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Abstract

In this text we introduce new classes of Sobolev–Morrey spaces being adequate

for the regularity theory of second order parabolic boundary value problems on

Lipschitz domains of space dimension n ≥ 3 with nonsmooth coefficients and mixed

boundary conditions. We prove embedding and trace theorems as well as invariance

properties of these spaces with respect to localization, Lipschitz transformation,

and reflection. In the second part [11] of our presentation we show that the class of

second order parabolic systems with diagonal principal part generates isomorphisms

between the above mentioned Sobolev–Morrey spaces of solutions and right hand

sides.

Introduction

Many interesting evolutionary processes can be formulated in terms of second order

parabolic initial boundary value problems of drift-diffusion type. Applications we

have in mind are, for instance, transport processes of electrically charged particles in

semiconductor heterostructures, phase separation processes of nonlocally interact-

ing particles, or chemotactic aggregation of biological organisms in heterogeneous

environments. The adequate description of these processes requires the treatment

of problems with fully nonsmooth data, linear diffusion and nonlinear drift terms.

One way to solve these problems is to study the regularity of solutions to auxiliary

linear problems which is also of its own interest. In this first part of our presentation

we introduce new classes of function spaces which allow a natural and satisfactory

treatment of the regularity problem discussed in detail in the second part [11].

The preliminary part of this text is dedicated to both the functional analytic

formulation and the unique solvability of initial boundary value problems in a more

abstract context. As a starting point, in Section 1 we consider the Hilbert space

WE(S; Y ) =
{

u ∈ L2(S; Y ) : (Eu)′ ∈ L2(S; Y ∗)
}

,

which gives us freedom to model a great variety of evolutionary processes by choosing

appropriate Hilbert spaces Y , H and linear operators K ∈ L(Y ; H) and E =

K∗JHK ∈ L(Y ; Y ∗). Here, we assume that the range K[Y ] is dense in H and

that JH ∈ L(H ; H∗) denotes the duality map between H and H∗. Moreover, S =

(t0, t1) is an open time interval, and the operators K : L2(S; Y ) → L2(S; H) and

E : L2(S; Y ) → L2(S; Y ∗) are associated with S, K, and E via (Ku)(s) = Ku(s)

and (Eu)(s) = Eu(s) for u ∈ L2(S; Y ) and s ∈ S.
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These spaces were introduced by Gröger [15] as a natural and self-evident gen-

eralization of the well-established function space

W (S; Y ) = L2(S; Y ) ∩ H1(S; Y ∗),

for which we find a developed theory in the literature, see Lions [21, 22], Lions,

Magenes [23], Gajewski, Gröger, Zacharias [6], Temam [31], Simon [28],

and Dautray, Lions [4]. It turns out, that all the basic facts known for W (S; Y ),

like density of functions being smooth in time, integration by parts formulae, or em-

bedding and trace theorems, carry over to the space WE(S; Y ), see Gröger [15].

Section 2 is dedicated to the variational formulation and the solution of initial

boundary value problems. Given a strongly monotone and Lipschitz continuous

Volterra operator M : L2(S; Y ) → L2(S; Y ∗), for all α ∈ R the problem

(Eu)′ + Mu − αEu = f ∈ L2(S; Y ∗), (Ku)(t0) = w ∈ H,

is uniquely solvable and well-posed in WE(S; Y ), see Gröger [15].

This class of problems is large enough to cover the case of linear second order par-

abolic boundary value problems on Lipschitz domains Ω ⊂ Rn of space dimension

n ∈ N with nonsmooth coefficients and mixed boundary conditions. We are mainly

interested in the linear drift-diffusion problem

(P) (Eu)′ + Au + Bu = f ∈ L2(S; Y ∗), (Ku)(t0) = 0,

where H = L2(Ω) is equipped with the weighted scalar product

(v|w)H =

∫

Ω

avw dλn for v, w ∈ H,

H1
0 (Ω) ⊂ Y ⊂ H1(Ω) is a closed subspace of H1(Ω), and K ∈ L(Y ; H) is simply the

embedding operator. The nonsmooth capacity coefficient a ∈ L∞(Ω) is essentially

bounded from below by some constant ε > 0.

We consider nonsmooth diffusivity coefficients A ∈ L∞(S; L∞(Ω; Sn)) with values

in the set Sn of symmetric (n× n)-matrices, and we assume that the corresponding

quadratic form is essentially bounded from below by ε > 0, too. With regard to

problem (P) we are concerned with principal parts A : L2(S; Y ) → L2(S; Y ∗) of the

form

〈Au, w〉L2(S;Y ) =

∫

S

∫

Ω

A(s)∇u(s) · ∇w(s) dλn ds for u, w ∈ L2(S; Y ).

Given lower order coefficients

b ∈ L∞(S; L∞(Ω; Rn)), b0 ∈ L∞(S; L∞(Ω)), bΓ ∈ L∞(S; L∞(Γ)),
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modelling drift and damping phenomena, for u, w ∈ L2(S; Y ) we define the map

B : L2(S; Y ) → L2(S; Y ∗) by

〈Bu, w〉L2(S;Y ) =

∫

S

∫

Ω

(

u(s)b(s) · ∇w(s) + b0(s)u(s)w(s)
)

dλn ds

+

∫

S

∫

Γ

bΓ(s)KΓu(s)KΓw(s) dλΓ ds.

Here, Γ = ∂Ω is the Lipschitz boundary of Ω ⊂ Rn, and KΓ : H1(Ω) → L2(Γ)

denotes the corresponding trace map. Note, that the bounded linear Volterra

operator M = A + B + αE : L2(S; Y ) → L2(S; Y ∗) is positively definite, whenever

α > 0 is large enough.

Our regularity problem can be formulated as follows: We are looking for Banach

spaces L+ ⊂ L2(S; Y ) and L− ⊂ L2(S; Y ∗) such that

1. The space W =
{

u ∈ L+ : (Eu)′ ∈ L−
}

is embedded into a space of functions

being Hölder continuous in time and space up to the boundary.

2. The parabolic operator corresponding to problem (P) is a linear isomorphism

between
{

u ∈ W : u(t0) = 0
}

and L−, and it has the maximal regularity property:

f ∈ L− −→ Au, Bu, (Eu)′ ∈ L−.

Following classical results of Ladyzhenskaya, Solonnikov, Uraltseva [19],

there are well-known conditions on the right hand side f ∈ L2(S; Y ∗) in terms of

usual Sobolev spaces for evolution equations which ensure the Hölder continuity

of the solution. But in the case n ≥ 3 these spaces are not the right choice for

maximal regularity results without further assumptions on the smoothness of the

domain or the coefficients. In the second part [11] of our presentation we fill this

gap: There, we prove that the class of problems (P) generates isomorphisms between

appropriate Sobolev–Morrey spaces meeting all the requirements of the above

regularity problem, see also Lieberman [20], Hong-Ming Yin [33].

The main goal of this work is to introduce these Sobolev–Morrey spaces and

to discuss their properties in detail. In Section 3 we start with a collection of

classical results concerning Morrey and Campanato spaces with parabolic met-

ric, see Campanato [2], Da Prato [3]. Section 4 is dedicated to regular sets

G ⊂ R
n with Lipschitz boundary and Sobolev spaces H1

0 (G) which allow a

proper functional analytic formulation of elliptic and parabolic problems with mixed

boundary conditions in nonsmooth domains, see Gröger, Rehberg [16, 17, 18],

and Griepentrog, Recke [10, 12]. Setting Y = H1
0 (G) we consider Sobolev–

Morrey spaces Lω
2 (S; Y ) ⊂ L2(S; Y ) for Morrey exponents ω ∈ [0, n + 2].

In Section 5 for ω ∈ [0, n + 2] we introduce a new scale of Sobolev–Morrey

spaces Lω
2 (S; Y ∗) ⊂ L2(S; Y ∗) of functionals generalizing Rakotoson’s approach
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to elliptic boundary value problems, see [25, 26]. In Section 6 we make use of

the function spaces introduced before to establish our class of Sobolev–Morrey

spaces

W ω
E (S; Y ) =

{

u ∈ Lω
2 (S; Y ) : (Eu)′ ∈ Lω

2 (S; Y ∗)
}

⊂ WE(S; Y ).

Embedding and trace theorems for these spaces are based on invariance properties

of the above Sobolev–Morrey spaces with respect to localization, Lipschitz

transformation, and reflection, and on special variants of Poincaré inequalities,

see Appendix A and Struwe [30]. Note, that in the case of ω ∈ (n, n+2] the space

W ω
E (S; Y ) is embedded into a space of Hölder continuous functions.

1. Hilbert spaces for evolution equations

Let (Rn, Ln, λn) be the σ-finite measure space of n-dimensional Lebesgue measur-

able subsets of Rn. For F ∈ Ln and p ∈ [1,∞) we denote by Lp(F ; X) the set of

all Lebesgue p-integrable functions u : S → X with values in the Banach space

(X, ‖ ‖X). The class L∞(F ; X) consists of all Lebesgue measurable functions

u : F → X which are essentially bounded.

For every G ⊂ R
n we introduce the class B(G; X) of bounded functions u :

G → X. We define the set C(G; X) of continuous functions u : G → X and the

subclass BC(G; X) = B(G; X) ∩ C(G; X). Moreover, for α ∈ (0, 1] we consider

the set C0,α(G; X) of Hölder continuous functions u : G → X and the subclass

BC0,α(G; X) = B(G; X) ∩ C0,α(G; X).

For k ∈ N∪{∞} and open sets U ⊂ Rn we denote by Ck(U ; X) the set of functions

u : U → X which have continuous derivatives up to the k-th order. The subclass

of all these functions with bounded continuous derivatives up to the k-th order

forms the set BCk(U ; X). Finally, we introduce the subset Ck
0 (U ; X) of functions

u ∈ Ck(U ; X) with compact support supp(u) in U .

In this section we introduce function spaces which are suitable for the formulation

of the class of evolution problems we are interested in. Our representation and

terminology closely follows the ideas of Gröger [15], see also Dautray, Lions [4].

Throughout the whole text we assume that

1. S ⊂ R is an open time interval,

2. Y , X, H are Hilbert spaces, Y is continuously embedded into X,

3. K ∈ L(X; H), the set K[Y ] is dense in H ,

4. JH ∈ L(H ; H∗) denotes the duality map of H ,

5. E ∈ L(X; Y ∗) is defined by E = (K|Y )∗JHK.
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We denote by ( | )H and 〈 , 〉H the scalar product in H and the dual pairing

between H and H∗, respectively. The duality map JH ∈ L(H ; H∗) of H is defined

as usual by 〈JHu, v〉H = (u|v)H for u, v ∈ H . Note, that the restriction E|Y =

(K|Y )∗JHK|Y ∈ L(Y ; Y ∗) is symmetric and positively semidefinite.

Definition 1.1 (Sobolev space). 1. The function f ∈ L2(S; Y ∗) is called weakly

differentiable if there exists some f ′ ∈ L2(S; Y ∗) which satisfies
∫

S

〈f ′(s), v〉Y ϑ(s) ds = −
∫

S

〈f(s), v〉Y ϑ′(s) ds for all ϑ ∈ C∞
0 (S), v ∈ Y .

We introduce the Sobolev space H1(S; Y ∗) as usual by

H1(S; Y ∗) =
{

f ∈ L2(S; Y ∗) : f ′ ∈ L2(S; Y ∗)
}

.

2. Corresponding to E : L2(S; X) → L2(S; Y ∗), which is associated with S and

E ∈ L(X; Y ∗) via (Eu)(s) = Eu(s) for s ∈ S, u ∈ L2(S; X), we set

WE(S; X) =
{

u ∈ L2(S; X) : (Eu)′ ∈ L2(S; Y ∗)
}

.

Theorem 1.1. WE(S; X) is a Hilbert space with the scalar product

(u|v) = (u|v)L2(S;X) + ((Eu)′|(Ev)′)L2(S;Y ∗) for u, v ∈ WE(S; X).

Proof. 1. The bilinear form is correctly defined for u, v ∈ WE(S; X), and it has the

properties of a scalar product.

2. To prove the completeness of WE(S; X), let (uk) be some Cauchy sequence in

WE(S; X). Then the sequences (uk) and ((Euk)
′) converge in L2(S; X) and L2(S; Y ∗)

to functions u ∈ L2(S; X) and f ∈ L2(S; Y ∗), respectively. Since E ∈ L(X; Y ∗) the

sequence (Euk) converges in L2(S; Y ∗) to Eu ∈ L2(S; Y ∗). Hence, passing to the

limit k → ∞ in
∫

S

〈(Euk)
′(s), v〉Y ϑ(s) ds = −

∫

S

〈(Euk)(s), v〉Y ϑ′(s) ds,

for all ϑ ∈ C∞
0 (S), v ∈ Y we get the identity

∫

S

〈f(s), v〉Y ϑ(s) ds = −
∫

S

〈(Eu)(s), v〉Y ϑ′(s) ds

which proves (Eu)′ = f ∈ L2(S; Y ∗) and u ∈ WE(S; X). �

Lemma 1.2. Let the map C ∈ L(X; Y ) satisfy

(1.1) 〈Ew, Cv〉Y = 〈Ev, Cw〉Y for all v, w ∈ X.

Then the bounded linear operator C : L2(S; X) → L2(S; Y ), associated with S and C

via (Cu)(s) = Cu(s) for s ∈ S and u ∈ L2(S; X), maps WE(S; X) continuously into

WE|Y (S; Y ).
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Proof. We define bounded linear operators C0 : L2(S; Y ) → L2(S; Y ) and E0 :

L2(S; Y ) → L2(S; Y ∗) associated with S, C|Y ∈ L(Y ; Y ), and E|Y ∈ L(Y ; Y ∗), by

(C0u)(s) = Cu(s), (E0u)(s) = Eu(s) for s ∈ S, u ∈ L2(S; Y ).

Due to (1.1) and the symmetry of E|Y for every u ∈ WE(S; X), ϑ ∈ C∞
0 (S), and

v ∈ Y we obtain
∫

S

〈(C∗
0(Eu)′)(s), v〉Y ϑ(s) ds =

∫

S

〈(Eu)′(s), Cv〉Y ϑ(s) ds

= −
∫

S

〈Eu(s), Cv〉Y ϑ′(s) ds = −
∫

S

〈(E0Cu)(s), v〉Y ϑ′(s) ds,

which yields (E0Cu)′ = C∗
0(Eu)′ ∈ L2(S; Y ∗) and Cu ∈ WE|Y (S; Y ). Hence, C maps

WE(S; X) continuously into WE|Y (S; Y ). �

Density of smooth functions. Every function from WE(S; X) can be approxi-

mated by functions with values in X being smooth in time. We start with the case

S = R.

Lemma 1.3 (Density). The set C∞
0 (R; X) is dense in WE(R; X).

Proof. 1. Let ϕ ∈ C∞
0 (R) be a nonnegative function satisfying

∫

R
ϕ(s) ds = 1 and

supp(ϕ) ⊂ (−1, 1), and define ϕk ⊂ C∞
0 (R) by ϕk(s) = kϕ(ks) for k ∈ N, s ∈ R. For

every u ∈ L2(R; X) the sequence (uk) of convolutions uk = ϕk ∗ u ∈ BC∞(R; X) ∩
L2(R; X) converges to u in L2(R; X).

Due to E ∈ L(X; Y ∗) for all u ∈ WE(R; X) we obtain Eu ∈ H1(R; Y ∗). The

sequence of convolutions (Eu)k = ϕk ∗ (Eu) ∈ BC∞(R; Y ∗) ∩ H1(R; Y ∗) converges

to Eu in H1(R; Y ∗). This yields limk→∞ ‖Euk − Eu‖H1(R;Y ∗) = 0 since Euk = (Eu)k

holds true for all k ∈ N.

2. We choose cut-off functions ϑk ∈ C∞
0 (R) satisfying

ϑk|(−k, k) = 1, 0 ≤ ϑk(s) ≤ 1, |ϑ′
k(s)| ≤ 1 for all s ∈ R, k ∈ N.

Now, we prove that the sequence of functions vk = ϑkuk ∈ C∞
0 (R; X) converges to

u in WE(R; X): The fact, that limk→∞ ‖vk − u‖L2(R;X) = 0 holds true, follows from

the estimate
∫

R

‖vk(s) − u(s)‖2
X ds ≤ 2

∫

R

(

|ϑk(s) − 1|2‖uk(s)‖2
X + ‖uk(s) − u(s)‖2

X

)

ds

≤ 2

∫

R\(−k,k)

‖uk(s)‖2
X ds + 2

∫

R

‖uk(s) − u(s)‖2
X ds

≤ 4

∫

R\(−k,k)

‖u(s)‖2
X ds + 6

∫

R

‖uk(s) − u(s)‖2
X ds.
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Because of (Evk)
′ = (ϑkEuk)

′ = ϑ′
kEuk +(Euk)

′ϑk and the properties of the cut-off

functions, for all k ∈ N we get

∫

R

‖(Evk)
′(s) − (Euk)

′(s)‖2
Y ∗ ds

≤ 2

∫

R

(

|ϑ′
k(s)|2‖(Euk)(s)‖2

Y ∗ + |ϑk(s) − 1|2‖(Euk)
′(s)‖2

Y ∗

)

ds,

and, hence,

∫

R

‖(Evk)
′(s) − (Euk)

′(s)‖2
Y ∗ ds

≤ 4

∫

R\(−k,k)

(

‖(Eu)(s)‖2
Y ∗ + ‖(Euk)(s) − (Eu)(s)‖2

Y ∗

)

ds

+ 4

∫

R\(−k,k)

(

‖(Eu)′(s)‖2
Y ∗ + ‖(Euk)

′(s) − (Eu)′(s)‖2
Y ∗

)

ds,

which yields limk→∞ ‖(Evk)
′ − (Euk)

′‖L2(S;Y ∗) = 0. Together with the fact, that the

sequence ((Euk)
′) converges to (Eu)′ in L2(R; Y ∗), see Step 1, we obtain the relation

limk→∞ ‖(Evk)
′ − (Eu)′‖L2(R;Y ∗) = 0. �

To prove a corresponding statement for arbitrary open intervals S ⊂ R we need

some preparation:

Lemma 1.4. Let S ⊂ S0 ⊂ R be two open intervals and ϑ ∈ BC∞(R) some function

with supp(ϑ) ∩ S0 ⊂ S. Then, for u ∈ WE(S; X) the function u0 : S0 → X defined

by u0|S = ϑu and u0|(S0 \ S) = 0 belongs to WE(S0; X).

Proof. Let u ∈ WE(S; X) be given. The above construction implies that u0 ∈
L2(S0; X). We define f0 : S0 → Y ∗ by

f0|S = ϑ′Eu + (Eu)′ϑ, f0|(S0 \ S) = 0.

Due to E ∈ L(X; Y ∗) this yields f0 ∈ L2(S0; Y
∗). Note, that for ϑ0 ∈ C∞

0 (S0) the

inclusion supp(ϑϑ0) ⊂ supp(ϑ) ∩ S0 ⊂ S holds true. Hence, for all v ∈ Y we obtain

∫

S0

〈f0(s), v〉Y ϑ0(s) ds

=

∫

S

〈(Eu)(s), v〉Y ϑ′(s)ϑ0(s) ds +

∫

S

〈(Eu)′(s), v〉Y ϑ(s)ϑ0(s) ds
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and therefore,
∫

S0

〈f0(s), v〉Y ϑ0(s) ds = −
∫

S

〈(Eu)(s), v〉Y ϑ(s)ϑ′
0(s) ds

= −
∫

S0

〈(E0u0)(s), v〉Y ϑ′
0(s) ds,

where E0 : L2(S0; X) → L2(S0; Y
∗) is associated with S0 and E. Consequently, this

yields (E0u0)
′ = f0 ∈ L2(S0; Y

∗) and u0 ∈ WE(S0; X). �

For every h ∈ R we introduce the shifted interval Sh = {s+h : s ∈ S}. Note, that

the open interval S ⊂ R is unbounded if and only if there exists some h 6= 0 with

S−h ⊂ S ⊂ Sh. In that case we define the translation τhu : Sh → X of the function

u : S → X by (τhu)(s) = u(s − h) for s ∈ Sh.

Lemma 1.5 (Translation). Let S ⊂ R be some unbounded open interval, and let

h 6= 0 satisfy S−h ⊂ S ⊂ Sh. Then for all u ∈ WE(S; X) we have τhu ∈ WE(Sh; X)

and limδ↓0 ‖(τδhu)|S − u‖WE(S;X) = 0.

Proof. For u ∈ WE(S; X) we define u0 ∈ L2(R; X), f0 ∈ L2(R; Y ∗) by

u0|S = u, u0|(R \ S) = 0, f0|S = (Eu)′, f0|(R \ S) = 0.

