved that if EX = 0 and EX2 is �nite, then

P
(

τ± = n
)

∼ C±

n3/2
. (16)Observe that in this ase EX2 < ∞ implies X ∈ D(2, 0).Asymptoti representation (16) is valid for all ontinuous symmetri (implying ρ =

1/2 in (5)) random walks (see [13, Chapter XII, Setion 7℄). Note that the restrition
X ∈ D(α, β) is super�uous in this situation.Reently Borovkov [2℄ has shown that if (3) is valid and

n1−ρ
(

P(Sn > 0) − ρ
)

→ const ∈ (−∞,∞) as n → ∞, (17)then (11) holds with ℓ(n) ≡ const ∈ (0,∞). Proving the mentioned result Borovkovdoes not assume that the distribution of X is taken from the domain of attrationof a stable law. However, he gives no explanations how one an hek the validityof (17) in the general situation.



4Let χ+ := Sτ+ be the asending ladder height. Alili and Doney [1, Remark 1, p. 98℄have shown that (14) holds if Eχ+ is �nite. By Theorem 3 of [9℄ the assumption
Eχ+ < ∞ is equivalent to (15), i.e. for the ase {1 < α < 2, β = −1} our Theorem 3is (impliitly) ontained in [1℄ . Alili and Doney analyzed the distribution of τ+only. Clearly, one an easily derive the statement of our Theorem 1 for the ase
{1 < α < 2, β = 1} from their result (for instane, applying Theorem 2). However,for these spetrally one-sided ases we present an alternative proof, whih lari�esthe �typial� behavior of the random walk on the events {τ± = n}. See Setion 3.2and Setion 5 for more details.2. Auxiliary results2.1. Notation. In what follows we denote by C, C1, C2, ... �nite positive onstantswhih may be di�erent from formula to formula and by l(x), l1(x), l2(x)... funtionsslowly varying at in�nity whih are, as a rule, �xed.For x ≥ 0 let

Bn(x) := P
(

Sn ∈ (0, x]; τ− > n
)

,

bn(x) := Bn(x + 1) − Bn(x) = P
(

Sn ∈ (x, x + 1]; τ− > n
)

.Introdue the renewal funtion
H(x) := 1 +

∞
∑

k=1

P
(

χ+
1 + ... + χ+

k ≤ x
)

, x ≥ 0, H(x) = 0, x < 0,where {χ+
i

}

i≥1
is a sequene of i.i.d. random variables distributed the same as χ+.Observe that by the duality priniple for random walks for x ≥ 0

1 +
∞
∑

j=1

Bj(x) = 1 +
∞
∑

j=1

P
(

Sj ∈ (0, x]; τ− > j
)

= 1 +
∞
∑

j=1

P (Sj ∈ (0, x]; Sj > S0, Sj > S1, ..., Sj > Sj−1)

= H(x). (18)In the sequel we deal rather often with slowly varying funtions and, following Doney[9℄, say that a slowly varying funtion l∗(x) is an α-onjugate of a slowly varyingfuntion l∗∗(x) when the following relations are valid
y ∼ xαl∗(x) as x → ∞ if and only if x ∼ y1/αl∗∗(y).It is known that if X ∈ D (α, β) with α ∈ (0, 2), and F (x) := P (X ≤ x), then

1 − F (x) + F (−x) ∼ 1

xαl0(x)
as x → ∞, (19)where l0(x) is a funtion slowly varying at in�nity. Besides, for α ∈ (0, 2),

F (−x)

1 − F (x) + F (−x)
→ q,

1 − F (x)

1 − F (x) + F (−x)
→ p as x → ∞, (20)



5with p + q = 1 and β = p − q in (9). Let {cn}n≥1 be a sequene spei�ed by therelation
cn := inf

{

x ≥ 0 : 1 − F (x) + F (−x) ≤ n−1
}

. (21)In view of (19) this sequene is regularly varying at in�nity with index α−1, i.e.
cn = n1/αl1(n), (22)where l1(x) is a slowly varying funtion being an α-onjugate of l0(x):

cα
nl0(cn) ∼ n as n → ∞. (23)Moreover,
Sn

cn

d→ Yα as n → ∞,where Yα is a random variable obeying an α−stable law.For the ase α = 2 the normalizing sequene {cn}n≥1 requires a speial desription.Let V (x) =
∫ x

−x
y2dF (x) be the trunated variane of X. Clearly, lim infx→∞ V (x) >

0 for every nondegenerate random variable X. Furthermore, it is known ([13℄,Chapter XVII, Setion 5) that X ∈ D(2, 0) if and only if V (x) varies slowly atin�nity. In this ase the normalizing sequene cn satis�es
V (cn)

c2
n

∼ C

n
as n → ∞. (24)The last relation means that (22) holds with α = 2 and l1(x) is a 2-onjugate of

1/V (x). Besides,
lim
x→∞

x2(1 − F (x) + F (−x))

V (x)
= 0. (25)2.2. Basi lemmas. Now we formulate a number of results onerning the distri-butions of the random variables τ−, τ+ and χ+. Reall that a random variable ζis alled relatively stable if there exists a nonrandom sequene dn → ∞ as n → ∞suh that

1

dn

n
∑

k=1

ζk
p→ 1 as n → ∞,where ζk

d
= ζ, k = 1, 2, ... and are independent.Lemma 4. (see [15℄ and [10, Theorem 9℄) Assume X ∈ D(α, β). Then, as x → ∞,

