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ABSTRACT

In this text we introduce new classes of SOBOLEV-MORREY spaces being adequate
for the regularity theory of second order parabolic boundary value problems on
LipscHITZ domains of space dimension n > 3 with nonsmooth coefficients and mixed
boundary conditions. We prove embedding and trace theorems as well as invariance
properties of these spaces with respect to localization, LIPSCHITZ transformation,
and reflection. In the second part [11] of our presentation we show that the class of
second order parabolic systems with diagonal principal part generates isomorphisms
between the above mentioned SOBOLEV-MORREY spaces of solutions and right hand
sides.

INTRODUCTION

Many interesting evolutionary processes can be formulated in terms of second order
parabolic initial boundary value problems of drift-diffusion type. Applications we
have in mind are, for instance, transport processes of electrically charged particles in
semiconductor heterostructures, phase separation processes of nonlocally interact-
ing particles, or chemotactic aggregation of biological organisms in heterogeneous
environments. The adequate description of these processes requires the treatment
of problems with fully nonsmooth data, linear diffusion and nonlinear drift terms.

One way to solve these problems is to study the regularity of solutions to auxiliary
linear problems which is also of its own interest. In this first part of our presentation
we introduce new classes of function spaces which allow a natural and satisfactory
treatment of the regularity problem discussed in detail in the second part [11].

The preliminary part of this text is dedicated to both the functional analytic
formulation and the unique solvability of initial boundary value problems in a more
abstract context. As a starting point, in Section 1 we consider the HILBERT space

Wg(S;Y)={ue L*S;Y): (Eu) € L*(S;Y™)},

which gives us freedom to model a great variety of evolutionary processes by choosing
appropriate HILBERT spaces Y, H and linear operators K € L(Y;H) and E =
K*JgK € L(Y;Y*). Here, we assume that the range K[Y] is dense in H and
that Jy € L(H; H*) denotes the duality map between H and H*. Moreover, S =
(to,t1) is an open time interval, and the operators X : L*(S;Y) — L*(S; H) and
& : L*S;Y) — L*(S;Y*) are associated with S, K, and E via (Ku)(s) = Ku(s)
and (Eu)(s) = Eu(s) for u € L*(S;Y) and s € S.



2 JENS A. GRIEPENTROG

These spaces were introduced by GROGER [15] as a natural and self-evident gen-
eralization of the well-established function space

W(S;Y)=L*S;Y)NH(S;Y"),

for which we find a developed theory in the literature, see LIONS [21, 22|, LIONS,
MAGENES (23], GAJEWSKI, GROGER, ZACHARIAS [6], TEMAM [31], SIMON [28],
and DAUTRAY, L1ONS [4]. It turns out, that all the basic facts known for W (S;Y),
like density of functions being smooth in time, integration by parts formulae, or em-
bedding and trace theorems, carry over to the space Wg(S;Y), see GROGER [15].
Section 2 is dedicated to the variational formulation and the solution of initial

boundary value problems. Given a strongly monotone and LIPSCHITZ continuous
VOLTERRA operator M : L?(S;Y) — L%(S;Y™), for all @ € R the problem

(Eu) +Mu—alu=f e L*(S;Y"), (Ku)(ty) =w € H,

is uniquely solvable and well-posed in Wg(S;Y"), see GROGER [15].

This class of problems is large enough to cover the case of linear second order par-
abolic boundary value problems on LIPSCHITZ domains {2 C R" of space dimension
n € N with nonsmooth coefficients and mixed boundary conditions. We are mainly
interested in the linear drift-diffusion problem

(P) () +Au+Bu=feL2(S;Y"), (Ku)(t) =0,

where H = L*(9) is equipped with the weighted scalar product
(v|lw)g = / avw d\"  for v, w € H,
Q

H}(Q) CY C H'(Q) is a closed subspace of H'(Q2), and K € L(Y; H) is simply the
embedding operator. The nonsmooth capacity coefficient a € L>(£2) is essentially
bounded from below by some constant € > 0.

We consider nonsmooth diffusivity coefficients A € L>°(S; L>°(Q; S™)) with values
in the set S" of symmetric (n X n)-matrices, and we assume that the corresponding
quadratic form is essentially bounded from below by ¢ > 0, too. With regard to
problem (P) we are concerned with principal parts A : L?(S;Y) — L?(S;Y™) of the
form

(Au, w)r2(sv) = / / A(s)Vu(s) - Vw(s)d\"ds for u, w € L*(S;Y).
S JQ

Given lower order coefficients

be L=(S; L=(ER™)), by € L2(S;L7(Q)),  br € L2(S; L2()),
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modelling drift and damping phenomena, for u, w € L?(S;Y) we define the map
B: L*(S;Y) — L*(S;Y*) by

(Bu, w) 25y = /5/9 (u(s)b(s) - Vw(s) + bo(s)u(s)w(s)) dA" ds
+/S/Fbp(s)Kpu(s)pr(s) dArds.

Here, I' = 02 is the LiPscHITZ boundary of Q@ C R", and Kt : H*(Q)) — L?*(I)
denotes the corresponding trace map. Note, that the bounded linear VOLTERRA
operator M = A + B + a€ : L?(S;Y) — L%*(S;Y™*) is positively definite, whenever
a > 0 is large enough.

Our regularity problem can be formulated as follows: We are looking for BANACH
spaces LT C L*(S;Y) and L~ C L*(S;Y™*) such that

1. The space W = {u € L* : (€u)' € L™} is embedded into a space of functions
being HOLDER continuous in time and space up to the boundary.

2. The parabolic operator corresponding to problem (P) is a linear isomorphism
between {u e W :u(ty) = 0} and L~, and it has the maximal regularity property:
feL — Au, Bu, (Eu) € L.

Following classical results of LADYZHENSKAYA, SOLONNIKOV, URALTSEVA [19],
there are well-known conditions on the right hand side f € L*(S;Y™*) in terms of
usual SOBOLEV spaces for evolution equations which ensure the HOLDER continuity
of the solution. But in the case n > 3 these spaces are not the right choice for
maximal regularity results without further assumptions on the smoothness of the
domain or the coefficients. In the second part [11] of our presentation we fill this
gap: There, we prove that the class of problems (P) generates isomorphisms between
appropriate SOBOLEV-MORREY spaces meeting all the requirements of the above
regularity problem, see also LIEBERMAN [20], HONG-MING YIN [33].

The main goal of this work is to introduce these SOBOLEV-MORREY spaces and
to discuss their properties in detail. In Section 3 we start with a collection of
classical results concerning MORREY and CAMPANATO spaces with parabolic met-
ric, see CAMPANATO [2], DA PRATO [3]. Section 4 is dedicated to regular sets
G C R" with L1PSCHITZ boundary and SOBOLEV spaces Hj(G) which allow a
proper functional analytic formulation of elliptic and parabolic problems with mixed
boundary conditions in nonsmooth domains, see GROGER, REHBERG [16, 17, 18],
and GRIEPENTROG, RECKE [10, 12]. Setting Y = HJ(G) we consider SOBOLEV—
MORREY spaces L4 (S;Y) C L?(S;Y) for MORREY exponents w € [0,n + 2].

In Section 5 for w € [0,n + 2] we introduce a new scale of SOBOLEV-MORREY
spaces L§(S;Y*) C L?*(S;Y™) of functionals generalizing RAKOTOSON’s approach
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to elliptic boundary value problems, see [25, 26]. In Section 6 we make use of
the function spaces introduced before to establish our class of SOBOLEV-MORREY
spaces

Wg(S;Y) ={ue Ly(S;Y) : (Eu) € LY(S;Y*)} € Wg(S;Y).

Embedding and trace theorems for these spaces are based on invariance properties
of the above SOBOLEV-MORREY spaces with respect to localization, LIPSCHITZ
transformation, and reflection, and on special variants of POINCARE inequalities,
see Appendix A and STRUWE [30]. Note, that in the case of w € (n,n+ 2] the space
W (S;Y) is embedded into a space of HOLDER continuous functions.

1. HILBERT SPACES FOR EVOLUTION EQUATIONS

Let (R™, £*, A™) be the o-finite measure space of n-dimensional LEBESGUE measur-
able subsets of R". For F' € £" and p € [1,00) we denote by LP(F;X) the set of
all LEBESGUE p-integrable functions uv : S — X with values in the BANACH space
(X, |l Ilx)- The class L>®(F'; X) consists of all LEBESGUE measurable functions
u : F'— X which are essentially bounded.

For every G C R" we introduce the class B(G; X) of bounded functions u :
G — X. We define the set C'(G; X) of continuous functions v : G — X and the
subclass BC(G; X) = B(G; X) N C(G; X). Moreover, for a € (0,1] we consider
the set C%*(G; X) of HOLDER continuous functions u : G — X and the subclass
BC*(G; X) = B(G; X) N C*(G; X).

For k € NU{oo} and open sets U C R"™ we denote by C*(U; X) the set of functions
u : U — X which have continuous derivatives up to the k-th order. The subclass
of all these functions with bounded continuous derivatives up to the k-th order
forms the set BC*(U; X). Finally, we introduce the subset C¥(U; X) of functions
u € C*(U; X) with compact support supp(u) in U.

In this section we introduce function spaces which are suitable for the formulation
of the class of evolution problems we are interested in. Our representation and
terminology closely follows the ideas of GROGER [15], see also DAUTRAY, LIONS [4].
Throughout the whole text we assume that

1. S C R is an open time interval,

2. Y, X, H are HILBERT spaces, Y is continuously embedded into X,
3. K € L(X; H), the set K[Y] is dense in H,

4. Jg € L(H; H*) denotes the duality map of H,

5. E € L(X;Y™) is defined by E = (K|Y)*Jy K.
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We denote by (| )y and ( , )y the scalar product in H and the dual pairing
between H and H*, respectively. The duality map Jy € L(H; H*) of H is defined
as usual by (Jyu,v)y = (ulv)y for u, v € H. Note, that the restriction F|Y =
(K|Y)* JyK|Y € L(Y;Y™) is symmetric and positively semidefinite.

Definition 1.1 (SOBOLEV space). 1. The function f € L?(S;Y™) is called weakly
differentiable if there exists some f’ € L*(S;Y™*) which satisfies

/(f'(s),v>y (s)ds = —/(f(s),v)yﬁ'(s) ds forall ¥ € Cg°(S), veY.
S S

We introduce the SOBOLEV space H'(S;Y™) as usual by
HY(S;Y*) ={feL*S;Y"): f e L*(S;Y")}.
2. Corresponding to & : L*(S; X) — L%(S;Y™), which is associated with S and
E e L(X;Y*) via (Eu)(s) = Eu(s) for s € S, u € L*(S; X), we set
Wg(9;X) ={ue L*S;X): (Eu) € L*(S;Y™)}.
Theorem 1.1. Wg(S; X) is a HILBERT space with the scalar product
(u|v) = (u|v) 2(s,x) + ((Ew)[(Ev) ) r2(s,v+)  for u, v e Wi(S; X).

Proof. 1. The bilinear form is correctly defined for u, v € Wg(S; X), and it has the
properties of a scalar product.