Due to the continuity of the translation operator we get

lim
δ↓0

‖τδhu0 − u0‖L2(R;X) = 0, lim
δ↓0

‖τδhf0 − f0‖L2(R;Y ∗) = 0.

Because (τδhu0)|S = (τδhu)|S and (τδhf0)|S = (τδh(Eu)′)|S holds true for all δ ∈
(0, 1), this yields

lim
δ↓0

‖(τδhu)|S − u‖L2(S;X) = 0, lim
δ↓0

‖(τδh(Eu)′)|S − (Eu)′‖L2(S;Y ∗) = 0.

Note, that for all δ ∈ (0, 1) and ϑ ∈ C∞
0 (Sδh) we have τ−δhϑ ∈ C∞

0 (S). Conse-

quently, for all v ∈ Y we obtain
∫

Sδh

〈(τδh(Eu)′)(s), v〉Y ϑ(s) ds =

∫

S

〈(Eu)′(s), v〉Y (τ−δhϑ)(s) ds

= −
∫

S

〈(Eu)(s), v〉Y (τ−δhϑ
′)(s) ds = −

∫

Sδh

〈(Eδhτδhu)(s), v〉Y ϑ′(s) ds,

where the operator Eδh : L2(Sδh; X) → L2(Sδh; Y
∗) is associated with Sδh and

E. Hence, we get (Eδhτδhu)′ = τδh(Eu)′ ∈ L2(Sδh; Y
∗) which leads to the relation

limδ↓0 ‖(τδhu)|S − u‖WE(S;X) = 0. �
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Theorem 1.6 (Density). The set of restrictions
{

u|S : u ∈ C∞
0 (R; X)

}

is dense in

WE(S; X).

Proof. 1. In the case S = R the assertion follows from Lemma 1.3.

2. Let S ⊂ R, S 6= R be an unbounded open interval and ε > 0. Then we have

S−h ⊂ S ⊂ Sh for some h 6= 0. Applying Lemma 1.5 to u ∈ WE(S; X), we find some

δ ∈ (0, 1) with ‖(τδhu)|S − u‖WE(S;X) ≤ ε.

Next, we choose some cut-off function ϑ ∈ BC∞(R) with supp(ϑ) ⊂ Sδh and

ϑ|S = 1. Because of τδhu ∈ WE(Sδh; X) and Lemma 1.4 the function u0 : R → Y

defined by

u0|Sδh = ϑτδhu, u0|(R \ Sδh) = 0,

belongs to WE(R; X), and we obtain u0|S = (τδhu)|S. Using Lemma 1.3 we find

some function w ∈ C∞
0 (R; X) with ‖w − u0‖WE(R;X) ≤ ε. Due to

‖w|S − u‖WE(S;X) ≤ ‖w|S − u0|S‖WE(S;X) + ‖(τδhu)|S − u‖WE(S;X)

this yields ‖w|S − u‖WE(S;X) ≤ 2ε.

3. Finally, we consider the case of bounded open intervals S = (t0, t1) with t0,

t1 ∈ R and t0 < t1. Let ε > 0 be fixed arbitrarily. We choose some cut-off function

ϑ ∈ BC∞(R) with supp(ϑ) ⊂ S0 = (−∞, t1) and supp(1 − ϑ) ⊂ S1 = (t0,∞). Due

to Lemma 1.4 we get two functions w0 ∈ WE(S0; X) and w1 ∈ WE(S1; X) if we set

w0|(−∞, t0] = 0, w0|(t0, t1) = (1 − ϑ)u, w1|(t0, t1) = ϑu, w1|[t1,∞) = 0.

Applying Step 2 of the proof we find functions u0, u1 ∈ C∞
0 (R; X) such that

‖u0|S0 − w0‖WE(S0;X) ≤ ε, ‖u1|S1 − w1‖WE(S1;X) ≤ ε,

which yields

‖(u0 + u1)|S − u‖WE(S;X) ≤ ‖u0|S − (1 − ϑ)u‖WE(S;X) + ‖u1|S − ϑu‖WE(S;X)

= ‖u0|S − w0|S‖WE(S;X) + ‖u1|S − w1|S‖WE(S;X) ≤ 2ε.

Hence, u0 + u1 admits the desired approximation property. �

Integration by parts and continuous embeddings. In this subsection we tem-

porarily assume that X = Y holds true. Otherwise we refer to the special case

treated in Appendix B.

Theorem 1.7 (Integration by parts). For every u ∈ WE(S; Y ) there exists a

uniquely determined continuous representative Ku : S → H such that (Ku)(s) =

Ku(s) for almost all s ∈ S. The operator K is a bounded linear map from WE(S; Y )
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to BC(S; H). Moreover, for every u ∈ WE(S; Y ) and all s, t ∈ S the following

integration by parts formula holds true:

(1.2) ‖(Ku)(t)‖2
H − ‖(Ku)(s)‖2

H = 2

∫ t

s

〈(Eu)′(τ), u(τ)〉Y dτ.

Proof. 1. In the first step we prove the statement for u ∈ C∞
0 (R; Y ). Then, the

function ϕ : R → R defined by ϕ(τ) = 〈Eu(τ), u(τ)〉Y for τ ∈ R, belongs to C∞
0 (R).

Due to the symmetry of the operator E = K∗JHK ∈ L(Y ; Y ∗), for all τ ∈ R we get

ϕ′(τ) = 〈Eu′(τ), u(τ)〉Y + 〈Eu(τ), u′(τ)〉Y = 2〈Eu′(τ), u(τ)〉Y .

By integration for all s, t ∈ S this yields

2

∫ t

s

〈(Eu)′(τ), u(τ)〉Y dτ = 〈JHKu(t), Ku(t)〉H − 〈JHKu(s), Ku(s)〉H

and, hence,

‖Ku(t)‖2
H ≤ ‖Ku(s)‖2

H + ‖u|S‖2
WE(S;Y ).

Integrating over some bounded subinterval (s0, s1) ⊂ S, for all t ∈ S we obtain the

estimate

(s1 − s0)‖Ku(t)‖2
H ≤

∫

S

‖Ku(s)‖2
H ds + (s1 − s0)‖u|S‖2

WE(S;Y )

≤
(

‖K‖2
L(Y ;H) + (s1 − s0)

)

‖u|S‖2
WE(S;Y ).

Hence, we find some constant c = c(S, K) > 0 such that

sup
t∈S

‖Ku(t)‖H ≤ c ‖u|S‖WE(S;Y ) for all u ∈ C∞
0 (R; Y ).

2. Let u ∈ WE(S; Y ). Due to Theorem 1.6 there exists some sequence (uk) ⊂
C∞

0 (R; Y ) such that (uk|S) converges to u in WE(S; Y ). Applying the result of

Step 1 to the differences uk − uℓ, we get

sup
t∈S

‖Kuk(t) − Kuℓ(t)‖H ≤ c ‖uk|S − uℓ|S‖WE(S;Y ) for all k, ℓ ∈ N.

In view of the completeness of BC(S; H) there exists a limit function w ∈ BC(S; H)

which satisfies limk→∞ supt∈S ‖Kuk(t)−w(t)‖H = 0. For all k ∈ N and all bounded

open subintervals (s, τ) ⊂ S we have the estimate
∫ τ

s

‖Ku(t) − w(t)‖2
H dt ≤ 2

∫ τ

s

(

‖Ku(t) − Kuk(t)‖2
H + ‖Kuk(t) − w(t)‖2

H

)

dt

≤ 2 ‖K‖2
L(Y ;H)

∫

S

‖uk(t) − u(t)‖2
Y dt + 2(τ − s) sup

t∈S

‖Kuk(t) − w(t)‖2
H.
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Passing to the limit k → ∞ we obtain w(t) = Ku(t) for almost all t ∈ S. We define

by Ku = w ∈ BC(S; H) the uniquely determined representative Ku : S → H which

satisfies (Ku)(t) = Ku(t) for almost all t ∈ S.

3. Due to Step 1, we have ‖Kuk‖BC(S;H) ≤ c ‖uk|S‖WE(S;Y ) for all k ∈ N. Passing

to the limit k → ∞ and using Step 2 we obtain

‖Ku‖BC(S;H) ≤ c ‖u‖WE(S;Y ) for all u ∈ WE(S; Y ).

Hence, K is a bounded linear operator from WE(S; Y ) to BC(S; H). Moreover,

following Step 1, for all k ∈ N and s, t ∈ S we get

‖Kuk(t)‖2
H − ‖Kuk(s)‖2

H = 2

∫ t

s

〈(Euk)
′(τ), uk(τ)〉Y dτ.

Passing to the limit k → ∞, Step 2 yields the desired identity (1.2). �

Theorem 1.8 (Extension). Let t ∈ S = (t0, t1), S0 = (t0, t), S1 = (t, t1). If u0 ∈
WE(S0; Y ) and u1 ∈ WE(S1; Y ) satisfy (K0u0)(t) = (K1u1)(t), then the function

u : S → Y defined by u|S0 = u0 and u|S1 = u1 belongs to WE(S; Y ).

Proof. Due to the construction we have u ∈ L2(S; Y ), and the function f : S → Y ∗

defined by f |S0 = (E0u0)
′ and f |S1 = (E1u1)

′ belongs to f ∈ L2(S; Y ∗).

Let ϑ ∈ C∞
0 (S), v ∈ Y be fixed. Then we have w = ϑv ∈ WE(S; Y ), and using

the integration by parts formula, see Theorem 1.7, we get

((K0u0)(t)|Kv)H ϑ(t) =

∫

S0

(

〈(E0u0)
′(s), w(s)〉Y + 〈Ev, u0(s)〉Y ϑ′(s)

)

ds,

−((K1u1)(t)|Kv)H ϑ(t) =

∫

S1

(

〈(E1u1)
′(s), w(s)〉Y + 〈Ev, u1(s)〉Y ϑ′(s)

)

ds.

Because of (K0u0)(t) = (K1u1)(t) and the symmetry of E this yields

∫

S

〈f(s), v〉Y ϑ(s) ds =

∫

S0

〈(E0u0)
′(s), v〉Y ϑ(s) ds +

∫

S1

〈(E1u1)
′(s), v〉Y ϑ(s) ds

= −
∫

S

〈Ev, u(s)〉Y ϑ′(s) ds

= −
∫

S

〈(Eu)(s), v〉Y ϑ′(s) ds.

Hence, we get (Eu)′ = f ∈ L2(S; Y ∗) and u ∈ WE(S; Y ). �
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Completely continuous embeddings. It turns out that in the case of complete

continuity of the operator K ∈ L(X; H) this property carries over to the operator

K from WE(S; X) into L2(S; H), whenever S = (t0, t1) is bounded. The following

proof generalizes an idea of Temam [31], see also Lions [21, 22], Simon [28].

Lemma 1.9. Let K ∈ L(X; H) be completely continuous. Then, for every δ > 0

there exists some constant c > 0 such that

(1.3) ‖Kw‖2
H ≤ δ ‖w‖2

X + c ‖Ew‖2
Y ∗ for all w ∈ X.

Proof. 1. Assume, that there exists some δ > 0 such that we can find some sequence

(wk) ⊂ X which satisfies

‖wk‖X = 1, ‖Kwk‖2
H > δ + k ‖Ewk‖2

Y ∗ for all k ∈ N.

Because of K ∈ L(X; H) this yields limk→∞ ‖Ewk‖Y ∗ = 0.

2. Due to the complete continuity of K ∈ L(X; H) there exists an increasing

subsequence (kℓ) ⊂ N and some limit h ∈ H such that limℓ→∞ ‖Kwkℓ
− h‖H = 0.

Because of E = (K|Y )∗JHK ∈ L(X; Y ∗) and Step 1 for all v ∈ Y this yields

〈JHh, Kv〉H = lim
ℓ→∞

〈JHKwkℓ
, Kv〉H = lim

ℓ→∞
〈Ewkℓ

, v〉Y = 0.

In view of K|Y ∈ L(Y ; H) and the density of K[Y ] in H we obtain h = 0 which

contradicts to the fact that ‖Kwk‖2
H > δ holds true for all k ∈ N, see Step 1. Hence,

the assumption was not true, which proves the desired estimate (1.3). �

Theorem 1.10 (Complete continuity). Let S = (t0, t1) be some bounded open inter-

val and K ∈ L(X; H) be completely continuous. Then K maps WE(S; X) completely

continuous into L2(S; H).

Proof. 1. Let (uk) ⊂ WE(S; X) be a bounded sequence and c1 > 0 some constant

such that

(1.4)

∫

S

(

‖uk(s)‖2
X + ‖(Euk)

′(s)‖2
Y ∗

)

ds ≤ c1 for all k ∈ N.

We choose an increasing subsequence (kℓ) ⊂ N such that (ukℓ
) converges weakly to

some limit u in WE(S; X). Due to the lower semicontinuity of the norm this yields

(1.5)

∫

S

(

‖u(s)‖2
X + ‖(Eu)′(s)‖2

Y ∗

)

ds ≤ c1.

Consequently, the sequence (vℓ) ⊂ WE(S; X) defined by vℓ = ukℓ
− u for ℓ ∈ N,

converges weakly to 0 in WE(S; X). Note that (Evℓ) is bounded in H1(S; Y ∗).



Sobolev–Morrey spaces 13

Together with the continuous embedding of H1(S; Y ∗) in BC(S; Y ∗) this implies

the existence of some constant c2 > 0 such that

(1.6) ‖(Evℓ)(s)‖Y ∗ ≤ c2 for all s ∈ S, ℓ ∈ N.

2. To prove that limℓ→∞

∫

S
‖(Evℓ)(s)‖2

Y ∗ ds = 0 holds true, we proceed as follows:

Let t ∈ S and δ > 0 be fixed arbitrarily. Because of Evℓ ∈ H1(S; Y ∗) ⊂ BC(S; Y ∗),

for all ℓ ∈ N and s ∈ (t, t1) we have

(Evℓ)(t) = (Evℓ)(s) −
∫ s

t

(Evℓ)
′(τ) dτ.

Next, we choose some θ ∈ (t, t1) which satisfies c1(θ − t) ≤ δ
8
. Integrating over the

interval (t, θ), and defining wℓ ∈ X and fℓ ∈ Y ∗ by

wℓ =
1

θ − t

∫ θ

t

vℓ(s) ds,

and

fℓ =
1

θ − t

∫ θ

t

∫ s

t

(Evℓ)
′(τ) dτ ds =

1

θ − t

∫ θ

t

(θ − s)(Evℓ)
′(s) ds,

we get the identity

(Evℓ)(t) = Ewℓ − fℓ for all ℓ ∈ N.

Due to the weak convergence of (vℓ) to 0 in L2(S; X), see Step 1, we have

lim
ℓ→∞

〈f, wℓ〉X = lim
ℓ→∞

1

θ − t

∫ θ

t

〈f, vℓ(s)〉X ds = 0 for all f ∈ X∗.

That means, (wℓ) converges weakly to 0 in X. Because of the complete continuity

of E = (K|Y )∗JHK ∈ L(X; Y ∗) this yields limℓ→∞ ‖Ewℓ‖Y ∗ = 0. We choose

ℓ0 = ℓ0(δ) ∈ N such that

(1.7) ‖Ewℓ‖2
Y ∗ ≤ δ

4
for all ℓ ∈ N, ℓ ≥ ℓ0.

On the other hand, for all ℓ ∈ N we get

‖fℓ‖2
Y ∗ ≤ 1

(θ − t)2

(
∫ θ

t

(θ − s)2 ds

)(
∫ θ

t

‖(Evℓ)
′(s)‖2

Y ∗ ds

)

.

Hence, using (1.4), (1.5), and c1(θ − t) ≤ δ
8

we obtain ‖fℓ‖2
Y ∗ ≤ δ

6
for all ℓ ∈ N. Due

to (Evℓ)(t) = Ewℓ − fℓ and (1.7) this yields

‖(Evℓ)(t)‖2
Y ∗ ≤ 2 ‖Ewℓ‖2

Y ∗ + 2 ‖fℓ‖2
Y ∗ ≤ δ for all ℓ ∈ N, ℓ ≥ ℓ0.

Because we have fixed δ > 0 and t ∈ S arbitrarily at the beginning, we get pointwise

convergence, that means limℓ→∞ ‖(Evℓ)(t)‖2
Y ∗ = 0 for all t ∈ S. In view of the



14 Jens A. Griepentrog

uniform estimate (1.6) and the boundedness of the interval S ⊂ R the dominated

convergence theorem yields

(1.8) lim
ℓ→∞

∫

S

‖(Evℓ)(s)‖2
Y ∗ ds = 0.

3. Let δ > 0 be fixed. Applying Lemma 1.9 we find some constant c3 > 0 such

that for all ℓ ∈ N we have
∫

S

‖(Kvℓ)(s)‖2
H ds ≤ δ

∫

S

‖vℓ(s)‖2
X ds + c3

∫

S

‖(Evℓ)(s)‖2
Y ∗ ds.

Due to (1.4) and (1.5) this yields
∫

S

‖(Kvℓ)(s)‖2
H ds ≤ 4c1δ + c3

∫

S

‖(Evℓ)(s)‖2
Y ∗ ds for all ℓ ∈ N.

Using (1.8) and passing to the limit ℓ → ∞ we end up with

lim sup
ℓ→∞

∫

S

‖(Kvℓ)(s)‖2
H ds ≤ 4c1δ.

Because δ > 0 was fixed arbitrarily, we have found a subsequence (Kukℓ
) which

converges to Ku in L2(S; H). �

Corollary 1.11 (Complete continuity). Let S = (t0, t1) be some bounded open inter-

val, and let both K ∈ L(X; H) and K0 ∈ L(X; H0) be completely continuous, where

H0 is some further Hilbert space. If for every δ > 0 there exists some constant

c > 0 such that

‖K0w‖2
H0

≤ δ ‖w‖2
X + c ‖Kw‖2

H for all w ∈ X,

then K0 : L2(S; X) → L2(S; H0), associated with S and K0 via (K0u)(s) = K0u(s)

for s ∈ S, maps WE(S; X) completely continuous into L2(S; H0).

Proof. 1. Let (uk) be a bounded sequence in WE(S; X). Then there exists an in-

creasing subsequence (kℓ) ⊂ N such that (ukℓ
) converges weakly to some limit u in

WE(S; X). We take some constant c1 > 0 such that

(1.9)

∫

S

‖uk(s)‖2
X ds ≤ c1 for all k ∈ N,

∫

S

‖u(s)‖2
X ds ≤ c1.

Since K maps WE(S; X) completely continuous into L2(S; H), see Theorem 1.10,

the sequence (Kukℓ
) converges to Ku in L2(S; H).
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2. Let δ > 0 be arbitrarily fixed. Due to the assumption we find some constant

c2 > 0 such that for all ℓ ∈ N we have
∫

S

‖(K0ukℓ
)(s) − (K0u)(s)‖2

H0
ds

≤ δ

∫

S

‖ukℓ
(s) − u(s)‖2

X ds + c2

∫

S

‖(Kukℓ
)(s) − (Ku)(s)‖2

H ds.

In view of (1.9) and the convergence of (Kukℓ
) to Ku in L2(S; H), see Step 1, we

pass to the limit ℓ → ∞ to get

lim sup
ℓ→∞

∫

S

‖(K0ukℓ
)(s) − (K0u)(s)‖2

H0
ds ≤ 4c1δ,

in other words, (K0ukℓ
) converges to K0u in L2(S; H0). �

2. Solvability of initial boundary value problems

Throughout this section we assume that S = (t0, t1) is a bounded open interval and

that X = Y holds true. We provide the unique solvability and well-posedness for a

broad class of evolution equations, see Gröger [15]:

Lemma 2.1. The map D : dom(D) ⊂ L2(S; Y ) × H → L2(S; Y ∗) × H∗ defined by

dom(D) =
{

(u, (Ku)(t0)) : u ∈ WE(S; Y )
}

,

D(u, w) = ((Eu)′, JHw) for (u, w) ∈ dom(D),

is maximal monotone.

Proof. 1. Integrating by parts, for all (u, w) ∈ dom(D) we get

2 〈D(u, w), (u, w)〉 = 2

∫

S

〈(Eu)′(s), u(s)〉Y ds + 2 ‖w‖2
H

= ‖(Ku)(t1)‖2
H + ‖w‖2

H,

that means, the linear operator D is monotone.