P
(

χ+ > x
)

∼ 1

xαρl2(x)
if αρ < 1, (26)and χ+ is relatively stable if αρ = 1.Lemma 5. Suppose X ∈ D(α, β). If αρ < 1, then, as x → ∞,

H(x) ∼ xαρl2(x)

Γ(1 − αρ)Γ(1 + αρ)
. (27)If αρ = 1, then, as x → ∞,

H(x) ∼ xl3(x), (28)



6where
l3(x) :=

(
∫ x

0

P
(

χ+ > y
)

dy

)−1

, x > 0.In addition, there exists a onstant C > 0 suh that in both ases
H(cn) ≤ Cnρl(n) for all n ≥ 1. (29)Proof. If αρ < 1, then by [13, Chapter XIV, formula (3.4)℄

H(x) ∼ 1

Γ(1 − αρ)Γ(1 + αρ)

1

P(χ+ > x)
as x → ∞.Hene, realling (26), we obtain (27).If αρ = 1, then (28) follows from Theorem 2 in [15℄.Let us demonstrate the validity of (29). We know from [15℄ (see also [7℄) that

τ+ ∈ D(ρ, 1) under the onditions of the lemma and, in addition, χ+ ∈ D(αρ, 1) if
αρ < 1. This means, in partiular, that for sequenes {an}n≥1 and {bn}n≥1 spei�edby

P(τ+ > an) ∼ 1

n
and P(χ+ > bn) ∼ 1

n
as n → ∞, (30)and vetors {(τ+

k , χ+
k )}k≥1, being independent opies of (τ+, χ+), we have

1

an

n
∑

k=1

τ+
k

d→ Yρ and 1

bn

n
∑

k=1

χ+
k

d→ Yαρ as n → ∞. (31)Moreover, it was established by Doney (see Lemma in [10℄, p. 358) that
bn ∼ Cc[an] as n → ∞, (32)where [x] stands for the integer part of x. Therefore, cn ∼ Cb[a−1(n)], where, with aslight abuse of notation, a−1(n) is the inverse funtion to an. Hene, on aount of(30),

P(χ+ > cn) ∼ C1P(χ+ > b[a−1(n)]) ∼
C1

a−1(n)

∼ C2P(τ+ > a[a−1(n)]) ∼ C3P(τ+ > n) ∼ C4

nρl(n)
. (33)This proves (29) for αρ < 1.If αρ = 1, then, instead of the seond equivalene in (30), one should de�ne bn by

1

bn

∫ bn

0

P(χ+ > y)dy ∼ 1

n
as n → ∞(see [15, p. 595℄). In this ase the seond onvergene in (31) transforms to

1

bn

n
∑

k=1

χ+
k

p→ 1 as n → ∞,



7while (33) should be hanged to
1

cn

∫ cn

0

P(χ+ > y)dy ∼ C1

b[a−1(n)]

∫ b[a−1(n)]

0

P(χ+ > y)dy ∼ C1

a−1(n)

∼ C1P(τ+ > a[a−1(n)]) ∼ C2P(τ+ > n) ∼ C3

nρl(n)
.The lemma is proved. �The next result is a part of Corollary 3 in [9℄.Lemma 6. Assume X ∈ D(α, 1) with 1 < α < 2 (implying ρ = 1 − α−1). Then

P(τ− > n) ∼ C

cn
∼ C

n1/αl1(n)
as n → ∞if and only if

∫ ∞

1

F (−x)

x(1 − F (x))
dx < ∞.Now we prove a useful result whih may be viewed as a statement onerning �small�deviations of Sn on the set {τ− > n}.Let h be the span and gα,β(x) be the density of a stable distribution with parameters

α and β in (9) (we agree to onsider h = 0 for non-lattie distributions). For a set
A taken from the Borel σ-algebra on (0,∞) denote

µ(A) = gα,β(0)

∫

A

H(x − h)ν(dx),where ν is the ounting measure on {h, 2h, 3h, . . .} in the arithmeti ase and theLebesgue measure on (0,∞) in the non-lattie ase.Lemma 7. Suppose X ∈ D(α, β). Then
lim

n→∞
ncnP(Sn ∈ A; τ− > n) = µ(A) (34)for any A taken from the Borel σ-algebra on (0,∞).Proof. Assume �rst that the distribution of X is non-lattie. Using the Stone loallimit theorem (see, for instane, [3, Setion 8.4, p. 351℄) it is not di�ult to showthat for λ > 0,

lim
n→∞

cnE
(

e−λSn ; Sn > 0
)

= gα,β(0)

∫ ∞

0

e−λydy =
gα,β(0)

λ
. (35)Set

G(λ) :=
∞
∑

n=1

E
(

e−λSn ; Sn > 0
)

n
(36)and speify a sequene of measures

µn(dx) := ncnP(Sn ∈ dx; τ− > n), n ≥ 1.