2. To prove the completeness of Wg(S; X), let (uy) be some CAUCHY sequence in
Wg(S; X). Then the sequences (uy) and ((Euy,)') converge in L?(S; X) and L*(S;Y™)
to functions v € L*(S; X) and f € L*(S;Y™), respectively. Since F € L(X;Y™*) the
sequence (Euy) converges in L2(S;Y™) to Eu € L*(S;Y™). Hence, passing to the
limit £ — oo in

/((Euk)'(s),v)yﬁ(s) ds = —/((8uk)(s),v)yz9'(s) ds,
S S

for all ¥ € C§°(5), v € Y we get the identity

/ (F(s), vhy O(s) ds = — / () (5), )y 9'(5) ds
S

s
which proves (Eu)’ = f € L*(S;Y*) and v € Wg(S; X). O

Lemma 1.2. Let the map C' € L(X;Y) satisfy
(1.1) (Ew,Cv)y = (Ev,Cw)y for allv, w € X.

Then the bounded linear operator € : L*(S; X) — L*(S;Y), associated with S and C
via (Cu)(s) = Cu(s) for s € S andu € L*(S; X), maps Wg(S; X) continuously into
WE‘y(S; Y) .
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Proof. We define bounded linear operators Gy : L*(S;Y) — L?*(S;Y) and 80 :
L*(S;Y) — L*(S;Y*) associated with S, C|Y € L(Y;Y), and E|Y € L(Y;Y*), b
(Cou)(s) = Cu(s), (Eou)(s) = Eu(s) fors € S, uec L*S;Y).
Due to (1.1) and the symmetry of E|Y for every u € Wg(S; X), ¢ € C§°(S), and
v € Y we obtain

/ (€5(E))(s), v)y O(s) ds = / () (s), Cv)y 9(s) ds
S

s
= —/(Eu(s),C’v)yﬁ'(s) ds = —/((Eoeu)(s),v>y ¥ (s)ds,
S S

which yields (€0Cu) = Cj(Eu) € L*(S;Y™*) and Cu € Wgy(S;Y). Hence, € maps
Wg(S; X) continuously into Wiy (S;Y). O

Density of smooth functions. Every function from Wg(S; X) can be approxi-
mated by functions with values in X being smooth in time. We start with the case

S =R
Lemma 1.3 (Density). The set C°(R; X) is dense in Wg(R; X).

Proof. 1. Let ¢ € C§°(R) be a nonnegative function satisfying [, ¢(s)ds = 1 and
supp(p) C (—1,1), and define ¢, C C§°(R) by ¢i(s) = ke(ks) for k € N, s € R. For
every u € L*(R; X) the sequence (uy,) of convolutions uy = ¢y * u € BC®(R; X) N
L*(R; X) converges to u in L*(R; X).

Due to E € L(X;Y™) for all u € Wg(R; X) we obtain &u € H'(R;Y*). The
sequence of convolutions (Eu)y = ¢, * (Eu) € BO™®(R;Y*) N HY(R; Y*) converges
to Eu in H'(R;Y™*). This yields limy_.o ||€u — Eul|gr(r;y+) = 0 since Euy = (Eu)y,
holds true for all £ € N.

2. We choose cut-off functions ), € C3°(R) satisfying

Ol(—k k) =1, 0<d(s) <1, |9(s) <1 forallseR,keN.

Now, we prove that the sequence of functions v, = Jyur € C5°(R; X) converges to
v in Wg(R; X): The fact, that limy .o [|[vx — v||L2(r;x) = 0 holds true, follows from
the estimate

[ ons) = s <2 [ (19006) = 1P un(o) i + un(s) = us)13) ds
<2 IO 2 [ lusts) = (o) e s
< [ Tleds +6 [ lhuels) (o)l ds
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Because of (Evg) = (VrEuy)" = V) Euy + (Euy)' Iy and the properties of the cut-off
functions, for all £ € N we get

€y (s) - €y s s
<2 [ (Wh)PlIEm)(s)

v+ 10k(s) = 1P7[|(Eux) () ][3-) ds,

and, hence,
€y - €uy IR ds

<af e
4 &u)(s
n A“hmm<><n

which yields limy_ [|(Evi)" — (Eur)'||2(s;v+) = 0. Together with the fact, that the
sequence ((Euy)’) converges to (Eu) in L?(R;Y™), see Step 1, we obtain the relation
hmkﬂoo ”(g’l}k)/ — ((CJU)/”L2(R;YA<) =0. [

ve + 1 (€ur)(s) — (Eu)(s)[ly-) ds

v+ l1(Eur)(s) — (Eu)'(s)[3-) ds,

To prove a corresponding statement for arbitrary open intervals S C R we need
some preparation:

Lemma 1.4. Let S C Sy C R be two open intervals and ) € BC*(R) some function
with supp(¥) NSy C S. Then, for u € Wg(S; X) the function uy : Sy — X defined
by uo|S = Ju and ug|(So \ S) = 0 belongs to Wg(Sp; X).

Proof. Let u € Wg(S;X) be given. The above construction implies that ug €
L*(Sp; X). We define fo : So — Y* by

folS =V E&u+ (Eu)V,  fol(So\ S) = 0.
Due to E € L(X;Y™*) this yields fo € L*(Sp;Y*). Note, that for Jg € C5°(Sp) the

inclusion supp(¥dy) C supp(¥d) NSy C S holds true. Hence, for all v € Y we obtain

/S<f0(5),’U>y190(8) ds
I/g<(5u)(8)av>yﬁ/(8)ﬁo(s) d8+/<(8u)/(8),v>y19(3)190(3) s

S
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and therefore,
[ thuls) vy i) ds = = [ (€u)(s) o)y o)) ds
So S
. / (Eatto)(5), )y F(s) ds,

where &g : L*(Sp; X) — L*(Sp; Y*) is associated with Sy and E. Consequently, this
yields (Eoup) = fo € L*(So; Y*) and ug € Wg(Sp; X). O

For every h € R we introduce the shifted interval S, = {s+h : s € S}. Note, that
the open interval S C R is unbounded if and only if there exists some h # 0 with
S_, C S CSy. In that case we define the translation 7,u : S, — X of the function
u:S — X by (thu)(s) = u(s — h) for s € Sj.

Lemma 1.5 (Translation). Let S C R be some unbounded open interval, and let
h # 0 satisfy S_, C S C Sy. Then for all uw € Wg(S; X) we have mou € Wg(Sp; X)
and limgs)o ||(75p)|S — u||wy(s;x) = 0.

Proof. For u € Wg(S; X) we define uy € L*(R; X), fo € L*(R;Y*) by
uplS =u, ug|R\S)=0, folS=(Eu), fol(R\S)=0.
Due to the continuity of the translation operator we get
161}100 | Tsnto — vollz2®;x) = 0, 161}100 | 7snfo — follL2@@;y+) = 0.

Because (75pu0)|S = (rspu)|S and (75, f0)|S = (7sn(Ew)’)|S holds true for all § €
(0, 1), this yields
lim [[(7sn)|S = ullz2six) = 0, lim [|(ron(Eu))IS = (Eu)'llz2(sive) = 0.

Note, that for all § € (0,1) and ¥ € C5°(Ssn) we have 7_5,0 € C°(S). Conse-
quently, for all v € Y we obtain

/ (7an(Ew))(s), v}y D(s) ds = / () (s), v}y (r_snd)(s) ds
Ssh

s
= —/((8u)(8),’l}>y(7'_5h’l9l)($) ds = —/ (EsnTsnu)(s),v)y ¥ (s)ds,
S Ssh

where the operator &z, : L*(Ssn; X) — L?*(Ss;Y™*) is associated with Sg, and
E. Hence, we get (Esnmsnu) = 75n(Eu) € L?(Ssn; Y*) which leads to the relation
limg o [[(7snw)|S — ullwp(sx) = 0. N
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Theorem 1.6 (Density). The set of restrictions {u|S : u € C§°(R; X)} is dense in
W (S; X).

Proof. 1. In the case S = R the assertion follows from Lemma 1.3.

2. Let S C R, S # R be an unbounded open interval and ¢ > 0. Then we have
S_, C S C Sy for some h # 0. Applying Lemma 1.5 to u € Wg(S; X), we find some
d € (0,1) with [|(7snu)|S — ullwys;x) < €.

Next, we choose some cut-off function ¥ € BC*(R) with supp(¥) C Ss, and
V]S = 1. Because of 75pu € Wg(Ss,; X) and Lemma 1.4 the function uy : R — Y
defined by

uo‘Sgh = 197'5hu, UQKR \ Sgh) = 0,
belongs to Wg(R; X), and we obtain ug|S = (75,u)|S. Using Lemma 1.3 we find
some function w € C§°(R; X)) with ||w — uol|w,mrx) < €. Due to

[w]S = ullwps.x) < wlS = uol Sllwis:x) + [[(Tsn1)|S = wllwi(s:x)

this yields ||w]S — ullwys,x) < 2¢.

3. Finally, we consider the case of bounded open intervals S = (to,¢;) with to,
t; € R and tg < t;. Let € > 0 be fixed arbitrarily. We choose some cut-off function
v € BC*(R) with supp(¥) C Sy = (—o0, 1) and supp(l — ) C Sy = (tp, 00). Due
to Lemma 1.4 we get two functions wg € Wg(Sy; X) and wy € Wg(Sy; X) if we set

w0|(—oo,t0] == 0, w0|(t0,t1) == (1 — ﬁ)u, w1|(t0,t1) - Q9U, w1|[t1, OO) =0.
Applying Step 2 of the proof we find functions ug, u; € C3°(R; X) such that

|0|So — wollwesex) <€, |lur|S1 — wi||wysx) < &,
which yields
[[(uo +u1)[S = ullwgsix) < lluolS — (L = Dullwy(six) + [[ualS — Fullweisix)
= |luolS — wolSllwe(s:x) + [u1]S — w1|S|lwy(s:x) < 2e.

Hence, ug 4+ u; admits the desired approximation property. O]

Integration by parts and continuous embeddings. In this subsection we tem-
porarily assume that X = Y holds true. Otherwise we refer to the special case
treated in Appendix B.

Theorem 1.7 (Integration by parts). For every u € Wg(S;Y) there exists a
uniquely determined continuous representative Xu : S — H such that (Xu)(s) =
Ku(s) for almost all s € S. The operator X is a bounded linear map from Wg(S;Y)
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to BO(S; H). Moreover, for every u € Wg(S;Y) and all s, t € S the following
integration by parts formula holds true:

(1.2) 1K) )11 = 1K) ()17 = 2/ ((€uw)'(7), u(T))y dr.

Proof. 1. In the first step we prove the statement for u € C§°(R;Y’). Then, the

function ¢ : R — R defined by ¢(7) = (Eu(7),u(r))y for 7 € R, belongs to C§°(R).

Due to the symmetry of the operator £ = K*JgK € L(Y;Y™), for all 7 € R we get
¢'(7) = (B (1), u(r))y + (Eu(r),u'(7))y = 2(Eu/(7), u(7))y-.