2. To prove the maximality of D we consider pairs (u, w) ∈ L2(S; Y ) × H and

(f, g) ∈ L2(S; Y ∗) × H∗ satisfying

(2.1)

∫

S

〈f(s) − (Eû)′(s), u(s) − û(s)〉Y ds + 〈g − JHŵ, w − ŵ〉H ≥ 0

for all (û, ŵ) ∈ dom(D). Let v ∈ Y , ϑ ∈ C∞
0 (S). Choosing (û, ŵ) = (ϑv, 0) ∈

dom(D) in (2.1) and integrating by parts we obtain
∫

S

〈f(s), v〉Y ϑ(s) ds +

∫

S

〈Ev, u(s)〉Y ϑ′(s) ds ≤
∫

S

〈f(s), u(s)〉Y ds + 〈g, w〉H.
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Since the left hand side is linear with respect to v and the right hand side does not

depend on v, this inequality can be true, only, if the left hand side vanishes for all

v ∈ Y . Hence, for all v ∈ Y and ϑ ∈ C∞
0 (S) we get

∫

S

〈f(s), v〉Y ϑ(s) ds +

∫

S

〈(Eu)(s), v〉Y ϑ′(s) ds = 0,

which proves (Eu)′ = f ∈ L2(S; Y ∗) and u ∈ WE(S; Y ).

3. Due to (Eu)′ = f and (2.1) by partial integration we get

(2.2) ‖(Ku)(t1) − (Kû)(t1)‖2
H − ‖(Ku)(t0) − ŵ‖2

H + 2 〈g − JHŵ, w − ŵ〉H ≥ 0

for all (û, ŵ) ∈ dom(D). Because K[Y ] is dense in H , we can choose two sequences

(v◦
k) and (vk) in Y which satisfy

lim
k→∞

‖Kv◦
k − w‖H = 0, lim

k→∞
‖K(v◦

k + (t1 − t0)vk) − (Ku)(t1)‖H = 0.

Setting û(s) = v◦
k + (s − t0)vk for s ∈ S and ŵ = Kv◦

k we obtain (û, ŵ) ∈ dom(D),

and from (2.2) it follows that

‖(Ku)(t1) − K(v◦
k + (t1 − t0)vk)‖2

H − ‖(Ku)(t0) − Kv◦
k‖2

H

+ 2 〈g − JHKv◦
k, w − Kv◦

k〉H ≥ 0.

Passing to the limit k → ∞ we get ‖(Ku)(t0)−w‖2
H ≤ 0, that means, (Ku)(t0) = w

and (u, w) ∈ dom(D).

4. Let v ∈ Y and τ > 0 be fixed. Setting û(s) = u(s) + τv for s ∈ S and

ŵ = w + τKv, we get (û, ŵ) ∈ dom(D). Then, inequality (2.2) yields that

〈g − JH(w + τKv), τKv〉H ≤ 0.

Dividing by τ > 0 and passing to the limit τ ↓ 0 we find

〈g − JHw, Kv〉H ≤ 0 for all v ∈ Y .

Since K ∈ L(Y ; H) and K[Y ] is dense in H , we arrive at g = JHw. In other words,

we have shown that the operator D is maximal monotone. �

Theorem 2.2 (Unique solvability). Assume that M : L2(S; Y ) → L2(S; Y ∗) is a

strongly monotone and Lipschitz continuous operator with the domain dom(M) =

L2(S; Y ). Then, under the general assumptions mentioned above, for any f ∈
L2(S; Y ∗) and w ∈ H, the initial value problem

(2.3) (Eu)′ + Mu = f, (Ku)(t0) = w,

has a uniquely determined solution u ∈ WE(S; Y ). Furthermore, the assignment

(f, w) 7→ u is Lipschitz continuous from L2(S; Y ∗) × H into WE(S; Y ).
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Proof. 1. Due to the assumptions, M : L2(S; Y ) → L2(S; Y ∗) is a maximal monotone

operator. We define M0 : L2(S; Y ) × H → L2(S; Y ∗) × H∗ by

M0(u, w) = (Mu, 0) for (u, w) ∈ L2(S; Y ) × H.

Elementary arguments show that the maximal monotonicity of M carries over to

M0, where dom(M0) = L2(S; Y ) × H .

Let D : dom(D) ⊂ L2(S; Y ) × H → L2(S; Y ∗) × H∗ be the maximal monotone

operator of Lemma 2.1. Because of dom(D) ⊂ L2(S; Y )×H we have dom(M0+D) =

dom(D), and Rockafellar’s sum theorem yields the maximal monotonicity of

M0 + D, see [27]. Moreover, the strong monotonicity of M implies that M0 + D is

strongly monotone, too, since for all (u, w), (û, ŵ) ∈ dom(D) we have

2 〈(M0 + D)(u, w) − (M0 + D)(û, ŵ), (u, w)− (û, ŵ)〉
= 2 〈Mu− Mû, u − û〉L2(S;Y ) + ‖(Ku)(t1) − (Kû)(t1)‖2

H + ‖w − ŵ‖2
H .

Applying Browder’s theorem, for any (f, w) ∈ L2(S; Y ∗) × H the problem

(M0 + D)(u, w) = (f, JHw)

has a solution (u, w) ∈ dom(D), see [1]. By construction, from this it follows that

u ∈ WE(S; Y ) solves the initial value problem (2.3).

2. Let w, ŵ ∈ H and f , f̂ ∈ L2(S; Y ∗) be given data. Using Step 1 of the proof

we find solutions u, û ∈ WE(S; Y ) of the problems

(Eu)′ + Mu = f, (Ku)(t0) = w,

(Eû)′ + Mû = f̂ , (Kû)(t0) = ŵ.

Let M , L > 0 be the monotonicity and the Lipschitz constant of M, respectively.

Applying Young’s inequality and the strong monotonicity of M we get the estimate

0 = 2 〈(Eu)′ − (Eû)′ + Mu − Mû − f + f̂ , u − û〉L2(S;Y )

≥ ‖(Ku)(t1) − (Kû)(t1)‖2
H − ‖w − ŵ‖2

H + M ‖u − û‖2
L2(S;Y ) − 1

M
‖f − f̂‖2

L2(S;Y ∗),

that means, we have

M ‖u − û‖2
L2(S;Y ) ≤ ‖w − ŵ‖2

H + 1
M

‖f − f̂‖2
L2(S;Y ∗).

Note, that in the case f = f̂ , w = ŵ this yields u = û. Hence, we have shown the

unique solvability of problem (2.3).
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Moreover, using the Lipschitz continuity of M we obtain

‖(Eu)′ − (Eû)′‖2
L2(S;Y ∗) ≤ 2 ‖f − f̂‖2

L2(S;Y ∗) + 2 ‖Mu − Mû‖2
L2(S;Y ∗)

≤ 2 ‖f − f̂‖2
L2(S;Y ∗) + 2L2 ‖u − û‖2

L2(S;Y ).

From the last estimates it follows, that the assignment (f, w) 7→ u is Lipschitz

continuous from L2(S; Y ∗) × H into WE(S; Y ). �

Let α ∈ R be given. In the following we show that the result of the preceeding

theorem remains true for the class of more general problems

(Eu)′ + Mu − αEu = f, (Ku)(0) = w,

if we additionally assume that the operator M : L2(S; Y ) → L2(S; Y ∗) has the

Volterra property. For the proof we need some preparation:

Lemma 2.3. Let eα : [t0, t1] → R be the exponential function given by

eα(s) = exp(α(t0 − s)) for α ∈ R, s ∈ [t0, t1],

and M : L2(S; Y ) → L2(S; Y ∗) be a strongly monotone, Lipschitz continuous

Volterra operator. For α ≥ 0 the map Mα : L2(S; Y ) → L2(S; Y ∗) defined as

Mαu = eα M(e−αu) for u ∈ L2(S; Y ),

is a strongly monotone and Lipschitz continuous Volterra operator, too.

Proof. 1. Let α ≥ 0. The operator Mα : L2(S; Y ) → L2(S; Y ∗) is correctly defined,

because for all u ∈ L2(S; Y ) and f ∈ L2(S; Y ∗) we have eαu, e−αu ∈ L2(S; Y ) and

eαf , e−αf ∈ L2(S; Y ∗).

2. Let uα, vα ∈ L2(S; Y ) be fixed, and set u = e−αuα ∈ L2(S; Y ), v = e−αvα ∈
L2(S; Y ). If uα|(t0, s) = vα|(0, s) holds true for all s ∈ S, then we obtain u|(t0, s) =

v|(t0, s), and the Volterra property of M yields (Mu)|(t0, s) = (Mv)|(t0, s), which

leads to (Mαuα)|(t0, s) = (Mαvα)|(t0, s).
If L > 0 is a Lipschitz constant of M, for Lα = Le−α(t1) we get

‖Mαuα − Mαvα‖L2(S;Y ∗) ≤ L ‖u − v‖L2(S;Y ) ≤ Lα ‖uα − vα‖L2(S;Y ),

that means, Lα > 0 is some Lipschitz constant for Mα.
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3. Note, that for all functions h ∈ L1(S) Fubini’s theorem yields

−2α

∫ t1

t0

e2α(s)

∫ s

t0

h(τ) dτ ds =

∫ t1

t0

e′2α(s)

∫ s

t0

h(τ) dτ ds

=

∫ t1

t0

h(s)

∫ t1

s

e′2α(τ) dτ ds

= e2α(t1)

∫ t1

t0

h(s) ds −
∫ t1

t0

e2α(s)h(s) ds.

Applying this identity to the function h ∈ L1(S) defined by

h(s) = 〈(Mu)(s) − (Mv)(s), u(s) − v(s)〉Y for s ∈ S,

we obtain
∫

S

e2α(s)〈(Mu)(s) − (Mv)(s), u(s) − v(s)〉Y ds

= e2α(t1)

∫

S

〈(Mu)(s) − (Mv)(s), u(s)− v(s)〉Y ds

+ 2α

∫

S

e2α(s)

∫ s

t0

〈(Mu)(τ) − (Mv)(τ), u(τ) − v(τ)〉Y dτ ds.

Due to the monotonicity and the Volterra property of M, the second summand

is nonnegative. If M > 0 is a monotonicity constant of M, for Mα = Me2α(t1) this

yields

〈Mαuα − Mαvα, uα − vα〉L2(S;Y ) ≥ Mα ‖u − v‖2
L2(S;Y ) ≥ Mα ‖uα − vα‖2

L2(S;Y ),

in other words, Mα > 0 is some monotonicity constant for Mα. �

Theorem 2.4 (Unique solvability). Assume that M : L2(S; Y ) → L2(S; Y ∗) is a

strongly monotone and Lipschitz continuous operator Volterra operator such

that dom(M) = L2(S; Y ). Under the general assumptions, for every α ∈ R, f ∈
L2(S; Y ∗), and w ∈ H, the initial value problem

(2.4) (Eu)′ + Mu − αEu = f, (Ku)(t0) = w,

has a uniquely determined solution u ∈ WE(S; Y ). Furthermore, the assignment

(f, w) 7→ u is Lipschitz continuous from L2(S; Y ∗) × H into WE(S; Y ).

Proof. 1. In the case α ≤ 0 the result follows immediately from Theorem 2.2, because

the positive semidefiniteness of E ∈ L(Y ; Y ∗) yields that M − αE : L2(S; Y ) →
L2(S; Y ∗) is a strongly monotone and Lipschitz continuous Volterra operator.
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2. Let α ≥ 0, f ∈ L2(S; Y ∗), and w ∈ H be given. Setting fα = eαf ∈ L2(S; Y ∗)

and applying Theorem 2.2 and Lemma 2.3 we get the uniquely determined solution

uα ∈ WE(S; Y ) of the auxiliary problem

(2.5) (Euα)′ + Mαuα = fα, (Kuα)(t0) = w.

Consequently, the function u = e−αuα ∈ WE(S; Y ) solves problem (2.4).

Vice versa, if u ∈ WE(S; Y ) is a solution of problem (2.4), then uα = eαu ∈
WE(S; Y ) solves the auxiliary problem (2.5). Hence, the solution u ∈ WE(S; Y ) of

problem (2.4) is uniquely determined, too.

3. Let w, ŵ ∈ H and f , f̂ ∈ L2(S; Y ∗) be given data. Due to Step 2 of the proof

we find unique solutions u, û ∈ WE(S; Y ) of the problems

(Eu)′ + Mu − αEu = f, (Ku)(t0) = w,

(Eû)′ + Mû − αEû = f̂ , (Kû)(t0) = ŵ.

Defining as before fα = eαf ∈ L2(S; Y ∗) and f̂α = eαf̂ ∈ L2(S; Y ∗), the functions

uα = eαu ∈ WE(S; Y ) and ûα = eαû ∈ WE(S; Y ) solve

(Euα)′ + Mαuα = fα, (Kuα)(t0) = w,

(Eûα)′ + Mαûα = f̂α, (Kûα)(t0) = ŵ.

As in the proof of Theorem 2.2 we obtain

Mα ‖uα − ûα‖2
L2(S;Y ) ≤ ‖w − ŵ‖2

H + 1
Mα

‖fα − f̂α‖2
L2(S;Y ∗),

‖(Euα)′ − (Eûα)′‖2
L2(S;Y ∗) ≤ 2 ‖fα − f̂α‖2

L2(S;Y ∗) + 2L2
α ‖uα − ûα‖2

L2(S;Y ),

where Mα > 0, Lα > 0 are monotonicity and Lipschitz constants of Mα, respec-

tively. To get the desired estimates for u − û ∈ WE(S; Y ) in terms of f − f̂ ∈
L2(S; Y ∗) and w − ŵ ∈ H , we start with

‖u − û‖L2(S;Y ) ≤ e−α(t1)‖uα − ûα‖L2(S;Y ),

‖fα − f̂α‖L2(S;Y ∗) ≤ ‖f − f̂‖L2(S;Y ∗).

Due to (Eu)′ = e−α(Euα)′ + αe−αEuα we see that

‖(Eu)′ − (Eû)′‖2
L2(S;Y ∗) ≤ 2e−2α(t1)‖(Euα)′ − (Eûα)′‖2

L2(S;Y ∗)

+ 2α2e−2α(t1)‖E‖2
L(Y ;Y ∗)‖uα − ûα‖2

L2(S;Y ),

Summing up, we arrive at the Lipschitz continuity of the assignment (f, w) 7→ u

from L2(S; Y ∗) × H into WE(S; Y ). �
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3. Morrey and Campanato spaces

We collect classical results concerning Morrey and Campanato spaces with re-

gard to the parabolic metric. Based on these, later on we introduce new classes

of Sobolev–Morrey spaces adequate for the treatment of the regularity problem

formulated in the introduction.

Let us introduce some notation. Throughout this section we assume S to be a

bounded open interval in R. For t ∈ R and r > 0 we define the set of subintervals

Sr =
{

S ∩ (t − r2, t) : t ∈ S
}

.

The symbol | | is used for both the absolute value and the maximum norm in Rn,

whereas ‖ ‖ denotes the Euclidean norm in Rn. For x = (x1, . . . , xn) ∈ Rn we write

x̂ = (x1, . . . , xn−1) ∈ Rn−1. We denote by

Qr(x) =
{

ξ ∈ R
n : |ξ − x| < r

}

,

Q−
r (x) =

{

ξ ∈ Qr(x) : ξn − xn < 0
}

,

the open cube and the open halfcube with center x ∈ R
n and radius r > 0, respec-

tively. In the case x = 0 we shortly write Qr and Q−
r . If, additionally, r = 1, then

we use the notation Q and Q−.

For subsets G of Rn we write G◦, G and ∂G for the topological interior, the closure,

and the boundary of G, respectively. For r > 0 and subsets G ⊂ Rn we use the

corresponding calligraphic letter to denote by Gr the set

Gr =
{

G ∩ Qr(x) : x ∈ G
}

of intersections. To introduce the function spaces we are interested in we need the

following definition:

Definition 3.1 (Integral mean value). Let (Ω, A, µ) be a measure space and w :

F → R be an integrable function given on the measurable set F ∈ A of finite

positive measure. We define the integral mean value of w over F by
∫

F

w dµ =
1

µ(F )

∫

F

w dµ.

Remark 3.1 (Minimal property). If w : F → R is square-integrable on the set

F ∈ A of finite positive measure with respect to (Ω, A, µ), then we have

min
c∈R

∫

F

|w − c|2 dµ =

∫

F

∣

∣

∣

∣

w −
∫

F

w dµ

∣

∣

∣

∣

2

dµ.
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The case of open sets. We define Morrey and Campanato spaces for bounded

open sets U ⊂ Rn, see Campanato [2], Da Prato [3]:

Definition 3.2 (Morrey spaces). 1. For ω ∈ [0, n + 2] we introduce the Morrey

space Lω
2 (S; L2(U)) as the set of all u ∈ L2(S; L2(U)) such that

[u]2Lω
2 (S;L2(U)) = sup

(I,V )∈Sr×Ur
r>0

r−ω

∫

I

∫

V

|u(s)|2 dλn ds

remains finite. The norm of u ∈ Lω
2 (S; L2(U)) is defined by

‖u‖2
Lω

2 (S;L2(U)) = ‖u‖2
L2(S;L2(U)) + [u]2Lω

2 (S;L2(U)).

2. For σ ∈ [0, n + 4] we denote by Lσ
2 (S; L2(U)) the Campanato space of all

u ∈ L2(S; L2(U)) such that

[u]2
Lσ

2 (S;L2(U)) = sup
(I,V )∈Sr×Ur

r>0

r−σ

∫

I

∫

V

∣

∣

∣

∣

u(s) −
∫

I

∫

V

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

has a finite value, and we define the norm of u ∈ Lσ
2 (S; L2(U)) by

‖u‖2
Lσ

2 (S;L2(U)) = ‖u‖2
L2(S;L2(U)) + [u]2

Lσ
2 (S;L2(U)).

For ω ≤ 0 we set Lω
2 (S; L2(U)) = L

ω
2 (S; L2(U)) = L2(S; L2(U)).

3. Let H1
0 (U) ⊂ X ⊂ H1(U◦) be some closed subspace equipped with the usual

scalar product of H1(U◦). For ω ∈ [0, n + 2] we introduce the Sobolev–Morrey

space

Lω
2 (S; X) =

{

u ∈ L2(S; X) : u ∈ Lω
2 (S; L2(U)), ‖∇u‖ ∈ Lω

2 (S; L2(U))
}

,

and we define the norm of u ∈ Lω
2 (S; X) by

‖u‖2
Lω

2 (S;X) = ‖u‖2
Lω

2 (S;L2(U)) + ‖‖∇u‖‖2
Lω

2 (S;L2(U)).

For ω ≤ 0 we set Lω
2 (S; X) = L2(S; X).

Remark 3.2. Note, that the spaces Lω
2 (S; L2(U)) and Lσ

2 (S; L2(U)) are usually

denoted by L2,ω(S×U) and L2,σ(S×U), respectively. Apart from these, later on we

introduce further Morrey-type function spaces. Hence, we have decided to use a

different but integrated naming scheme. Let us collect some well-known properties:

1. The function spaces introduced above are Banach spaces.

2. If we take the suprema over 0 < r ≤ r0, only, then the corresponding r0-

depending norms are equivalent to the original norms, respectively.

3. For ω ∈ [0, n+2] the set L∞(S; L∞(U)) is a space of multipliers for Lω
2 (S; L2(U)).

Similarly, L∞(S; C0,1(U)) is a space of multipliers for Lω
2 (S; H1(U)).
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Definition 3.3 (Restriction). Let I ⊂ R be an open subinterval of S and V ⊂ Rn

be an open subset of U . We define RV v ∈ L2(V ) by (RV v)(x) = v(x) for all

v ∈ L2(U) and x ∈ V . We carry over this definition to RI,V u ∈ L2(I; L2(V )) by

(RI,V u)(s) = RV u(s) for all u ∈ L2(S; L2(U)) and s ∈ I.

As an obvious consequence of the above definitions and the minimal property of

the integral mean value we get the following result:

Lemma 3.1 (Restriction). 1. For ω ∈ [0, n + 2] the assignment u → RI,V u is

a bounded linear operator from Lω
2 (S; L2(U)) into Lω

2 (I; L2(V )) as well as from

Lω
2 (S; H1(U)) into Lω

2 (I; H1(V )).

2. For σ ∈ [0, n + 4] the linear assignment u → RI,V u maps Lσ
2 (S; L2(U)) contin-

uously into Lσ
2 (I; L2(V )).

Remark 3.3 (Zero extension). 1. Let V ⊂ Rn be an open subset of U and ω ∈
[0, n + 2]. Then, by Definition 3.2 the zero extension is a bounded linear map from

Lω
2 (S; L2(V )) into Lω

2 (S; L2(U)).

2. Let V ⊂ Rn be an open set with U ∩ V 6= ∅, take a function χ ∈ C∞
0 (Rn) with

supp(χ) ⊂ V , and fix δ > 0 such that Qδ(x) ⊂ V for all x ∈ supp(χ). Consequently,

if Qr(x) ∩ supp(χ) 6= ∅ for some 0 < r ≤ δ
2

and x ∈ U , then Qr(x) ⊂ V .

