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AbstratWe investigate the onvexity of hane onstraints with independent randomvariables. It will be shown, how onavity properties of the mapping relatedto the deision vetor have to be ombined with a suitable property of de-rease for the marginal densities in order to arrive at onvexity of the feasibleset for large enough probability levels. It turns out that the required de-rease an be veri�ed for most prominent density funtions. The results areapplied then, to derive onvexity of linear hane onstraints with normallydistributed stohasti oe�ients when assuming independene of the rows ofthe oe�ient matrix.1 IntrodutionMany optimization problems in engineering or �nane ontain so-alled hane on-straints or probabilisti onstraints of the form
P(h(x, ξ) ≥ 0) ≥ p, (1)where x ∈ R

n is a deision vetor, ξ : Ω → R
m is an m-dimensional random vetorde�ned on some probability spae (Ω,A, P), h : R

n × R
m → R

s is a vetor-valuedmapping and p ∈ [0, 1] is some probability level. A ompilation of pratial ap-pliations in whih onstraints of the type (1) play a ruial role, may be foundin the standard referenes [11℄, [12℄. Not surprisingly, one of the most importanttheoretial questions related to suh onstraints is that of onvexity of the set ofdeisions x satisfying (1). It is well-known ([11℄, Th. 10.2.1) that this set is onvexprovided that the law P ◦ ξ−1 of ξ is a log-onave probability measure on R
m andthat the omponents hi of h are quasi-onave. The power of this result beomesevident in ombination with a elebrated theorem by Prékopa stating that the lawof ξ is log-onave whenever ξ has a log-onave density. As this is easily veri�ed tohold true for many prominent multivariate distributions, this lassial result guar-antees onvexity of the set of feasible deisions for a broad lass of appliations.The required quasi-onavity of the hi is satis�ed, for instane in the linear model

h(x, ξ) = Ax − Bξ, where atually onavity of the hi holds true.In this paper, we shall be interested in hane onstraints where random vetorsappear separated from deision vetors, and whih ome as a speial ase of (1) byputting h(x, ξ) = g(x) − ξ. More preisely, we want to study onvexity of a set offeasible deisions de�ned by
M(p) = {x ∈ R

n|P(ξ ≤ g(x)) ≥ p}, (2)1



where g : R
n → R

m is some vetor-valued mapping. With F : R
m → R denotingthe distribution funtion of ξ, the same set an be rewritten as

M(p) = {x ∈ R
n|F (g(x)) ≥ p}. (3)We are interested in onditions on F and g suh that M(p) beomes a onvex setfor all p ≥ p∗, where p∗ < 1. Note that onvexity for large enough p is a relevantfeature beause p is typially hosen to be lose to one.When trying to link the previously mentioned lassial result to the speial aseof (2), in addition to the log-onavity of the law of ξ, we would have to imposequasi-onavity of the funtions gi(x) − ξi. Unfortunately, unlike onavity, quasi-onavity is not preserved under addition, so quasi-onavity of the omponents giis not su�ient here to ensure onvexity of M(p). To illustrate this fat onsiderthe following example:Example 1.1 In (2), let ξ have a bivariate standard normal distribution with in-dependent omponents, and let g(x, y) := (ex, ey). Then, the omponents gi arequasi-onave (as funtions of x and y simultaneously). However, the set M(0.5)fails to be onvex (e.g., for u := (1,−3) and v = (−3, 1) one has that u, v ∈ M(0.5)but (u + v)/2 /∈ M(0.5)).On the other hand, onavity of the omponents gi would do beause then, gi(x)−ξiis a onave, hene quasi-onave funtion of the two variables x and ξ, simultane-ously. In partiular, onvexity of M(p) would hold true for all p ∈ [0, 1] in Example1.1 upon passing from g to −g. Therefore, the question arises, whether one an stillderive onvexity results for M(p) in (2) when relaxing the strong requirement ofonave omponents gi. It turns out that this will be possible under the additionalassumption of ξ having independent omponents. Then, roughly speaking, onvex-ity an be derived for so-alled r-onave gi, a onept providing a parametrizationof onavity properties between true onavity and quasi-onavity (see Setion2). As an appliation, we show that joint hane onstraints de�ned by a normallydistributed random matrix yield a onvex set of feasible deisions provided the prob-ability level is large enough and the rows of the random matrix are independentlydistributed. To the best of our knowledge, this result is new and may have an impaton solution proedures for problems of suh kind by making available tools from on-vex optimization. We emphasize that the independene assumption is essential forour approah. For other work on onvexity properties of hane onstraints whereindependene has been suessfully exploited, we refer to [1℄, [4℄ and [7℄. A Theoremby Bawa [1℄, for instane, provides a ondition to ensure onavity of the produtfuntion