By integration for all s, t € S this yields

2/ ((Ew) (1), u(T))y dr = (JgKu(t), Ku(t)) g — (JgKu(s), Ku(s)) g

and, hence,
K u(@®)F < 1K)+ lulSiusyy:

Integrating over some bounded subinterval (sg,s;) C S, for all ¢t € S we obtain the
estimate

(51— so) [ Ku(®)|[r < /S [u(s) |17 ds + (s1 = s0)|ul S|y ysev)

< (1K N2 + (s1 = 50)) [ulS1yp(s0)-
Hence, we find some constant ¢ = ¢(.S, K') > 0 such that
sup [[Ku(t)[|g < cllulS|lwysyy  for all u € C°(R; Y).
teS
2. Let u € Wg(S;Y). Due to Theorem 1.6 there exists some sequence (uy) C
CP(R;Y) such that (ug|S) converges to u in Wg(S;Y). Applying the result of
Step 1 to the differences u; — uy, we get

sup | Kup(t) — Kug(t)||n < c||luglS — ue|Sllwyes;yy forall k, £ € N.
teS

In view of the completeness of BC(S; H) there exists a limit function w € BC(S; H)
which satisfies limy_,oo sup,cg || Kui(t) — w(t)||z = 0. For all k € N and all bounded
open subintervals (s,7) C S we have the estimate

/ CEu(t) — w()|f dt <2 / (1K ut) — K@) + [ Kui(t) —w()|ff) de

< 2| K1 .y /5 lur(t) = w(®)I3 dt +2(7 — s) sup | Kux(t) — w(t)|[7-

tesS
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Passing to the limit £ — oo we obtain w(t) = Ku(t) for almost all t € S. We define
by Ku = w € BC(S; H) the uniquely determined representative Ku : S — H which
satisfies (Ku)(t) = Ku(t) for almost all ¢t € S.

3. Due to Step 1, we have || Kug|| o < ¢ |lurlS||wp(sy) for all k € N. Passing
to the limit k& — oo and using Step 2 we obtain

1Kull pegsimy < cllullwpsy)  for all u € Wg(S;Y).

Hence, X is a bounded linear operator from Wg(S;Y) to BC(S; H). Moreover,
following Step 1, for all k € N and s, t € S we get

t
()17 — (| Kun(s)ll7 = 2/ ((Eu)' (), ur(7))y dr.
Passing to the limit k& — oo, Step 2 yields the desired identity (1.2). O

Theorem 1.8 (Extension). Lett € S = (to,t1), So = (to,t), S1 = (t,t1). If ug €
Wg(So;Y) and uy € Wg(S1;Y) satisfy (Kouo)(t) = (Kyuq)(t), then the function
u: S —Y defined by u|Sy = uy and u|Sy = uy belongs to Wg(S;Y).

Proof. Due to the construction we have u € L?(S;Y’), and the function f: S — Y*
defined by f|Sy = (Eoug)’ and f|S; = (E1uy)’ belongs to f € L*(S;Y™).

Let ¥ € C°(S), v € Y be fixed. Then we have w = Yv € Wg(S;Y), and using
the integration by parts formula, see Theorem 1.7, we get

((Kouo) (1) [ Kv) (1) = /S ({(€ouo)'(s), w(s))y + (Ev, uo(s))y ¥'(s)) ds,
() O 00) = [ (€Y (s wohy + (Eovun(s)y o)) ds.
Because of (Kou)(t) = (Kyuq)(t) and the symmetry of E this yields

[9<f(5),v)y0(3) ds = [90<<eouo>’<s>,v>yv<s> ds + /S {Euu)(s), )y 0(s) ds
S
- ‘/ ((&u)(s), v)y 9/ (s) ds.
S

Hence, we get (Eu)' = f € L*(S;Y*) and u € Wg(S;Y). O
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Completely continuous embeddings. It turns out that in the case of complete
continuity of the operator K € L(X; H) this property carries over to the operator
K from Wg(S; X) into L?(S; H), whenever S = (to,t;) is bounded. The following
proof generalizes an idea of TEMAM [31], see also L1ONs [21, 22], SIMON [28].

Lemma 1.9. Let K € L(X; H) be completely continuous. Then, for every ¢ > 0
there exists some constant ¢ > 0 such that

(1.3) IKwl||2 <6 |jw|/% +c||Ew|?.  for allw € X.

Proof. 1. Assume, that there exists some § > 0 such that we can find some sequence
(wy) C X which satisfies

lwellx =1, || Kwil|3 > 6+ k||Fwg]|3- for all k € N.

Because of K € L(X; H) this yields limg_, o || Ewg|ly+ = 0.

2. Due to the complete continuity of K € L(X; H) there exists an increasing
subsequence (k;) C N and some limit & € H such that lim, . ||Kwg, — h||g = 0.
Because of E = (K|Y)*Jy K € L(X;Y™) and Step 1 for all v € Y this yields

(Jgh, Kv)g = zh—>nc}o<JHKwk“’ Kv)y = Klir&(Ewke,v)y = 0.

In view of K|Y € L(Y; H) and the density of K[Y] in H we obtain h = 0 which
contradicts to the fact that || Kwy||?; > ¢ holds true for all k € N, see Step 1. Hence,
the assumption was not true, which proves the desired estimate (1.3). U

Theorem 1.10 (Complete continuity). Let S = (tg,t1) be some bounded open inter-
val and K € L(X; H) be completely continuous. Then K maps Wg(S; X) completely
continuous into L*(S; H).

Proof. 1. Let (uy) C Wg(S;X) be a bounded sequence and ¢; > 0 some constant
such that

(1.4) [5 (lun(s)I% + [[(Eur) (s)|%-) ds < ¢ for all k € N.

We choose an increasing subsequence (k;) C N such that (uy,) converges weakly to
some limit v in Wg(S; X). Due to the lower semicontinuity of the norm this yields

(15) / (lu(s) % + [(Eu) () 2-) ds < .

Consequently, the sequence (vy) C Wg(S; X) defined by vy = ug, — u for ¢ € N,
converges weakly to 0 in Wg(S; X). Note that (Ev) is bounded in H'(S;Y™).
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Together with the continuous embedding of H'(S;Y*) in BC(S;Y™) this implies
the existence of some constant ¢y > 0 such that

(1.6) [(Eve)(s)]

2. To prove that limy .o [¢[[(Eve)(s)|[3+ ds = 0 holds true, we proceed as follows:
Let ¢ € S and § > 0 be fixed arbitrarily. Because of Ev, € H'(S;Y*) C BC(S;Y™),
for all ¢ € N and s € (¢,t;) we have

(Evp)(t) = (Evp)(s) — / (Evp)'(T) dT.
¢
Next, we choose some 6 € (t,t¢;) which satisfies ¢;(6 — ¢) < 2. Integrating over the
interval (¢,0), and defining w, € X and f, € Y* by
1 0

We=9_"% ) ve(s) ds,

v+ <cy forallse S, ¢eN.

and

0 s 0
fo = ﬁ /t /t (Ev)(F)drds = —— [ (0= s)(€v)'(s) ds,

we get the identity
(Evg)(t) = Fwy — fo for all £ € N.

Due to the weak convergence of (v;) to 0 in L*(S; X), see Step 1, we have

1 o
Zlim (fwe)x = Zlim y— / (f,ve(s))xds =0 forall fe X"
—00 —o0 0 — ¢

That means, (w,) converges weakly to 0 in X. Because of the complete continuity
of E = (K|Y)"JyK € L(X;Y™) this yields limy_ || Ew|ly- = 0. We choose
EO = fo(é) € N such that

4}
(17) ”EU)[”QY* S Z for all ¢ c N, 14 Z 50.

On the other hand, for all / € N we get

tos o (f - oas) (| lewy () ).

Hence, using (1.4), (1.5), and ¢; (6 —t) < £ we obtain || f[|3. < 2 for all £ € N. Due
to (Evy)(t) = Fwy — fo and (1.7) this yields

I(€ve) D)5+ < 2[[ Ewell3+ + 2| fd

Because we have fixed 6 > 0 and ¢ € S arbitrarily at the beginning, we get pointwise

Ifel

%*Sé forall £ € N, £ > /.

convergence, that means limy .. [[(Ev,)(¢)[|3 = 0 for all ¢ € S. In view of the
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uniform estimate (1.6) and the boundedness of the interval S C R the dominated
convergence theorem yields

(18) tim [ Eon (o)

3. Let 0 > 0 be fixed. Applying Lemma 1.9 we find some constant c¢3 > 0 such
that for all £ € N we have

/g 1(5on) (3)]3 ds < 6 / lue(s)I% ds + c3 / (Eu)(s)|

Due to (1.4) and (1.5) this yields

5. ds.

/ 1(Kve) (s)||3; ds < 4e1d + 03/ |(Eve)(s)||3- ds for all £ € N.
S s

Using (1.8) and passing to the limit £ — oo we end up with

lim sup/ 1(Kve)(5)]|3; ds < 4ey.
s

{—00

Because § > 0 was fixed arbitrarily, we have found a subsequence (Kuy,) which
converges to Ku in L*(S; H). O

Corollary 1.11 (Complete continuity). Let S = (tg,t1) be some bounded open inter-
val, and let both K € L(X; H) and Ky € L(X; Hy) be completely continuous, where
Hy is some further HILBERT space. If for every 6 > 0 there exists some constant
¢ > 0 such that

| Kowl, < 8llwlk +cllKwl}  for allw e X,

then Ko : L*(S; X) — L?(S; Hy), associated with S and Ky via (Xou)(s) = Kou(s)
for s € S, maps Wg(S; X) completely continuous into L?(S; Hy).

Proof. 1. Let (ug) be a bounded sequence in Wg(S; X). Then there exists an in-
creasing subsequence (k;) C N such that (uy,) converges weakly to some limit u in
Wg(S; X). We take some constant ¢; > 0 such that

(1.9) / ur(s)||3 ds < 1 for all k € N, / u(s)||% ds < ci.
S S

Since X maps Wg(S; X) completely continuous into L*(S; H), see Theorem 1.10,
the sequence (Kug,) converges to Ku in L?(S; H).
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2. Let 0 > 0 be arbitrarily fixed. Due to the assumption we find some constant
¢y > 0 such that for all £ € N we have

/S (Kot )(5) — (Kote)(5)]2, dis
<5 / etk () — u(s)|% ds + e / (s, ) () — (%) (s) 2 ds.

In view of (1.9) and the convergence of (Kuy,) to Ku in L*(S; H), see Step 1, we
pass to the limit ¢ — oo to get

imsup. | (&Ko, )(5) ~ (Kou)(s) |, ds < derd
S

{—o00
in other words, (Kouy,) converges to Kou in L*(S; Hy). O
2. SOLVABILITY OF INITIAL BOUNDARY VALUE PROBLEMS

Throughout this section we assume that S = (¢, ¢;) is a bounded open interval and
that X =Y holds true. We provide the unique solvability and well-posedness for a
broad class of evolution equations, see GROGER [15]:

Lemma 2.1. The map D : dom(D) C L*(S;Y) x H — L*(S;Y*) x H* defined by
dom(D) = {(u, (Ku)(to)) : u € Wg(S;Y)},
D(u,w) = ((Eu)’, Jyw) for (u,w) € dom(D),

is mazimal monotone.