Assume, that v ∈ L2(S; L2(U ∩ V )) satisfies χv ∈ L
σ
2 (S; L2(U ∩ V )) for some

σ ∈ [0, n + 4]. For the zero extension u ∈ L2(S; L2(U)) of χv we get

∫

S

∫

U∩Qr(x)

∣

∣

∣

∣

u(s) −
∫

S

∫

U∩Qr(x)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

=

∫

S

∫

U∩V ∩Qr(x)

∣

∣

∣

∣

χv(s) −
∫

S

∫

U∩V ∩Qr(x)

χv(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

provided that 0 < r ≤ δ
2

and x ∈ U . Consequently, using Remark 3.2 we obtain

u ∈ Lσ
2 (S; L2(U)), and we find some c = c(χ, δ, V, U) > 0 such that

‖u‖Lσ
2 (S;L2(U)) ≤ c ‖χv‖Lσ

2 (S;L2(U∩V )).

Remark 3.4. 1. Using Hölder’s inequality we obtain the continuous embedding

of the usual Lebesgue space Lq(S; Lp(U)) into Lω
2 (S; L2(U)) for p, q ≥ 2 satisfying

ω = n(1 − 2/p) + 2(1 − 2/q) ∈ [0, n + 2].

2. By definition, L∞(S; L2,ω(U)) is continuously embedded into Lω+2
2 (S; L2(U)) for

ω ∈ [0, n], where the Morrey space L2,ω(U) is defined as the set of all u ∈ L2(U)

such that the following expression remains finite:

‖u‖2
L2,ω(U) = ‖u‖2

L2(U) + sup
V ∈Ur
r>0

r−ω

∫

V

|u|2 dλn.
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Definition 3.4 (Lipschitz transformation). 1. A bijective map T between two

subsets of Rn such that T and T−1 are Lipschitz continuous is called Lipschitz

transformation.

2. Let T be a Lipschitz transformation from an open set U ⊂ R
n onto U∗ ⊂ R

n.

We define T∗u = u ◦ T ∈ L2(U) for u ∈ L2(U∗) and carry over this definition to

T∗u ∈ L2(S; L2(U)) by (T∗u)(s) = T∗u(s) for u ∈ L2(S; L2(U∗)) and s ∈ S.

Lemma 3.2 (Transformation). 1. For ω ∈ [0, n + 2] the assignment u 7→ T∗u

is a linear isomorphism from Lω
2 (S; L2(U∗)) onto Lω

2 (S; L2(U)) as well as between

Lω
2 (S; H1(U∗)) and Lω

2 (S; H1(U)).

2. For σ ∈ [0, n + 4] the assignment u 7→ T∗u is a linear isomorphism from

Lσ
2 (S; L2(U∗)) onto Lσ

2 (S; L2(U)).

Proof. Let L ≥ 1 be a Lipschitz constant of T and set δ = Lr. For all r > 0, t ∈ S,

x ∈ U we consider

Sr = S ∩ (t − r2, t), Sδ = S ∩ (t − δ2, t),

Ur = U ∩ Qr(x), U∗
δ = U∗ ∩ Qδ(T (x)).

1. Due to the change of variable formula T∗ is a bounded linear operator from

L2(S; L2(U∗)) into L2(S; L2(U)). For all r > 0, t ∈ S, x ∈ U , and u ∈ L2(S; L2(U∗))

the inclusion T [Ur] ⊂ U∗
δ leads to

∫

Sr

∫

Ur

|T∗u(s)|2 dλn ds ≤ Ln

∫

Sδ

∫

U∗

δ

|u(s)|2 dλn ds,

which yields some constant c1 = c1(n, L) > 0 such that

‖T∗u‖2
Lω

2 (S;L2(U)) ≤ c1‖u‖2
Lω

2 (S;L2(U∗)) for all u ∈ Lω
2 (S; L2(U∗)).

2. Applying both the chain rule and the change of variable formula we obtain that

T∗ maps L2(S; H1(U∗)) continuously into L2(S; H1(U)): For all r > 0, t ∈ S, x ∈ U ,

and u ∈ L2(S; H1(U∗)) we have
∫

Sr

∫

Ur

|∇T∗u(s)|2 dλn ds ≤
∫

Sr

∫

Ur

‖DT‖2‖T∗∇u(s)‖2 dλn ds

≤ Ln+2

∫

Sδ

∫

U∗

δ

‖∇u(s)‖2 dλn ds.

In view of Step 1 we find some constant c2 = c2(n, L) > 0 such that

‖T∗u‖2
Lω

2 (S;H1(U)) ≤ c2‖u‖2
Lω

2 (S;H1(U∗)) for all u ∈ Lω
2 (S; H1(U∗)).
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3. Using the change of variable formula for all r > 0, t ∈ S, x ∈ U , and u ∈
L2(S; L2(U∗)) we get

∫

Sr

∫

Ur

∣

∣

∣

∣

T∗u(s) −
∫

Sδ

∫

U∗

δ

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ Ln

∫

Sδ

∫

U∗

δ

∣

∣

∣

∣

u(s) −
∫

Sδ

∫

U∗

δ

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds.

Applying the minimal property of the integral mean value, we find some constant

c3 = c3(n, L) > 0 such that

‖T∗u‖2
Lσ

2 (S;L2(U)) ≤ c3‖u‖2
Lσ

2 (S;L2(U∗)) for all u ∈ L
σ
2 (S; L2(U∗)).

Analogously, we prove the statements for the inverse transformation. �

Definition 3.5 (Reflection). Let the map N : R
n → R

n be defined by

Nx = (x̂,−xn) for x = (x̂, xn) ∈ R
n.

1. We introduce reflection R+u ∈ L2(Q) and antireflection R−u ∈ L2(Q) of u ∈
L2(Q−) by

(R+u)(x) =

{

u(x) if x ∈ Q−,

u(Nx) otherwise,
(R−u)(x) =

{

u(x) if x ∈ Q−,

−u(Nx) otherwise,

and define R+u, R−u ∈ L2(S; L2(Q)) for u ∈ L2(S; L2(Q−)) by

(R+u)(s) = R+u(s), (R−u)(s) = R−u(s) for s ∈ S.

2. For vector-valued functions g ∈ L2(Q−; Rn) we define both the reflection R+g ∈
L2(Q; Rn) and the antireflection R−g ∈ L2(Q; Rn) by

(R+g)(x) =

{

g(x) if x ∈ Q−,

Ng(Nx) otherwise,
(R−g)(x) =

{

g(x) if x ∈ Q−,

−Ng(Nx) otherwise.

We carry over the definitions to g ∈ L2(S; L2(Q−; Rn)) by

(R+g)(s) = R+g(s), (R−g)(s) = R−g(s) for s ∈ S.

3. Let Sn be the set of real symmetric (n×n)-matrices. For matrix-valued functions

A ∈ L∞(Q−; Sn) we define the reflection R+A ∈ L∞(Q; Sn) by

(R+A)(x) =

{

A(x) if x ∈ Q−,

NA(Nx)N otherwise.
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Finally, for A ∈ L∞(S; L∞(Q−; Sn)) we set

(R+A)(s) = R+A(s) for s ∈ S.

Lemma 3.3 (Reflection). For σ ∈ [0, n + 4] and ω ∈ [0, n + 2] the map R+ :

Lσ
2 (S; L2(Q−)) → Lσ

2 (S; L2(Q)) as well as R−, R+ : Lω
2 (S; L2(Q−)) → Lω

2 (S; L2(Q))

are bounded linear operators, and we have

‖R+u‖Lσ
2 (S;L2(Q)) ≤

√
2 ‖u‖Lσ

2 (S;L2(Q−)) for all u ∈ L
σ
2 (S; L2(Q−)),

‖R−u‖Lω
2 (S;L2(Q)) ≤

√
2 ‖u‖Lω

2 (S;L2(Q−)) for all u ∈ Lω
2 (S; L2(Q−)).

Proof. Let P : Q → Q defined by Px = (x̂,−|xn|) for x = (x̂, xn) ∈ Q.

1. Obviously, the map R+ : L2(S; L2(Q−)) → L2(S; L2(Q)) is continuous. By

construction for all r > 0, x ∈ Q, I ∈ Sr, and u ∈ L2(I; L2(Q−)) we get

∫

I

∫

Q∩Qr(x)

∣

∣

∣

∣

R+u(s) −
∫

I

∫

Q−∩Qr(Px)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ 2

∫

I

∫

Q−∩Qr(Px)

∣

∣

∣

∣

u(s) −
∫

I

∫

Q−∩Qr(Px)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds.

Hence, the minimal property of the integral mean value yields

‖R+u‖2
Lσ

2 (S;L2(Q)) ≤ 2 ‖u‖2
Lσ

2 (S;L2(Q−)) for all u ∈ L
σ
2 (S; L2(Q−)).

2. The map R− : L2(S; L2(Q−)) → L2(S; L2(Q)) is continuous. Due to the defini-

tion for all r > 0, x ∈ Q, I ∈ Sr, and u ∈ L2(S; L2(Q−)) we obtain
∫

I

∫

Q∩Qr(x)

|R−u(s)|2 dλn ds ≤ 2

∫

I

∫

Q−∩Qr(Px)

|u(s)|2 dλn ds.

This leads to the estimates

‖R−u‖2
Lω

2 (S;L2(Q)) ≤ 2 ‖u‖2
Lω

2 (S;L2(Q−)) for all u ∈ Lω
2 (S; L2(Q−))

‖R+u‖2
Lω

2 (S;L2(Q)) ≤ 2 ‖u‖2
Lω

2 (S;L2(Q−)) for all u ∈ Lω
2 (S; L2(Q−)),

where the second one follows analogously. �

For the following classical results concerning Morrey and Campanato spaces

we suppose some regularity property of the boundary ∂U , see again Campanato [2],

Da Prato [3]:

Theorem 3.4 (Equivalence). Let U ⊂ R
n be an open set without outward cusps,

that means, there exist constants r0 > 0 and c0 > 0 such that

λn(V ) ≥ c0r
n for all 0 < r ≤ r0, V ∈ Ur.
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Then the following holds true:

1. For ω ∈ [0, n+2) the Morrey space Lω
2 (S; L2(U)) is isomorphic to the Cam-

panato space Lω
2 (S; L2(U)).

2. For σ ∈ (n + 2, n + 4], α = (σ − n− 2)/2 the Campanato space L
σ
2 (S; L2(U))

is isomorphic to the space C(S; C0,α(U)) ∩ C0,α/2(S; C(U)) of Hölder continuous

functions.

The case of hypersurfaces. Analogously, we define functions spaces on Lip-

schitz hypersurfaces in Rn. To do so, for x ∈ Rn and r > 0 we introduce the

(n − 1)-dimensional equatorial plate

Σr(x) =
{

ξ ∈ R
n : |ξ − x| < r, ξn = xn

}

of the cube Qr(x). In the case x = 0 we shortly write Σr. If, additionally, r = 1, we

use the notation Σ.

Definition 3.6 (Lipschitz hypersurface). A subset M of Rn is called Lipschitz

hypersurface in R
n if for each point x ∈ M there exist an open neighborhood U of

x and a Lipschitz transformation T from U onto Q such that T [U ∩ M ] = Σ and

T (x) = 0.

Let M be a compact Lipschitz hypersurface in Rn. By λM we denote the (n−1)-

dimensional Lebesgue measure on the σ-algebra LM of Lebesgue measurable sub-

sets of M , see Evans, Gariepy [5], Simon [29]. In Griepentrog [9] we have car-

ried over both the definition and classical properties of Morrey and Campanato

spaces to the case of relatively open subsets F of M , see also Geisler [7]:

Definition 3.7 (Morrey spaces). 1. For ω ∈ [0, n + 1] we introduce the Morrey

space Lω
2 (S; L2(F )) as the set of all u ∈ L2(S; L2(F )) such that

[u]2Lω
2 (S;L2(F )) = sup

(I,Γ)∈Sr×Fr
r>0

r−ω

∫

I

∫

Γ

|u(s)|2 dλM ds

remains finite, and we define the norm of u ∈ Lω
2 (S; L2(F )) by

‖u‖2
Lω

2 (S;L2(F )) = ‖u‖2
L2(S;L2(F )) + [u]2Lω

2 (S;L2(F )).

2. For σ ∈ [0, n + 3] we denote by Lσ
2 (S; L2(F )) the Campanato space of all

u ∈ L2(S; L2(F )) such that

[u]2
Lσ

2 (S;L2(F )) = sup
(I,Γ)∈Sr×Fr

r>0

r−σ

∫

I

∫

Γ

∣

∣

∣

∣

u(s) −
∫

I

∫

Γ

u(τ) dλM

∣

∣

∣

∣

2

dλM ds
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has a finite value; we define the norm of u ∈ Lσ
2 (S; L2(F )) by

‖u‖2
Lσ

2 (S;L2(F )) = ‖u‖2
L2(S;L2(F )) + [u]2

Lσ
2 (S;L2(F )).

For ω ≤ 0 we set Lω
2 (S; L2(F )) = Lω

2 (S; L2(F )) = L2(S; L2(F )).

Remark 3.5. We collect some facts concerning the above function spaces:

1. The spaces introduced in Definition 3.7 are Banach spaces.

2. If we take the suprema over 0 < r ≤ r0, only, then the associated r0-depending

norms are equivalent to the original norms, respectively.

3. For ω ∈ [0, n+1] the set L∞(S; L∞(F )) is a space of multipliers for Lω
2 (S; L2(F )).

Remark 3.6 (Zero extension). 1. Let Γ ⊂ M be a relatively open subset of F and

ω ∈ [0, n + 1]. By Definition 3.7 the zero extension is a bounded linear map from

Lω
2 (S; L2(Γ)) into Lω

2 (S; L2(F )).

2. Let V ⊂ Rn be an open set with F ∩ V 6= ∅, consider χ ∈ C∞
0 (Rn) with

supp(χ) ⊂ V , and choose δ > 0 such that Qδ(x) ⊂ V for all x ∈ supp(χ). If

Qr(x) ∩ supp(χ) 6= ∅ for some 0 < r ≤ δ
2

and x ∈ F , then Qr(x) ⊂ V .

Suppose, that v ∈ L2(S; L2(F ∩ V )) satisfies χv ∈ Lσ
2 (S; L2(F ∩ V )) for some

σ ∈ [0, n + 3]. For the zero extension u ∈ L2(S; L2(F )) of χv we obtain

∫

S

∫

F∩Qr(x)

∣

∣

∣

∣

u(s) −
∫

S

∫

F∩Qr(x)

u(τ) dλM dτ

∣

∣

∣

∣

2

dλM ds

=

∫

S

∫

F∩V ∩Qr(x)

∣

∣

∣

∣

χv(s) −
∫

S

∫

F∩V ∩Qr(x)

χv(τ) dλM dτ

∣

∣

∣

∣

2

dλM ds

whenever 0 < r ≤ δ
2

and x ∈ F . Thus, Remark 3.5 yields u ∈ Lσ
2 (S; L2(F )), and we

find some c = c(χ, δ, V, F ) > 0 such that

‖u‖Lσ
2 (S;L2(F )) ≤ c ‖χv‖Lσ

2 (S;L2(F∩V )).

Remark 3.7. 1. Applying Hölder’s inequality we get the continuous embedding

of the usual Lebesgue space Lq(S; Lp(F )) into Lω
2 (S; L2(F )) for p, q ≥ 2 satisfying

ω = (n − 1)(1 − 2/p) + 2(1 − 2/q) ∈ [0, n + 1].

2. For ω ∈ [0, n − 1] the space L∞(S; L2,ω(F )) is continuously embedded into

Lω+2
2 (S; L2(F )), where the Morrey space L2,ω(F ) contains all functions u ∈ L2(F )

such that the following expression remains finite:

‖u‖2
L2,ω(F ) = ‖u‖2

L2(F ) + sup
Γ∈Fr
r>0

r−ω

∫

Γ

|u|2 dλM .
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Definition 3.8 (Lipschitz transformation). Let M and M∗ be two compact Lip-

schitz hypersurfaces in Rn, and T be a Lipschitz transformation from the rela-

tively open subset F of M onto a subset F ∗ of M∗. We define T∗u = u ◦ T ∈ L2(F )

for u ∈ L2(F ∗) and carry over this definition to T∗u ∈ L2(S; L2(F )) by (T∗u)(s) =

T∗u(s) for u ∈ L2(S; L2(F ∗)) and s ∈ S.

Lemma 3.5 (Transformation). 1. For ω ∈ [0, n + 1] the assignment u 7→ T∗u is a

linear isomorphism from Lω
2 (S; L2(F ∗)) onto Lω

2 (S; L2(F )).

2. For σ ∈ [0, n + 3] the assignment u 7→ T∗u is a linear isomorphism from

Lσ
2 (S; L2(F ∗)) onto Lσ

2 (S; L2(F )).

Proof. Let L ≥ 1 be a Lipschitz constant of T and set δ = Lr. For r > 0, t ∈ S,

x ∈ F we define

Sr = S ∩ (t − r2, t), Sδ = S ∩ (t − δ2, t),

Fr = F ∩ Qr(x), F ∗
δ = F ∗ ∩ Qδ(T (x)).

1. In view of the change of variable formula T∗ is a bounded linear map from

L2(S; L2(F ∗)) into L2(S; L2(F )). For all r > 0, t ∈ S, and x ∈ F the relation

T [Fr] ⊂ F ∗
δ yields

∫

Sr

∫

Fr

|T∗u(s)|2 dλM ds ≤ c1

∫

Sδ

∫

F ∗

δ

|u(s)|2 dλM∗ ds

for all u ∈ L2(S; L2(F ∗)) and some constant c1 = c1(n, L, M, M∗) > 0. Hence, T∗

maps Lω
2 (S; L2(F ∗)) continuously into Lω

2 (S; L2(F )).

2. Similarly, for all r > 0, t ∈ S, x ∈ F , and u ∈ L2(S; L2(F ∗)) we get

∫

Sr

∫

Fr

∣

∣

∣

∣

T∗u(s) −
∫

Sδ

∫

F ∗

δ

u(τ) dλM∗ dτ

∣

∣

∣

∣

2

dλM ds

≤ c2

∫

Sδ

∫

F ∗

δ

∣

∣

∣

∣

u(s) −
∫

Sδ

∫

F ∗

δ

u(τ) dλM∗ dτ

∣

∣

∣

∣

2

dλM∗ ds,

where c2 = c2(n, L, M, M∗) > 0 is a suitable constant. Applying the minimal

property of the integral mean value, we obtain the continuity of the map T∗ from

Lσ
2 (S; L2(F ∗)) into Lσ

2 (S; L2(F )). Analogously, we prove the statements for the

inverse transformation. �

In order to get properties of Morrey and Campanato spaces analogous to

Theorem 3.4 we suppose the relatively open subset F of M to have no outward

cusps, that means, we find constants r0 > 0 and c0 > 0 such that

λM(Γ) ≥ c0r
n−1 for all 0 < r ≤ r0, Γ ∈ Fr.
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Theorem 3.6 (Equivalence). For relatively open subsets F of M without outward

cusps the following holds true:

1. For ω ∈ [0, n+1) the Morrey space Lω
2 (S; L2(F )) is isomorphic to the Cam-

panato space L
ω
2 (S; L2(F )).

2. For σ ∈ (n + 1, n + 3], α = (σ − n− 1)/2 the Campanato space Lσ
2 (S; L2(F ))

is isomorphic to the space C(S; C0,α(F )) ∩ C0,α/2(S; C(F )) of Hölder continuous

functions.

Sets with Lipschitz boundary. Instead of using graphs of Lipschitz continuous

functions, we prefer a more general definition of sets with Lipschitz boundary,

see Giusti [8], Grisvard [14], Gröger [16],Wloka [32]:

Definition 3.9 (Set with Lipschitz boundary). A bounded subset Ω of R
n is called

set with Lipschitz boundary if for each x ∈ ∂Ω there exist an open neighborhood

U of x and a Lipschitz transformation T from U onto Q such that T [U ∩Ω] = Q−

and T (x) = 0.

Remark 3.8. Every set with Lipschitz boundary is an open subset of Rn without

outward cusps. Moreover, let Ω ⊂ Rn be a bounded open set and let Υ = Rn \ Ω

be its exterior. Then Ω is a set with Lipschitz boundary if and only if ∂Ω is a

compact Lipschitz hypersurface in Rn with ∂Ω = ∂Υ.

Remark 3.9. Following Giusti [8] every set Ω ⊂ R
n with Lipschitz boundary is an

extension domain, that means, there exists a linear extension operator which maps

H1(Ω) continuously into H1(Rn). Because C∞
0 (Rn) is a dense subset of H1(Rn), the

set of restrictions
{

u|Ω : u ∈ C∞
0 (Rn)

}

is dense in H1(Ω), too. Together with the

properties of the Lebesgue measure λ∂Ω this ensures the complete continuity of

the trace operator K∂Ω from H1(Ω) in L2(∂Ω). Due to Mazya [24] we find some

constant cΩ > 0 such that the following multiplicative inequality holds true

(3.1) ‖K∂Ωv‖2
L2(∂Ω) ≤ cΩ‖v‖H1(Ω)‖v‖L2(Ω) for all v ∈ H1(Ω).

