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Abstra
tWe investigate the 
onvexity of 
han
e 
onstraints with independent randomvariables. It will be shown, how 
on
avity properties of the mapping relatedto the de
ision ve
tor have to be 
ombined with a suitable property of de-
rease for the marginal densities in order to arrive at 
onvexity of the feasibleset for large enough probability levels. It turns out that the required de-
rease 
an be veri�ed for most prominent density fun
tions. The results areapplied then, to derive 
onvexity of linear 
han
e 
onstraints with normallydistributed sto
hasti
 
oe�
ients when assuming independen
e of the rows ofthe 
oe�
ient matrix.1 Introdu
tionMany optimization problems in engineering or �nan
e 
ontain so-
alled 
han
e 
on-straints or probabilisti
 
onstraints of the form
P(h(x, ξ) ≥ 0) ≥ p, (1)where x ∈ R

n is a de
ision ve
tor, ξ : Ω → R
m is an m-dimensional random ve
torde�ned on some probability spa
e (Ω,A, P), h : R

n × R
m → R

s is a ve
tor-valuedmapping and p ∈ [0, 1] is some probability level. A 
ompilation of pra
ti
al ap-pli
ations in whi
h 
onstraints of the type (1) play a 
ru
ial role, may be foundin the standard referen
es [11℄, [12℄. Not surprisingly, one of the most importanttheoreti
al questions related to su
h 
onstraints is that of 
onvexity of the set ofde
isions x satisfying (1). It is well-known ([11℄, Th. 10.2.1) that this set is 
onvexprovided that the law P ◦ ξ−1 of ξ is a log-
on
ave probability measure on R
m andthat the 
omponents hi of h are quasi-
on
ave. The power of this result be
omesevident in 
ombination with a 
elebrated theorem by Prékopa stating that the lawof ξ is log-
on
ave whenever ξ has a log-
on
ave density. As this is easily veri�ed tohold true for many prominent multivariate distributions, this 
lassi
al result guar-antees 
onvexity of the set of feasible de
isions for a broad 
lass of appli
ations.The required quasi-
on
avity of the hi is satis�ed, for instan
e in the linear model

h(x, ξ) = Ax − Bξ, where a
tually 
on
avity of the hi holds true.In this paper, we shall be interested in 
han
e 
onstraints where random ve
torsappear separated from de
ision ve
tors, and whi
h 
ome as a spe
ial 
ase of (1) byputting h(x, ξ) = g(x) − ξ. More pre
isely, we want to study 
onvexity of a set offeasible de
isions de�ned by
M(p) = {x ∈ R

n|P(ξ ≤ g(x)) ≥ p}, (2)1



where g : R
n → R

m is some ve
tor-valued mapping. With F : R
m → R denotingthe distribution fun
tion of ξ, the same set 
an be rewritten as

M(p) = {x ∈ R
n|F (g(x)) ≥ p}. (3)We are interested in 
onditions on F and g su
h that M(p) be
omes a 
onvex setfor all p ≥ p∗, where p∗ < 1. Note that 
onvexity for large enough p is a relevantfeature be
ause p is typi
ally 
hosen to be 
lose to one.When trying to link the previously mentioned 
lassi
al result to the spe
ial 
aseof (2), in addition to the log-
on
avity of the law of ξ, we would have to imposequasi-
on
avity of the fun
tions gi(x) − ξi. Unfortunately, unlike 
on
avity, quasi-
on
avity is not preserved under addition, so quasi-
on
avity of the 
omponents giis not su�
ient here to ensure 
onvexity of M(p). To illustrate this fa
t 
onsiderthe following example:Example 1.1 In (2), let ξ have a bivariate standard normal distribution with in-dependent 
omponents, and let g(x, y) := (ex, ey). Then, the 
omponents gi arequasi-
on
ave (as fun
tions of x and y simultaneously). However, the set M(0.5)fails to be 
onvex (e.g., for u := (1,−3) and v = (−3, 1) one has that u, v ∈ M(0.5)but (u + v)/2 /∈ M(0.5)).On the other hand, 
on
avity of the 
omponents gi would do be
ause then, gi(x)−ξiis a 
on
ave, hen
e quasi-
on
ave fun
tion of the two variables x and ξ, simultane-ously. In parti
ular, 
onvexity of M(p) would hold true for all p ∈ [0, 1] in Example1.1 upon passing from g to −g. Therefore, the question arises, whether one 
an stillderive 
onvexity results for M(p) in (2) when relaxing the strong requirement of
on
ave 
omponents gi. It turns out that this will be possible under the additionalassumption of ξ having independent 
omponents. Then, roughly speaking, 
onvex-ity 
an be derived for so-
alled r-
on
ave gi, a 
on
ept providing a parametrizationof 
on
avity properties between true 
on
avity and quasi-
on
avity (see Se
tion2). As an appli
ation, we show that joint 
han
e 
onstraints de�ned by a normallydistributed random matrix yield a 
onvex set of feasible de
isions provided the prob-ability level is large enough and the rows of the random matrix are independentlydistributed. To the best of our knowledge, this result is new and may have an impa
ton solution pro
edures for problems of su
h kind by making available tools from 
on-vex optimization. We emphasize that the independen
e assumption is essential forour approa
h. For other work on 
onvexity properties of 
han
e 
onstraints whereindependen
e has been su