Proof. 1. Integrating by parts, for all (u,w) € dom(D) we get

2(D(u, w), (u, w)) = 2/S<(EU)’(8),U(8)>Yd8+2HwH?{

= [[(%w) (t) [ + lwll,

that means, the linear operator D is monotone.
2. To prove the maximality of D we consider pairs (u,w) € L*(S;Y) x H and
(f,g) € L*(S;Y*) x H* satisfying

(2.1) /S(f(s) —(€a)(s), u(s) — i(s))y ds + (g — Jutb, w — @)y > 0

for all (a,w) € dom(D). Let v € Y, ¢ € C§°(S). Choosing (4, w) = (Jv,0) €
dom(D) in (2.1) and integrating by parts we obtain

/S (F(s), vy O(s) ds + /S (Ev, u(s))y #'(s) ds < / (F(s), u(s))y ds + (g, w)a.

S
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Since the left hand side is linear with respect to v and the right hand side does not
depend on v, this inequality can be true, only, if the left hand side vanishes for all
v € Y. Hence, for all v € Y and 9 € C§°(S) we get

/ (F(s), o)y V(s) ds + / () (s), v}y 0'(s) ds = 0,
S

5

which proves (Eu) = f € L?(S;Y*) and u € Wg(S;Y).

3. Due to (Eu) = f and (2.1) by partial integration we get
(22)  [[(Ku)(t) — (Ka) ()7 — [(Ku)(to) — @l +2{g — Jud,w — ) = 0
for all (u,w) € dom(D). Because K[Y] is dense in H, we can choose two sequences
(vp) and (vg) in Y which satisfy

Tim [[0] — il =0, lim [JK(e} + (1 — to)u) — (%) (1) s = 0.

Setting 4(s) = vy + (s — to)vg for s € S and W = Kwvy we obtain (4, w) € dom(D),
and from (2.2) it follows that

1(3Cu) (1) = K (v + (81— to)v) 7 — [1(Ku) (to) — KugllFy

+2(9g— JuKvp,w — Kvp)g

Passing to the limit k& — oo we get ||(Ku)(to) — w||%, < 0, that means, (Ku)(to)
and (u,w) € dom(D).

4. Let v € Y and 7 > 0 be fixed. Setting u(s) = u(s) + 7v for s € S and
w =w+ 7Kv, we get (4, w) € dom(D). Then, inequality (2.2) yields that

(9 — Ju(w+ 7Kv), 7Kv)y < 0.

> 0.

w

Dividing by 7 > 0 and passing to the limit 7 | 0 we find
(9 — Jgw, Kv)yy <0 forallveY.

Since K € L(Y; H) and K[Y] is dense in H, we arrive at g = Jyw. In other words,
we have shown that the operator D is maximal monotone.

O

Theorem 2.2 (Unique solvability). Assume that M : L*(S;Y) — L*(S;Y™) is a
strongly monotone and LIPSCHITZ continuous operator with the domain dom(M) =
L*(S;Y). Then, under the general assumptions mentioned above, for any [ €
L*(S;Y™*) and w € H, the initial value problem

(2.3) (Eu) +Mu=f, (Ku)(to) = w,

has a uniquely determined solution u € Wg(S;Y). Furthermore, the assignment
(f,w) — w is LIPSCHITZ continuous from L*(S;Y*) x H into Wg(S;Y).
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Proof. 1. Due to the assumptions, M : L?(S;Y) — L?*(S;Y™) is a maximal monotone
operator. We define My : L?(S;Y) x H — L*(S;Y*) x H* by

Mo(u,w) = (Mu,0) for (u,w) € L*(S;Y) x H.

Elementary arguments show that the maximal monotonicity of M carries over to
My, where dom(My) = L*(S;Y) x H.

Let D : dom(D) C L*(S;Y) x H — L*(S;Y*) x H* be the maximal monotone
operator of Lemma 2.1. Because of dom(D) C L?*(S;Y)x H we have dom(My+D) =
dom(D), and ROCKAFELLAR’s sum theorem yields the maximal monotonicity of
Mo + D, see [27]. Moreover, the strong monotonicity of M implies that My + D is
strongly monotone, too, since for all (u,w), (4, w) € dom(D) we have

W)
(1) — (Ka) (t) |7 + llw — @l

Applying BROWDER's theorem, for any (f,w) € L?(S;Y*) x H the problem

2{(Mo + D)(u, w) = (Mo + D)(a, w), (u, w) — (@
= 2 (Mu — M, u — @) sy + [[(Ku)

Mo + D) (u, w) = (f, Jaw)

has a solution (u,w) € dom(D), see [1]. By construction, from this it follows that
u € Wg(S;Y) solves the initial value problem (2.3).

2. Let w, & € H and f, f € L*(S;Y*) be given data. Using Step 1 of the proof
we find solutions u, & € Wg(S;Y') of the problems

(Eu) +Mu = f, (Ku)(to)
(Ea) +Ma=f, (Ka)(to)

w,

Il
=S

Let M, L > 0 be the monotonicity and the LIPSCHITZ constant of M, respectively.
Applying YOUNG’s inequality and the strong monotonicity of M we get the estimate

0=2((Euw) — (E4) +Mu — Mi — f + f,u — @) 2(5v)
> [[(Ku) (t) = (Ka) ()G — llw — @I + M llu— @25y — 37 1 = P22 (50304,
that means, we have
M |lu — 71”%2(5;1/) < lw — @3 + 55 I1f — f”%Q(S;Y*)'

Note, that in the case f = f, w = w this yields © = 4. Hence, we have shown the
unique solvability of problem (2.3).
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Moreover, using the LIPSCHITZ continuity of M we obtain
[(Eu)" — (Eﬁ)l”%%s;y*) <2|f- f”%%s;y*) +2 [ Mu — Mﬁ”%%s;y*)
<2|f- f”%%s;y*) + 2L |lu — ﬁ”%%s;y)-

From the last estimates it follows, that the assignment (f,w) +— wu is LIPSCHITZ
continuous from L%(S;Y™*) x H into Wg(S;Y). O

Let @ € R be given. In the following we show that the result of the preceeding
theorem remains true for the class of more general problems

(Eu)+Mu—alu=f, (Ku)(0)=w,

if we additionally assume that the operator M : L*(S;Y) — L%*(S;Y™) has the
VOLTERRA property. For the proof we need some preparation:

Lemma 2.3. Let e, : [to, t1] — R be the exponential function given by
eals) = explalty— 5) for a € R, s € [to, 1],

and M : L*(S;Y) — L*(S;Y*) be a strongly monotone, LIPSCHITZ continuous
VOLTERRA operator. For a > 0 the map M, : L*(S;Y) — L*(S;Y™) defined as

Mou = ea M(e_qu) foru € L*(S;Y),
15 a strongly monotone and LIPSCHITZ continuous VOLTERRA operator, too.

Proof. 1. Let a > 0. The operator M, : L*(S;Y) — L?*(S;Y™) is correctly defined,
because for all w € L*(S;Y) and f € L*(S;Y™) we have e,u, e_,u € L*(S;Y) and
eaf, e_af € L*(S;Y™).

2. Let uq, vo € L?(S;Y) be fixed, and set u = e_quy € L*(S;Y), v = e_qv4 €
L2(S;Y). If ua|(to, s) = v4](0, s) holds true for all s € S, then we obtain ul(ty, s) =
v|(to, ), and the VOLTERRA property of M yields (Mu)|(to, s) = (Mv)|(to, s), which
leads to (Maua)|(to, s) = (Mava)|(to, s).

If L >0 is a LiPSCHITZ constant of M, for L, = Le_,(t1) we get

[Matta = Mavallr2s;y+) < Lllu —vlz2(s,v) < La [[ta = vallz2(s,v),

that means, L, > 0 is some LIPSCHITZ constant for M.
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3. Note, that for all functions h € L'(S) FUBINI's theorem yields

—204/:62&(5)[ des:/ ¢ (s / ) drds
/h /% ) dr ds

= esa(t1) / h(s) ds — / ! €20 (5)I(s) ds.

to to

Applying this identity to the function h € L'(S) defined by
h(s) = (Mu)(s) — (Mv)(s),u(s) —v(s))y forseS,

we obtain
/562a(8)<(MU)(5) — (Mw)(s), u(s) — v(s))y ds
= caa(t) [ (OM0)(5) = () (5). ) = sy s
+ 2a/562a(3)/ (Mu)(1) = (Mo)(1),u(r) —v(T))y dT ds.

to
Due to the monotonicity and the VOLTERRA property of M, the second summand

is nonnegative. If M > 0 is a monotonicity constant of M, for M, = Mey,(t1) this
yields

<Mozuoz - Mozvomuoz - va>L2(S;Y) > M, ||U - v||%2(S;Y) > M, ||u0€ - UOéH%Q(S;Y)?
in other words, M, > 0 is some monotonicity constant for M,,. [

Theorem 2.4 (Unique solvability). Assume that M : L*(S;Y) — L*(S;Y*) is a
strongly monotone and LIPSCHITZ continuous operator VOLTERRA operator such
that dom(M) = L*(S;Y). Under the general assumptions, for every a € R, f €
L*(S;Y™), and w € H, the initial value problem

(2.4) (Eu)+Mu—alu=f, (Ku)(ty)=w,

has a uniquely determined solution u € Wg(S;Y). Furthermore, the assignment
(f,w) — u is LIPSCHITZ continuous from L?(S;Y™*) x H into Wg(S;Y).

Proof. 1. In the case a < 0 the result follows immediately from Theorem 2.2, because
the positive semidefiniteness of F € L(Y;Y™) yields that M — o€ : L*(S;Y) —
L*(S;Y™*) is a strongly monotone and LIPSCHITZ continuous VOLTERRA operator.
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2. Let a >0, f € L*(S;Y*), and w € H be given. Setting f, = eof € L?(S;Y™)
and applying Theorem 2.2 and Lemma 2.3 we get the uniquely determined solution
U € Wg(S;Y) of the auxiliary problem

(2.5) (Eun) + Motia = fo, (Kua)(to) = w.

Consequently, the function u = e_,u, € Wg(S;Y') solves problem (2.4).

Vice versa, if u € Wg(S;Y) is a solution of problem (2.4), then u, = e,u €
Wg(S;Y) solves the auxiliary problem (2.5). Hence, the solution u € Wg(S;Y") of
problem (2.4) is uniquely determined, too.