Definition 3.10 (Trace map). Let Ω ⊂ Rn be a set with Lipschitz boundary and

F be relatively open in ∂Ω. For the trace map we introduce the notation KF ∈
L(H1(Ω); L2(F )), and we define the bounded linear map KS,F : L2(S; H1(Ω)) →
L2(S; L2(F )) by (KS,Fu)(s) = KFu(s) for u ∈ L2(S; H1(Ω)) and s ∈ S.

Remark 3.10. If T is some Lipschitz transformation from an open neighborhood

of Ω into R
n, then Ω∗ = T [Ω] is a set with Lipschitz boundary. Let F be relatively

open in ∂Ω and set F ∗ = T [F ]. Following Griepentrog, Rehberg [9, 13], for

T F = T |F we have

T F
∗ KF ∗v = KF T∗v for all v ∈ H1(Ω∗).
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Lemma 3.7 (Transformation). For all u ∈ L2(S; H1(Ω∗)) the identity TF
∗ KS,F ∗u =

KS,FT∗v holds true.

4. Regular sets and associated function spaces

For our investigations on global regularity we use the terminology of regular sets

G ⊂ Rn introduced by Gröger. Being the natural generalization of sets with

Lipschitz boundary it allows the proper functional analytic description of elliptic

and parabolic problems with mixed boundary conditions in nonsmooth domains,

see Gröger, Rehberg [16, 17, 18], and Griepentrog, Recke [9, 10, 12].

Topological concept. Regular sets G ⊂ Rn are to be understood as the union of

some set with Lipschitz boundary and some relatively open Neumann part of this

boundary. Note, that the Dirichlet part of the Lipschitz boundary is defined

as the relative exterior of the Neumann part. This concept enables us to reduce

the global regularity theory for general regular sets to the case of three elementary

halfcubes representing the standard boundary conditions under consideration, see

Figure 1.

For x ∈ Rn and r > 0 we introduce the halfcubes

Q−
r (x) =

{

ξ ∈ R
n : |ξ − x| < r, ξn − xn < 0

}

,

Q+
r (x) =

{

ξ ∈ R
n : |ξ − x| < r, ξn − xn ≤ 0

}

,

Q±
r (x) =

{

ξ ∈ Q+
r (x) : ξ1 − x1 > 0 or ξn − xn < 0

}

.

In the case x = 0 we shortly write Q−
r , Q+

r , Q±
r , respectively. If, additionally, r = 1,

then we use the notation Q−, Q+, Q±.

Definition 4.1 (Regular set). A bounded set G ⊂ Rn is called regular if for each x ∈
∂G we find some open neighborhood U of x in Rn and a Lipschitz transformation

T from U onto Q such that T [U ∩ G] ∈
{

Q−, Q+, Q±
}

and T (x) = 0.

We collect some frequently used properties of regular sets, see Griepentrog,

Recke [9, 10, 12]:

Lemma 4.1 (Topological properties). 1. Every set with Lipschitz boundary is a

regular set. Vice versa, the interior of a regular set is a set with Lipschitz boundary.

The closure of a regular set is regular, too.

2. For regular sets G ⊂ Rn both the Neumann boundary part ∂+G = G∩ ∂G and

the Dirichlet boundary part ∂−G = ∂G \ ∂+G are relatively open subsets of ∂G

without outward cusps.
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G

G ∩ ∂G

x+

x±

x−

Q+

Q±

Q−

T+

T±

T−

0

0

0

Figure 1. Regular set G ⊂ Rn with Neumann boundary part

∂+G = G ∩ ∂G (bold line): Transformation of different boundary re-

gions near the points x−, x±, x+ ∈ ∂G to corresponding halfcubes Q−,

Q±, Q+ representing the cases of Dirichlet, Zaremba (or mixed),

and Neumann boundary conditions.

3. If G ⊂ Rn is a regular set and T is a Lipschitz transformation from an open

neighborhood of G into Rn, then T [G] is regular, too.

Lemma 4.2 (Atlas). For every regular set G ⊂ Rn we find an atlas of charts

(T1, U1), . . . , (Tm, Um) with the following properties:

1. U1, . . . , Um are open neighborhoods of points x1, . . . , xm ∈ G in Rn.

2. T1, . . . , Tm are Lipschitz transformations from U1, . . . , Um into Rn.

3. Introducing the index sets

J0 =
{

i ∈ {1, . . . , m} : xi ∈ G◦
}

, J1 =
{

i ∈ {1, . . . , m} : xi ∈ ∂G
}

,

we have the inclusions

(4.1) ∂G ⊂
⋃

i∈J1

Ui,
⋃

i∈J0

Ui ⊂ G◦, G ⊂
m
⋃

i=1

Ui.

4. For all i ∈ {1, . . . , m} the above transformations satisfy

(4.2) Ti(xi) = 0, Ti[Ui] = Q, Ti[Ui ∩ G] ∈
{

Q, Q−, Q+, Q±
}

.

5. The subfamily
{

(Ti, Ui) : i ∈ J1

}

is an atlas of ∂G.
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Function spaces and invariance principles. We define function spaces associ-

ated with relatively open subsets U ⊂ Rn of regular sets G ⊂ Rn. Let V ⊂ Rn be

relatively open in U , and I ⊂ R be an open subinterval of S.

Definition 4.2 (Sobolev space). By H1
0 (U) we denote the closure of

C∞
0 (U) =

{

u|U◦ : u ∈ C∞
0 (Rn), supp(u) ∩ (U \ U) = ∅

}

in the space H1(U◦). We write H−1(U) for the dual space of H1
0 (U).

In the following we collect extension, transformation, and reflection principles for

Sobolev spaces:

Definition 4.3 (Zero extension). For the zero extension map we introduce the

notation ZU : H1
0 (V ) → H1

0 (U), and we define the operator ZS,U : L2(I; H1
0 (V )) →

L2(S; H1
0 (U)) by

(ZS,Uu)(s) =

{

ZUu(s) if s ∈ I,

0 otherwise,
for u ∈ L2(I; H1

0 (V )).

Because the zero extension map ZU is a linear isometry from H1
0 (V ) into H1

0 (U),

see Griepentrog, Rehberg [9, 13], we get

Lemma 4.3 (Zero extension). ZS,U is a linear isometry from L2(I; H1
0(V )) into

L2(S; H1
0 (U)).

Let T be a Lipschitz transformation from an open neighborhood of G into R
n,

and set U∗ = T [U ], V ∗ = T [V ]. Then T∗ is a linear isomorphism from H1
0 (U∗) onto

H1
0 (U), where

T∗ZU∗u = ZUT∗u for all u ∈ H1
0 (V ∗),

see Griepentrog, Rehberg [9, 13]. Hence, Lemma 3.2 leads to

Lemma 4.4 (Transformation). For ω ∈ [0, n + 2] the operator T∗ is a linear iso-

morphism between Lω
2 (S; H1

0 (U∗)) and Lω
2 (S; H1

0 (U)). We have

T∗ZS,U∗u = ZS,UT∗u for all u ∈ L2(I; H1
0(V

∗)).

Following Giusti [8], Griepentrog, Rehberg [9, 13] the reflection R+ is a

bounded linear operator from H1
0 (Q+) into H1

0 (Q) as well as from H1(Q−) into

H1(Q). The antireflection R− maps H1
0 (Q−) continuously into H1

0 (Q). Due to

Definition 3.5 we have

∇R+u = R+∇u for all u ∈ H1(Q−),

∇R−u = R−∇u for all u ∈ H1
0 (Q−).

In view of Lemma 3.3 this yields
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Lemma 4.5 (Reflection). For ω ∈ [0, n + 2] the map R+ is a bounded linear

operator from Lω
2 (S; H1

0 (Q+)) into Lω
2 (S; H1

0 (Q)) as well as from Lω
2 (S; H1(Q−))

into Lω
2 (S; H1(Q)). In addition to that, R− is a bounded linear operator from

Lω
2 (S; H1

0 (Q−)) into Lω
2 (S; H1

0 (Q)), and we have

‖R+u‖Lω
2 (S;H1(Q)) ≤

√
2 ‖u‖Lω

2 (S;H1(Q−)) for all u ∈ Lω
2 (S; H1(Q−)),

‖R−u‖Lω
2 (S;H1(Q)) ≤

√
2 ‖u‖Lω

2 (S;H1(Q−)) for all u ∈ Lω
2 (S; H1

0(Q
−)).

Definition 4.4 (Even and odd part). Let the maps N : Rn → Rn and P : Rn → Rn

defined by

Nx = (x̂,−xn), Px = (x̂,−|xn|) for x = (x̂, xn) ∈ R
n,

and consider the symmetric union

Q2
r(x) = Qr(x) ∪ Qr(Nx) for x ∈ R

n, r > 0.

Then, for x ∈ Q, r > 0, and u ∈ L2(Q2
r(x) ∩ Q) we define the even part O+

r (x)u ∈
L2(Qr(Px) ∩ Q−) and the odd part O−

r (x)u ∈ L2(Qr(Px) ∩ Q−) of 2u by

(O+
r (x)u)(ξ) = u(ξ) + u(Nξ) for ξ ∈ Qr(Px) ∩ Q−,

(O−
r (x)u)(ξ) = u(ξ) − u(Nξ) for ξ ∈ Qr(Px) ∩ Q−.

In the case x = 0, r = 1 we simply write O+ and O−.

We carrying over the definition to u ∈ L2(I; L2(Q2
r(x) ∩ Q)) by setting

(O+
r (x)u)(s) = O+

r (x)u(s) for s ∈ I,

(O−
r (x)u)(s) = O−

r (x)u(s) for s ∈ I,

and we use the notation O+ and O− in the case x = 0, r = 1.

Following Griepentrog, Rehberg [9, 13], for all x ∈ Q and r > 0 both the

maps O+
r (x) : H1

0 (Q2
r(x) ∩ Q) → H1

0 (Qr(Px) ∩ Q+) and O−
r (x) : H1

0 (Q2
r(x) ∩ Q) →

H1
0 (Qr(Px) ∩ Q−) are bounded linear operators, and

O+ZQu = ZQ+O+
r (x)u for all u ∈ H1

0 (Q2
r(x) ∩ Q),

O−ZQu = ZQ−O−
r (x)u for all u ∈ H1

0 (Q2
r(x) ∩ Q).

Consequently, this yields

Lemma 4.6 (Even and odd part). Let x ∈ Q and r > 0 be given. Then both the

operators O+
r (x) : L2(I; H1

0(Q
2
r(x) ∩ Q)) → L2(I; H1

0(Qr(Px) ∩ Q+)) and O−
r (x) :
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L2(I; H1
0 (Q2

r(x)∩Q)) → L2(I; H1
0(Qr(Px)∩Q−)) are bounded linear operators, and

we have

O+ZS,Qu = ZS,Q+O+
r (x)u for all u ∈ L2(I; H1

0(Q
2
r(x) ∩ Q)),

O−ZS,Qu = ZS,Q−O−
r (x)u for all u ∈ L2(I; H1

0(Q
2
r(x) ∩ Q)).

5. Sobolev–Morrey spaces of functionals

Again, we assume that U ⊂ Rn is a relatively open subset of the regular set G ⊂ Rn.

Moreover, let V ⊂ Rn be relatively open in U , I ⊂ R be an open subinterval of S,

and ω ∈ [0, n + 2].

Function spaces and invariance principles. In the same spirit as the well-

established Morrey spaces of functions, we construct a new scale of Sobolev–

Morrey spaces of functionals as subspaces of L2(S; H−1(U)). We generalize an idea

of Rakotoson [25, 26] to the purpose of evolution equations, see Griepentrog [9]:

Definition 5.1 (Localization). 1. We define the localization f 7→ LV f from H−1(U)

into H−1(V ) as the adjoint operator to the zero extension map ZU : H1
0 (V ) →

H1
0 (U), that means,

〈LV f, w〉H1
0 (V ) = 〈f, ZUw〉H1

0 (U) for w ∈ H1
0 (V ).

2. To localize a functional f ∈ L2(S; H−1(U)) we define the assignment f 7→ LI,V f

from L2(S; H−1(U)) into L2(I; H−1(V )) as the adjoint operator to the zero extension

map ZS,U : L2(I; H1
0 (V )) → L2(S; H1

0(U)):

〈LI,V f, w〉L2(I;H1
0 (V )) = 〈f, ZS,Uw〉L2(S;H1

0 (U)) for w ∈ L2(I; H1
0(V )).

Remark 5.1. Using the properties of ZS,U , see Lemma 4.3, we get

‖LI,V f‖L2(I;H−1(V )) ≤ ‖f‖L2(S;H−1(U)) for all f ∈ L2(S; H−1(U)).

Definition 5.2 (Sobolev–Morrey space). We define the Sobolev–Morrey

space Lω
2 (S; H−1(U)) as the set of all elements f ∈ L2(S; H−1(U)) for which

[f ]2Lω
2 (S;H−1(U)) = sup

(I,V )∈Sr×Ur
r>0

r−ω

∫

I

‖LV f(s)‖2
H−1(V ) ds

has a finite value. We define the norm of f ∈ Lω
2 (S; H−1(U)) by

‖f‖2
Lω

2 (S;H−1(U)) = ‖f‖2
L2(S;H−1(U)) + [f ]2Lω

2 (S;H−1(U)).

For ω ≤ 0 we set Lω
2 (S; H−1(U)) = L2(S; H−1(U)).
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Remark 5.2. For fixed r0 > 0 we get an equivalent norm on Lω
2 (S; H−1(U)), if we

take the supremum over 0 < r ≤ r0, only.

Lemma 5.1. The spaces Lω
2 (S; H−1(U)) are Banach spaces.

Proof. To prove of the completeness of Lω
2 (S; H−1(U)) let (fℓ) be a Cauchy se-

quence in Lω
2 (S; H−1(U)). Due to the continuous embedding of Lω

2 (S; H−1(U)) in

L2(S; H−1(U)) the sequence (fℓ) converges in L2(S; H−1(U)) to some limit f ∈
L2(S; H−1(U)). We fix δ > 0 and choose ℓ0(δ) ∈ N such that

‖fℓ+k − fℓ‖Lω
2 (S;H−1(U)) ≤ δ for all ℓ, k ∈ N with ℓ ≥ ℓ0(δ).

For all r > 0, I ∈ Sr, and V ∈ Ur we get

r−ω ‖LI,V (f − fℓ)‖2
L2(I;H−1(U)) ≤ 2r−ω ‖LI,V (f − fℓ+k)‖2

L2(I;H−1(V )) + 2δ2.

Passing to the limit k → ∞ and taking the supremum over all r > 0, I ∈ Sr, and

V ∈ Ur, we arrive at

‖f − fℓ‖2
Lω

2 (S;H−1(U)) ≤ 2δ2 for all ℓ ∈ N with ℓ ≥ ℓ0(δ),

in other words, (fℓ) converges to f in Lω
2 (S; H−1(U)). �

We show that the above Sobolev–Morrey spaces are invariant with respect to

localization, Lipschitz transformations, and reflection.

Definition 5.3 (Multiplication). The product χf ∈ L2(S; H−1(U)) of the function

χ ∈ C∞
0 (Rn) and the functional f ∈ L2(S; H−1(U)) is defined by

〈χf, w〉L2(S;H1
0 (U)) = 〈f, χw〉L2(S;H1

0 (U)) for w ∈ L2(S; H1
0(U)).

Remark 5.3. Obviously, we find some constant c = c(χ) > 0 such that

‖χf‖L2(S;H−1(U)) ≤ c ‖f‖L2(S;H−1(U)) for all f ∈ L2(S; H−1(U)).

Lemma 5.2 (Multiplication). For all χ ∈ C∞
0 (Rn) the assignment f 7→ χf is a

bounded linear map from Lω
2 (S; H−1(U)) into itself.

Proof. Let f ∈ Lω
2 (S; H−1(U)) be given. For all r > 0, I ∈ Sr, V ∈ Ur, and

w ∈ L2(I; H1
0(V )) we obtain

〈LI,V (χf), w〉L2(I;H1
0 (V )) = 〈χf, ZS,Uw〉L2(S;H1

0 (U))

= 〈f, ZS,U(χw)〉L2(S;H1
0 (U))

= 〈LI,V f, χw〉L2(I;H1
0 (V )),

and [χf ]Lω
2 (S;H−1(U)) ≤ c [f ]Lω

2 (S;H−1(U)), which finishes the proof. �
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Lemma 5.3 (Localization). The restriction f 7→ LI,V f defines a bounded linear

operator from Lω
2 (S; H−1(U)) into Lω

2 (I; H−1(V )).

Proof. Let f ∈ Lω
2 (S; H−1(U)), and t ∈ I, x ∈ V , r > 0 be given. Setting

Ir = I ∩ (t − r2, t), Sr = S ∩ (t − r2, t),

Ur = U ∩ Qr(x), Vr = V ∩ Qr(x),

for all w ∈ L2(Ir; H
1
0 (Vr)) we get

〈LIr,Vr
f, w〉L2(Ir ;H1

0 (Vr)) = 〈f, ZS,Uw〉L2(S;H1
0 (U))

= 〈LSr ,Ur
f, ZSr ,Ur

w〉L2(Sr ;H1
0 (Ur)).

We obtain [LI,V f ]Lω
2 (I;H−1(V )) ≤ [f ]Lω

2 (S;H−1(U)), which proves the assertion. �

Definition 5.4 (Lipschitz transformation). Let T be a Lipschitz transformation

from an open neighborhood of G into Rn and set U∗ = T [U ]. We define the assign-

ment f 7→ T∗f from L2(S; H−1(U)) into L2(S; H−1(U∗)) as the adjoint operator of

T∗ : L2(S; H1
0(U

∗)) → L2(S; H1
0(U)), that means,

〈T∗f, w〉L2(S;H1
0 (U∗)) = 〈f, T∗w〉L2(S;H1

0 (U)) for w ∈ L2(S; H1
0(U

∗)).

Remark 5.4. By the transformation invariance of Sobolev spaces, see Lemma 4.4,

we find some constant c = c(T ) > 0 such that

‖T∗f‖L2(S;H−1(U∗)) ≤ c ‖f‖L2(S;H−1(U)) for all f ∈ L2(S; H−1(U)).

Lemma 5.4 (Transformation). The assignment f 7→ T∗f is a bounded linear map

from Lω
2 (S; H−1(U)) into Lω

2 (S; H−1(U∗)).

Proof. Let L ≥ 1 be a Lipschitz constant of T and set δ = Lr. For r > 0, t ∈ S,

and y ∈ U∗ we introduce the sets

Sr = S ∩ (t − r2, t), Sδ = S ∩ (t − δ2, t),

U∗
r = U∗ ∩ Qr(y), Uδ = U ∩ Qδ(T

−1(y)).

Let f ∈ Lω
2 (S; H−1(U)). In view of the the inclusion T−1[U∗

r ] ⊂ Uδ and the prop-

erties of the extension operators with respect to Lipschitz transformations, see

Lemma 4.4, for all w ∈ L2(Sr; H
1
0 (U∗

r )) we get

〈LSr ,U∗
r
T∗f, w〉L2(Sr ;H1

0 (U∗
r )) = 〈T∗f, ZS,U∗w〉L2(S;H1

0 (U∗))

= 〈f, T∗ZS,U∗w〉L2(S;H1
0 (U))

= 〈f, ZS,UZSδ,Uδ
T∗w〉L2(S;H1

0 (U))

= 〈LSδ,Uδ
f, ZSδ ,Uδ

T∗w〉L2(Sδ;H1
0 (Uδ)),
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and [T∗f ]Lω
2 (S;H−1(U∗)) ≤ c [f ]Lω

2 (S;H−1(U)) for all f ∈ Lω
2 (S; H−1(U)) and some con-

stant c = c(T ) > 0, which proves the result. �

Definition 5.5 (Reflection). The reflection f 7→ R+f from L2(S; H−1(Q+)) to

L2(S; H−1(Q)) is defined as the adjoint operator of the map O+ : L2(S; H1
0 (Q)) →

L2(S; H1
0 (Q+)), that means,

〈R+f, w〉L2(S;H1
0 (Q)) = 〈f, O+w〉L2(S;H1

0 (Q+)) for w ∈ L2(S; H1
0(Q)).

The antireflection f 7→ R−f from L2(S; H−1(Q−)) to L2(S; H−1(Q)) is defined as

the adjoint operator of O− : L2(S; H1
0(Q)) → L2(S; H1

0 (Q−)),

〈R−f, w〉L2(S;H1
0 (Q)) = 〈f, O−w〉L2(S;H1

0 (Q−)) for w ∈ L2(S; H1
0 (Q)).