essfully exploited, we refer to [1℄, [4℄ and [7℄. A Theoremby Bawa [1℄, for instan
e, provides a 
ondition to ensure 
on
avity of the produ
tfun
tion

H(t) = F (t1) · · ·F (tm),where F is a one-dimensional distribution fun
tion. This would be of interest in the
ontext of (3) if all 
omponents ξi of the random ve
tor had identi
al independent2



distributions. However, the interplay with relaxations of 
on
avity of the gi in (3)is not 
lear. The 
onditions we are going to impose on the distribution fun
tion F(or better: on the marginal distribution fun
tions Fi) are related to the degree atwhi
h the 
orresponding densities fi de
rease asymptoti
ally. This will ensure thatthe mappings t 7→ Fi(1/t
α) be
ome 
on
ave for an appropriate α > 0.2 NotationWe re
all the de�nition of an r-
on
ave fun
tion:De�nition 2.1 A fun
tion f : R

s → (0,∞) is 
alled r-
on
ave for some r ∈
[−∞,∞], if

f(λx + (1 − λ)y) ≥ [λf r(x) + (1 − λ)f r(y)]1/r ∀x, y ∈ R
s, ∀λ ∈ [0, 1]. (4)In this de�nition, the 
ases r ∈ {−∞, 0,∞} are to be interpreted by 
ontinuity.In parti
ular, 1-
on
avity amounts to 
lassi
al 
on
avity, 0-
on
avity equals log-
on
avity (i.e., 
on
avity of log f), and −∞-
on
avity identi�es quasi-
on
avity(this means that the right-hand side of the inequaltiy in the de�nition be
omes

min{f(x), f(y)}). We re
all, that an equivalent way to express log-
on
avity is theinequality
f(λx + (1 − λ)y) ≥ fλ(x)f 1−λ(y) ∀x, y ∈ R

s, ∀λ ∈ [0, 1]. (5)For r < 0, one may raise (4) to the negative power r and re
ognize, upon reversingthe inequality sign, that this redu
es to 
onvexity of f r. If f is r∗-
on
ave, then fis r-
on
ave for all r ≤ r∗. We shall be mainly interested in the 
ase r ≤ 1.The following property is 
ru
ial in the 
ontext of this paper:De�nition 2.2 We 
all a fun
tion f : R → R r-de
reasing for some r ∈ R, if itis 
ontinuous on (0,∞) and if there exists some t∗ > 0 su
h that the fun
tion trf(t)is stri
tly de
reasing for all t > t∗.Evidently, 0-de
reasing means stri
tly de
reasing in the 
lassi
al sense. If f is anonnegative fun
tion like the density of some random variable, then r-de
reasingimplies r′-de
reasing whenever r′ ≤ r. Therefore, one gets narrower families of r-de
reasing density fun
tions with r → ∞. If f is not just 
ontinuous on (0,∞)but happens even to be di�erentiable there, then the property of being r-de
reasingamounts to the 
ondition
tf ′(t) + rf(t) < 0 for all t > t∗. (6)3



3 A Convexity ResultLemma 3.1 Let F : R → [0, 1] be a distribution fun
tion with (r + 1)-de
reasingdensity f for some r > 0. Then, the fun
tion z 7→ F (z−1/r) is 
on
ave on (0, (t∗)−r),where t∗ refers to De�nition 2.2. Moreover, F (t) < 1 for all t ∈ R.Proof. Let h : R → R be de�ned by h(z) = F (z−1/r), for all z > 0. By de�nition,it holds that
h(z) = F (0) +

∫ z−1/r

0

f(t)dt ∀z > 0.With the 
hange of variables t = u−1/r, the last equation rereads
h(z) = F (0) + r−1