8Sine {cn}n≥1 varies regularly and (35) is valid, applying Theorem 2 from [6℄ to theequality
∞
∑

n=0

zn
E
(

e−λSn ; τ− > n
)

= exp

{

∞
∑

n=1

zn

n
E
(

e−λSn ; Sn > 0
)

} (37)shows that for all λ > 0,
lim

n→∞
ncnE

(

e−λSn ; τ− > n
)

= lim
n→∞

∫ ∞

0

e−λxµn(dx)

=
gα,β(0)

λ
exp {G(λ)} . (38)It follows from (37) that

gα,β(0)

λ
exp {G(λ)} =

gα,β(0)

λ

(

1 +
∞
∑

k=1

E
(

e−λSk ; τ− > k
)

)

=
gα,β(0)

λ
+

gα,β(0)

λ

∫ ∞

0

e−λx

(

∞
∑

k=1

P
(

Sk ∈ dx; τ− > k
)

)

=
gα,β(0)

λ
+

gα,β(0)

λ

∫ ∞

0

e−λx

(

∞
∑

j=1

P(χ+
1 + . . . + χ+

j ∈ dx)

)

,where at the last step we have used the duality priniple. Integrating by parts andrealling the de�nition of H(x), we get
gα,β(0)

λ
exp {G(λ)} =

gα,β(0)

λ
+ gα,β(0)

∫ ∞

0

e−λx(H(x) − 1)dx

= gα,β(0)

∫ ∞

0

e−λxH(x)dx. (39)Combining (38) and (39) and using the ontinuity theorem for Laplae transforms,we obtain (34) for non-lattie distributions.In the arithmeti ase we have by the Gnedenko loal limit theorem
lim

n→∞
cnE

(

e−λSn ; Sn > 0
)

= gα,β(0)
∞
∑

k=1

e−λhk =
gα,β(0)e−λh

1 − e−λh
. (40)Proeeding as by the derivation of (39), we obtain

gα,β(0)e−λh

1 − e−λh
exp {G(λ)} =

gα,β(0)e−λh

1 − e−λh

(

1 +

∞
∑

k=1

E
(

e−λSk ; τ− > k
)

)

=
gα,β(0)e−λh

1 − e−λh
+

gα,β(0)e−λh

1 − e−λh

∞
∑

j=1

e−λhj (H(hj) − H(hj − h))

= gα,β(0)e−λh
∞
∑

j=0

e−λhjH(hj) = gα,β(0)

∞
∑

k=1

e−λhkH(hk − h).This, together with (40), �nishes the proof of the lemma. �



9Lemma 8. Under the onditions of Theorem 1 for any α ∈ (0, 2) there exists C > 0suh that for all y > 0 and all n ≥ 1,
bn(y) ≤ C

cn

l(n)

n1−ρ
(41)and

Bn(y) ≤ C (y + 1)

cn

l(n)

n1−ρ
. (42)Proof. For n = 1 the statement of the lemma is obvious. Let {S∗

n}n≥0 be a randomwalk distributed as {Sn}n≥0 and independent of it. One an easily hek that foreah n ≥ 2,
bn(y) = P

(

y < Sn ≤ y + 1; τ− > n
)

=

∫ ∞

0

P

(

y − S[n/2] < Sn − S[n/2] ≤ y + 1 − S[n/2]; S[n/2] ∈ dz; τ− > n
)

≤
∫ ∞

0

P

(

y − z < S∗
n−[n/2] ≤ y + 1 − z; S[n/2] ∈ dz; τ− > [n/2]

)

≤ P

(

τ− > [n/2]
)

sup
z

P

(

z < S∗
n−[n/2] ≤ z + 1

)

. (43)Sine the density of any α-stable law is bounded, it follows from the Gnedenkoand Stone loal limit theorems that if the distribution of X is either arithmeti ornon-lattie, then there exists a onstant C > 0 suh that for all n ≥ 1 and all z ≥ 0,
P (Sn ∈ (z, z + ∆]) ≤ C∆

cn
. (44)Hene it follows, in partiular, that, for any z > 0,

P (Sn ∈ (0, z]) ≤ C(z + 1)

cn
. (45)Substituting (44) into (43), and realling (22) and properties of regularly varyingfuntions, we get (41). Estimate (42) follows from (41) by summation. �Lemma 9. Under the onditions of Theorem 1 for any α ∈ (1, 2] there exists C > 0suh that for all n ≥ 1 and all x > 0,

bn(x) ≤ C

(

H(x + 1)

ncn

+
l(n)

n1−ρ

x + 1

c2
n

) (46)and
Bn(x) ≤ C

(

(x + 1) H(x + 1)

ncn
+

l(n)

n1−ρ

(x + 1)2

c2
n

)

. (47)Proof. Aording to formula (5) in [12℄,
nBn(x) = P (Sn ∈ (0, x]) +

n−1
∑

k=1

∫ x

0

Bn−k(x − y)P (Sk ∈ dy) . (48)



10Hene we get
nbn(x) = P (Sn ∈ (x, x + 1]) +

n−1
∑

k=1

∫ x

0

bn−k(x − y)P (Sk ∈ dy)

+

n−1
∑

k=1

∫ x+1

x

Bn−k(x + 1 − y)P (Sk ∈ dy) . (49)Using (41), (45), (22), the inequality 1/α < 1 and properties of slowly varyingfuntions, we dedue
[n/2]
∑

k=1

∫ x

0

bn−k(x − y)P (Sk ∈ dy) ≤ C

[n/2]
∑

k=1

l(n − k)

cn−k (n − k)1−ρ P (Sk ∈ [0, x])

≤ C1 (x + 1)

[n/2]
∑

k=1

1

ck

l(n − k)

cn−k (n − k)1−ρ

≤ C2
x + 1

cn

l(n)

n1−ρ

[n/2]
∑

k=1

1

ck

≤ C3 (x + 1)
nρl(n)

c2
n

. (50)On the other hand, in view of (44) and monotoniity of Bk(x) in x we onlude(assuming that x is integer without loss of generality and letting Bk(−1) = 0 and
H(−1) = 0) that

n
∑

k=[n/2]+1

∫ x

0

bn−k(x − y)P (Sk ∈ dy)