H(t) = F (t1) · · ·F (tm),where F is a one-dimensional distribution funtion. This would be of interest in theontext of (3) if all omponents ξi of the random vetor had idential independent2



distributions. However, the interplay with relaxations of onavity of the gi in (3)is not lear. The onditions we are going to impose on the distribution funtion F(or better: on the marginal distribution funtions Fi) are related to the degree atwhih the orresponding densities fi derease asymptotially. This will ensure thatthe mappings t 7→ Fi(1/t
α) beome onave for an appropriate α > 0.2 NotationWe reall the de�nition of an r-onave funtion:De�nition 2.1 A funtion f : R

s → (0,∞) is alled r-onave for some r ∈
[−∞,∞], if

f(λx + (1 − λ)y) ≥ [λf r(x) + (1 − λ)f r(y)]1/r ∀x, y ∈ R
s, ∀λ ∈ [0, 1]. (4)In this de�nition, the ases r ∈ {−∞, 0,∞} are to be interpreted by ontinuity.In partiular, 1-onavity amounts to lassial onavity, 0-onavity equals log-onavity (i.e., onavity of log f), and −∞-onavity identi�es quasi-onavity(this means that the right-hand side of the inequaltiy in the de�nition beomes

min{f(x), f(y)}). We reall, that an equivalent way to express log-onavity is theinequality
f(λx + (1 − λ)y) ≥ fλ(x)f 1−λ(y) ∀x, y ∈ R

s, ∀λ ∈ [0, 1]. (5)For r < 0, one may raise (4) to the negative power r and reognize, upon reversingthe inequality sign, that this redues to onvexity of f r. If f is r∗-onave, then fis r-onave for all r ≤ r∗. We shall be mainly interested in the ase r ≤ 1.The following property is ruial in the ontext of this paper:De�nition 2.2 We all a funtion f : R → R r-dereasing for some r ∈ R, if itis ontinuous on (0,∞) and if there exists some t∗ > 0 suh that the funtion trf(t)is stritly dereasing for all t > t∗.Evidently, 0-dereasing means stritly dereasing in the lassial sense. If f is anonnegative funtion like the density of some random variable, then r-dereasingimplies r′-dereasing whenever r′ ≤ r. Therefore, one gets narrower families of r-dereasing density funtions with r → ∞. If f is not just ontinuous on (0,∞)but happens even to be di�erentiable there, then the property of being r-dereasingamounts to the ondition
tf ′(t) + rf(t) < 0 for all t > t∗. (6)3



3 A Convexity ResultLemma 3.1 Let F : R → [0, 1] be a distribution funtion with (r + 1)-dereasingdensity f for some r > 0. Then, the funtion z 7→ F (z−1/r) is onave on (0, (t∗)−r),where t∗ refers to De�nition 2.2. Moreover, F (t) < 1 for all t ∈ R.Proof. Let h : R → R be de�ned by h(z) = F (z−1/r), for all z > 0. By de�nition,it holds that
h(z) = F (0) +

∫ z−1/r

0

f(t)dt ∀z > 0.With the hange of variables t = u−1/r, the last equation rereads
h(z) = F (0) + r−1

∫ +∞

z

u−(1+1/r)f(u−1/r)du.Sine f is ontinuous on (0,∞) by the very de�nition of r-dereasing funtions, Fand h are di�erentiable on the same interval. Consequently,
h′(z) = −r−1z−(1+1/r)f(z−1/r).Sine, by assumption, t 7→ tr+1f(t) is stritly dereasing on (t∗, +∞), one gets that