∫ +∞

z

u−(1+1/r)f(u−1/r)du.Sin
e f is 
ontinuous on (0,∞) by the very de�nition of r-de
reasing fun
tions, Fand h are di�erentiable on the same interval. Consequently,
h′(z) = −r−1z−(1+1/r)f(z−1/r).Sin
e, by assumption, t 7→ tr+1f(t) is stri
tly de
reasing on (t∗, +∞), one gets that

z 7→ z−(1+1/r)f(z−1/r) is stri
tly in
reasing on (0, (t∗)−r). Summarizing, h′ is stri
tlyde
reasing on (0, (t∗)−r), when
e h is 
on
ave on this interval.Con
erning the se
ond statement, assume that F (t) = 1 for all t ≥ τ . Therefore,with F being a distribution fun
tion, it follows the 
ontradi
tion F ′(t) = f(t) = 0for all t > τ to f being (r + 1)-de
reasing.Theorem 3.2 For (2), we make the following assumptions for i = 1, . . . , m:1. There exist ri > 0 su
h that the 
omponents gi are (−ri)-
on
ave.2. The 
omponents ξi of ξ are independently distributed with (ri + 1)-de
reasingdensities fi.Then, M(p) is 
onvex for all p > p∗ := max{Fi(t
∗
i )|1 ≤ i ≤ m}, where Fi denotesthe distribution fun
tion of ξi and the t∗i refer to De�nition 2.2 in the 
ontext of fibeing (ri + 1)-de
reasing.Proof. Let p > p∗, λ ∈ [0, 1] and x, y ∈ M(p) be arbitrary. We have to show that

λx + (1 − λ)y ∈ M(p). Referring to the distribution fun
tions Fi of ξi, we put
qx
i := Fi(gi(x)) < 1, qy

i := Fi(gi(y)) < 1 (i = 1, . . . , m) , (7)4



where the stri
t inequalities rely on the se
ond statement of Lemma 3.1. By as-sumption 2., the 
omponents of ξ are independent, hen
e the feasible set in (2) or(3), respe
tively, may be rewritten as
M(p) =

{

w ∈ R
n

∣

∣

∣

∣

∣

m
∏

i=1

Fi(gi(w)) ≥ p

}

. (8)In parti
ular, by (7), the in
lusions x, y ∈ M(p) mean that
m
∏

i=1

qx
i ≥ p,

m
∏

i=1

qy
i ≥ p. (9)Now, (7), (9) and the de�nition of p∗ entail that

1 > qx
i ≥ p > Fi(t

∗
i ) ≥ 0, 1 > qy

i ≥ p > Fi(t
∗
i ) ≥ 0 (i = 1, . . . , m) . (10)For τ ∈ [0, 1], we denote the τ -quantile of Fi by

F̃i(τ) := inf{z ∈ R|Fi(z) ≥ τ}.Note that, for τ ∈ (0, 1), F̃i(τ) is a real number. Having a density, by assumption2., the Fi are 
ontinuous distribution fun
tions. As a 
onsequen
e, the quantilefun
tions F̃i(τ) satisfy the impli
ation
q > Fi(z) =⇒ F̃i(q) > z ∀q ∈ (0, 1) ∀z ∈ R.Now, (7) and (10) provide the relations

gi(x) ≥ F̃i(q
x
i ) > t∗i > 0, gi(y) ≥ F̃i(q

y
i ) > t∗i > 0 (i = 1, . . . , m) . (11)In parti
ular, for all i = 1, . . . , m, it holds that

[

min{F̃−ri
i (qx

i ), F̃−ri
i (qy

i )}, max{F̃−ri
i (qx

i ), F̃−ri
i (qy

i )}
]

⊆
(

0, (t∗i )
−ri
)

. (12)Along with assumption 1., (11) yields for i = 1, . . . , m:
gi (λx + (1 − λ)y) ≥

(

λg−ri
i (x) + (1 − λ)g−ri

i (y)
)−1/ri

≥
(

λF̃−ri
i (qx

i ) + (1 − λ)F̃−ri
i (qy

i )
)−1/ri

. (13)The monotoni
ity of distribution fun
tions allows to 
ontinue by
Fi (gi (λx + (1 − λ)y)) ≥ Fi

(

(

λF̃−ri
i (qx

i ) + (1 − λ)F̃−ri
i (qy

i )
)−1/ri

) (14)
(i = 1, . . . , m) .Owing to assumption 2., Lemma 3.1 guarantees that the fun
tions z 7→ Fi(z

−1/ri)are 
on
ave on (0, (t∗i )
−ri). In parti
ular, these fun
tions are log-
on
ave on the5



indi
ated interval, as this is a weaker property than 
on
avity (see Se
tion 2). Byvirtue of (12) and (5), this allows to 
ontinue (14) as
Fi (gi (λx + (1 − λ)y)) ≥