≤
n
∑

k=[n/2]+1

x
∑

j=0

(Bn−k(x − j + 1) − Bn−k(x − j − 1)) P (Sk ∈ (j, j + 1])

≤
n
∑

k=[n/2]+1

x
∑

j=0

(Bn−k(x − j + 1) − Bn−k(x − j − 1))
C

ck

≤ C

cn

x
∑

j=0

∞
∑

k=0

(Bk(x − j + 1) − Bk(x − j − 1))

=
C

cn

x
∑

j=0

(H(x − j + 1) − H(x − j − 1))

≤ C

cn
(H(x) + H(x + 1)) ≤ 2C

cn
H(x + 1),where for the intermediate equality we have used (18). This gives

n
∑

k=[n/2]+1

∫ x

0

bn−k(x − y)P (Sk ∈ dy) ≤ C

cn
H(x + 1). (51)



11Sine x 7→ Bn(x) inreases for every n,
n−1
∑

k=1

∫ x+1

x

Bn−k(x + 1 − y)P (Sk ∈ dy) ≤
n−1
∑

k=1

Bn−k(1)P(Sk ∈ (x, x + 1]). (52)Further, in view of (42) and (44) we have
[n/2]
∑

k=1

Bn−k(1)P(Sk ∈ (x, x + 1]) ≤ C1

cn

l(n)

n1−ρ

[n/2]
∑

k=1

1

ck
≤ C2n

ρl(n)

c2
n

. (53)Using (44) one again yields
n−1
∑

k=[n/2]+1

Bn−k(1)P(Sk ∈ (x, x + 1]) ≤ C

cn

n−1
∑

k=[n/2]+1

Bn−k(1) ≤ C

cn

H(1). (54)Substituting (53) and (54) into the right hand side of (52), we obtain the upperbound
n−1
∑

k=1

∫ x+1

x

Bn−k(x + 1 − y)P (Sk ∈ dy) ≤ C
(nρl(n)

c2
n

+
1

cn

)

. (55)Combining (50), (51), (55), (44) and (49) proves (46). Observing that H(x) isnondereasing and integrating (46), we get estimate (47). �To prove Theorem 1 in the ase α = 2 we need the following tehnial lemma whihmay be known from the literature.Lemma 10. Let w(n) be a monotone inreasing funtion. If, for some γ > 0, thereexist slowly varying funtions l∗(n) and l∗∗(n) suh that, as n → ∞,
∞
∑

k=n

w(k)

kγ+1l∗(k)
∼ 1

nγl∗∗(n)
,then, as n → ∞,

w(n) ∼ γ
l∗(n)

l∗∗(n)
.Proof. Let, for this lemma only, ri(n), n = 1, 2, ...; i = 1, 2, 3, 4 be sequenes of realnumbers vanishing as n → ∞. For ∆ ∈ (0, 1) we have by monotoniity of w(n) andproperties of slowly varying funtions

w([∆n])

n
∑

k=[∆n]

1

kγ+1l∗(k)
= w([∆n])

1 + r2(n)

γnγl∗(n)

(

∆−γ − 1
)

≤
n
∑

k=[∆n]

w(k)

kγ+1l∗(k)
=

1 + r1(n)

nγl∗∗(n)

(

∆−γ − 1
)

≤ w(n)
n
∑

k=[∆n]

1

kγ+1l∗(k)

= w(n)
1 + r2(n)

γnγl∗(n)

(

∆−γ − 1
)

.



12Hene it follows that
w([∆n]) ≤ 1 + r1(n)

1 + r2(n)

γl∗(n)

l∗∗(n)
≤ w(n)and, therefore,

1 + r1(n)

1 + r2(n)

γl∗(n)

l∗∗(n)
≤ w(n) ≤ 1 + r3([n∆−1])

1 + r4([n∆−1])

γl∗([n∆−1])

l∗∗([n∆−1])
.Sine l∗ and l∗∗ are slowly varying funtions, we get

lim
n→∞

w(n)l∗∗(n)

γl∗(n)
= 1,as desired. �Remark 11. By the same arguments one an show that if w(x) is a monotoneinreasing funtion and, for some γ > 0, there exist slowly varying funtions l∗(x)and l∗∗(x) suh that, as x → ∞,

∫ ∞

x

w(y)dy

yγ+1l∗(y)
∼ 1

xγl∗∗(x)
,then, as x → ∞,

w(x) ∼ γ
l∗(x)

l∗∗(x)
.3. Proof of Theorem 13.1. Proof of Theorem 1 for {0 < α < 2, β < 1}∩{α 6= 1}. For a �xed ε ∈ (0, 1)write

P
(

τ− = n
)

= P
(

Sn ≤ 0; τ− > n − 1
)

=

∫ ∞

0

P (Xn ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

=

∫ εcn

0

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

+

∫ ∞

ε

P (X ≤ −ycn) P
(

Sn−1 ∈ cndy; τ− > n − 1
)

.We evaluate the last two integrals separately.We know from (19) and (20) that if X ∈ D (α, β) with 0 < α < 2 and β < 1, then,for a q ∈ (0, 1],
P (X ≤ −y) ∼ q

yαl0(y)
as y → ∞, (56)and, aording to our onstrution,

P (X ≤ −cn) ∼ qn−1 as n → ∞.Moreover, for any ε > 0,
P (X ≤ −ycn)