z 7→ z−(1+1/r)f(z−1/r) is stritly inreasing on (0, (t∗)−r). Summarizing, h′ is stritlydereasing on (0, (t∗)−r), whene h is onave on this interval.Conerning the seond statement, assume that F (t) = 1 for all t ≥ τ . Therefore,with F being a distribution funtion, it follows the ontradition F ′(t) = f(t) = 0for all t > τ to f being (r + 1)-dereasing.Theorem 3.2 For (2), we make the following assumptions for i = 1, . . . , m:1. There exist ri > 0 suh that the omponents gi are (−ri)-onave.2. The omponents ξi of ξ are independently distributed with (ri + 1)-dereasingdensities fi.Then, M(p) is onvex for all p > p∗ := max{Fi(t
∗
i )|1 ≤ i ≤ m}, where Fi denotesthe distribution funtion of ξi and the t∗i refer to De�nition 2.2 in the ontext of fibeing (ri + 1)-dereasing.Proof. Let p > p∗, λ ∈ [0, 1] and x, y ∈ M(p) be arbitrary. We have to show that

λx + (1 − λ)y ∈ M(p). Referring to the distribution funtions Fi of ξi, we put
qx
i := Fi(gi(x)) < 1, qy

i := Fi(gi(y)) < 1 (i = 1, . . . , m) , (7)4



where the strit inequalities rely on the seond statement of Lemma 3.1. By as-sumption 2., the omponents of ξ are independent, hene the feasible set in (2) or(3), respetively, may be rewritten as
M(p) =

{

w ∈ R
n

∣

∣

∣

∣

∣

m
∏

i=1

Fi(gi(w)) ≥ p

}

. (8)In partiular, by (7), the inlusions x, y ∈ M(p) mean that
m
∏

i=1

qx
i ≥ p,

m
∏

i=1

qy
i ≥ p. (9)Now, (7), (9) and the de�nition of p∗ entail that

1 > qx
i ≥ p > Fi(t

∗
i ) ≥ 0, 1 > qy

i ≥ p > Fi(t
∗
i ) ≥ 0 (i = 1, . . . , m) . (10)For τ ∈ [0, 1], we denote the τ -quantile of Fi by

F̃i(τ) := inf{z ∈ R|Fi(z) ≥ τ}.Note that, for τ ∈ (0, 1), F̃i(τ) is a real number. Having a density, by assumption2., the Fi are ontinuous distribution funtions. As a onsequene, the quantilefuntions F̃i(τ) satisfy the impliation
q > Fi(z) =⇒ F̃i(q) > z ∀q ∈ (0, 1) ∀z ∈ R.Now, (7) and (10) provide the relations

gi(x) ≥ F̃i(q
x
i ) > t∗i > 0, gi(y) ≥ F̃i(q

y
i ) > t∗i > 0 (i = 1, . . . , m) . (11)In partiular, for all i = 1, . . . , m, it holds that

[

min{F̃−ri
i (qx

i ), F̃−ri
i (qy

i )}, max{F̃−ri
i (qx

i ), F̃−ri
i (qy

i )}
]

⊆
(

0, (t∗i )
−ri
)

. (12)Along with assumption 1., (11) yields for i = 1, . . . , m:
gi (λx + (1 − λ)y) ≥

(

λg−ri
i (x) + (1 − λ)g−ri

i (y)
)−1/ri

≥
(

λF̃−ri
i (qx

i ) + (1 − λ)F̃−ri
i (qy

i )
)−1/ri

. (13)The monotoniity of distribution funtions allows to ontinue by
Fi (gi (λx + (1 − λ)y)) ≥ Fi

(

(

λF̃−ri
i (qx

i ) + (1 − λ)F̃−ri
i (qy

i )
)−1/ri

) (14)
(i = 1, . . . , m) .Owing to assumption 2., Lemma 3.1 guarantees that the funtions z 7→ Fi(z

−1/ri)are onave on (0, (t∗i )
−ri). In partiular, these funtions are log-onave on the5



indiated interval, as this is a weaker property than onavity (see Setion 2). Byvirtue of (12) and (5), this allows to ontinue (14) as
Fi (gi (λx + (1 − λ)y)) ≥