[

Fi

(

F̃i(q
x
i )
)]λ [

Fi

(

F̃i(q
y
i )
)]1−λ

(i = 1, . . . , m) .Exploiting the fa
t that the Fi as 
ontinuous distribution fun
tions satisfy the re-lation Fi(F̃i(q)) = q for all q ∈ (0, 1), and re
alling that qx
i , q

y
i ∈ (0, 1) by (10), wemay dedu
e that

Fi (gi (λx + (1 − λ)y)) ≥ [qx
i ]λ [qy

i ]
1−λ (i = 1, . . . , m) .Passing to the produ
t, it follows together with (9) that

m
∏

i=1

Fi (gi (λx + (1 − λ)y)) ≥
m
∏

i=1

[qx
i ]λ [qy

i ]
1−λ =

[

m
∏

i=1

qx
i

]λ [ m
∏

i=1

qy
i

]1−λ

≥ pλp1−λ = p.Referring to (8), this shows that λx + (1 − λ)y ∈ M(p).Remark 3.3 The 
riti
al probability level p∗ beyond whi
h 
onvexity 
an be guaran-teed in Theorem 3.2, is 
ompletely independent of the mapping g, it just depends onthe distribution fun
tions Fi. In other words, for given distribution fun
tions Fi, the
onvexity of M(p) in (2) for p > p∗ 
an be guaranteed for a whole 
lass of mappings
g satisfying the �rst assumption of Theorem 3.2. Therefore, it should 
ome at nosurprise that, for spe
i�
 mappings g even smaller 
riti
al values p∗ may apply (seeExample 4.2 below).In the following proposition, we establish the relation between log-
on
ave distri-butions and distributions having an r-de
reasing density. We re
all that the 
lassof log-
on
ave distributions having a density 
oin
ides with the 
lass of distribu-tions having a log-
on
ave density ([2℄, Th. 3.1).We also mention that most of theprominent distributions fall into this 
lass.Proposition 3.4 Let f : R → [0, 1] be a log-
on
ave and 
ontinuous density havingan unbounded support in positive dire
tion. Then, f is r-de
reasing for all r > 0.Proof. By assumption, φ := log f is a 
on
ave, possibly extended-valued fun
tion.As a 
onsequen
e of 
on
avity, there exists some τ > 0 su
h that either φ (t) = −∞for all t > τ or φ (t) > −∞ for all t > τ . The �rst 
ase amounts to f (t) = 0 forall t > τ , whi
h is a 
ontradi
tion with our assumption of f having an unboundedsupport in positive dire
tion. Consequently, φ is 
on
ave and real-valued on [τ,∞).Moreover, as a 
ontinuous and log-
on
ave density fun
tion, f must tend to zero at6



in�nity, hen
e limt→∞ φ (t) = −∞. Along with the 
on
avity of φ, this implies theexisten
e of α < 0 and β ∈ R su
h that
φ (t) ≤ αt + β ∀t ≥ τ . (15)Now, let r > 0 be arbitrary and put h(t) := trf(t) for t > 0. Then, log h =

r log (·) + φ is also 
on
ave and real-valued on [τ,∞). Assume there exists some
τ ∗ > τ su
h that log h (τ ∗) < log h (τ). By 
on
avity of log h, this fun
tion and, thus,
h itself must then be stri
tly de
reasing on [τ ∗,∞). In other words, f is r-de
reasingas was to be shown. Therefore, we are done if we 
an lead to a 
ontradi
tion theopposite 
ase, namely log h (t) ≥ log h (τ) for all t ≥ τ . This is equivalent to

φ (t) ≥ log h (τ) − r log t ∀t ≥ τ . (16)We apply the general relation
−r log t ≥ −r log s − rt/s − r ∀t ≥ s > 0to s := −2r/α > 0, where α refers to (15):

−r log t ≥ −r log (−2r/α) + αt/2 − r ∀t ≥ s.Combining this with (15) and (16), we arrive at the 
ontradi
tion
K := log h (τ) − r log (−2r/α) − r − β ≤ αt/2 ∀t ≥ max{τ, s}to the fa
t that K is a 
onstant and α/2 < 0.Re
alling that normal densities are log-
on
ave, 
ontinuous and have unboundedsupport, we may 
ombine Theorem 3.2 and Proposition 3.4, in order to obtain auseful 
hara
terization of 
onvexity under normally distributed data:Corollary 3.5 In (2), let ξ have a regular multivariate normal distribution withindependent 
omponents. Moreover, let ea
h 
omponent gi of g be (−ri)-
on
ave forsome ri > 0. Then, there exists some p∗ < 1 su
h that M(p) is 
onvex for all p > p∗.4 ExamplesThe Cau
hy distribution has a density

f(t) =
a

π (a2 + t2)
(a > 0)whi
h is r-de
reasing for any r < 2 but fails to be so for any r ≥ 2. Most ofthe prominent one-dimensional distributions, however, have a density whi
h is r-de
reasing for any r > 0. Next, we want to 
al
ulate for some well-known one-dimensional distributions the t∗- and F (t∗)- values needed in Theorem 3.2 for the
omputation of the 
riti
al probability level p∗. We start with the 
orrespondingderivation of the normal distribution and 
olle
t the others in Table 1. To emphasizethe dependen
e on the order r, we shall write t∗r rather than just t∗.7