P (X ≤ −cn)
→ y−α as n → ∞, (57)



13uniformly in y ∈ (ε,∞). On the other hand, if M+
α (t), 0 ≤ t ≤ 1, is the Levy meanderof order α 6= 1 and the onditions of Theorem 1 are valid, then (see [10℄)

{

Sn

cn

∣

∣τ− > n

}

d→ M+
α := M+

α (1) as n → ∞. (58)We show that
∫ ∞

0

P (M+
α ∈ dy )

yα
< ∞. (59)Indeed, if this is not the ase, for any N one an �nd εN ∈ (0, 1) suh that

∫ 1/εN

εN

P (M+
α ∈ dy )

yα
> 2N.This yields

lim
n→∞

∫ 1/εN

εN

P (X ≤ −ycn)

P (X ≤ −cn)
P

(

Sn−1

cn
∈ dy | τ− > n − 1

)

=

∫ 1/εN

εN

P (M+
α ∈ dy )

yα
> 2N.By (4) we have, as n → ∞,

2l(n)

n1−ρ
≥ P

(

τ− > n
)

=
∞
∑

k=n+1

P
(

τ− = k
)

≥
∞
∑

k=n+1

P (Xk ≤ −ck) P
(

τ− > k − 1
)

×

∫ 1/εN

εN

P (Xk ≤ −yck)

P (Xk ≤ −ck)
P

(

Sk−1

ck
∈ dy | τ− > k − 1

)

≥ N

∞
∑

k=n+1

P (Xk ≤ −ck) P
(

τ− > k − 1
)

∼ N

∞
∑

k=n+1

ql(k)

k2−ρ
∼ N

1 − ρ

ql(n)

n1−ρ
,leading to a ontradition for N > 2(1 − ρ)q−1. Thus, (59) is established.It easily follows from (57) and (58) that, as n → ∞,

∫ ∞

ε

P (X ≤ −ycn) P
(

Sn−1 ∈ cndy; τ− > n − 1
)

= P (X ≤ −cn) P
(

τ− > n − 1
)

∫ ∞

ε

P (X ≤ −ycn)

P (X ≤ −cn)
P

(

Sn−1

cn
∈ dy | τ− > n − 1

)

∼ ql(n)

n2−ρ

∫ ∞

ε

P (X ≤ −ycn)

P (X ≤ −cn)
P

(

Sn−1

cn
∈ dy | τ− > n − 1

)

∼ ql(n)

n2−ρ

∫ ∞

ε

P (M+
α ∈ dy )

yα
. (60)



14Taking into aount (59), we obtain
lim
ε→0

lim
n→∞

n2−ρ

ql(n)

∫ ∞

ε

P (X ≤ −ycn) P
(

Sn−1 ∈ cndy; τ− > n − 1
)

=

∫ ∞

0

P (M+
α ∈ dy )

yα
. (61)To omplete the proof of Theorem 1 it remains to demonstrate that

lim
ε→0

lim sup
n→∞

n2−ρ

l(n)

∫ εcn

0

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

= 0. (62)To this aim we observe that
∫ εcn

0

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

≤
[εcn]+1
∑

j=0

P (X ≤ −j) bn−1(j) =: R(εcn)and evaluate R(εcn) separately for the following three ases:(i) 0 < α < 1, |β| < 1;(ii) 1 < α < 2, |β| < 1;(iii) 1 < α < 2, β = −1.(i). In view of (41), (19) and properties of regularly varying funtions with index
α ∈ (0, 1) we have

R(εcn) ≤ C
1

cn

l(n)

n1−ρ

[εcn]+1
∑

j=0

P (X ≤ −j)

≤ C1
1

cn

l(n)

n1−ρ
εcnP (X ≤ −εcn)

≤ C2
l(n)

n1−ρ
ε1−α l0(cn)

l0(εcn)
P (X ≤ −cn)

≤ C3
l(n)

n2−ρ
ε1−α l0(cn)

l0(εcn)
≤C4

l(n)

n2−ρ
ε1−α−δ (63)for any �xed δ ∈ (0, 1−α) and all su�iently large n. At the last step we have usedthe fat that for every slowly varying funtion l∗(x) and every δ > 0 there exists aonstant Cδ suh that

l∗(x)

l∗(ax)
≤ Cδ max{aδ, a−δ} for all a, x > 0. (64)



15(ii) In view of (46), equivalenes (27), (19), and estimate (64) with any �xed δ ∈
(0, min{2 − α, 1 − α(1 − ρ)}), we have for all su�iently large n,

R(εcn) ≤ C

[εcn]+1
∑

j=1

1

jαl0(j)

(

jαρl2(j) + 1

ncn

+
l(n)

n1−ρ

j + 1

c2
n

)

≤ C1
1

ncn

[εcn]+1
∑

j=1

l2(j)

jα(1−ρ)l0(j)
+ C

l(n)

n1−ρ

1

c2
n

[εcn]+1
∑

j=1

1

jα−1l0(j)

≤ C2
1

ncn
(εcn)1−α(1−ρ) l2(εcn)

l0(εcn)
+ C3

l(n)

n1−ρ

1

c2
n

(εcn)2−α

l0(εcn)