Remark 5.5. By the properties of O+ and O−, see Lemma 4.6, we get

‖R+f‖L2(S;H−1(Q)) ≤
√

2 ‖f‖L2(S;H−1(Q+)) for all f ∈ L2(S; H−1(Q+)),

‖R−f‖L2(S;H−1(Q)) ≤
√

2 ‖f‖L2(S;H−1(Q−)) for all f ∈ L2(S; H−1(Q−)).

Lemma 5.5 (Reflection). The assignment f 7→ R+f is a continuous map from

Lω
2 (S; H−1(Q+)) into Lω

2 (S; H−1(Q)). Analogously, the assignment f 7→ R−f maps

Lω
2 (S; H−1(Q−)) continuously into Lω

2 (S; H−1(Q)).

Proof. We consider r > 0, I ∈ Sr, x ∈ Q and introduce the sets

C = Q ∩ Qr(x), C2 = C ∪ N [C] = Q2
r(x) ∩ Q, C+ = Q+ ∩ Qr(Px).

Let f ∈ Lω
2 (S; H−1(Q+)). Due to the properties of O+

r (x), see Lemma 4.6, and the

zero extension operators, for all w ∈ L2(I; H1
0(C)) we get

〈LI,CR+f, w〉L2(I;H1
0 (C)) = 〈R+f, ZS,Qw〉L2(S;H1

0 (Q))

= 〈f, O+ZS,QZI,C2w〉L2(S;H1
0 (Q+))

= 〈f, ZS,Q+O+
r (x)ZI,C2w〉L2(S;H1

0 (Q+))

= 〈LI,C+f, O+
r (x)ZI,C2w〉L2(I;H1

0 (C+)),

and, therefore, the estimates

[R+f ]Lω
2 (S;H−1(Q)) ≤

√
2 [f ]Lω

2 (S;H−1(Q+)) for all f ∈ Lω
2 (S; H−1(Q+)),

[R−f ]Lω
2 (S;H−1(Q)) ≤

√
2 [f ]Lω

2 (S;H−1(Q−)) for all f ∈ Lω
2 (S; H−1(Q−)),

where the second one follows analogously to the first one. �
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Examples of functionals. We consider examples of elements from Lω
2 (S; H−1(G)),

which cover a broad class of applications, see also Remark 3.4 and 3.7.

Theorem 5.6. Let F be a relatively open subset of the boundary ∂G. Then the map

(g, g0, gF ) 7→ f defined by

〈f, w〉L2(S;H1
0 (G)) =

∫

S

∫

G

(

g(s) · ∇w(s) + g0(s)w(s)
)

dλn ds

+

∫

S

∫

F

gF (s) KFw(s) dλ∂G ds

for w ∈ L2(S; H1
0 (G)), is a bounded linear operator from

Lω
2 (S; L2(G◦; Rn)) × Lω−2

2 (S; L2(G◦)) × Lω−1
2 (S; L2(F ))

into Lω
2 (S; H−1(G)), and its norm depends on n, F , and G, only.

Proof. 1. Let
{

(T1, U1), . . . , (Tm, Um)
}

be an atlas of G which satisfies (4.1) and (4.2),

see Lemma 4.2. Furthermore, let L ≥ 1 be a common Lipschitz constant for all

the transformations. In view of the Lebesgue property of the covering we choose

some δ > 0 such that for all x ∈ G the open cube Qδ(x) is contained in one of the

neighborhoods U1, . . . , Um. We decompose {1, . . . , m} into the sets

J0 =
{

i ∈ {1, . . . , m} : Ui ⊂ G◦
}

, J1 =
{

i ∈ {1, . . . , m} : Ui ∩ ∂G 6= ∅
}

.

We consider three different types of functionals:

2. Let f ∈ L2(S; H−1(G)) be defined by

〈f, w〉L2(S;H1
0 (G)) =

∫

S

∫

G

g(s) · ∇w(s) dλn ds for w ∈ L2(S; H1
0 (G)).

Then, for all r > 0, I ∈ Sr, V ∈ Gr, and w ∈ L2(I; H1
0 (V )) we have

∣

∣〈LI,V f, w〉L2(I;H1
0 (V ))

∣

∣

2 ≤
∫

I

∫

V

‖g(s)‖2 dλn ds

∫

I

∫

V

‖∇w(s)‖2 dλn ds.

Hence, we get

(5.1) ‖LI,V f‖2
L2(I;H−1(V )) ≤

∫

I

∫

V

‖g(s)‖2 dλn ds.

3. Next we consider the functional f ∈ L2(S; H−1(G)) defined as

〈f, w〉L2(S;H1
0 (G)) =

∫

S

∫

G

g0(s)w(s) dλn ds for w ∈ L2(S; H1
0(G)).

For all r > 0, I ∈ Sr, V ∈ Gr, and w ∈ L2(I; H1
0 (V )) we obtain

∣

∣〈LI,V f, w〉L2(I;H1
0 (V ))

∣

∣

2 ≤
∫

I

∫

V

|g0(s)|2 dλn ds

∫

I

∫

V

|w(s)|2 dλn ds.
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3.1. Assume that Qδ(x) ⊂ Ui holds true for some index i ∈ J0. Note, that for

all 0 < r ≤ δ we have Qr(x) ⊂ G. For all I ∈ Sr and w ∈ L2(I; H1
0(Qr(x))) the

Sobolev–Friedrichs inequality yields
∫

I

∫

Qr(x)

|w(s)|2 dλn ds ≤ 4r2

∫

I

∫

Qr(x)

‖∇w(s)‖2 dλn ds.

3.2. Otherwise we have Qδ(x) ⊂ Ui for some index i ∈ J1. Setting

y = Ti(x) ∈ Q+, U = T−1
i [QLr(y)], V = G ∩ Qr(x),

for all 0 < r ≤ δ/L2 we get the inclusions

Qr(x) ⊂ U ⊂ Qδ(x), Ti[V ] ⊂ Q+ ∩ QLr(y), V ⊂ G ∩ U.

For all 0 < r ≤ δ/L2, I ∈ Sr, and w ∈ L2(I; H1
0 (V )) we set

wi = [T−1
i ]∗ZI,G∩Uw ∈ L2(I; H1

0 (QLr(y) ∩ Q+)).

Applying the Sobolev–Friedrichs inequality we get the estimate
∫

I

∫

V

|w(s)|2 dλn ds ≤ c1

∫

I

∫

QLr(y)∩Q−

|wi(s)|2 dλn ds

≤ 4c1(Lr)2

∫

I

∫

QLr(y)∩Q−

‖∇wi(s)‖2 dλn ds

≤ c2r
2

∫

I

∫

V

‖∇w(s)‖2 dλn ds,

where the constants c1, c2 > 0 depend on n and L, only.

3.3. We have found a constant c3 = c3(n, L) > 0, such that for all 0 < r ≤ δ/L2,

I ∈ Sr, V ∈ Gr, and w ∈ L2(I; H1
0(V )) we have

∣

∣〈LI,V f, w〉L2(I;H1
0 (V ))

∣

∣

2 ≤ c3r
2

∫

I

∫

V

|g0(s)|2 dλn ds

∫

I

∫

V

‖∇w(s)‖2 dλn ds,

and, hence,

(5.2) ‖LI,V f‖2
L2(I;H−1(V )) ≤ c3r

2

∫

I

∫

V

|g0(s)|2 dλn ds.

4. We extend gF ∈ Lω−1
2 (S; L2(F )) by zero to a function which belongs to the

space Lω−1
2 (S; L2(∂G)). Hence, it suffices to consider the case F = ∂G, only. Since

the trace map KF from H1
0 (G) into L2(F ) is continuous, we define a functional

f ∈ L2(S; H−1(G)) by

〈f, w〉L2(S;H1
0 (G)) =

∫

S

∫

F

gF (s) KFw(s) dλF ds for w ∈ L2(S; H1
0(G)).
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Let r > 0, x ∈ G, I ∈ Sr, and set

V = G ∩ Qr(x), Γ = F ∩ Qr(x).

For all w ∈ L2(I; H1
0(V )) we obtain

∣

∣〈LI,V f, w〉L2(I;H1
0 (V ))

∣

∣

2 ≤
∫

I

∫

Γ

|gF (s)|2 dλF ds

∫

I

∫

Γ

|KFw(s)|2 dλF ds.

To estimate the second integral of the right hand side it is sufficient to consider

0 < r ≤ δ/L2 and x ∈ G which satisfy Γ = F ∩ Qr(x) 6= ∅. In that case we find an

index i ∈ J1 with Qδ(x) ⊂ Ui. Moreover, setting again

y = Ti(x) ∈ Q+, U = T−1
i [QLr(y)],

we get the inclusions

Qr(x) ⊂ U ⊂ Qδ(x), Ti[V ] ⊂ Q+ ∩ QLr(y), V ⊂ G ∩ U.

For all 0 < r ≤ δ/L2 and x ∈ G with Γ = F ∩ Qr(x) 6= ∅, every I ∈ Sr and

w ∈ L2(I; H1
0(V )) we set

wi = [T−1
i ]∗ZI,G∩Uw ∈ L2(I; H1

0 (QLr(y) ∩ Q+)).

Using the Sobolev–Friedrichs trace inequality we obtain the estimate
∫

I

∫

Γ

|KΓw(s)|2 dλF ds ≤ c4

∫

I

∫

Σ∩QLr(y)

|KΣ∩QLr(y)wi(s)|2 dλΣ ds

≤ 2c4Lr

∫

I

∫

Q−∩QLr(y)

‖∇wi(s)‖2 dλn ds

≤ c5r

∫

I

∫

V

‖∇w(s)‖2 dλn ds,

where the constants c4, c5 > 0 depend on n and L, only. Thus for all 0 < r ≤ δ/L2,

x ∈ G, I ∈ Sr, and w ∈ L2(I; H1
0 (V )) we have proved

∣

∣〈LI,V f, w〉L2(I;H1
0 (V ))

∣

∣

2 ≤ c5r

∫

I

∫

Γ

|gF (s)|2 dλF ds

∫

I

∫

V

‖∇w(s)‖2 dλn ds,

where V = G ∩ Qr(x) and Γ = F ∩ Qr(x), which yields

(5.3) ‖LI,V f‖2
L2(I;H−1(V )) ≤ c5r

∫

I

∫

Γ

|gF (s)|2 dλF ds.

5. Combining (5.1), (5.2), and (5.3) we end up with the desired result. �
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6. Sobolev–Morrey spaces for evolution equations

Suppose that U ⊂ Rn is a relatively open subset of the regular set G ⊂ Rn. Fur-

thermore, let V ⊂ Rn be relatively open in U , I ⊂ R be an open subinterval of

S = (t0, t1), and ω ∈ [0, n + 2].

For our following considerations let ε ∈ (0, 1] be constant. We define the duality

map JH : H → H∗ on the Hilbert space H = L2(U◦) as usual by 〈JHv, w〉H =

(v|w)H for v, w ∈ H , but note, that we equip H with the weighted scalar product

(v|w)H =

∫

U

avw dλn for v, w ∈ H,

where a ∈ L∞(U◦) is a nonsmooth capacity coefficient, which is supposed to be

ε-definite with respect to U◦, that means, we assume that

ε ≤ ess inf
y∈U◦

a(y), esssup
y∈U◦

a(y) ≤ 1

ε

holds true. Corresponding to Section 1 we set Y = H1
0 (U), and we consider some

closed subspace H1
0 (U) ⊂ X ⊂ H1(U◦) of H1(U◦) equipped with the usual scalar

product. We choose for K the completely continuous embedding of X into H . Then,

the set K[Y ] is dense in H . The map E = (K|Y )∗JHK : X → Y ∗, associated with

the coefficient a being ε-definite with respect to U◦, is a bounded linear operator.

Its restriction E|Y onto Y is symmetric and positively semidefinite:

〈Ev, w〉Y = 〈JHKv, Kw〉H = (v|w)H for all v, w ∈ Y .

We define the bounded linear operator E : L2(S; X) → L2(S; Y ∗) associated with S

and E via (Eu)(s) = Eu(s) for u ∈ L2(S; X) and s ∈ S.

Based on Definition 1.1, 3.2, and 5.2, we construct our class of Sobolev–Morrey

spaces suitable for the regularity theory of second order parabolic boundary value

problems with nonsmooth data, see Griepentrog [9, 11]:

Definition 6.1 (Sobolev–Morrey space). We define the Sobolev–Morrey

space W ω
E (S; X) as the set of all elements u ∈ Lω

2 (S; X) for which the weak time

derivative (Eu)′ of Eu ∈ L2(S; Y ∗) exists and belongs to Lω
2 (S; Y ∗):

W ω
E (S; X) =

{

u ∈ Lω
2 (S; X) : (Eu)′ ∈ Lω

2 (S; Y ∗)
}

.

We introduce the norm of an element u ∈ W ω
E (S; X) by

‖u‖2
W ω

E
(S;X) = ‖u‖2

Lω
2 (S;X) + ‖(Eu)′‖2

Lω
2 (S;Y ∗).

For ω ≤ 0 we set W ω
E (S; X) = WE(S; X).

Lemma 6.1. The function space W ω
E (S; X) is a Banach space.
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Proof. 1. Note, that the functional is correctly defined for u ∈ W ω
E (S; X), and that

it has the properties of a norm.

2. To prove the completeness of W ω
E (S; X), let (uk) be a Cauchy sequence in

W ω
E (S; X). Then (uk) and ((Euk)

′) are Cauchy sequences in the Banach spaces

Lω
2 (S; X) and Lω

2 (S; Y ∗), respectively. Hence, for k → ∞ both sequences converge

in Lω
2 (S; X) and Lω

2 (S; Y ∗) to some functions u ∈ Lω
2 (S; X) and f ∈ Lω

2 (S; Y ∗),

respectively. The continuity of the operator E : L2(S; X) → L2(S; Y ∗) and the

embeddings from Lω
2 (S; X) into L2(S; X) and from Lω

2 (S; Y ∗) into L2(S; Y ∗) yields

the convergence of (Euk) to Eu in L2(S; Y ∗) and of ((Euk)
′) to f in L2(S; Y ∗).

Passing to the limit k → ∞ in
∫

S

〈(Euk)
′(s), w〉Y ϑ(s) ds = −

∫

S

〈(Euk)(s), w〉Y ϑ′(s) ds,

for all ϑ ∈ C∞
0 (S) and w ∈ Y we get

∫

S

〈f(s), w〉Y ϑ(s) ds = −
∫

S

〈(Eu)(s), w〉Y ϑ′(s) ds

which proves (Eu)′ = f ∈ Lω
2 (S; Y ∗) and u ∈ W ω

E (S; X). �

Invariance principles. We consider the behaviour of functions from the above

Sobolev–Morrey spaces with respect to localization, Lipschitz transformations,

and reflections.

Lemma 6.2 (Multiplication). Let X = H1(U◦) and Y = H1
0 (U). Then, for every

χ ∈ C∞
0 (Rn) the assignment u 7→ χu is a bounded linear map from W ω

E (S; X) into

itself as well as from W ω
E|Y (S; Y ) into itself.

Proof. Because of Remark 3.2 and Lemma 5.2 for all u ∈ W ω
E (S; X) we have

χu ∈ Lω
2 (S; X), χ(Eu)′ ∈ Lω

2 (S; Y ∗),

and we find some constant c = c(χ) > 0 such that

‖χu‖Lω
2 (S;X) ≤ c ‖u‖Lω

2 (S;X),

‖χ(Eu)′‖Lω
2 (S;Y ∗) ≤ c ‖(Eu)′‖Lω

2 (S;Y ∗).

Because of the identities E(χu) = χEu and (χEu)′ = χ(Eu)′ this yields χu ∈
W ω

E (S; X) with a corresponding norm estimates. The multiplier property in the

space W ω
E|Y (S; Y ) follows analogously. �

Lemma 6.3 (Localization). Let E ∈ L(H1(U◦); H−1(U)) be associated with the

coefficient a and consider the map EV ∈ L(H1(V ◦); H−1(V )) associated with the
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restricted coefficient aV = RV a. Then the assignment u 7→ RI,V u defines a bounded

linear map from W ω
E (S; H1(U◦)) into W ω

EV
(I; H1(V ◦)).

Proof. Due to Lemma 3.1 and 5.3 we observe that for all u ∈ W ω
E (S; H1(U◦))

RI,V u ∈ Lω
2 (I; H1(V ◦)), LI,V (Eu)′ ∈ Lω

2 (I; H−1(V )),

and we find some constant c > 0 such that

‖RI,V u‖Lω
2 (I;H1(V ◦)) ≤ c ‖u‖Lω

2 (S;H1(U◦)),

‖LI,V (Eu)′‖Lω
2 (I;H−1(V )) ≤ c ‖(Eu)′‖Lω

2 (S;H−1(U)).

Let EV : L2(I; H1(V ◦)) → L2(I; H−1(V )) be associated with I and EV . Since

EV RI,V u = LI,V Eu and (LI,V Eu)′ = LI,V (Eu)′ holds true this yields RI,V u ∈
W ω

EV
(I; H1(V ◦)). The result follows from the above estimates. �

Lemma 6.4 (Transformation). Suppose that T is a Lipschitz transformation from

an open neighborhood of G into Rn with a Lipschitz constant L ≥ 1. Moreover,

we set U∗ = T [U ], and consider

X = H1(U◦), Y = H1
0 (U), X∗ = H1(U◦

∗ ), Y∗ = H1
0 (U∗).

Let ε∗ = ε/Ln and E∗ ∈ L(X∗; Y
∗
∗ ) be associated with the transformed coefficient

a∗ = |JT−1| · T−1
∗ a, which is ε∗-definite with respect to U◦

∗ . Then the assignment

u 7→ T−1
∗ u defines a bounded linear map from W ω

E (S; X) into W ω
E∗

(S; X∗) as well as

from W ω
E|Y (S; Y ) into W ω

E∗|Y∗
(S; Y∗).

Proof. Using Lemma 3.2 and 5.4 for all u ∈ W ω
E (S; X) we get

T−1
∗ u ∈ Lω

2 (S; X∗), T∗(Eu)′ ∈ Lω
2 (S; Y ∗

∗ ),

and we find some constant c = c(T ) > 0 such that

‖T−1
∗ u‖Lω

2 (S;X∗) ≤ c ‖u‖Lω
2 (S;X),

‖T∗(Eu)′‖Lω
2 (S;Y ∗

∗
) ≤ c ‖(Eu)′‖Lω

2 (S;Y ∗).

Let E∗ : L2(S; X∗) → L2(S; Y ∗
∗ ) be associated with S and E∗. Due to E∗T

−1
∗ u = T∗Eu

and (T∗Eu)′ = T∗(Eu)′ this leads to the desired result T−1
∗ u ∈ W ω

E∗
(S; X∗) together

with the norm estimates. The proof of the continuity of the map u 7→ T−1
∗ u from

W ω
E|Y (S; Y ) into W ω

E∗|Y∗
(S; Y∗) is exactly the same. �

Lemma 6.5 (Reflection). Let both the maps E+ ∈ L(H1
0 (Q+); H−1(Q+)) and E− ∈

L(H1
0 (Q−); H−1(Q−)) be associated with the coefficient a− which is assumed to be ε-

definite with respect to Q−, and consider the operator E ∈ L(H1
0 (Q); H−1(Q)) asso-

ciated with the reflected coefficient a = R+a− being ε-definite with respect to Q. Then
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the assignment u 7→ R+u maps W ω
E+(S; H1

0(Q
+)) continuously into W ω

E (S; H1
0(Q))

and the assignment u 7→ R−u is a bounded linear operator from W ω
E−(S; H1

0(Q
−))

into W ω
E (S; H1

0 (Q)).

Proof. Let the maps E+, E−, E be associated with S, E+, E−, E, respectively.

Applying Lemma 4.5 and 5.5, for all u ∈ W ω
E+(S; H1

0(Q
+)) we obtain

R+u ∈ Lω
2 (S; H1

0(Q)), R+(E+u)′ ∈ Lω
2 (S; H−1(Q))

together with the estimates

‖R+u‖Lω
2 (S;H1

0 (Q)) ≤
√

2 ‖u‖Lω
2 (S;H1

0 (Q+)),

‖R+(E+u)′‖Lω
2 (S;H−1(Q)) ≤

√
2 ‖(Eu)′‖Lω

2 (S;H−1(Q+)).

Using the identities ER+u = R+E+u and (R+E+u)′ = R+(E+u)′ this yields R+u ∈
W ω

E (S; H1
0(Q)) which leads to the desired result. Analogously, we get ER−u =

R−E−u and (R−E−u)′ = R−(E−u)′ for all u ∈ W ω
E−(S; H1

0(Q
−)) and, hence, R−u ∈

W ω
E (S; H1

0(Q)) together with the corresponding norm estimates. �

Embedding theorems. We prove the (complete) continuity of the embedding of

Sobolev–Morrey spaces in Campanato spaces. Here, the key estimate is some

variant of the Poincaré inequality, see Theorem A.3.