3. Let w,w € H and f, f € L?(S;Y™) be given data. Due to Step 2 of the proof
we find unique solutions u, @ € Wg(S;Y) of the problems

(Eu) +Mu—alu=f, (Ku)(ty) =w,
(E0) + M —alti=f, (Ka)(ty) = .
Defining as before f, = e, f € L*(S;Y*) and fo=ceaf € L?(S;Y™), the functions
Ug = equ € Wg(S;Y) and 4, = e i € Wg(S;Y) solve
(Eug) + Mt = fo, (Kugo)(ty) = w,
(Eiia) + Muita = fo,  (Kiia)(to) = 1.
As in the proof of Theorem 2.2 we obtain
Mo |ua — ﬂaH%Q(S;Y) < [Jw— ZZJH%{ + MLQ | fo — fa”%%S;Y*)’
1(€ua) = (€ha) Zasiyey < 2 a = fallZa(siy) + 2L lua = Gallz2syy.
where M, > 0, L, > 0 are monotonicity and LIPSCHITZ constants of M, respec-
tively. To get the desired estimates for u — 4 € Wg(S;Y) in terms of f — f €
L*(S;Y*) and w — w € H, we start with
”U - ’a”LQ(S;Y) S efa<t1)”ua - aaHLQ(S;Yﬁ
1o = Fallzzsors) < M1 = Fllrzsve)-
Due to (Eu) = e_o(Euy) + ae_nEu, we see that
(€)' — (€Y [Baqsiv-) < 2esalt) (€0 — (Ea) [Fa(si-
+20%e_g4(th) ||E||i(Y;Y*) [ta — ﬂOzH%Q(S;Y)’

Summing up, we arrive at the LIPSCHITZ continuity of the assignment (f,w) — u

from L%(S;Y™*) x H into Wg(S;Y). O
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3. MORREY AND CAMPANATO SPACES

We collect classical results concerning MORREY and CAMPANATO spaces with re-
gard to the parabolic metric. Based on these, later on we introduce new classes
of SOBOLEV-MORREY spaces adequate for the treatment of the regularity problem
formulated in the introduction.

Let us introduce some notation. Throughout this section we assume S to be a
bounded open interval in R. For t € R and r > 0 we define the set of subintervals

8, ={Sn(t—r*t):te S}

The symbol | | is used for both the absolute value and the maximum norm in R",
whereas || || denotes the Euclidean norm in R". For x = (z1,...,2,) € R" we write
&= (r1,...,2,_1) € R" 1. We denote by

Q.(x) = {5 eR": £ —x| < r},
Q;(l‘) = {5 S Qr(x) 2 — Tn < 0}7

the open cube and the open halfcube with center x € R" and radius r» > 0, respec-
tively. In the case = 0 we shortly write @), and @), . If, additionally, » = 1, then
we use the notation ) and Q™.

For subsets G of R™ we write G°, G and G for the topological interior, the closure,
and the boundary of G, respectively. For r > 0 and subsets G C R" we use the
corresponding calligraphic letter to denote by G, the set

QTI{GHQT(SU)::UEG}

of intersections. To introduce the function spaces we are interested in we need the
following definition:

Definition 3.1 (Integral mean value). Let (Q,2(, 1) be a measure space and w :
F — R be an integrable function given on the measurable set ' € 2 of finite
positive measure. We define the integral mean value of w over F' by

Remark 3.1 (Minimal property). If w : F©' — R is square-integrable on the set
F € 2 of finite positive measure with respect to (£2,2, 1), then we have

2

min/ |w—c|2d,u:/ w — ][wd,u dp.
ceR Jp F F
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The case of open sets. We define MORREY and CAMPANATO spaces for bounded
open sets U C R", see CAMPANATO [2], DA PrATO [3]:

Definition 3.2 (MORREY spaces). 1. For w € [0,n + 2] we introduce the MORREY
space Ly (S; L*(U)) as the set of all u € L*(S; L*(U)) such that

[U‘]%‘Q"(S;LQ(U)) sup r // ‘U/ ‘2d)\n ds

(I, V)esrxur

remains finite. The norm of u € LY (S; L*(U)) is defined by

HuH%g(S;LQ(U)) = HUH%?(S;LQ(U)) + [U]ig(s;m(m)-

2. For o € [0,n + 4] we denote by £3(S; L*(U)) the CAMPANATO space of all
u € L*(S; L*(U)) such that
][][ T)d\" dt

has a finite value, and we define the norm of u € £3(S; L*(U)) by

2
Uloo(g. = dAn "
[ ]22(S7L2(U)) (1, V)esrxur

HUHZSg(S;B(U)) = HuH%Q(S;LQ(U)) + [U]zsg(s;w(zj))-
For w < 0 we set Ly (S; L*(U)) = £5(S; L*(U)) = L*(S; L*(U)).
3. Let HJ(U) € X C HY(U®) be some closed subspace equipped with the usual
scalar product of H'(U®). For w € [0,n + 2] we introduce the SOBOLEV-MORREY
space

L5(S; X) = {u € L*(S; X) :u e L§(S; L*(U)), | Vul € L5 (S; L*(U))},
and we define the norm of u € Lg(S; X) by

”U”%g(s;){) = HuHig(s;m(U)) + HHVU””%;(S;B(U))-
For w < 0 we set L§(S; X) = L?(S; X).

Remark 3.2. Note, that the spaces L§(S; L*(U)) and £5(S; L*(U)) are usually
denoted by L**(S x U) and £29(S x U), respectively. Apart from these, later on we
introduce further MORREY-type function spaces. Hence, we have decided to use a
different but integrated naming scheme. Let us collect some well-known properties:

1. The function spaces introduced above are BANACH spaces.

2. If we take the suprema over 0 < r < 7r¢, only, then the corresponding r¢-
depending norms are equivalent to the original norms, respectively.

3. For w € [0,n+2] the set L>°(S; L>=(U)) is a space of multipliers for Ly (S; L*(U)).
Similarly, L>=(S; C%Y(U)) is a space of multipliers for L% (S; HY(U)).
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Definition 3.3 (Restriction). Let I C R be an open subinterval of S and V' C R”"
be an open subset of U. We define Ryv € L*(V) by (Ryv)(z) = v(z) for all
v € L*(U) and x € V. We carry over this definition to Ry yu € L*(I; L*(V)) by
(Rryu)(s) = Ryu(s) for all uw € L*(S; L*(U)) and s € I.

As an obvious consequence of the above definitions and the minimal property of
the integral mean value we get the following result:

Lemma 3.1 (Restriction). 1. For w € [0,n + 2] the assignment uw — Rpyu is
a bounded linear operator from L% (S; L*(U)) into L (I; L*(V)) as well as from
Ly (S; HY(U)) into Ly (I; HY(V)).

2. For o € [0,n + 4] the linear assignment u — Ry yu maps L3(S; L*(U)) contin-
uously into £3(I; L*(V)).

Remark 3.3 (Zero extension). 1. Let V' C R" be an open subset of U and w €
[0,n + 2]. Then, by Definition 3.2 the zero extension is a bounded linear map from
Ly (S; L*(V)) into Ly (S; L*(U)).

2. Let V' C R" be an open set with UNV # @, take a function y € C§°(R™) with
supp(x) C V, and fix § > 0 such that Qs(x) C V for all € supp(y). Consequently,
if Q,(z) Nsupp(x) # @ for some 0 < r < £ and x € U, then Q,(z) C V.

Assume, that v € L*(S; L*(U NV)) satisfies xv € £3(S; L*(U NV)) for some
o € [0,n + 4]. For the zero extension u € L*(S; L*(U)) of xv we get

/ / u(s) — ][ ][ 7)d\" dT
UﬂQr(:L‘) UﬁQT
2
// xv(s ][][ 7)d\" dt| d\" ds
UunvnQr(x) unvn@r(x

provided that 0 < r < ¢ 5 and z € U. Consequently, using Remark 3.2 we obtain
u € £9(S; L*(U)), and we find some ¢ = ¢(x,d,V,U) > 0 such that

2

d\" ds

lulleg(s;z2wy) < cllxvlleg(s:L2@wnvy)-
Remark 3.4. 1. Using HOLDER’s inequality we obtain the continuous embedding
of the usual LEBESGUE space L4(S; LP(U)) into Lg(S; L*(U)) for p, ¢ > 2 satisfying
w=n(l-2/p)+2(1-2/q) €[0,n+2].
2. By definition, L>=(S; L**(U)) is continuously embedded into L3?(S; L*(U)) for
w € [0,n], where the MORREY space L*“(U) is defined as the set of all u € L*(U)
such that the following expression remains finite:

lalZay = 2o + sup 7 /|u|2cw

Velur
>0
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Definition 3.4 (LipscHiTz transformation). 1. A bijective map 7" between two
subsets of R™ such that 7" and T~! are LIPSCHITZ continuous is called LIPSCHITZ
transformation.

2. Let T be a LipscHITZ transformation from an open set U C R" onto U* C R".
We define Tou = uoT € L*(U) for u € L*(U*) and carry over this definition to
T.u € L*(S; L2(U)) by (T.u)(s) = Tu(s) for u € L*(S; L?(U*)) and s € S.

Lemma 3.2 (Transformation). 1. For w € [0,n + 2] the assignment u +— T,u
is a linear isomorphism from L% (S; L*(U*)) onto LY (S; L*(U)) as well as between
L3 (S5 HY(U™)) and L3 (S; HY(U)).

2. For 0 € [0,n + 4] the assignment v — T,u is a linear isomorphism from
£3(S; L*(U*)) onto £5(S; L*(U)).

Proof. Let L > 1 be a LIPSCHITZ constant of T"and set 6 = Lr. Forallr > 0,t € S,
x € U we consider

S, =Sn({t—7r%t), Ss=SN(t—t),
U, =UNQ,(z), Uf=U*NQsT(x)).

1. Due to the change of variable formula T, is a bounded linear operator from
L*(S; L*(U*)) into LQ(S L*(U)). Forallr > 0,t € S,z € U, and u € L*(S; L*(U*))
the inclusion T'[U,] C Uj leads to

//\Tu |2d)\”ds<L”/ lu(s)|* dA™ ds,
T r Ss U*

which yields some constant ¢; = ¢;(n, L) > 0 such that
1Teulliysir2wy < allulliysizw-y for all uw € Lg(S; LA(UY).

2. Applying both the chain rule and the change of variable formula we obtain that
T, maps L*(S; H'(U*)) continuously into L*(S; H'(U)): Forallr >0,t € S,z € U,
and u € L*(S; H'(U*)) we have

/ |VT*u(s)|2d)\"ds§// | DT||*|| T Vu(s)||* dA™ ds
T Ur S'r Ur

§L"+2// [Vu(s)|* d\" ds.
ss Ju;

In view of Step 1 we find some constant ¢y = co(n, L) > 0 such that

"T*u"%g(s;Hl(U)) < CQ”“”%;’(S;Hl(U*)) for all u € L5(S; H'(U”)).
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3. Using the change of variable formula for all » > 0, ¢t € S, z € U, and u €
L*(S; L*(U*)) we get

// Tou(s ]é][ ) d\" dr

d)\" ds

d\" ds.