≤ C4
1

ncn
(εcn)1−α(1−ρ)−δ + C5

l(n)

n1−ρ

1

c2
n

(εcn)
2−α−δ .Hene on aount of (22) we onlude that

R(εcn) ≤ C4
ε1−α(1−ρ)−δ

nc
α(1−ρ)+δ
n

+ C5
ε2−α−δl(n)

n1−ρ

1

cα+δ
n

≤ C6
l(n)

n2−ρ

(

ε1−α(1−ρ)−δ + ε2−α−δ
)

. (65)(iii). It follows from (10) that if β = −1, then αρ = 1. By Lemma 5, H(x) ≤
Cxl3(x). Combining this estimate with (46), we get

bn(j) ≤ C

(

jl3(j) + 1

ncn

+
l(n)

n1−ρ

j + 1

c2
n

)

.Realling (56) and using (64) one again, we obtain for any �xed δ ∈ (0, 2−α) andall n ≥ n(δ),
Rn(εcn) ≤ C

[εcn]+1
∑

j=0

P (X ≤ −j)

(

jl3(j) + 1

ncn
+

l(n)

n1−ρ

j + 1

c2
n

)

≤ C1 (εcn)
2−α

(

1

ncn

l3(εcn)

l0(εcn)
+

l(n)

n1−ρ

1

c2
nl0(εcn)

)

≤ C2ε
2−α−δ

(

1

n

cnl3(cn)

cα
nl0(cn)

+
l(n)

n1−ρ

1

cα
nl0(cn)

)

≤ C3ε
2−α−δ l(n)

n2−ρ
, (66)where the inequalities H(cn) ≤ Ccnl3(cn) ≤ Cnρl(n) have been used for the laststep.Estimates (63) � (66) imply (62). Combining (61) with (62) leads to

P
(

τ− = n
)

∼ ql(n)

n2−ρ

∫ ∞

0

P (M+
α ∈ dy )

yα
=

ql(n)

n2−ρ
E
(

M+
α

)−α
. (67)



16Summation over n gives
P
(

τ− > n
)

=
∞
∑

k=n+1

P
(

τ− = k
)

∼ q

1 − ρ

l(n)

n1−ρ
E
(

M+
α

)−α
.Comparing this with (4), we get an interesting identity

E
(

M+
α

)−α
= (1 − ρ)/q (68)whih, in view of (67), ompletes the proof of Theorem 1 for {0 < α < 2, β <

1} ∩ {α 6= 1}.Remark 12. One an hek that the proof of Theorem 1 for {0 < α < 2, β <
1} ∩ {α 6= 1} does not use the fat that in the lattie ase the distribution of X isarithmeti.3.2. Proof of Theorem 1 for {1 < α < 2, β = 1}. In view of (10) the assumption
β = 1 implies q = 0 in (20) and ρ = 1 − 1/α. We �x an integer N > 1 and, for
cn > N, write

P
(

τ− = n
)

=

∫ N

0

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

+

∫ cn

N

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

+

∫ ∞

cn

P (X ≤ −y) P
(

Sn−1 ∈ dy; τ− > n − 1
)

=: I1(N, n) + I2(N, cn) + I3(cn).Our aim is to show that the last two integrals divided by n−1/α−1l(n) vanish as �rst
n → ∞ and then N → ∞, while

lim
N→∞

lim
n→∞

n1+1/α

l(n)
I1(N, n) = 1/α = 1 − ρ. (69)To start with, reall that aording to Lemma 4 under our onditions

P(χ+ > x) ∼ 1

xα−1l2(x)
as x → ∞.Moreover, it was shown by Doney [9, Corollary 3℄ that (12) is equivalent to therelation l2(x) ∼ Cl0(x) as x → ∞. Then Lemma 9 gives the upper bound

bn(x) ≤ C
(xα−1l0(x)

ncn

+
l(n)x

n1−ρc2
n

) for all x ≥ 1.Besides, Lemma 6, (22) and (4) imply exisene of a onstant K > 0 suh that
cn ∼ n1−ρ

Kl(n)
as n → ∞. (70)This equivalene justi�es the inequality

bn(x) ≤ C
l(n)

n2−ρ

(

xα−1l0(x) +
nx

c2
n

) for all x ≥ 1. (71)



17As a result, we have for cn > N > 1 the estimate
I2(N, cn) ≤

[cn]+1
∑

j=N

P(X ≤ −j)bn−1(j)

≤ C
l(n)

n2−ρ

(

[cn]+1
∑

j=N

jα−1l0(j)P(X ≤ −j) +
n

c2
n

[cn]+1
∑

j=N

jP(X ≤ −j)
)

. (72)It easily follows from (12) and (20) with p = 1 and q = 0, that
[cn]+1
∑

j=N

jα−1l0(j)P(X ≤ −j) ≤ C

[cn]+1
∑

j=N

1

j

P(X ≤ −j)

P(X ≥ j)
→ 0 (73)as �rst n → ∞ and than N → ∞.Further, realling that P(X ≤ −j) = o(P(X ≥ j)) as j → ∞, we obtain by (23) and(20), for su�iently large n and a funtion r(N) → 0 as N → ∞ :

[cn]+1
∑

j=N

jP(X ≤ −j) ≤ r(N)

[cn]+1
∑

j=N

jP(X ≥ j)

≤ Cr(N)

[cn]+1
∑

j=N

1

jα−1l0(j)
≤ C1r(N)

c2−α
n

l0(cn)