Lemma 6.6. Let 0 < δ < 1 and E ∈ L(H1(Q); H−1(Q)) be associated with the

coefficient a which is assumed to be ε-definite with respect to Q. Then we find a

constant c = c(ε, ω, n, δ) > 0 such that for all u ∈ W ω
E (S; H1(Q))

[u]2
L

ω+2
2 (S;L2(Qδ))

≤ c
(

‖‖∇u‖‖2
Lω

2 (S;L2(Q)) + ‖(Eu)′‖2
Lω

2 (S;H−1(Q))

)

.

Proof. Let 0 < r < 1 − δ, I ∈ Sr, and x ∈ Qδ. Applying the minimal property of

integral mean values and Theorem A.3 we find a constant c1 = c1(ε, n) > 0 such

that

∫

I

∫

Qr(x)∩Qδ

∣

∣

∣

∣

u(s) −
∫

I

∫

Qr(x)∩Qδ

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤
∫

I

∫

Qr(x)

∣

∣

∣

∣

u(s) −
∫

I

∫

Qr(x)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ c1r
2

∫

I

(
∫

Qr(x)

‖∇u(s)‖2 dλn + ‖LQr(x)(Eu)′(s)‖2
H−1(Qr(x))

)

ds.
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Hence, there exists a constant c2 = c2(ε, ω, n, δ) > 0 such that for all functions

u ∈ W ω
E (S; H1(Q)) the estimate

[u]2
L

ω+2
2 (S;L2(Qδ))

≤ c2

(

‖‖∇u‖‖2
Lω

2 (S;L2(Q)) + ‖(Eu)′‖2
Lω

2 (S;H−1(Q))

)

holds true. �

Lemma 6.7. Let 0 < δ < 1 and E ∈ L(H1(Q−); H−1(Q−)) be associated with the

coefficient a which is assumed to be ε-definite with respect to Q−. Then we find a

constant c = c(ε, ω, n, δ) > 0 such that for all u ∈ W ω
E (S; H1(Q−))

[u]2
L

ω+2
2 (S;L2(Q−

δ
))
≤ c

(

‖‖∇u‖‖2
Lω

2 (S;L2(Q−)) + ‖(Eu)′‖2
Lω

2 (S;H−1(Q−))

)

.

Proof. Let 0 < r < min{δ, 1 − δ}. Furthermore, we consider I ∈ Sr and x ∈ Q−
δ .

Note, that Qr(x) ∩ Q−
δ is included in the cube Qr(y) ⊂ Q− if we set y = (ŷ, yn),

ŷ = x̂ and yn = min{xn,−r}. Using the minimal property of integral mean values

and Theorem A.3, we obtain

∫

I

∫

Qr(x)∩Q−

δ

∣

∣

∣

∣

u(s) −
∫

I

∫

Qr(x)∩Q−

δ

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤
∫

I

∫

Qr(y)

∣

∣

∣

∣

u(s) −
∫

I

∫

Qr(y)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ c1r
2

∫

I

(
∫

Qr(y)

‖∇u(s)‖2 dλn + ‖LQr(y)(Eu)′(s)‖2
H−1(Qr(y))

)

ds,

where c1 = c1(ε, n) > 0 is some constant. Therefore, we find a further constant

c2 = c2(ε, ω, n, δ) > 0 such that for all u ∈ W ω
E (S; H1(Q−))

[u]2
L

ω+2
2 (S;L2(Q−

δ
))
≤ c2

(

‖‖∇u‖‖2
Lω

2 (S;L2(Q−)) + ‖(Eu)′‖2
Lω

2 (S;H−1(Q−))

)

holds true. �

Theorem 6.8 (Continuous embedding). If E ∈ L(H1(G◦); H−1(G)) is associated

with a coefficient a being ε-definite with respect to G◦, then the space W ω
E (S; H1(G◦))

is continuously embedded in L
ω+2
2 (S; L2(G◦)).

Proof. 1. Let Ω = G◦ and
{

(T1, U1), . . . , (Tm, Um)
}

be an atlas of G, see Lemma 4.2.

Furthermore, let L ≥ 1 be a common Lipschitz constant for all the transformations,

and {χ1, . . . , χm} ⊂ C∞
0 (Rn) be a smooth partition of unity subordinate to the

above covering. In view of the Lebesgue property of the covering we choose radii

0 < δ′ < δ < 1 such that the sets

V ′
i = T−1

i [Qδ′ ], Vi = T−1
i [Qδ],
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satisfy the condition

supp(χi) ⊂ V ′
i ⊂ Vi for all i ∈ {1, . . . , m}.

Hence, {V ′
1 , . . . , V

′
m} and {V1, . . . , Vm} are still open coverings of G. We consider the

decomposition of the set {1, . . . , m} into the index sets

J0 =
{

i ∈ {1, . . . , m} : Ui ⊂ Ω
}

, J1 =
{

i ∈ {1, . . . , m} : Ui ∩ ∂Ω 6= ∅
}

.

2. Let u ∈ W ω
E (S; H1(Ω)). For every i ∈ {1, . . . , m} we define the map Ei ∈

L(H1(Vi ∩ Ω); H−1(Vi ∩ Ω)) associated with the restricted coefficient ai = RVi∩Ωa

being ε-definite with respect to Vi ∩Ω. Since Vi ∩Ω is an open subset of G for every

i ∈ {1, . . . , m}, the localization principle, see Lemma 6.2 and 6.3, leads to

ui = RS,Vi∩Ω(χiu) ∈ W ω
Ei(S; H1(Vi ∩ Ω))

and the estimate

‖ui‖W ω

Ei(S;H1(Vi∩Ω)) ≤ c1‖u‖W ω
E

(S;H1(Ω)),

where c1 > 0 is some constant depending on ω and G, only.

We introduce inverse transformations and transformed coefficients by

T i = T−1
i : Q → Ui = Ui ∩ Ω, ai

∗ = |JT i| · T i
∗a

i for i ∈ J0,

T i = T−1
i |Q− : Q− → Ui ∩ Ω, ai

∗ = |JT i| · T i
∗a

i for i ∈ J1.

Due to the properties of the Jacobi determinant JT i, the coefficient ai
∗ is ε∗-definite

with respect to Qδ for i ∈ J0 and to Q−
δ for i ∈ J1, where ε∗ = ε/Ln. We con-

sider the operators Ei
∗ ∈ L(H1(Qδ); H

−1(Qδ)) associated with ai
∗ for i ∈ J0 and

Ei
∗ ∈ L(H1(Q−

δ ); H−1(Q−
δ )) associated with ai

∗ for i ∈ J1. From the transformation

invariance, see Lemma 6.4, it follows that

Ti
∗ui ∈ W ω

Ei
∗

(S; H1(Qδ)) for all i ∈ J0,

Ti
∗ui ∈ W ω

Ei
∗

(S; H1(Q−
δ )) for all i ∈ J1.

Moreover, we find some constant c2 = c2(n, ε, ω, δ, L, G) > 0 such that

‖Ti
∗ui‖W ω

Ei
∗

(S;H1(Qδ)) ≤ c2 ‖u‖W ω
E

(S;H1(Ω)) for all i ∈ J0,

‖Ti
∗ui‖W ω

Ei
∗

(S;H1(Q−

δ
)) ≤ c2 ‖u‖W ω

E
(S;H1(Ω)) for all i ∈ J1.

Setting vi = RS,V ′

i ∩Ω(χiu) and applying Lemma 6.6 and 6.7, we get

Ti
∗vi ∈ L

ω+2
2 (S; L2(Qδ′)) for all i ∈ J0,

Ti
∗vi ∈ L

ω+2
2 (S; L2(Q−

δ′)) for all i ∈ J1.
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Additionally, we find some constant c3 > 0 depending on the quantities n, ε, ω, δ′,

δ, L, and G such that

‖Ti
∗vi‖L

ω+2
2 (S;L2(Qδ′ ))

≤ c3 ‖u‖W ω
E

(S;H1(Ω)) for all i ∈ J0,

‖Ti
∗vi‖L

ω+2
2 (S;L2(Q−

δ′
)) ≤ c3 ‖u‖W ω

E
(S;H1(Ω)) for all i ∈ J1.

Using Lemma 3.2, the transformation invariance of Campanato spaces leads to

vi ∈ L
ω+2
2 (S; L2(V ′

i ∩ Ω)) together with the estimates

‖vi‖L
ω+2
2 (S;L2(V ′

i
∩Ω)) ≤ c4 ‖u‖W ω

E
(S;H1(Ω)) for all i ∈ {1, . . . , m},

where c4 = c4(n, ε, ω, δ, δ′, L, G) > 0 is some constant. Since χi ∈ C∞
0 (Rn) satisfies

supp(χi) ⊂ V ′
i for every i ∈ {1, . . . , m}, we extend vi by zero to see that χiu ∈

L
ω+2
2 (S; L2(Ω)) and

‖χiu‖L
ω+2
2 (S;L2(Ω)) ≤ c5 ‖u‖W ω

E
(S;H1(Ω)) for all i ∈

{

1, . . . , m
}

,

where the constant c5 > 0 depends n, ε, ω, δ, δ′, L, and G, see Remark 3.3. Summing

up, for all u ∈ W ω
E (S; H1(Ω)) we obtain the estimate

‖u‖
L

ω+2
2 (S;L2(Ω)) ≤

m
∑

i=1

‖χiu‖L
ω+2
2 (S;L2(Ω)) ≤ c5m ‖u‖W ω

E
(S;H1(Ω)),

which finishes the proof. �

Theorem 6.9 (Completely continuous embedding). Let σ ∈ [0, ω + 2) be given,

and let E ∈ L(H1(G◦); H−1(G)) be associated with the coefficient a being ε-definite

with respect to G◦. Then the embedding of W ω
E (S; H1(G◦)) in L

σ+2
2 (S; L2(G◦)) is

completely continuous.

Proof. Let (uk) be a bounded sequence in W ω
E (S; H1(G◦)) and δ > 0. Due to

Theorem 1.10 the embedding of WE(S; H1(G◦)) in L2(S; L2(G◦)) is completely

continuous. Together with the continuity of the embedding of W ω
E (S; H1(G◦)) in

WE(S; H1(G◦)) we find an increasing subsequence (kℓ) ⊂ N and some ℓ0 = ℓ0(δ) > 0

such that

‖uki
− ukℓ

‖2
L2(S;L2(G◦)) ≤ δ for all i, ℓ ≥ ℓ0.

We introduce the notation θ = σ/(ω + 2) and use the minimal property of the

integral mean value to get

[uki
− ukℓ

]2
Lσ

2 (S;L2(G◦)) ≤ ‖uki
− ukℓ

‖2−2θ
L2(S;L2(G◦)) [uki

− ukℓ
]2θ
L

ω+2
2 (S;L2(G◦))

≤ δ1−θ [uki
− ukℓ

]2θ
L

ω+2
2 (S;L2(G◦))

.

In view of the boundedness of (uk) in W ω
E (S; H1(G◦)) and the arbitrary choice of

δ > 0 at the beginning of the proof, the continuity of the embedding operator from
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W ω
E (S; H1(G◦)) in L

ω+2
2 (S; L2(G◦)), see Theorem 6.8, yields the convergence of the

sequence (ukℓ
) in Lσ

2 (S; L2(G◦)). �

Trace theorems. Finally, we show the (complete) continuity of the trace map from

Sobolev–Morrey spaces in Campanato spaces. Again, these results are based

on some variant of the Poincaré inequality, see Theorem A.4.

Lemma 6.10. Let 0 < δ < 1 and E ∈ L(H1(Q−); H−1(Q−)) be associated with the

coefficient a which is supposed to be ε-definite with respect to Q−. We find some

constant c = c(ε, ω, n, δ) > 0 such that for all u ∈ W ω
E (S; H1(Q−)) we have

[KS,Σδ
u]2

L
ω+1
2 (S;L2(Σδ))

≤ c
(

‖‖∇u‖‖2
Lω

2 (S;L2(Q−)) + ‖(Eu)′‖2
Lω

2 (S;H−1(Q−))

)

.

Proof. Let 0 < r < 1−δ, I ∈ Sr, and x ∈ Σδ. Using the minimal property of integral

mean values and Theorem A.4 we find a constant c1 = c1(ε, n) > 0 such that

∫

I

∫

Qr(x)∩Σδ

∣

∣

∣

∣

KΣu(s) −
∫

I

∫

Qr(x)∩Σδ

KΣu(τ) dλΣ dτ

∣

∣

∣

∣

2

dλΣ ds

≤
∫

I

∫

Σr(x)

∣

∣

∣

∣

KΣu(s) −
∫

I

∫

Σr(x)

KΣu(τ) dλΣ dτ

∣

∣

∣

∣

2

dλΣ ds

≤ c1r

∫

I

(
∫

Q−
r (x)

‖∇u(s)‖2 dλn ds + ‖LQ−
r (x)(Eu)′(s)‖2

H−1(Q−
r (x))

)

ds.

Hence, there exists a constant c2 = c2(ε, ω, n, δ) > 0 such that for all functions

u ∈ W ω
E (S; H1(Q−)) the estimate

[KS,Σδ
u]2

L
ω+1
2 (S;L2(Σδ))

≤ c2

(

‖‖∇u‖‖2
Lω

2 (S;L2(Q−)) + ‖(Eu)′‖2
Lω

2 (S;H−1(Q−))

)

holds true. �

Theorem 6.11 (Continuous trace map). Let E ∈ L(H1(G◦); H−1(G)) be associated

with the coefficient a being ε-definite with respect to G◦. Then the trace map KS,∂G

is a bounded linear operator from W ω
E (S; H1(G◦)) in L

ω+1
2 (S; L2(∂G)).

Proof. 1. Let Ω = G◦ and
{

(T1, U1), . . . , (Tm, Um)
}

be an atlas of Γ = ∂G, see

Lemma 4.2. Moreover, let L ≥ 1 be a common Lipschitz constant for all the trans-

formations, and {χ1, . . . , χm} ⊂ C∞
0 (Rn) be a smooth partition of unity subordinate

to the above covering. Because of the Lebesgue property of the covering we find

radii 0 < δ′ < δ < 1 such that

V ′
i = T−1

i [Qδ′ ], Vi = T−1
i [Qδ],
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satisfy the relations

supp(χi) ⊂ V ′
i ⊂ Vi for all i ∈ {1, . . . , m}.

Therefore, {V ′
1 , . . . , V

′
m} and {V1, . . . , Vm} are open coverings of Γ, too.

2. Let u ∈ W ω
E (S; H1(Ω)). For every i ∈ {1, . . . , m} we introduce the operator

Ei ∈ L(H1(Vi∩Ω); H−1(Vi∩Ω)) associated with the restricted coefficient ai = RVi∩Ωa

which is ε-definite with respect to Vi ∩Ω. Because Vi ∩Ω is an open subset of G for

every i ∈ {1, . . . , m}, the localization principle, see Lemma 6.2 and 6.3, yields

ui = RS,Ω∩Vi
(χiu) ∈ W ω

Ei(S; H1(Vi ∩ Ω))

and the estimate

‖ui‖W ω

Ei(S;H1(Vi∩Ω)) ≤ c1 ‖u‖W ω
E

(S;H1(Ω)),

where c1 > 0 is some constant depending on ω and G, only.

We consider inverse transformations and transformed coefficients given by

T i = T−1
i |Q− : Q− → Ui ∩ Ω, ai

∗ = |JT i| · T i
∗a

i for i ∈ {1, . . . , m}.
In view of the properties of the Jacobi determinant JT i, the coefficient ai

∗ is

ε∗-definite with respect to Q−
δ , where ε∗ = ε/Ln. We define the operator Ei

∗ ∈
L(H1(Q−

δ ); H−1(Q−
δ )) associated with ai

∗ for i ∈ {1, . . . , m}. The transformation

invariance yields

Ti
∗ui ∈ W ω

Ei
∗

(S; H1(Q−
δ )) for i ∈ {1, . . . , m},

see Lemma 6.4, and we find some constant c2 = c2(ε, n, ω, δ, L, G) > 0 with

‖Ti
∗ui‖W ω

Ei
∗

(S;H1(Q−

δ
)) ≤ c2 ‖u‖W ω

E
(S;H1(Ω)) for all i ∈ {1, . . . , m}.

Setting vi = KS,V ′

i ∩Γui and using Lemma 3.7 and 6.10, we obtain

Ti
∗vi = KS,Σδ′

Ti
∗ui ∈ L

ω+1
2 (S; L2(Σδ′)) for all i ∈ {1, . . . , m},

and we find some c3 > 0 depending on ε, n, ω, δ, δ′, L, and G such that

‖Ti
∗vi‖L

ω+1
2 (S;L2(Σδ′ ))

≤ c3 ‖u‖W ω
E

(S;H1(Ω)) for all i ∈ {1, . . . , m}.
Due to Lemma 3.5, the transformation invariance of Campanato spaces yields

vi ∈ L
ω+1
2 (S; L2(V ′

i ∩ Γ)) and the norm estimate

‖vi‖L
ω+1
2 (S;L2(V ′

i ∩Γ)) ≤ c4 ‖u‖W ω
E

(S;H1(Ω)) for every i ∈ {1, . . . , m},
where c4 = c4(ε, n, ω, δ, δ′, L, G) > 0 is a constant. Because χi ∈ C∞

0 (Rn) satisfies

supp(χi) ⊂ V ′
i for every i ∈ {1, . . . , m}, we extend vi by zero to see that KS,Γ(χiu) ∈

L
ω+1
2 (S; L2(Γ)) and

‖KS,Γ(χiu)‖
L

ω+1
2 (S;L2(Γ)) ≤ c5 ‖u‖W ω

E
(S;H1(Ω)) for all i ∈ {1, . . . , m},
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where c5 > 0 depends on ε, n, ω, δ, δ′, L, and G, only, see Remark 3.6. Finally, for

all u ∈ W ω
E (S; H1(Ω)) we end up with the estimate

‖KS,Γu‖L
ω+1
2 (S;L2(Γ)) ≤

m
∑

i=1

‖KS,Γ(χiu)‖
L

ω+1
2 (S;L2(Γ))

≤ c5m ‖u‖W ω
E

(S;H1(Ω)),

and, therefore, KS,Γu ∈ L
ω+1
2 (S; L2(Γ)). �

Theorem 6.12 (Completely continuous trace map). Let σ ∈ [0, ω + 1) be a given

parameter and E ∈ L(H1(G◦); H−1(G)) be associated with the coefficient a being

ε-definite with respect to G◦. Then the trace operator KS,∂G maps W ω
E (S; H1(G◦))

completely continuous into L
σ+1
2 (S; L2(∂G)).

Proof. 1. Let Γ = ∂G. Due to the multiplicative inequality (3.1) we find some

constant c > 0 such that for all v ∈ H1(G◦) and δ > 0 Young’s inequality yields

‖KΓv‖2
L2(Γ) ≤ c ‖v‖H1(G◦)‖v‖L2(G◦) ≤ δ ‖v‖2

H1(G◦) +
c2

4δ
‖v‖2

L2(G◦).

In view of the complete continuity of both the embedding of H1(G◦) in L2(G◦) and

the trace map KΓ : H1(G◦) → L2(Γ) we apply Corollary 1.11 to get the complete

continuity of the trace operator KS,Γ from WE(S; H1(G◦)) in L2(S; L2(Γ)).

2. Let (uk) be a bounded sequence in W ω
E (S; H1(G◦)) and δ > 0 a fixed con-

stant. Because of the boundedness of the embedding operator from W ω
E (S; H1(G◦))

in WE(S; H1(G◦)) and the complete continuity of the trace operator KS,Γ from

WE(S; H1(G◦)) in L2(S; L2(Γ)), we find an increasing subsequence (kℓ) ⊂ N and

some ℓ0 = ℓ0(δ) > 0 such that

‖KS,Γuki
− KS,Γukℓ

‖2
L2(S;L2(Γ)) ≤ δ for all i, ℓ ≥ ℓ0.

We introduce the notation θ = σ/(ω + 1), and use the minimal property of the

integral mean value to get

[KS,Γuki
− KS,Γukℓ

]2
Lσ

2 (S;L2(Γ))

≤ ‖KS,Γuki
− KS,Γukℓ

‖2−2θ
L2(S;L2(Γ))[KS,Γuki

− KS,Γukℓ
]2θ
L

ω+1
2 (S;L2(Γ))

≤ δ1−θ[KS,Γuki
− KS,Γukℓ

]2θ
L

ω+1
2 (S;L2(Γ))

.