Proposition 4.1 Let ξ have a normal distribution with s
alar parameters µ and
σ > 0. Moreover, let r > 0 be arbitrarily given. Then, the 
orresponding density is
r-de
reasing with

t∗r =

√

µ2 + 4rσ2 + µ

2
and F (t∗r) = Φ

(

√

r +
1

4

(µ

σ

)2

− 1

2

µ

σ

)

,where Φ denotes the distribution fun
tion of the standard normal distribution.Proof. The 
al
ulation of the (optimal) t∗r- value is straightforward from therepresentation of the normal density and (6). By de�nition,
F (t∗r) = P (ξ ≤ t∗r) = P

(

ξ − µ

σ
≤ t∗r − µ

σ

)

.Sin
e σ−1 (ξ − µ) has a standard normal distribution, one may 
ontinue as
F (t∗r) = Φ

(

t∗r − µ

σ

)

= Φ

(

√

r +
1

4

(µ

σ

)2

− 1

2

µ

σ

)

.

For the spe
ial 
ase of a standard normal distribution (µ = 0, σ = 1), one gets t∗r =√
r and F (t∗r) = Φ(

√
r). As an illustration, we 
onsider the following example:Example 4.2 In (2) let ξ have a bivariate standard normal distribution: ξ ∼

N (0, I2). Moreover, put
g1(x, y) =

1

x2 + y2 + 0.1
, g2(x, y) =

1

(x + y)2 + 0.1
.Then, 
learly, the 
omponents gi are (−1)-
on
ave (i.e. 1/gi is 
onvex). By as-sumption, the 
omponents of ξ have a one-dimensional standard normal distributionwhi
h, by Proposition 4.1, has a 2-de
reasing density with t∗ =

√
2. Now, Theorem3.2 may be applied and we may derive 
onvexity of the feasible set M(p) in (2) beyonda 
riti
al probability level p∗ = Φ

(√
2
)

≈ 0.921. A

ording to Remark 3.3, possiblysome mu
h smaller level 
ould do with respe
t to 
onvexity. This is 
on�rmed forthe example by Figure 1: obviously, the feasible set is 
onvex for probabilities higherthan 0.7 and non
onvex for probabilities lower than 0.6, so the true 
riti
al level inthis example is somewhere in between 0.6 and 0.7. Note that the 
lassi
al 
onvexitytheory 
ould not be applied to this example be
ause the 
omponents gi are not 
on
ave(see Introdu
tion). This is also supported by the observation that 
onvexity fails forsmall probabilities.In the example, 
onvexity of the feasible set M(p) 
ould be guaranteed for all proba-bility levels larger than 0.921. This may sound a strong requirement, but note that,8



Figure 1: Illustration of the feasible set M(p) for di�erent levels p in an example.
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in 
han
e 
onstraint programming, these levels are typi
ally high, say 0.95 or 0.99.Moreover, the result of Proposition 4.1 strongly depends on the parameters µ and
σ, and, more pre
isely, on their ratio. If this ratio be
omes large, then F (t∗r) 
on-verges towards Φ (0). Hen
e, for the 
ase of normal distributions with small relativestandard deviations, the 
riti
al level p∗ tends to 0.5.Table 1: t∗r- values in the de�nition of r-de
reasing densities for a set of 
ommondistributions.Law Density t∗rnormal 1√

2πσ
exp

(

− (t−µ)2

2σ2

)

µ+
√

µ2+4rσ2

2exponential λ exp (−λt) (t > 0) r
λWeibull abtb−1 exp

(

−atb
)

(t > 0)
(

b+r−1
ab

)1/bGamma ba

Γ(a)
exp (−bt) ta−1 (t > 0) a+r−1

b

χ 1
2n/2−1Γ(n/2)

tn−1 exp
(

− t2

2

)

(t > 0)
√

n + r − 1

χ2 1
2n/2Γ(n/2)

tn/2−1 exp
(

− t
2

)

(t > 0) n + 2r − 2log-normal 1√
2πσt

exp
(

− (log t−µ)2

2σ2

)