≤ C2r(N)
c2
n

n
. (74)Combining (72), (73) and (74), we onlude that

lim
N→∞

lim sup
n→∞

n1+1/α

l(n)
I2(N, cn) = 0. (75)To establish a similar result for I3(cn), observe that if β = 1, then, by (20) and (21),

P(X ≤ −cn) = o(P(X ≥ cn)) = o(1/n) as n → ∞,and, therefore,
I3(cn) ≤ P(X ≤ −cn)P(τ− > n) = o

( l(n)

n2−ρ

) as n → ∞. (76)Applying Lemma 7 and realling (70), we have
lim

n→∞

n1+1/α

l(n)
I1(N, n) = lim

n→∞
KncnI1(N, n) = K

∫ N

0

P(X ≤ −x)µ(dx). (77)In view of (71),
µ((x, x + 1]) = lim

n→∞
ncnbn(x) ≤ Cxα−1ℓ0(x).From this, taking into aount onditions (73) and (12), we get

∫ ∞

0

P(X ≤ −x)µ(dx) < ∞.



18Hene we onlude that
lim

N→∞
lim

n→∞

n1+1/α

l(n)
I1(N, n) = K

∫ ∞

0

P(X ≤ −x)µ(dx). (78)Combining (75), (76) and (78) yields, as n → ∞,
P(τ− = n) ∼ Kl(n)

n1+1/α

∫ ∞

0

P(X ≤ −x)µ(dx) ∼ 1

ncn

∫ ∞

0

P(X ≤ −x)µ(dx) . (79)Comparing this formula with the tail behavior of τ− given by (4) leads to theequalities
K

∫ ∞

0

P(X ≤ −x)µ(dx) = 1 − ρ = 1/α. (80)This justi�es (69), �nishing the proof of our theorem for 1 < α < 2, β = 1.3.3. Proof of Theorem 1 for {α = 2, β = 0}. Consider �rst the ase of arithmetidistributions and assume for simpliity that h = 1 from now on. In this ase wewrite
P(τ− = n) =

∞
∑

j=1

P(X ≤ −j)P(Sn−1 = j; τ− > n − 1)

= ∆1(cn) + ∆2(cn),where
∆1(cn) :=

[cn]
∑

j=1

P(X ≤ −j)P(Sn−1 = j; τ− > n − 1),

∆2(cn) :=
∞
∑

j=[cn]+1

P(X ≤ −j)P(Sn−1 = j; τ− > n − 1).Reall that if α = 2 then ρ = 1/2. In view of (24), (25) and (4)
∆2(cn) ≤ P(X ≤ −cn)P(τ− > n − 1)

= o

(

1

n

l(n)

n1/2

)

= o

(

l(n)

n3/2

) as n → ∞.To evaluate ∆1(cn) denote g2,0(x) = (
√

2π)−1 exp {−x2/2} , x ∈ (−∞,∞), thedensity of the standard normal law and set
w(n) :=

[cn]
∑

j=1

g2,0

(

j

cn

)

P(X ≤ −j)H(j − 1).By formula (3.15) in [5℄, as n → ∞,
P(Sn−1 = j; τ− > n − 1) ∼ H(j − 1)

n
P(Sn−1 = j) ∼ H(j − 1)

ncn
g2,0

(

j

cn

)uniformly in j ∈ [1, cn]. This gives
∆1(cn) =

1 + r(n)

ncn
w(n), (81)



19where r(n) → 0 as n → ∞. As a result we obtain
P(τ− = n) =

1 + r(n)

ncn
w(n) + o

(

l(n)

n3/2

)

. (82)Hene it follows that, as n → ∞,
l(n)

n1/2
∼ P(τ− > n) =

∞
∑

k=n+1

(

1 + r(k)

kck

w(k) + o

(

l(k)

k3/2

))

= (1 + r1(n))
∞
∑

k=n+1

w(k)

kck

+ o

(

l(n)

n1/2

)

,where r1(n) → 0 as n → ∞. Sine w(n) is monotone inreasing in n, and cn ∼
n1/2l1(n) as n → ∞, Lemma 10 with γ = 1 − ρ = 1/2 yields after obvious transfor-mations

w(n)

ncn
∼ 1

2

l(n)

n3/2
as n → ∞, (83)whih, on aount of (82) �nishes the proof of (11) for {α = 2, β = 0} in the arith-meti ase. To establish the same result for non-lattie distributions one shouldapply the respetive statements in [4℄.4. Proof of Theorem 2Applying (2) to the random walk {−Sn}n≥0, we have

1 − EzT−

= exp

{

−
∞
∑

n=1

zn

n
P(Sn < 0)

}

.Realling (13) and (1) we obtain
1 − EzT−

=
(

1 − Ezτ−

)

Ω(z). (84)On aount of P(τ− = 0) = 0, equality (84) implies
P(T− = n) =

n
∑

k=1

P(τ− = k)ωn−k − ωn, n ≥ 1. (85)Suppose �rst that the distribution of X is arithmeti. By the Gnedenko loal theo-rem we get for this ase
1

n
P(Sn = 0) =

gα,β(0)

ncn
(1 + o(1)) as n → ∞.This representation and Theorem 2 in [6℄ provide existene of a onstant C > 0suh that

ωn =
C

ncn
(1 + o(1)) as n → ∞.Using this equality and (11) in (85) and realling that P(τ− < ∞) = 1, we obtain

P(T− = n) = Ω(1)P(τ− = n)(1 + o(1)) + o((ncn)−1) as n → ∞.Observing that P(τ− = n) ≥ C/ncn, we get the desired statement for the arithmetiase.