2
—][ ][ u(T)d\" dr
ss Ju;

Applying the minimal property of the integral mean value, we find some constant
c3 = c3(n, L) > 0 such that

ss Ju;

Tl 52wy < esllullagsipawny  for all w € £5(S; L*(U)).
Analogously, we prove the statements for the inverse transformation. OJ
Definition 3.5 (Reflection). Let the map N : R" — R" be defined by

Nz =(%,—x,) forz= (& x,) €R"
1. We introduce reflection R*u € L?(Q) and antireflection R~u € L*(Q) of u €
L*(Q) by
(Ru)(r) = {

and define RTu, R~u € L*(S; L*(Q)) for u € L*(S; L*(Q7)) by
(Rtu)(s) = RTu(s), (R u)(s)=R u(s) forsesS.

2. For vector-valued functions g € L2(Q*; R"™) we define both the reflection R*g €
L*(Q;R™) and the antireflection R~g € L*(Q;R") by

g(x) ifz e, B (=) itee@,
(Brg)() = {Ng(N ) otherwise, (Brg)le) = {—Ng(N:L’) otherwise.

u(x) itee@,

W(N2) otherwise (R u)(z) = {u(a:) ifze0,

—u(Nz) otherwise,

We carry over the definitions to g € L*(S; L*(Q~;R")) by
(RJFQ)(S) = R+9(5)7 (R7g)(s) = R g(s) forses.

3. Let S™ be the set of real symmetric (nxn)-matrices. For matrix-valued functions
A€ L*>*(Q;S™) we define the reflection Rt A € L>(Q;S™) by

A(z) ifre@,

(R+A) (SL’) = {NA(NI')N otherwise.
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Finally, for A € L>®(S; L>®(Q~;S")) we set
(RTA)(s) = RTA(s) fors e S.

Lemma 3.3 (Reflection). For o € [0,n + 4] and w € [0,n + 2] the map RT :
£5(5: 12(Q7)) — £(5: I2(Q)) as well as R™, R+ : L(S: LA(Q)) — L5(S; X(Q))

are bounded linear operators, and we have
”:RJFUHEg(S;LQ(Q)) S \/5 Huﬂgg(S;Lz(Q—)) fOT’ CLZZ u & 2%(5, LQ(Qi)),
IR ullrgsir2@) < V2 ullzgesizzig-y  for all u € Ly(S; LQ(Qf))-

Proof. Let P: Q — @ defined by Pz = (2, —|z,|) for z = (2,2,) €
1. Obviously, the map R* : L?(S; L*(Q7)) — L*(S; L*(Q)) is Contmuous By
construction for all 7 > 0, x € Q, I € §,, and u € L*(I; L*(Q7)) we get

/ / Rt ][ ][ 2\ dr
QmQr(x Q mQr PJE
2
<2// u(s) — ][][ T)d\" dr| d\" ds.
Q~NQ-(Px) Q- OQT(Pm

Hence, the minimal property of the integral mean value yields
1Rl S (si1200)) < 2 lullZg(sinag-y for allu € £5(S; L*(Q7)).

2. The map R~ : L3(S; L*(Q7)) — L?(S; L*(Q)) is continuous. Due to the defini-
tion for all 7 > 0,z € Q, I €8, and u € L*(S; L*(Q~)) we obtain

// |R™u( |2d)\"ds<2// |2d>\"ds
QNQr(z) Q- OQT(Pm

This leads to the estimates
”fR*UH%g(s;m(Q)) <2 ”U”%g(s;p(@)) for all u € L5(S; L*(Q7))
||R+u||%g(S;L2(Q)) <2 ||u||%g(S;L2(Q—)) for all u € L5(S; L*(Q7)),

2

d\" ds

where the second one follows analogously. O

For the following classical results concerning MORREY and CAMPANATO spaces
we suppose some regularity property of the boundary OU, see again CAMPANATO [2],
Da PraATO [3]:

Theorem 3.4 (Equivalence). Let U C R™ be an open set without outward cusps,
that means, there exist constants ro > 0 and cq > 0 such that

AN V) > cor™ forallO <r <ry, VeU,.
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Then the following holds true:

1. For w € [0,n+2) the MORREY space L§(S; L*(U)) is isomorphic to the CAM-
PANATO space £5(S; L*(U)).

2. Foro € (n+2,n+4], a= (0 —n—2)/2 the CAMPANATO space £5(S; L*(U))
is isomorphic to the space C(S;C%(U)) N C%/2(S;C(U)) of HOLDER continuous
functions.

The case of hypersurfaces. Analogously, we define functions spaces on LIP-
SCHITZ hypersurfaces in R". To do so, for z € R” and r > 0 we introduce the
(n — 1)-dimensional equatorial plate

(1) = {€ € R 1 ¢ —a| <7, & = w,)

of the cube @,(x). In the case x = 0 we shortly write X,. If, additionally, r = 1, we
use the notation .

Definition 3.6 (LipscHITZ hypersurface). A subset M of R" is called LipPSCHITZ
hypersurface in R™ if for each point x € M there exist an open neighborhood U of
x and a LIPSCHITZ transformation T from U onto @ such that T[U N M| = ¥ and
T(x)=0.

Let M be a compact LIPSCHITZ hypersurface in R™. By Ay we denote the (n—1)-
dimensional LEBESGUE measure on the o-algebra £,; of LEBESGUE measurable sub-
sets of M, see EVANS, GARIEPY [5], SIMON [29]. In GRIEPENTROG [9] we have car-
ried over both the definition and classical properties of MORREY and CAMPANATO
spaces to the case of relatively open subsets F' of M, see also GEISLER [7]:

Definition 3.7 (MORREY spaces). 1. For w € [0,n + 1] we introduce the MORREY
space Ly (S; L*(F)) as the set of all u € L*(S; L*(F)) such that

[lig (52 = sup / / |u(s)[* dAy ds

(I,F)GSTXS'T
>0
remains finite, and we define the norm of u € Ly (S; L*(F)) by

HuHig(s;m(F)) = HuH%Q(S;LQ(F)) + [u]%;’(s;LQ(F))'
2. For o € [0,n + 3] we denote by £5(S; L*(F')) the CAMPANATO space of all
u € L*(S; L*(F)) such that

d)\M ds

2 —
[ul g (siz2(r) = goup T
>0
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has a finite value; we define the norm of u € £5(S; L*(F)) by

||u||2£g(S;L2(F)) = HUH%Q(S;LQ(F)) + [U]ng(s;p(p))-
For w < 0 we set Ly (S; L*(F)) = £5(S; L*(F)) = L*(S; L*(F)).

Remark 3.5. We collect some facts concerning the above function spaces:

1. The spaces introduced in Definition 3.7 are BANACH spaces.

2. If we take the suprema over 0 < r < rg, only, then the associated ry-depending
norms are equivalent to the original norms, respectively.

3. For w € [0,n+1] the set L>°(S; L>=(F)) is a space of multipliers for Ly (S; L*(F)).

Remark 3.6 (Zero extension). 1. Let I' € M be a relatively open subset of F' and
w € [0,n + 1]. By Definition 3.7 the zero extension is a bounded linear map from
Ly (S; LA(T)) into LY (S; L*(F)).

2. Let V. C R™ be an open set with ' NV # &, consider xy € C3°(R™) with
supp(x) € V, and choose 6 > 0 such that Qs(z) C V for all € supp(x). If
Q,(z) Nsupp(x) # @ for some 0 < r < & and z € F, then Q,(z) C V.

Suppose, that v € L?(S; L*(F N'V)) satisfies xyv € £3(S; L*(F NV)) for some
o € [0,n + 3]. For the zero extension u € L*(S; L*(F')) of xv we obtain

/ / u(s) — ][ ][ T)dA\p dT
FOQT(Z‘) FﬁQT
2
// xv(s) —][][ T)dM\pdr| dAyy ds
FNVNQy(x) FOVNQr(z

whenever 0 < r < £ and « € F. Thus, Remark 3.5 yields u € £5(S; L*(F)), and we
find some ¢ = ¢(x, 9, V, F') > 0 such that

2

Ay ds

HUH»:g(S;LQ(F)) <c HXUHs:g(s;m(FnV))-

Remark 3.7. 1. Applying HOLDER’s inequality we get the continuous embedding
of the usual LEBESGUE space L4(S; LP(F)) into Lg(S; L*(F)) for p, ¢ > 2 satisfying
w=(n-1)(1-2/p)+2(1-2/q) €[0,n+1].

2. For w € [0,n — 1] the space L°°(S;L**(F)) is continuously embedded into
Ly2(S; L*(F)), where the MORREY space L>“(F) contains all functions u € L?(F)
such that the following expression remains finite:

JulFeqey = Nl + sup 7= [l dr
redr I

>0
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Definition 3.8 (LipscHITZ transformation). Let M and M* be two compact Lip-
SCHITZ hypersurfaces in R", and T be a LIPSCHITZ transformation from the rela-
tively open subset F' of M onto a subset F™* of M*. We define T,u = uoT € L*(F)
for w € L?(F*) and carry over this definition to T,u € L*(S; L*(F)) by (T,u)(s) =
T.u(s) for u € L*(S; L*(F*)) and s € S.
Lemma 3.5 (Transformation). 1. For w € [0,n + 1] the assignment v — T,u is a
linear isomorphism from L% (S; L*(F*)) onto L% (S; L*(F)).
2. For o € [0,n + 3] the assignment v — T,u is a linear isomorphism from
£3(S; LA(F™*)) onto £5(S; L*(F)).
Proof. Let L > 1 be a LIPSCHITZ constant of 7" and set 6 = Lr. Forr > 0, t € S,
x € F we define
S, =SSN (t—r%t), Ss=SnN(t—58%1),
F.=FnQ.(x), F;=FnNQsT(x)).
1. In view of the change of variable formula T, is a bounded linear map from

L*(S; L*(F*)) into L*(S;L*(F)). For all 7 > 0,t € S, and x € F the relation
T[F,] C Fy yields

/ | T u(s)|? d\pr ds < cl/ |u(s)|? dAas- ds
r o Fr Ss Fg
for all uw € L?(S; L?*(F*)) and some constant ¢; = ¢i(n, L, M, M*) > 0. Hence, T,
maps L§(S; L?(F*)) continuously into Ly (S; L*(F)).
2. Similarly, for all r > 0,t € S, x € F, and u € L?(S; L*(F*)) we get

/T / Tuls) = ]{% ][; u(r) dAy- dr Do ds
302/55/; u(s) — ][Sé ]{:gu(T)d)\M*dT

where ¢o = cy(n, L, M, M*) > 0 is a suitable constant. Applying the minimal

2

Ay ds,

property of the integral mean value, we obtain the continuity of the map 7, from
£3(S; L*(F*)) into £5(S; L*(F)). Analogously, we prove the statements for the
inverse transformation. U

In order to get properties of MORREY and CAMPANATO spaces analogous to
Theorem 3.4 we suppose the relatively open subset F' of M to have no outward
cusps, that means, we find constants ro > 0 and ¢y > 0 such that

M(T) > cor™™! forall0<r <ry, ' €F,.
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Theorem 3.6 (Equivalence). For relatively open subsets F' of M without outward
cusps the following holds true:

1. For w € [0,n+1) the MORREY space L§(S; L*(F)) is isomorphic to the CAM-
PANATO space £5(S; L*(F)).

2. Foro € (n+1,n+3|, a= (0 —n—1)/2 the CAMPANATO space £5(S; L*(F))
is isomorphic to the space C(S;C%*(F)) N C%/%(S; C(F)) of HOLDER continuous
functions.