(t > 0) eµ+(r−1)σ2Maxwell 2t2√
2πσ3

exp
(

− t2

2σ2

)

(t > 0) σ
√

r + 2Rayleigh 2t
λ

exp
(

− t2

λ

)

(t > 0)
√

r+1
2

λTable 1 shows, how the t∗r- value depends on r and on the parameters of the di�erentdistributions. For two distributions, a 
losed formula is available for the 
orrespond-ing value F (t∗r) of the distribution fun
tion: First, for the exponential distribution,one gets F (t∗r) = 1−e−r . Hen
e, re
onsidering Example 4.2 with independent expo-9



nential rather than normal distributions, one 
ould derive 
onvexity of the set M(p)for probabilities larger than 1− e−2 ≈ 0.864 whi
h is a slightly better value than inthe normal 
ase. It is interesting to observe that the 
riti
al probability level for theexponential distribution does not depend on the parameter of this distribution. These
ond 
ase with a 
losed formula is the Weibull distribution, where one 
al
ulates
F (t∗) = 1 − e−(b+r−1)/b (see Table 1 for the meaning of parameters). In general,no 
losed formula is available, but in 
on
rete appli
ations, the 
riti
al probabilitylevels are easily read o� from usual data tables or numeri
al routines.5 Chan
e 
onstraints with normally distributed sto-
hasti
 matri
esIn this se
tion, we want to apply Theorem 3.2 in order to derive a 
onvexity resultfor a more 
ompli
ated 
han
e 
onstraint than (2). More pre
isely, 
onsider thefeasible set

M(p) = {x ∈ R
n|P(Ξx ≤ a) ≥ p}, (17)where the rows ξi of the sto
hasti
 matrix Ξ have multivariate normal distributionsa

ording to ξi ∼ N (µi, Σi). Linear 
han
e 
onstraints of this type, having ran-dom 
oe�
ients, are of importan
e in many engineering appli
ations (e.g., mixtureproblems). Note that, in 
ontrast to (2), the random parameter and the de
isionve
tor are no longer separated but 
oupled in a multipli
ative way. This makes the
onvexity analysis more involved. A 
lassi
al result due to Kataoka [6℄ and Van dePanne and Popp [8℄ states that M(p) is 
onvex for p ≥ 0.5 in the simple 
ase where

Ξ redu
es to single row (m = 1). A mu
h more pre
ise 
hara
terization not onlyof 
onvexity but also of 
ompa
tness and nontriviality of M(p) in this elementarysituation was provided in [5℄. Moreover, 
ompa
tness of M(p) 
ould even be 
har-a
terized there in the general 
ase (m arbitrary). However, 
onvexity in the general
ase remains an open question. Below, we shall provide a positive result under theassumption of Ξ having independent rows. This yields a 
omplementary 
hara
-terization to results by Prékopa and Burkauskas, who derived 
onvexity under theassumption that all 
ovarian
e and 
ross-
ovarian
e matri
es of the 
olumns or rowsof Ξ, respe
tively, are proportional to ea
h other (see [10℄ and [3℄).A dire
t appli
ation of Theorem 3.2 to (17) is not possible, sin
e this type of 
han
e
onstraint is di�erent from (2). However, there exists a useful transformation of theone into the other. First, we need an auxiliary result:Lemma 5.1 For µ ∈ R
n and positive de�nite matrix Σ of order (n, n), we put

f(x) :=
〈x, Σx〉

(a − 〈µ, x〉)2 de�ned on the domain Ω1 := {x|a − 〈µ, x〉 > 0}.10



Then, f is 
onvex on the following open subset of Ω1:
Ω2 :=

{

x
∣

∣

∣
a − 〈µ, x〉 > 4λmaxλ

−3/2
min ‖µ‖

√

〈x, Σx〉
}

.Here, λmax and λmin denote the largest and smallest eigenvalues of Σ.Proof. On Ω1, the Hessian of f 
al
ulates as
D2f(x) = 2 (a − 〈µ, x〉)−4 [(a − 〈µ, x〉)2 Σ + 4 (a − 〈µ, x〉) ΣxµT + 3 〈x, Σx〉µµT

]

.In order to verify the positive de�niteness of D2f on Ω2, it is evidently su�
ient toshow this property for the matrix
(a − 〈µ, x〉) Σ + 4ΣxµT .If z 6= 0 and x ∈ Ω2 are arbitrarily given, then, by de�nition of Ω2,

〈

z,
[

(a − 〈µ, x〉) Σ + 4ΣxµT
]

z
〉

= (a − 〈µ, x〉) 〈z, Σz〉 + 4 〈z, Σx〉 〈µ, z〉
≥ λmin ‖z‖2 (a − 〈µ, x〉) − 4 ‖Σx‖ ‖µ‖ ‖z‖2