[

Fi

(

F̃i(q
x
i )
)]λ [

Fi

(

F̃i(q
y
i )
)]1−λ

(i = 1, . . . , m) .Exploiting the fat that the Fi as ontinuous distribution funtions satisfy the re-lation Fi(F̃i(q)) = q for all q ∈ (0, 1), and realling that qx
i , q

y
i ∈ (0, 1) by (10), wemay dedue that

Fi (gi (λx + (1 − λ)y)) ≥ [qx
i ]λ [qy

i ]
1−λ (i = 1, . . . , m) .Passing to the produt, it follows together with (9) that

m
∏

i=1

Fi (gi (λx + (1 − λ)y)) ≥
m
∏

i=1

[qx
i ]λ [qy

i ]
1−λ =

[

m
∏

i=1

qx
i

]λ [ m
∏

i=1

qy
i

]1−λ

≥ pλp1−λ = p.Referring to (8), this shows that λx + (1 − λ)y ∈ M(p).Remark 3.3 The ritial probability level p∗ beyond whih onvexity an be guaran-teed in Theorem 3.2, is ompletely independent of the mapping g, it just depends onthe distribution funtions Fi. In other words, for given distribution funtions Fi, theonvexity of M(p) in (2) for p > p∗ an be guaranteed for a whole lass of mappings
g satisfying the �rst assumption of Theorem 3.2. Therefore, it should ome at nosurprise that, for spei� mappings g even smaller ritial values p∗ may apply (seeExample 4.2 below).In the following proposition, we establish the relation between log-onave distri-butions and distributions having an r-dereasing density. We reall that the lassof log-onave distributions having a density oinides with the lass of distribu-tions having a log-onave density ([2℄, Th. 3.1).We also mention that most of theprominent distributions fall into this lass.Proposition 3.4 Let f : R → [0, 1] be a log-onave and ontinuous density havingan unbounded support in positive diretion. Then, f is r-dereasing for all r > 0.Proof. By assumption, φ := log f is a onave, possibly extended-valued funtion.As a onsequene of onavity, there exists some τ > 0 suh that either φ (t) = −∞for all t > τ or φ (t) > −∞ for all t > τ . The �rst ase amounts to f (t) = 0 forall t > τ , whih is a ontradition with our assumption of f having an unboundedsupport in positive diretion. Consequently, φ is onave and real-valued on [τ,∞).Moreover, as a ontinuous and log-onave density funtion, f must tend to zero at6



in�nity, hene limt→∞ φ (t) = −∞. Along with the onavity of φ, this implies theexistene of α < 0 and β ∈ R suh that
φ (t) ≤ αt + β ∀t ≥ τ . (15)Now, let r > 0 be arbitrary and put h(t) := trf(t) for t > 0. Then, log h =

r log (·) + φ is also onave and real-valued on [τ,∞). Assume there exists some
τ ∗ > τ suh that log h (τ ∗) < log h (τ). By onavity of log h, this funtion and, thus,
h itself must then be stritly dereasing on [τ ∗,∞). In other words, f is r-dereasingas was to be shown. Therefore, we are done if we an lead to a ontradition theopposite ase, namely log h (t) ≥ log h (τ) for all t ≥ τ . This is equivalent to

φ (t) ≥ log h (τ) − r log t ∀t ≥ τ . (16)We apply the general relation
−r log t ≥ −r log s − rt/s − r ∀t ≥ s > 0to s := −2r/α > 0, where α refers to (15):

−r log t ≥ −r log (−2r/α) + αt/2 − r ∀t ≥ s.Combining this with (15) and (16), we arrive at the ontradition
K := log h (τ) − r log (−2r/α) − r − β ≤ αt/2 ∀t ≥ max{τ, s}to the fat that K is a onstant and α/2 < 0.Realling that normal densities are log-onave, ontinuous and have unboundedsupport, we may ombine Theorem 3.2 and Proposition 3.4, in order to obtain auseful haraterization of onvexity under normally distributed data:Corollary 3.5 In (2), let ξ have a regular multivariate normal distribution withindependent omponents. Moreover, let eah omponent gi of g be (−ri)-onave forsome ri > 0. Then, there exists some p∗ < 1 suh that M(p) is onvex for all p > p∗.4 ExamplesThe Cauhy distribution has a density

f(t) =
a

π (a2 + t2)
(a > 0)whih is r-dereasing for any r < 2 but fails to be so for any r ≥ 2. Most ofthe prominent one-dimensional distributions, however, have a density whih is r-dereasing for any r > 0. Next, we want to alulate for some well-known one-dimensional distributions the t∗- and F (t∗)- values needed in Theorem 3.2 for theomputation of the ritial probability level p∗. We start with the orrespondingderivation of the normal distribution and ollet the others in Table 1. To emphasizethe dependene on the order r, we shall write t∗r rather than just t∗.7