Sets with Lipschitz boundary. Instead of using graphs of LIPSCHITZ continuous
functions, we prefer a more general definition of sets with LIPSCHITZ boundary,
see GIUSTI [8], GRISVARD [14], GROGER [16], WLOKA [32]:

Definition 3.9 (Set with LipSCHITZ boundary). A bounded subset 2 of R™ is called
set with L1PSCHITZ boundary if for each x € 92 there exist an open neighborhood
U of x and a LipSCHITZ transformation T from U onto @ such that T[UNQ] = Q~
and T'(z) = 0.

Remark 3.8. Every set with L1PSCHITZ boundary is an open subset of R” without
outward cusps. Moreover, let 2 C R™ be a bounded open set and let T = R"\ Q
be its exterior. Then 2 is a set with LiPSCHITZ boundary if and only if 0f) is a
compact LIPSCHITZ hypersurface in R™ with 02 = 07.

Remark 3.9. Following GIusTI [8] every set {2 C R” with LIPSCHITZ boundary is an
extension domain, that means, there exists a linear extension operator which maps
H'(Q) continuously into H!(R"). Because C§°(R") is a dense subset of H!(R"), the
set of restrictions {u|Q2: u € Cg°(R™)} is dense in H'(Q), too. Together with the
properties of the LEBESGUE measure \g this ensures the complete continuity of
the trace operator Kpq from H'(Q) in L*(09Q). Due to MAZYA [24] we find some
constant cq > 0 such that the following multiplicative inequality holds true

(31) ||K8QU||%2(89) S CQ||U||H1(Q)||U||L2(Q) for all v € Hl(Q)

Definition 3.10 (Trace map). Let Q@ C R" be a set with LipSCHITZ boundary and
F' be relatively open in 0€). For the trace map we introduce the notation Krp €
L(HY(Q); L*(F)), and we define the bounded linear map Kgr : L*(S; H'(Q)) —
L*(S; L*(F)) by (Ksru)(s) = Kpu(s) for u € L*(S; H'(Q2)) and s € S.

Remark 3.10. If 7" is some L1PSCHITZ transformation from an open neighborhood
of Q into R™, then Q* = T[] is a set with LIPSCHITZ boundary. Let F be relatively

open in JN) and set F* = T[F]. Following GRIEPENTROG, REHBERG [9, 13|, for
TF = T|F we have

TF¥Kpov = KpT,v for allv € H'(QY).
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Lemma 3.7 (Transformation). For all u € L*(S; H'(Q*)) the identity TF Kg pu =
KsrpT.v holds true.

4. REGULAR SETS AND ASSOCIATED FUNCTION SPACES

For our investigations on global regularity we use the terminology of regular sets
G C R™ introduced by GROGER. Being the natural generalization of sets with
LipscHITZ boundary it allows the proper functional analytic description of elliptic
and parabolic problems with mixed boundary conditions in nonsmooth domains,
see GROGER, REHBERG [16, 17, 18], and GRIEPENTROG, RECKE [9, 10, 12].

Topological concept. Regular sets G C R" are to be understood as the union of
some set with LIPSCHITZ boundary and some relatively open NEUMANN part of this
boundary. Note, that the DIRICHLET part of the LiPSCHITZ boundary is defined
as the relative exterior of the NEUMANN part. This concept enables us to reduce
the global regularity theory for general regular sets to the case of three elementary
halfcubes representing the standard boundary conditions under consideration, see
Figure 1.
For z € R" and r > 0 we introduce the halfcubes

Qr (x) ={£eR": | —a| <7, & — m, <0},
Qi(x) ={£eR": | —a| <7, & —x, <OF,
Qf(‘”):{geQi(w)ifl—%>00r§n—xn<0}.

In the case x = 0 we shortly write Q, Q;, QF, respectively. If, additionally, r = 1,
then we use the notation Q—, QF, Q*.

Definition 4.1 (Regular set). A bounded set G C R" is called regular if for each = €

0G we find some open neighborhood U of x in R™ and a LIPSCHITZ transformation
T from U onto @ such that T[U NG] € {Q’, Qt, Qi} and T'(z) = 0.

We collect some frequently used properties of regular sets, see GRIEPENTROG,
RECKE [9, 10, 12]:

Lemma 4.1 (Topological properties). 1. Every set with LIPSCHITZ boundary is a
reqular set. Vice versa, the interior of a reqular set is a set with LIPSCHITZ boundary.
The closure of a reqular set is reqular, too.

2. For regular sets G C R™ both the NEUMANN boundary part 0, G = GNOG and
the DIRICHLET boundary part -G = 0G \ 0,G are relatively open subsets of OG
without outward cusps.
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)
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T+ 0

o

FIGURE 1. Regular set G C R" with NEUMANN boundary part
0+G = GNOG (bold line): Transformation of different boundary re-
gions near the points =, 2%, 27 € G to corresponding halfcubes Q,
Q*, Q" representing the cases of DIRICHLET, ZAREMBA (or mixed),
and NEUMANN boundary conditions.

3. If G C R™ is a reqular set and T is a LIPSCHITZ transformation from an open
neighborhood of G into R™, then T[G] is reqular, too.

Lemma 4.2 (Atlas). For every regular set G C R"™ we find an atlas of charts
(T, Uh), ..., (T, Up) with the following properties:
1. Uy, ..., U, are open neighborhoods of points x1, ..., xm € G in R".
2.T,...,T,, are LIPSCHITZ transformations from Uy,..., U, into R™.
3. Introducing the index sets

JOZ{iE{l,...,m}ISCiGGO}, le{ie{l,...,m}:xieﬁG},

we have the inclusions

(4.1) ocGc|Ju, |JUce, Gclu.
i€Jy i€y i=1
4. For alli € {1,...,m} the above transformations satisfy

5. The subfamily {(TZ, U) i€ Jl} is an atlas of 0G.
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Function spaces and invariance principles. We define function spaces associ-
ated with relatively open subsets U C R" of regular sets G C R". Let V C R" be
relatively open in U, and I C R be an open subinterval of S.

Definition 4.2 (SOBOLEV space). By Hi(U) we denote the closure of
Coo(U) = {u|U° s u € C*(R™), supp(u) N (U\U) = o}
in the space H'(U®). We write H~'(U) for the dual space of H}(U).

In the following we collect extension, transformation, and reflection principles for
SOBOLEV spaces:

Definition 4.3 (Zero extension). For the zero extension map we introduce the
notation Zy : Hy(V) — Hy(U), and we define the operator Zsy : L*(I; Hy(V)) —
L2(S; Hy (U)) by

Zyu(s) ifsel,

0 otherwise,

(Zspu)(s) = { for u € L*(I; Hy(V)).

Because the zero extension map Zp is a linear isometry from HJ (V') into H}(U),
see GRIEPENTROG, REHBERG [9, 13|, we get

Lemma 4.3 (Zero extension). Zsy is a linear isometry from L*(I; HY(V)) into
L2(S; Hy(U)).

Let T be a LIPSCHITZ transformation from an open neighborhood of G into R",
and set U* = T[U], V* = T[V]. Then T, is a linear isomorphism from HJ(U*) onto
H;(U), where

T.Zyu= ZyTou for all u € Hy(V*),
see GRIEPENTROG, REHBERG [9, 13]. Hence, Lemma 3.2 leads to
Lemma 4.4 (Transformation). For w € [0,n + 2] the operator T, is a linear iso-
morphism between LY (S; Hy(U*)) and L(S; HY(U)). We have
T.Zsu-u=2ZsuTau  forallu € L*(I; Hy(V*)).

Following GIUSTI [8], GRIEPENTROG, REHBERG [9, 13] the reflection R* is a
bounded linear operator from H}(Q1) into Hi(Q) as well as from H'(Q™) into
H'(Q). The antireflection R~ maps HJ(Q~) continuously into H}(Q). Due to
Definition 3.5 we have

VR'u=R"Vu forallue HY(Q),
VR u=R Vu forallue H)(Q).

In view of Lemma 3.3 this yields
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Lemma 4.5 (Reflection). For w € [0,n + 2] the map R* is a bounded linear
operator from LY (S; HY Q™)) into LY (S; HYH(Q)) as well as from L (S; HY(Q™))
into LY (S; HY(Q)). In addition to that, R~ is a bounded linear operator from
LY (S; Hy(Q7)) into LY (S; Hy(Q)), and we have

IRl Ly (s @y < V2 lullysmq-y for allu € LY (S; HY(QT)),

IR ull g s @y < V2 lullig sy for all u € L5 (S; Hy(Q7)).

Definition 4.4 (Even and odd part). Let the maps N : R" — R" and P : R — R"
defined by

Nz = (&,—z,), Pz =(&,—|z,|) forz= (& z,)€R",
and consider the symmetric union
Q*(7) = Q,(z) UQ.(Nx) for x € R" r > 0.
Then, for z € Q, 7 > 0, and u € L*(Q*(x) N Q) we define the even part O} (z)u €
L*(Q.(Pz) N Q) and the odd part O (z)u € L*(Q.(Pz) N Q™) of 2u by
(O (@)u)(§) = u(€) + u(N§) for £ € Q.(Pr)NQ~,
(O, (@)u)(§) = u(§) —u(N§) for £ € Q(Pr)NQ~.

In the case x = 0, r = 1 we simply write O and O~.
We carrying over the definition to u € L*(I; L*(Q*(x) N Q)) by setting

(OF(z)u)(s) = Of (z)u(s) forsel,
(0, (z)u)(s) = O, (z)u(s) forsel,

(
(

and we use the notation O and O~ in the case x =0, r = 1.

Following GRIEPENTROG, REHBERG [9, 13], for all x € @ and r > 0 both the
maps O, (z) : HY}(Q*(x) N Q) — HYNQ,(Px)N Q") and O, (z) : H}(Q*(z) N Q) —
H(Q,.(Px) N Q™) are bounded linear operators, and

Ot Zgu = Zg+O} (z)u for all u € Hy(Q2(z) N Q),
O™ Zgu= Zgy-O; (z)u for all u € Hy(Q(z) N Q).
Consequently, this yields

Lemma 4.6 (Even and odd part). Let x € Q and r > 0 be given. Then both the
operators Of (x) : L*(I; HY(Q?*(x) N Q)) — L*(I; HY(Q.(Px) N Q™)) and O, (x) :
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LX(I; Hy (Q*(2)NQ)) — L*(I; HY(Q.(Px) N Q™)) are bounded linear operators, and
we have

0" 2sou = 2o+ O (x)u  for allu € L*(I; Hy(Q*(z) N Q)),

O Zsou = 2so-0, (z)u  for allu € L*(I; Hy(Q(z) N Q)).

s

5. SOBOLEV-MORREY SPACES OF FUNCTIONALS

Again, we assume that U C R" is a relatively open subset of the regular set G C R".
Moreover, let V' C R" be relatively open in U, I C R be an open subinterval of .S,
and w € [0,n + 2].