> 4 ‖z‖2 ‖µ‖
(

λmaxλ
−1/2
min

√

〈x, Σx〉 − ‖Σx‖
)

≥ 0.Here, we exploited the relations
〈

x, Σ2x
〉

≤ λ2
max ‖x‖2 , λmin ‖x‖2 ≤ 〈x, Σx〉 .The next simple proposition will be needed later on but is of independent interestas well be
ause it makes no restri
tions on the probability level p:Proposition 5.2 If a ≥ 0 (
omponentwise) in (17), then M(p) is starshaped withrespe
t to the origin. In parti
ular, M(p) is a 
onne
ted set.Proof. Sin
e a ≥ 0 by assumption, one immediately derives that 0 ∈ M(p). Wehave to show that, for arbitrary x ∈ M(p) and arbitrary λ ∈ [0, 1], it follows that

λx ∈ M(p). This is evident for λ = 0. If λ ∈ (0, 1], then
P(Ξ(λx) ≤ a) = P(Ξx ≤ λ−1a) ≥ P(Ξx ≤ a) ≥ p.Here we used that λ−1a ≥ a (
omponentwise) due to a ≥ 0 and λ ≤ 1. In otherwords, λx ∈ M(p). 11



Theorem 5.3 In (17) we assume that the rows ξi of Ξ are pairwise independentlydistributed. Then, M(p) is 
onvex for
p > Φ

(

max
{√

3, u∗
})

, (18)where Φ is the one-dimensional standard normal distribution fun
tion,
u∗ = max

i=1,... ,m
4λ(i)

max

[

λ
(i)
min

]−3/2

‖µi‖ .and λ
(i)
max and λ

(i)
min refer to the largest and smallest eigenvalue of Σi.Proof. The assumption of independent rows allows to rewrite the feasible set as

M(p) =
{

x ∈ R
n
∣

∣

∣

∏m

i=1
P(〈ξi, x〉 ≤ ai) ≥ p

}

.For x 6= 0 and i = 1, . . . , m, we put
ηi(x) :=

〈ξi − µi, x〉
√

〈x, Σix〉
∼ N (0, 1); gi(x) :=

ai − 〈µi, x〉
√

〈x, Σix〉
.Evidently, for x 6= 0, one has that 〈ξi, x〉 ≤ ai holds true if and only if ηi(x) ≤ gi(x).Sin
e the ηi(x) have a standard normal distribution, one obtains

P(〈ξi, x〉 ≤ ai) = Φ(gi(x)) (for x 6= 0 and i = 1, . . . , m). (19)We introdu
e the following sets for i = 1, . . . , m:
Ω

(i)
1 : = {x ∈ R

n|ai − 〈µi, x〉 > 0}

Ω
(i)
2 : =

{

x ∈ R
n|ai − 〈µi, x〉 > 4λ(i)

max

[

λ
(i)
min

]−3/2

‖µi‖
√

〈x, Σix〉
}

.The following in
lusions hold true whenever p satis�es (18):
M(p)\{0} ⊆ Ω

(i)
2 ⊆ Ω

(i)
1 (i = 1, . . . , m).The se
ond in
lusion is trivial. To verify the �rst one, let x ∈ M(p)\{0} be arbitrary.Sin
e Φ ≤ 1, one derives from (19) that

Φ (gi(x)) ≥
∏m

j=1
Φ (gj(x)) =

∏m

j=1
P(〈ξj , x〉 ≤ aj) ≥ p > Φ (u∗) (i = 1, . . . , m).With Φ being stri
tly in
reasing, this amounts to gi(x) > u∗ and thus x ∈ Ω

(i)
2 for

i = 1, . . . , m by de�nition of u∗.Next, on Ω
(i)
1 de�ne

fi(w) :=
〈w, Σiw〉

(ai − 〈µi, w〉)2 (i = 1, . . . , m).12



Note that the fi are �nite-valued on Ω
(i)
1 . By Lemma 5.1, the fi are 
onvex on

Ω
(i)
2 . On the other hand, the gi are �nite-valued and positive on Ω

(i)
1 \{0} and so inparti
ular on Ω

(i)
2 \{0}. From the respe
tive de�nitions, it follows then that fi = g−2

ion Ω
(i)
2 \{0}.Re
alling that p > 0, by assumption, one gets that 0 ∈ M(p) if and only if ai ≥ 0for all i = 1, . . . , m. We pro
eed by 
ase distin
tion:First 
ase: min

i=1,... ,m
ai < 0Then, 0 /∈ M(p) and, by (19), M(p) = {x ∈ R

n |∏m
i=1 Φ (gi(x)) ≥ p}. Hen
e, weare in the setting of (8) in Theorem 3.2 with Fi := Φ for i = 1, . . . , m. From theremark below Proposition 4.1, we know that Φ has a 3 -de
reasing density with
riti
al value t∗ =