Proposition 4.1 Let ξ have a normal distribution with salar parameters µ and
σ > 0. Moreover, let r > 0 be arbitrarily given. Then, the orresponding density is
r-dereasing with

t∗r =

√

µ2 + 4rσ2 + µ

2
and F (t∗r) = Φ

(

√

r +
1

4

(µ

σ

)2

− 1

2

µ

σ

)

,where Φ denotes the distribution funtion of the standard normal distribution.Proof. The alulation of the (optimal) t∗r- value is straightforward from therepresentation of the normal density and (6). By de�nition,
F (t∗r) = P (ξ ≤ t∗r) = P

(

ξ − µ

σ
≤ t∗r − µ

σ

)

.Sine σ−1 (ξ − µ) has a standard normal distribution, one may ontinue as
F (t∗r) = Φ

(

t∗r − µ

σ

)

= Φ

(

√

r +
1

4

(µ

σ

)2

− 1

2

µ

σ

)

.

For the speial ase of a standard normal distribution (µ = 0, σ = 1), one gets t∗r =√
r and F (t∗r) = Φ(

√
r). As an illustration, we onsider the following example:Example 4.2 In (2) let ξ have a bivariate standard normal distribution: ξ ∼

N (0, I2). Moreover, put
g1(x, y) =

1

x2 + y2 + 0.1
, g2(x, y) =

1

(x + y)2 + 0.1
.Then, learly, the omponents gi are (−1)-onave (i.e. 1/gi is onvex). By as-sumption, the omponents of ξ have a one-dimensional standard normal distributionwhih, by Proposition 4.1, has a 2-dereasing density with t∗ =

√
2. Now, Theorem3.2 may be applied and we may derive onvexity of the feasible set M(p) in (2) beyonda ritial probability level p∗ = Φ

(√
2
)

≈ 0.921. Aording to Remark 3.3, possiblysome muh smaller level ould do with respet to onvexity. This is on�rmed forthe example by Figure 1: obviously, the feasible set is onvex for probabilities higherthan 0.7 and nononvex for probabilities lower than 0.6, so the true ritial level inthis example is somewhere in between 0.6 and 0.7. Note that the lassial onvexitytheory ould not be applied to this example beause the omponents gi are not onave(see Introdution). This is also supported by the observation that onvexity fails forsmall probabilities.In the example, onvexity of the feasible set M(p) ould be guaranteed for all proba-bility levels larger than 0.921. This may sound a strong requirement, but note that,8



Figure 1: Illustration of the feasible set M(p) for di�erent levels p in an example.
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in hane onstraint programming, these levels are typially high, say 0.95 or 0.99.Moreover, the result of Proposition 4.1 strongly depends on the parameters µ and
σ, and, more preisely, on their ratio. If this ratio beomes large, then F (t∗r) on-verges towards Φ (0). Hene, for the ase of normal distributions with small relativestandard deviations, the ritial level p∗ tends to 0.5.Table 1: t∗r- values in the de�nition of r-dereasing densities for a set of ommondistributions.Law Density t∗rnormal 1√

2πσ
exp

(

− (t−µ)2

2σ2

)

µ+
√

µ2+4rσ2

2exponential λ exp (−λt) (t > 0) r
λWeibull abtb−1 exp

(

−atb
)

(t > 0)
(

b+r−1
ab

)1/bGamma ba

Γ(a)
exp (−bt) ta−1 (t > 0) a+r−1

b

χ 1
2n/2−1Γ(n/2)

tn−1 exp
(

− t2

2

)

(t > 0)
√

n + r − 1

χ2 1
2n/2Γ(n/2)

tn/2−1 exp
(

− t
2

)

(t > 0) n + 2r − 2log-normal 1√
2πσt

exp
(

− (log t−µ)2

2σ2

)

(t > 0) eµ+(r−1)σ2Maxwell 2t2√
2πσ3

exp
(

− t2

2σ2

)

(t > 0) σ
√

r + 2Rayleigh 2t
λ

exp
(

− t2

λ

)