Due to the boundedness of (uk) in W ω
E (S; H1(G◦)) and the arbitrary choice of δ > 0

at the beginning, the continuity of the trace map KS,Γ from W ω
E (S; H1(G◦)) into

L
ω+1
2 (S; L2(Γ)), see Theorem 6.11, yields the convergence of the sequence (KS,Γukℓ

)

in Lσ
2 (S; L2(Γ)). �
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Appendix A. Some variants of Poincaré inequalities

Here, we collect some variants of Poincaré inequalities. As a starting point we

cite the following generalized version, see Ziemer [34]:

Theorem A.1 (Poincaré inequality). Let X ⊂ H be two Banach spaces equipped

with the norms ‖ ‖X and ‖ ‖H , respectively, where

‖w‖2
X = ‖w‖2

H + |w|2X for all w ∈ X

holds true for a seminorm | |X on X. We assume that the embedding of (X, ‖ ‖X)

in (H, ‖ ‖H) is completely continuous. Moreover, we consider the subspace X0 =
{

w ∈ X : |w|X = 0
}

of X. Then, we find some constant c > 0 such that for every

projector L ∈ L(X; X0) from X onto X0 we have

‖w − Lw‖H ≤ c ‖L‖L(X;X0)|w|X for all w ∈ X.

We apply this theorem to get some weighted variant of the Poincaré inequality

for cubes Qr(x) with x ∈ Rn and r > 0.

Lemma A.2 (Poincaré inequality). For all α, ε ∈ (0, 1] we find some constant

c = c(α, ε, n) > 0 such that for all r > 0, x ∈ Rn, and w ∈ H1(Qr(x)) we have

(A.1)

∫

Qr(x)

∣

∣

∣

∣

w −
∫

Qr(x)

w dλn
a

∣

∣

∣

∣

2

dλn ≤ cr2

∫

Qr(x)

‖∇w‖2 dλn,

whenever the weight function a ∈ L∞(Qr(x)) satisfies

0 ≤ a(y) ≤ 1

ε
, a(ỹ) ≥ ε for λn-almost all y ∈ Qr(x) and ỹ ∈ F ,

where F ⊂ Qr(x) is some Lebesgue measurable set with λn(F ) ≥ αrn, and the

weighted Lebesgue measure λn
a is defined as

λn
a(Ω) =

∫

Ω

a dλn for Lebesgue measurable subsets Ω ⊂ Qr(x).

Proof. Let T : Q → Qr(x) be the homothecy defined by T (y) = x + ry for y ∈ Q.

We consider the projector L ∈ L(H1(Q); R) given by

Lv =

∫

Q
v T∗a dλn

∫

Q
T∗a dλn

for v ∈ H1(Q).

Note that there exists some constant c1 > 0 which depends on n, α, and ε, only, such

that ‖L‖L(H1(Q);R) ≤ c1 holds true, whenever the assumptions on a ∈ L∞(Qr(x)) are



Sobolev–Morrey spaces 53

satisfied. Using the complete continuity of the embedding of H1(Q) into L2(Q) and

Theorem A.1, for all w ∈ H1(Qr(x)) we obtain
∫

Q

|T∗w − LT∗w|2 dλn ≤ c2

∫

Q

‖∇T∗w‖2 dλn,

where c2 = c2(α, ε, n) > 0 is some constant. Together with the identity

LT∗w =

∫

Q
T∗(aw) dλn

∫

Q
T∗a dλn

=

∫

Qr(x)
aw dλn

∫

Qr(x)
a dλn

=

∫

Qr(x)

w dλn
a ,

for all w ∈ H1(Qr(x)) we get the desired estimate

∫

Qr(x)

∣

∣

∣

∣

w −
∫

Qr(x)

w dλn
a

∣

∣

∣

∣

2

dλn ≤ c3r
2

∫

Qr(x)

‖∇w‖2 dλn,

where c3 = c3(α, ε, n) > 0 is some constant. �

Finally, we present versions of the Poincaré inequality which are of main im-

portance for both the regularity theory of solutions to parabolic initial boundary

value problems and the theory of Sobolev–Morrey spaces suitable for the treat-

ment of these problems, see Griepentrog [9, 11]. The proof generalizes ideas of

Struwe [30].

Theorem A.3 (Poincaré inequality). There exists some constant c > 0 depending

on n and ε, only, such that for all 0 < r ≤ 1, x ∈ R
n, and u ∈ WE(I; H1(Qr(x)))

the inequality

∫

I

∫

Qr(x)

∣

∣

∣

∣

u(s) −
∫

I

∫

Qr(x)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ cr2

(
∫

I

∫

Qr(x)

‖∇u(s)‖2 dλn ds +

∫

I

‖(Eu)′(s)‖2
H−1(Qr(x)) ds

)

,

holds true, whenever I = (θ, t) ⊂ R is an interval with 0 < t − θ ≤ r2. Here, the

operator E ∈ L(H1(Qr(x)); H−1(Qr(x))) is associated with the coefficient a being

ε-definite with respect to Qr(x).

Proof. 1. Let s1, s2 ∈ I with s1 < s2 be given. We choose some cut-off function

ζ ∈ C∞
0 (Qr(x)) which satisfies

0 ≤ ζ(y) ≤ 1, ‖∇ζ(y)‖ ≤ 4/r for y ∈ Qr(x), ζ(y) = 1 for y ∈ Qr/2(x).
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In addition to that, for k ∈ N we consider cut-off functions ϑk ∈ H1
0(R) with

supp(ϑk) = [s1, s2] ⊂ I defined by

ϑk(s) =



































0 if s ≤ s1,
4k(s−s1)

s2−s1
if s1 ≤ s ≤ s1k,

1 if s1k ≤ s ≤ s2k,
4k(s2−s)

s2−s1
if s2k ≤ s ≤ s2,

0 if s2 ≤ s,

where we have used the notation

s1k = s1 +
s2 − s1

4k
, s2k = s2 −

s2 − s1

4k
for k ∈ N.

2. For a shorter notation we use the abbreviations X = H1(Qr(x)) and Y =

H1
0 (Qr(x)). We introduce the weighted Lebesgue measure µ by

µ(Ω) =

∫

Ω

ζ2a dλn for Lebesgue-measurable sets Ω ⊂ Qr(x).

To prove the desired result, we start with the case u ∈ C∞
0 (R; X) and estimate the

following difference of weighted mean values

ū(s1, s2) =

∫

Qr(x)

u(s2) dµ −
∫

Qr(x)

u(s1) dµ.

To do so, for k ∈ N we introduce functions

wk = ū(s1, s2) ζϑk ∈ H1
0 (R; Y ).

In view of supp(ϑk) ⊂ I and ζu ∈ C∞
0 (R; Y ), for every k ∈ N we integrate by parts

to see that

(A.2)

∫

I

〈(E(ζu))′(s), wk(s)〉Y ds +

∫

I

〈(Ewk)
′(s), ζu(s)〉Y ds = 0.

Using the properties of the cut-off functions and applying Young’s inequality to

the first integral, we find some constant c1 = c1(ε, n) > 0 such that for all k ∈ N

∫

I

〈(E(ζu))′(s), wk(s)〉Y ds =

∫ s2

s1

〈(Eu)′(s), ū(s1, s2) ζ2ϑk(s)〉Y ds

≤ c1

∫ s2

s1

‖(Eu)′(s)‖2
Y ∗ ds +

εrn

2
|ū(s1, s2)|2.
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For all k ∈ N the second integral in (A.2) equals to

∫

I

〈(Ewk)
′(s), ζu(s)〉Y ds =

∫

I

∫

Qr(x)

aw′
k(s) ζu(s) dλn ds

=

∫

I

∫

Qr(x)

ū(s1, s2) ϑ′
k(s)u(s) dµ ds.

Due to the properties of the cut-off functions this yields

lim
k→∞

∫

I

〈(Ewk)
′(s), ζu(s)〉Y ds =

∫

Qr(x)

ū(s1, s2)
(

u(s1) − u(s2)
)

dµ

= −
∫

Qr(x)

|ū(s1, s2)|2 ζ2a dλn ≤ −εrn|ū(s1, s2)|2.

Hence, passing to the limit k → ∞ in (A.2) we obtain

(A.3) |ū(s1, s2)|2 ≤
2c1

εrn

∫ s2

s1

‖(Eu)′(s)‖2
Y ∗ ds

for all s1, s2 ∈ I with s1 ≤ s2.

3. Next, we use the minimal property of integral mean values to get

(A.4)

∫

I

∫

Qr(x)

∣

∣

∣

∣

u(s) −
∫

I

∫

Qr(x)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ 2

∫

I

∫

Qr(x)

∣

∣

∣

∣

u(s) −
∫

Qr(x)

u(s) dµ

∣

∣

∣

∣

2

dλn ds

+ 2

∫

I

∫

Qr(x)

∣

∣

∣

∣

∫

Qr(x)

u(s) dµ−
∫

I

∫

Qr(x)

u(τ) dµ dτ

∣

∣

∣

∣

2

dλn ds.

To estimate the first integral on the right hand side of (A.4) we apply a weighted

version of the Poincaré inequality, see Lemma A.2: We make use of the fact, that

there is some constant c2 = c2(ε, n) > 0 such that for all s ∈ I we have

(A.5)

∫

Qr(x)

∣

∣

∣

∣

u(s) −
∫

Qr(x)

u(s) dµ

∣

∣

∣

∣

2

dλn ≤ c2r
2

∫

Qr(x)

‖∇u(s)‖2 dλn.
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For the second integral on the right hand side of (A.4) we use Hölder’s inequality

and Fubini’s Theorem to obtain

(A.6)

∫

I

∫

Qr(x)

∣

∣

∣

∣

∫

Qr(x)

u(s1) dµ −
∫

I

∫

Qr(x)

u(s2) dµ ds2

∣

∣

∣

∣

2

dλn ds1

≤
∫

I

∫

I

∫

Qr(x)

|ū(s1, s2)|2 dλn ds2 ds1

= 2

∫

I

∫ t

s1

∫

Qr(x)

|ū(s1, s2)|2 dλn ds2 ds1.

In view of (A.3) we find some constant c3 = c3(ε, n) > 0 such that
∫

I

∫ t

s1

∫

Qr(x)

|ū(s1, s2)|2 dλn ds2 ds1 ≤ c3

∫

I

∫ t

s1

∫ s2

s1

‖(Eu)′(s)‖2
Y ∗ ds ds2 ds1

≤ c3r
2

∫

I

‖(Eu)′(s)‖2
Y ∗ ds.(A.7)

Applying (A.4), (A.5), (A.6), and (A.7), for all u ∈ C∞
0 (R; X) we end up with

∫

I

∫

Qr(x)

∣

∣

∣

∣

u(s) −
∫

I

∫

Qr(x)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ 2c2r
2

∫

I

∫

Qr(x)

‖∇u(s)‖2 dλn ds + 4c3r
2

∫

I

‖(Eu)′(s)‖2
Y ∗ ds

Due to the density of the set
{

u|I : u ∈ C∞
0 (R; X)

}

in WE(I; X), see Theorem 1.6,

this estimate holds true for all u ∈ WE(I; X), too. �

Remark A.1. A simple rescaling argument shows, that the result of Theorem A.3

remains true if we replace the cube Qr(x) by the halfcube Q−
r (x).

Theorem A.4 (Poincaré inequality). There exists some constant c > 0 depending

on n and ε, only, such that for all 0 < r ≤ 1, x ∈ R
n, and u ∈ WE(I; H1(Q−

r (x)))

the inequality

∫

I

∫

Σr(x)

∣

∣

∣

∣

KΣr(x)u(s) −
∫

I

∫

Σr(x)

KΣr(x)u(τ) dλΣr(x) dτ

∣

∣

∣

∣

2

dλΣr(x) ds

≤ cr

(
∫

I

∫

Q−
r (x)

‖∇u(s)‖2 dλn ds +

∫

I

‖(Eu)′(s)‖2
H−1(Q−

r (x))
ds

)

,

holds true, whenever I = (θ, t) ⊂ R is an interval with 0 < t − θ ≤ r2. Here, the

map E ∈ L(H1(Q−
r (x)); H−1(Q−

r (x))) is associated with the coefficient a which is

supposed to be ε-definite with respect to Q−
r (x).
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Proof. Let T : Q− → Q−
r (x) be defined by T (y) = x + ry for y ∈ Q−. Using

the continuity of the trace operator KΣ : H1(Q−) → L2(Σ) we find some constant

c = c(n) > 0 such that for all v ∈ H1(Qr(x)) we have
∫

Σ

|KΣT∗v|2 dλΣ ≤ c

∫

Q−

(

|T∗v|2 + ‖∇T∗v‖2
)

dλn.

Hence, for all v ∈ H1(Qr(x)) we get

∫

Σr(x)

|KΣr(x)v|2 dλΣr(x) ≤ cr

∫

Q−
r (x)

( |v|2
r2

+ ‖∇v‖2

)

dλn.

As a consequence, for all u ∈ WE(I; H1(Q−
r (x))) we obtain

∫

I

∫

Σr(x)

∣

∣

∣

∣

KΣr(x)u(s) −
∫

I

∫

Q−
r (x)

u(τ) dλn dτ

∣

∣

∣

∣

2

dλΣr(x) ds

≤ cr

∫

I

∫

Q−
r (x)

(

1

r2

∣

∣

∣

∣

u(s) −
∫

I

∫

Q−
r (x)

u(τ) dλn dτ

∣

∣

∣

∣

2

+ ‖∇u(s)‖2

)

dλn ds.

In view of the minimal property of integral mean values and Remark A.1, this yields

the desired result. �

Appendix B. Some special chain rule

As a further technical instrument we provide the following combination of integration

by parts and chain rule:

Lemma B.1 (Chain rule). Let S = (t0, t1) ⊂ R and Ω ⊂ Rn be some bounded open

set, ζ ∈ C∞
0 (Ω), ϑ ∈ C∞(R), and let ι ∈ C2(R) satisfy ι′′ ∈ BC(R). Then for all

v ∈ WE(S; H1(Ω)) ∩ C(S; L2(Ω)) we have

(B.1)

∫

S

〈(Ev)′(s), ζ2ι′(v(s))〉H1
0 (Ω) ϑ(s) ds +

∫

S

∫

Ω

ι(v(s)) ϑ′(s) ζ2a dλn ds

=

∫

Ω

ι(v(t1)) ζ2ϑ(t1) a dλn −
∫

Ω

ι(v(t0)) ζ2ϑ(t0) a dλn.

Here, the operator E ∈ L(H1(Ω); H−1(Ω)) is associated with the coefficient a being

ε-definite with respect to Ω.

Proof. In our proof we set Y = H1
0 (Ω), X = H1(Ω), and H = L2(Ω).



58 Jens A. Griepentrog

1. Because of ι ∈ C2(R), ι′′ ∈ BC(R) there exists some constant c1 = c1(ι) > 0

such that for all z ∈ R we have |ι′′(z)| ≤ c1 and, consequently,

|ι(z)| ≤ |ι(0)| + |ι′(0)||z| + 1
2
c1|z|2 ≤ |ι(0)| + 1

2
|ι′(0)|2 + 1

2
(c1 + 1)|z|2,

|ι′(z)| ≤ |ι′(0)| + |ι′(z) − ι′(0)| ≤ |ι′(0)| + c1|z|.

This ensures that for every v ∈ WE(S; X)∩C(S; H) all terms in (B.1) are correctly

defined.

Due to Theorem 1.6 we find a sequence (vk) ⊂ C∞
0 (R; X) such that (vk|S) con-

verges to v in WE(S; X) for k → ∞. Using the chain rule and integrating by parts

for all k ∈ N we get

(B.2)

∫

S

〈(Evk)
′(s), ζ2ι′(vk(s))〉Y ϑ(s) ds +

∫

S

∫

Ω

ι(vk(s)) ϑ′(s) ζ2a dλn ds

=

∫

S

∫

Ω

(ι ◦ vk)
′(s) ϑ(s) ζ2a dλn ds +

∫

S

∫

Ω

ι(vk(s)) ϑ′(s) ζ2a dλn ds

=

∫

Ω

ι(vk(t1)) ζ2ϑ(t1) a dλn −
∫

Ω

ι(vk(t0)) ζ2ϑ(t0) a dλn.

Our plan is to prove formula (B.1) by passing to the limit in (B.2):

2. We start with the first integral term on the left hand side of (B.2). Due to

the convergence of (vk|S) to v in WE(S; X) it suffices to show that a subsequence

of (ζ2ι′ ◦ vk|S) converges weakly to ζ2ι′ ◦ v|S in L2(S; Y ).

Note, that for all z, ẑ ∈ R we have |ι′(z) − ι′(ẑ)| ≤ c1|z − ẑ|. Because for every

k ∈ N the identity

∇(ζ2ι′ ◦ vk) = 2(ζι′ ◦ vk)∇ζ + (ζ2ι′′ ◦ vk)∇vk

holds true, it remains to consider the sequence (ι′′◦vk) ⊂ L∞(R; L∞(Ω)). We choose

some increasing sequence (kℓ) ⊂ N which satisfies
∫

S

∫

Ω

|vkℓ
(s) − v(s)|2 dλn ds ≤ 2−ℓ for all ℓ ∈ N.

Using the monotone convergence theorem this leads to

∫

S

∫

Ω

∞
∑

ℓ=1

|vkℓ
(s) − v(s)|2 dλn ds =

∞
∑

ℓ=1

∫

S

∫

Ω

|vkℓ
(s) − v(s)|2 dλn ds ≤ 1,

that means, the sequence (vkℓ
(s)) converges to v(s) λn-almost everywhere on Ω for

almost all s ∈ S. Due to ι′′ ∈ BC(R) the functions ι′′(vkℓ
(s)) converge to ι′′(v(s))
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λn-almost everywhere on Ω for almost all s ∈ S. Using the dominated convergence

theorem for all h ∈ L1(S; L1(Ω)) we obtain

lim
ℓ→∞

∫

S

∫

Ω

ι′′(vkℓ
(s)) h(s) dλn ds =

∫

S

∫

Ω

ι′′(v(s)) h(s) dλn ds.

Consequently, the convergence of (vk|S) to v in WE(S; X) yields

lim
ℓ→∞

∫

S

∫

Ω

ζ2
(

ι′′(vkℓ
(s))∇vkℓ

(s) − ι′′(v(s))∇v(s)
)

· ∇w(s) dλn ds = 0

for all w ∈ L2(S; Y ), that means, the weak convergence of (ζ2ι′ ◦ vkℓ
|S) to ζ2ι′ ◦ v|S

in L2(S; Y ). Since (vk|S) converges to v in WE(S; X), it follows

lim
ℓ→∞

∫

S

〈(Evkℓ
)′(s), ζ2ι′(vkℓ

(s))〉Y ϑ(s) ds =

∫

S

〈(Ev)′(s), ζ2ι′(v(s))〉Y ϑ(s) ds.

3. Similar to Step 1 for all δ > 0 and z, ẑ ∈ R we get

|ι(z) − ι(ẑ)| ≤ |ι′(ẑ)||z − ẑ| + c1|z − ẑ|2

≤ δ
(

|ι′(0)|2 + c2
1|ẑ|2

)

+
(

c1 + 1
2δ

)

|z − ẑ|2.(B.3)

Consequently, for all δ > 0 and k ∈ N we obtain
∫

S

∫

Ω

|ι(vk(s)) − ι(v(s))| ϑ′(s) ζ2a dλn ds

≤ δ

∫

S

∫

Ω

(

|ι′(0)|2 + c2
1|v(s)|2

)

ϑ′(s) ζ2a dλn ds

+

(

c1 +
1

2δ

)
∫

S

∫

Ω

|vk(s) − v(s)|2 ϑ′(s) ζ2a dλn ds.

Passing to the limit k → ∞, the convergence of (vk|S) to v in WE(S; X) and the

arbitrary choice of δ > 0 leads to

lim
k→∞

∫

S

∫

Ω

ι(vk(s)) ϑ′(s) ζ2a dλn ds =

∫

S

∫

Ω

ι(v(s)) ϑ′(s) ζ2a dλn ds.

4. Again using (B.3), for all δ > 0, s ∈ S, and k ∈ N we get
∫

Ω

|ι(vk(s)) − ι(v(s))| ζ2ϑ(s) a dλn ≤ δ

∫

Ω

(

|ι′(0)|2 + c2
1|v(s)|2

)

ζ2ϑ(s) a dλn

+

(

c1 +
1

2δ

)

ϑ(s)

∫

Ω

|ζvk(s) − ζv(s)|2 a dλn.

Since the map C ∈ L(X; Y ), defined by Cw = ζw for w ∈ X, satisfies (1.1), the

sequence (ζvk|S) converges to ζv in WE|Y (S; Y ) for k → ∞, see Lemma 1.2. The
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continuity of the embedding from WE|Y (S; Y ) into C(S; H), see Theorem 1.7, and

the arbitrary choice of δ > 0 yields

lim
k→∞

∫

Ω

ι(vk(s)) ζ2ϑ(s) a dλn =

∫

Ω

ι(v(s)) ζ2ϑ(s) a dλn for all s ∈ S.

5. Finally, passing to the limit kℓ → ∞ in (B.2) and using the results of Step 2,

3, and 4, we end up with the desired formula (B.1). �
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