√
3. Therefore, 
ondition 2. of Theorem 3.2 is satis�ed with

ri := 2 for i = 1, . . . , m, and the statement of the Theorem will allow to derive
onvexity of M(p) for all p > Φ(
√

3) under the 
ondition that the �rst assumptionof Theorem 3.2 be ful�lled, i.e., the gi are (−2)-
on
ave. This point, however,deserves some attention be
ause in 
ontrast to the setting required in Theorem 3.2and in De�nition 2.1, our gi are not de�ned on the whole spa
e and may be not
(−2)-
on
ave on all of their domain. We shall pro
eed as follows: as in Theorem 3.2we 
onsider arbitrary x, y ∈ M(p) and λ ∈ [0, 1], and we show that

xλ := λx + (1 − λ)y ∈ M(p).We have two options to do so. The �rst one is to 
he
k the relation of (−2)-
on
avityof the gi for the 
on
rete triple (x, y, xλ):
gi(xλ) ≥

(

λg−2
i (x) + (1 − λ)g−2

i (y)
)−1/2

. (20)Indeed, this last relation 
orresponds to the �rst inequality in (13). A brief reinspe
-tion of the proof of Theorem 3.2 shows that, given all the ne
essary assumptionson the distribution fun
tions, this inequality is all what is needed to derive that
xλ ∈ M(p). However, it may happen, that (20) 
annot be veri�ed, for instan
e dueto xλ = 0, so that xλ does not belong to the domain of the gi. Then, we might beable to show xλ ∈ M(p) by a dire
t argument.In a �rst step, we show that xλ 6= 0. Assuming to the 
ontrary, that xλ = 0 andre
alling that 0 /∈ M(p) (so x, y 6= 0), it follows the existen
e of some α < 0 su
hthat x = αy. Sin
e, x, y ∈ M(p) = M(p)\{0} ⊆ Ω

(i)
1 for i = 1, . . . , m, one derivesfrom here the relation

|〈µi, y〉| < min
{

ai,−α−1ai

}

(i = 1, . . . , m).On the other hand, in the present �rst situation of 
ase distin
tion, there exists atleast one ai < 0. Then, however, the right hand side of the last inequality be
omesnegative whi
h yields a 
ontradi
tion. 13



With x, y ∈ M(p) = M(p)\{0} ⊆ Ω
(i)
2 and the Ω

(i)
2 being 
onvex sets for i =

1, . . . , m, it results that xλ ∈ Ω
(i)
2 . The 
onvexity of the fi on Ω

(i)
2 allows to 
ontinueas

fi(xλ) ≤ λfi(x) + (1 − λ)fi(y) (i = 1, . . . , m).On the other hand, we know that x, y, xλ 6= 0, when
e the fi-values may be repla
edby those of the g−2
i (see above):

g−2
i (xλ) ≤ λg−2

i (x) + (1 − λ)g−2
i (y) (i = 1, . . . , m).Moreover, as the gi are �nite-valued and positive on Ω

(i)
2 \{0} (see above), so are the

g−2
i . This allows to raise the last inequality to the power −1/2 in order to derive at(20) as desired.Se
ond 
ase: min

i=1,... ,m
ai ≥ 0Then, 0 ∈ M(p). Consequently, we may assume that xλ 6= 0. This already ex
ludesthe 
ase x = y = 0. Next suppose that, say, x 6= 0 and y = 0. Then, we mayapply Proposition 5.2, to derive that xλ = λx ∈ M(p). The 
ase y 6= 0 and x = 0follows by symmetry. Summarizing, we may assume that x, y, xλ 6= 0 whi
h allowsto repeat the argumentation from the �rst 
ase and then to invoke again (20) inorder to verify that xλ ∈ M(p).We note that the assumption of independent rows ξi in Theorem 5.3 does not meanindependen
e of all entries of Ξ. Rather, the 
ross-
ovarian
e matri
es cov (ξi, ξj)are required to be zero for i 6= j whereas there are no restri
tions for i = j.Remark 5.4 If the value u∗ in Theorem 5.3 happens to be smaller than √

3, (e.g.,for mean ve
tors ‖µi‖ 
lose to zero), then 
onvexity of M(p) 
an be derived for
p > Φ(

√
3) ≈ 0.958.A
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