20If the distribution of X is non-lattie, then there exists a onstant r ∈ (0, 1) suhthat P(Sn = 0) ≤ rn for all n ≥ 1 (we may hoose r as the total mass of the lattieomponent of the distribution of X). Consequently, ωn ≤ rn for all n ≥ 1. From thisestimate and (85) we see that the statement of Theorem 2 is valid in the non-lattiease as well. 5. Disussion and onluding remarksWe see by (1) that the distribution of τ− is ompletely spei�ed by the sequene
{P (Sn > 0)}n≥1. As we have mentioned in the introdution, the validity of ondition(5) is su�ient to reveal the asymptoti behavior of P(τ− > n) as n → ∞. Thus,in view of (4), nonformal arguments based on the plausible smoothness of l(n)immediately give the desired answer

P(τ− = n) = P(τ− > n − 1) − P(τ− > n)

=
l(n − 1)

(n − 1)1−ρ − l(n)

n1−ρ
≈ l(n)

(

1

(n − 1)1−ρ − 1

n1−ρ

)

≈ (1 − ρ)l(n)

n2−ρ
∼ 1 − ρ

n
P(τ− > n)under the Doney ondition only. In the present paper we failed to ahieve suha generality. However, it is worth to be mentioned that the Doney ondition, be-ing formally weaker than the onditions of Theorem 1, requires in the general asethe knowledge of the behavior of the whole sequene {P (Sn > 0)}n≥1, while theassumptions of Theorem 1 onern a single summand only. Of ourse, imposinga stronger ondition makes our life easier and allows us to give, in a sense, a on-strutive proof showing what happens in reality at the distant moment τ− of the�rst jump of the random walk in question below zero. Indeed, our arguments forthe ase {0 < α < 2, β < 1} ∩ {α 6= 1} demonstrate (ompare (56), (57), and (60))that for any x2 > x1 > 0,

lim
n→∞

P(Sn−1 ∈ (cnx1, cnx2]|τ− = n)

= lim
n→∞

P(τ− > n − 1)

P(τ− = n)

∫ x2

x1

P(X < −ycn)P(Sn−1 ∈ cndy|τ− > n − 1)

= lim
n→∞

P(τ− > n − 1)q

P(τ− = n)n

∫ x2

x1

P(X < −ycn)

P(X < −cn)
P(Sn−1 ∈ cndy|τ− > n − 1)

=
q

1 − ρ

∫ x2

x1

P(M+
α ∈ dy)

yα
.In view of (68) this means that the ontribution of the trajetories of the randomwalk satisfying Sn−1c

−1
n → 0 or Sn−1c

−1
n → ∞ as n → ∞ to the event {τ− = n}is negligibly small in probability. A typialtrajetory looks in this ase as follows:it is loated over the level zero up to moment n − 1 with Sn−1 ∈ (εcn , ε−1cn) forsu�iently small ε > 0 and at moment τ− = n the trajetory makes a big negativejump Xn < −Sn−1 of order O(cn).



21On the other hand, if {1 < α < 2, β = 1} and ondition (12) holds, then (ompare(34), (77), (79), and (80)) for any N2 > N1 > 0,
lim

n→∞
P(Sn−1 ∈ (N1, N2]|τ− = n)

= lim
n→∞

1

P(τ− = n)

∫ N2

N1

P(X < −y)P(Sn−1 ∈ dy; τ− > n − 1)

= lim
n→∞

Kαncn

∫ N2

N1

P(X < −y)P(Sn−1 ∈ dy; τ− > n − 1)

= Kα

∫ N2

N1

P(X < −y)µ(dy).Thus, the main ontribution to P (τ− = n) is given in this ase by the trajetoriesloated over the level zero up to moment n − 1 with Sn−1 ∈ [0, N ] for su�ientlybig N and with not �too big� jump Xn < −Sn−1 of order O(1).Unfortunately, our approah to investigate the behavior of P(τ− = n) in the ase
α = 2 is pure analytial and does not allow us to extrat typial trajetories withoutfurther restritions on the distribution of X. However, we an still dedue from ourproof some properties of the random walk onditioned on {τ− = n}. Observe that,for any �xed ε > 0, the trajetories with Sn−1 > εcn give no essential ontributionto P(τ− = n). Indeed, it follows from (81) and (83) that ∆1(εcn) ∼ ∆1(cn) as
n → ∞ for every �xed ε. This, along with the estimate from above for ∆2(cn),gives the laimed property. Furthermore, one an easily verify that if ∑∞

j=1 P(X ≤
−j)H(j) = ∞, then for every N ≥ 1,

N
∑

j=1

P(X ≤ −j)P(Sn−1 = j; τ− > n − 1) = o

(

l(n)

n3/2

) as n → ∞,i.e. the ontribution of the trajetories with Sn−1 = O(1) to P(τ− = n) is negligiblesmall. As a result we see that Sn−1 → ∞ but Sn−1 = o(cn) for all �typial� trajeto-ries meeting the ondition {τ− = n}. Thus, under the onditions of Theorem 1 wehave for α = 2 a kind of �ontinuous transition� between the two strategies that takeplae for the ase α < 2. We note, for ompleteness, that if ∑∞

j=1 P(X ≤ −j)H(j)is �nite, then the typial behavior of the trajetories is similar to that for the ase
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