(t > 0)
√

r+1
2

λTable 1 shows, how the t∗r- value depends on r and on the parameters of the di�erentdistributions. For two distributions, a losed formula is available for the orrespond-ing value F (t∗r) of the distribution funtion: First, for the exponential distribution,one gets F (t∗r) = 1−e−r . Hene, reonsidering Example 4.2 with independent expo-9



nential rather than normal distributions, one ould derive onvexity of the set M(p)for probabilities larger than 1− e−2 ≈ 0.864 whih is a slightly better value than inthe normal ase. It is interesting to observe that the ritial probability level for theexponential distribution does not depend on the parameter of this distribution. Theseond ase with a losed formula is the Weibull distribution, where one alulates
F (t∗) = 1 − e−(b+r−1)/b (see Table 1 for the meaning of parameters). In general,no losed formula is available, but in onrete appliations, the ritial probabilitylevels are easily read o� from usual data tables or numerial routines.5 Chane onstraints with normally distributed sto-hasti matriesIn this setion, we want to apply Theorem 3.2 in order to derive a onvexity resultfor a more ompliated hane onstraint than (2). More preisely, onsider thefeasible set

M(p) = {x ∈ R
n|P(Ξx ≤ a) ≥ p}, (17)where the rows ξi of the stohasti matrix Ξ have multivariate normal distributionsaording to ξi ∼ N (µi, Σi). Linear hane onstraints of this type, having ran-dom oe�ients, are of importane in many engineering appliations (e.g., mixtureproblems). Note that, in ontrast to (2), the random parameter and the deisionvetor are no longer separated but oupled in a multipliative way. This makes theonvexity analysis more involved. A lassial result due to Kataoka [6℄ and Van dePanne and Popp [8℄ states that M(p) is onvex for p ≥ 0.5 in the simple ase where

Ξ redues to single row (m = 1). A muh more preise haraterization not onlyof onvexity but also of ompatness and nontriviality of M(p) in this elementarysituation was provided in [5℄. Moreover, ompatness of M(p) ould even be har-aterized there in the general ase (m arbitrary). However, onvexity in the generalase remains an open question. Below, we shall provide a positive result under theassumption of Ξ having independent rows. This yields a omplementary hara-terization to results by Prékopa and Burkauskas, who derived onvexity under theassumption that all ovariane and ross-ovariane matries of the olumns or rowsof Ξ, respetively, are proportional to eah other (see [10℄ and [3℄).A diret appliation of Theorem 3.2 to (17) is not possible, sine this type of haneonstraint is di�erent from (2). However, there exists a useful transformation of theone into the other. First, we need an auxiliary result:Lemma 5.1 For µ ∈ R
n and positive de�nite matrix Σ of order (n, n), we put

f(x) :=
〈x, Σx〉

(a − 〈µ, x〉)2 de�ned on the domain Ω1 := {x|a − 〈µ, x〉 > 0}.10



Then, f is onvex on the following open subset of Ω1:
Ω2 :=

{

x
∣

∣

∣
a − 〈µ, x〉 > 4λmaxλ

−3/2
min ‖µ‖

√

〈x, Σx〉
}

.Here, λmax and λmin denote the largest and smallest eigenvalues of Σ.Proof. On Ω1, the Hessian of f alulates as
D2f(x) = 2 (a − 〈µ, x〉)−4 [(a − 〈µ, x〉)2 Σ + 4 (a − 〈µ, x〉) ΣxµT + 3 〈x, Σx〉µµT

]

.In order to verify the positive de�niteness of D2f on Ω2, it is evidently su�ient toshow this property for the matrix
(a − 〈µ, x〉) Σ + 4ΣxµT .If z 6= 0 and x ∈ Ω2 are arbitrarily given, then, by de�nition of Ω2,

〈

z,
[

(a − 〈µ, x〉) Σ + 4ΣxµT
]

z
〉

= (a − 〈µ, x〉) 〈z, Σz〉 + 4 〈z, Σx〉 〈µ, z〉
≥ λmin ‖z‖2 (a − 〈µ, x〉) − 4 ‖Σx‖ ‖µ‖ ‖z‖2

> 4 ‖z‖2 ‖µ‖
(

λmaxλ
−1/2
min

√

〈x, Σx〉 − ‖Σx‖
)

≥ 0.Here, we exploited the relations
〈

x, Σ2x
〉

≤ λ2
max ‖x‖2 , λmin ‖x‖2 ≤ 〈x, Σx〉 .The next simple proposition will be needed later on but is of independent interestas well beause it makes no restritions on the probability level p:Proposition 5.2 If a ≥ 0 (omponentwise) in (17), then M(p) is starshaped withrespet to the origin. In partiular, M(p) is a onneted set.Proof. Sine a ≥ 0 by assumption, one immediately derives that 0 ∈ M(p). Wehave to show that, for arbitrary x ∈ M(p) and arbitrary λ ∈ [0, 1], it follows that

λx ∈ M(p). This is evident for λ = 0. If λ ∈ (0, 1], then
P(Ξ(λx) ≤ a) = P(Ξx ≤ λ−1a) ≥ P(Ξx ≤ a) ≥ p.Here we used that λ−1a ≥ a (omponentwise) due to a ≥ 0 and λ ≤ 1. In otherwords, λx ∈ M(p). 11



Theorem 5.3 In (17) we assume that the rows ξi of Ξ are pairwise independentlydistributed. Then, M(p) is onvex for
p > Φ

(

max
{√

3, u∗
})

, (18)where Φ is the one-dimensional standard normal distribution funtion,
u∗ = max

i=1,... ,m
4λ(i)

max

[

λ
(i)
min

]−3/2

‖µi‖ .and λ
(i)
max and λ

(i)
min refer to the largest and smallest eigenvalue of Σi.Proof. The assumption of independent rows allows to rewrite the feasible set as

M(p) =
{

x ∈ R
n
∣

∣

∣

∏m

i=1
P(〈ξi, x〉 ≤ ai) ≥ p

}

.For x 6= 0 and i = 1, . . . , m, we put
ηi(x) :=

〈ξi − µi, x〉
√

〈x, Σix〉
∼ N (0, 1); gi(x) :=

ai − 〈µi, x〉
√

〈x, Σix〉
.Evidently, for x 6= 0, one has that 〈ξi, x〉 ≤ ai holds true if and only if ηi(x) ≤ gi(x).Sine the ηi(x) have a standard normal distribution, one obtains

P(〈ξi, x〉 ≤ ai) = Φ(gi(x)) (for x 6= 0 and i = 1, . . . , m). (19)We introdue the following sets for i = 1, . . . , m:
Ω

(i)
1 : = {x ∈ R

n|ai − 〈µi, x〉 > 0}

Ω
(i)
2 : =

{

x ∈ R
n|ai − 〈µi, x〉 > 4λ(i)

max

[

λ
(i)
min

]−3/2

‖µi‖
√

〈x, Σix〉
}

.The following inlusions hold true whenever p satis�es (18):
M(p)\{0} ⊆ Ω

(i)
2 ⊆ Ω

(i)
1 (i = 1, . . . , m).The seond inlusion is trivial. To verify the �rst one, let x ∈ M(p)\{0} be arbitrary.Sine Φ ≤ 1, one derives from (19) that

Φ (gi(x)) ≥
∏m

j=1
Φ (gj(x)) =

∏m

j=1
P(〈ξj , x〉 ≤ aj) ≥ p > Φ (u∗) (i = 1, . . . , m).With Φ being stritly inreasing, this amounts to gi(x) > u∗ and thus x ∈ Ω

(i)
2 for

i = 1, . . . , m by de�nition of u∗.Next, on Ω
(i)
1 de�ne

fi(w) :=
〈w, Σiw〉

(ai − 〈µi, w〉)2 (i = 1, . . . , m).12



Note that the fi are �nite-valued on Ω
(i)
1 . By Lemma 5.1, the fi are onvex on

Ω
(i)
2 . On the other hand, the gi are �nite-valued and positive on Ω

(i)
1 \{0} and so inpartiular on Ω

(i)
2 \{0}. From the respetive de�nitions, it follows then that fi = g−2

ion Ω
(i)
2 \{0}.Realling that p > 0, by assumption, one gets that 0 ∈ M(p) if and only if ai ≥ 0for all i = 1, . . . , m. We proeed by ase distintion:First ase: min

i=1,... ,m
ai < 0Then, 0 /∈ M(p) and, by (19), M(p) = {x ∈ R

n |∏m
i=1 Φ (gi(x)) ≥ p}. Hene, weare in the setting of (8) in Theorem 3.2 with Fi := Φ for i = 1, . . . , m. From theremark below Proposition 4.1, we know that Φ has a 3 -dereasing density withritial value t∗ =

√
3. Therefore, ondition 2. of Theorem 3.2 is satis�ed with

ri := 2 for i = 1, . . . , m, and the statement of the Theorem will allow to deriveonvexity of M(p) for all p > Φ(
√

3) under the ondition that the �rst assumptionof Theorem 3.2 be ful�lled, i.e., the gi are (−2)-onave. This point, however,deserves some attention beause in ontrast to the setting required in Theorem 3.2and in De�nition 2.1, our gi are not de�ned on the whole spae and may be not
(−2)-onave on all of their domain. We shall proeed as follows: as in Theorem 3.2we onsider arbitrary x, y ∈ M(p) and λ ∈ [0, 1], and we show that

xλ := λx + (1 − λ)y ∈ M(p).We have two options to do so. The �rst one is to hek the relation of (−2)-onavityof the gi for the onrete triple (x, y, xλ):
gi(xλ) ≥

(

λg−2
i (x) + (1 − λ)g−2

i (y)
)−1/2

. (20)Indeed, this last relation orresponds to the �rst inequality in (13). A brief reinspe-tion of the proof of Theorem 3.2 shows that, given all the neessary assumptionson the distribution funtions, this inequality is all what is needed to derive that
xλ ∈ M(p). However, it may happen, that (20) annot be veri�ed, for instane dueto xλ = 0, so that xλ does not belong to the domain of the gi. Then, we might beable to show xλ ∈ M(p) by a diret argument.In a �rst step, we show that xλ 6= 0. Assuming to the ontrary, that xλ = 0 andrealling that 0 /∈ M(p) (so x, y 6= 0), it follows the existene of some α < 0 suhthat x = αy. Sine, x, y ∈ M(p) = M(p)\{0} ⊆ Ω

(i)
1 for i = 1, . . . , m, one derivesfrom here the relation

|〈µi, y〉| < min
{

ai,−α−1ai

}

(i = 1, . . . , m).On the other hand, in the present �rst situation of ase distintion, there exists atleast one ai < 0. Then, however, the right hand side of the last inequality beomesnegative whih yields a ontradition. 13



With x, y ∈ M(p) = M(p)\{0} ⊆ Ω
(i)
2 and the Ω

(i)
2 being onvex sets for i =

1, . . . , m, it results that xλ ∈ Ω
(i)
2 . The onvexity of the fi on Ω

(i)
2 allows to ontinueas

fi(xλ) ≤ λfi(x) + (1 − λ)fi(y) (i = 1, . . . , m).On the other hand, we know that x, y, xλ 6= 0, whene the fi-values may be replaedby those of the g−2
i (see above):

g−2
i (xλ) ≤ λg−2

i (x) + (1 − λ)g−2
i (y) (i = 1, . . . , m).Moreover, as the gi are �nite-valued and positive on Ω

(i)
2 \{0} (see above), so are the

g−2
i . This allows to raise the last inequality to the power −1/2 in order to derive at(20) as desired.Seond ase: min

i=1,... ,m
ai ≥ 0Then, 0 ∈ M(p). Consequently, we may assume that xλ 6= 0. This already exludesthe ase x = y = 0. Next suppose that, say, x 6= 0 and y = 0. Then, we mayapply Proposition 5.2, to derive that xλ = λx ∈ M(p). The ase y 6= 0 and x = 0follows by symmetry. Summarizing, we may assume that x, y, xλ 6= 0 whih allowsto repeat the argumentation from the �rst ase and then to invoke again (20) inorder to verify that xλ ∈ M(p).We note that the assumption of independent rows ξi in Theorem 5.3 does not meanindependene of all entries of Ξ. Rather, the ross-ovariane matries cov (ξi, ξj)are required to be zero for i 6= j whereas there are no restritions for i = j.Remark 5.4 If the value u∗ in Theorem 5.3 happens to be smaller than √

3, (e.g.,for mean vetors ‖µi‖ lose to zero), then onvexity of M(p) an be derived for
p > Φ(

√
3) ≈ 0.958.Aknowledgement:The authors thank Prof. W. Römish (Humboldt Universiy Berlin) for stimulatingdisussion on the topi of the paper.
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