Function spaces and invariance principles. In the same spirit as the well-
established MORREY spaces of functions, we construct a new scale of SOBOLEV—
MORREY spaces of functionals as subspaces of L?(S; H=*(U)). We generalize an idea
of RAKOTOSON [25, 26| to the purpose of evolution equations, see GRIEPENTROG [9]:

Definition 5.1 (Localization). 1. We define the localization f — Ly f from H'(U)
into H~*(V) as the adjoint operator to the zero extension map Zy : Hy(V) —
H;(U), that means,

<LVfaw>Hé(V) = ([, ZUw>Hg(U) for w € HS(V)-

2. To localize a functional f € L*(S; H Y(U)) we define the assignment f + Ly f
from L2(S; H=Y(U)) into L*(I; H~*(V)) as the adjoint operator to the zero extension
map Zsy : L*(I; HY (V) — L*(S; HY(U)):

(Lrvfw) agmony = (F Zsow) 2smany  for w e LI Hy(V)),
Remark 5.1. Using the properties of Zg, see Lemma 4.3, we get
||£}I7Vf||L2(I;H—1(V)) S ||f||L2(S;H_1(U)) fOl" all f - LQ(S7 H_l(U))

Definition 5.2 (SOBOLEV-MORREY space). We define the SOBOLEV-MORREY
space Ly (S; H-Y(U)) as the set of all elements f € L*(S; H~1(U)) for which

osmawy = s / VLv £ ()220 ds

(I,V)e8rxUyr
r>0

has a finite value. We define the norm of f € Ly (S; H-(U)) by
Hf”%;’(S;H*l(U)) = ”f”%ﬁ(s;H*(U)) + [f]%g(s;Hfl(U))-
For w < 0 we set Ly (S; H-Y(U)) = L*(S; H1(U)).
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Remark 5.2. For fixed ry > 0 we get an equivalent norm on L4 (S; H-1(U)), if we
take the supremum over 0 < r < rg, only.

Lemma 5.1. The spaces L3 (S; H'(U)) are BANACH spaces.

Proof. To prove of the completeness of Ly (S; H-*(U)) let (f;) be a CAUCHY se-
quence in LY (S; H-*(U)). Due to the continuous embedding of Ly (S; H (U)) in
L*(S; HY(U)) the sequence (f;) converges in L?(S; H '(U)) to some limit f €
L*(S; HY(U)). We fix § > 0 and choose £y(d) € N such that

”ff+k — fZHL‘Q"(S;H_l(U)) S 0 for all g, k € N with ¢ Z go((S)
Forallr >0, €8, and V € U, we get
rNLrv (f = follferm—rwy < 20 1Ly (f = fero) T2y + 207

Passing to the limit £ — oo and taking the supremum over all » > 0, [ € §,, and
V e U,, we arrive at

If = fell2s sy < 20° for all £ € N with £ > ((0),
in other words, (f,) converges to f in L% (S; H-Y(U)). O]

We show that the above SOBOLEV—MORREY spaces are invariant with respect to
localization, LIPSCHITZ transformations, and reflection.

Definition 5.3 (Multiplication). The product xf € L*(S; H ' (U)) of the function
X € C5°(R™) and the functional f € L*(S; H'(U)) is defined by
(XS w) r2ssmary = (F XW) ey for w e L2(S; Hy(U)).
Remark 5.3. Obviously, we find some constant ¢ = ¢(x) > 0 such that
IXFllzzessir-rwy < ellflrasn-ry  forall f € L*(S; HH(U)).

Lemma 5.2 (Multiplication). For all x € C§°(R") the assignment f +— xf is a
bounded linear map from L (S; H 1 (U)) into itself.

Proof. Let f € L4(S; H Y(U)) be given. For all v > 0, I € §,, V € U,, and
w € L*(I; H (V') we obtain
<51,v(Xf), w>L2(1;H3(V)) = (xf, ZS,Uw>L2(S;H&(U))
= ([, Zs,u(xw)) 2(8;m8 (1)
= (Lrvfoxw) e vy,
and [xflre(s;a—1wy) < ¢[flrg(s;a—1wy), which finishes the proof. O
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Lemma 5.3 (Localization). The restriction f — Ly f defines a bounded linear
operator from Ly (S; H-Y(U)) into Ly (I; H=1(V)).
Proof. Let f € Ly(S; H*(U)), and t € I, x € V, r > 0 be given. Setting
L=In{t—7r%t), S.=8Sn(t—rit),
U =UNQ(x), Vi=VNnQ.(r),
for all w € L*(1,; H}(V,)) we get

Loy [y w) emyvy) = (F Z2sow) s, m )
= (Ls,.0.fs 23,0, W) 25,11 1,)) -
We obtain (L1 v flrym-1(vy) < [flog(s;m-1(v)), which proves the assertion. O
Definition 5.4 (LipSCHITZ transformation). Let 7" be a L1PSCHITZ transformation
from an open neighborhood of G into R™ and set U* = T'[U]. We define the assign-
ment f — T*f from L*(S; H-Y(U)) into L*(S; H~1(U*)) as the adjoint operator of
T, : L*(S; HY(U*)) — L*(S; HL(U)), that means,

(T°f, w)L?(s;Hg(U*)) = ([ 7*w>L2(s;Hg(U)) for w € Lz(S; H(}(U*))-

Remark 5.4. By the transformation invariance of SOBOLEV spaces, see Lemma 4.4,
we find some constant ¢ = ¢(7") > 0 such that

||(‘T*f||L2(S;H*1(U*)) S C ||f||L2(S;H*1(U)) fOI‘ all f - LQ(S7 H_l(U))
Lemma 5.4 (Transformation). The assignment f +— T*f is a bounded linear map
from Ly (S; H-Y(U)) into Ly (S; HY(U*)).

Proof. Let L > 1 be a L1PSCHITZ constant of 7" and set 6 = Lr. Forr > 0,t € S,
and y € U* we introduce the sets

S, =Sn({t—7r%4t), Ss=8SnN(t—¥t),
Ur=U"NQ:y), Us=UNQs(T(y)).
Let f € LY (S; H-*(U)). In view of the the inclusion T~[U] C Us and the prop-
erties of the extension operators with respect to LIPSCHITZ transformations, see
Lemma 4.4, for all w € L*(S,; H}(U)) we get
(Ls,v: T fw) 25,513 wx)) = (T f, L) L2(5: 13 (U+))
= (f, TZsu-w) p2(s;m3(0))
= ([, Zs,uZs5,us Tew) 2,11 (1)
=

LS&U& f; ZSé,UaT*w>L2(S(;;H3(U5))>
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and [T* f]resm-1w+y) < ¢[flpgsm-1wy for all f e Ly(S; H'(U)) and some con-
stant ¢ = ¢(T") > 0, which proves the result. O

Definition 5.5 (Reflection). The reflection f +— RTf from L?(S; H 1(QT)) to
L*(S; H1(Q)) is defined as the adjoint operator of the map O : L?(S; H}(Q)) —
L*(S; H(QT)), that means,

(REfow) r2s,m1 ) = (F, O w) 2s,maey  for w e L2(S; Hy(Q)).

The antireflection f — R~ f from L*(S; H 1(Q7)) to L?(S; H™*(Q)) is defined as
the adjoint operator of O~ : L*(S; H3(Q)) — L*(S; H}(Q7)),

(R [ w) 2ssmi@) = (F, 07 w) pagsimi-y  for w e L*(S; Hy(Q)).
Remark 5.5. By the properties of O and O, see Lemma 4.6, we get
IR Fll2(sr-1@) < V2 fllasim-1igry forall f e L2(S; H-H(QY),
IR Fll2(sr-1@) < V2 flleasin-1ig-y forall fe LA(S; HTH(Q)).

Lemma 5.5 (Reflection). The assignment f +— R f is a continuous map from
Ly(S; HYQT)) into LY (S; HYQ)). Analogously, the assignment f — R~ f maps
L (S; H 1 Q™)) continuously into Ly (S; HH(Q)).

Proof. We consider r > 0, [ € §,, x € () and introduce the sets
C=QNQ.(z), Co=CUN[C]=Qz)NQ, CT"=Q" NQ.(Pz).

Let f € Lg(S; H1(Q™)). Due to the properties of O (x), see Lemma 4.6, and the
zero extension operators, for all w € L*(I; H}(C)) we get

(LroRYfow) 2oy = (RTf, Zsow) r2is.m )
= (f, 07 2s502r,0,W) 12(5:113(@*))
= (. 25,0+ 0, (£)Z1,0,w) 125,130 +)
= (Lrc+f, 05 (2)Zr.0,w) r2(rsm3 (0.

and, therefore, the estimates

(R flrsssm-1@) < V2[fligsin-rgey forall f € Ly(S; H(QY)),
(R flrssim-1@) < V2 [flissn-1g-y forall f € Ly(S; HHQ)),

where the second one follows analogously to the first one. 0
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Examples of functionals. We consider examples of elements from L4 (S; H~1(G)),
which cover a broad class of applications, see also Remark 3.4 and 3.7.

Theorem 5.6. Let F' be a relatively open subset of the boundary OG. Then the map
(9,90, 9r) — [ defined by

(fsw) 25,130 // s) + go(s)w(s)) X" ds

+/S/ng(8) Kpw(s) dAag ds

for w € L*(S; H}(Q@)), is a bounded linear operator from
Ly (S5 L*(G* R™)) x Ly™*(S5 L*(G®)) x L5~ (S; L*(F))
into L (S; H-Y(Q)), and its norm depends on n, F, and G, only.
Proof. 1. Let {(T1,U1), ..., (T)n, Un) } be an atlas of G which satisfies (4.1) and (4.2),

see Lemma 4.2. Furthermore, let L > 1 be a common LIPSCHITZ constant for all
the transformations. In view of the LEBESGUE property of the covering we choose
some ¢ > 0 such that for all x € G the open cube Qs(z) is contained in one of the
neighborhoods Uy, . .., U,,. We decompose {1, ..., m} into the sets

:{iE{l,...,m}:ECGO}, J1:{iE{l,...,m}:UiﬂaG#Q}.

We consider three different types of functionals:
2. Let f € L*(S; H(@G)) be defined by

(fsw)r2esimia // s)d\"ds for w € L*(S; Hy(Q)).

Then, for all7 > 0,1 €8,,V €§,, and w € L*(I; H}(V)) we have

vt )il < [ [ lo@Pavds [ [ vus)a s
1JVv 1JV

Hence, we get

6.0) 1w ey < [ [ o) aw ds
3. Next we consider the functional f € L?(S; H~Y(G)) defined as
(fsw) 25,13 // go(s)w(s)d\"ds for w € L*(S; Hy(QG)).

Forallr >0,1€8,, V&g, and we L*(I; H)(V)) we obtain

}(LIV]C w>L2(1H1 V) //|go |2d)\nd$//|w (5)|? dA™ ds.
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3.1. Assume that Qs(x) C U; holds true for some index i € Jy. Note, that for
all 0 < r < ¢ we have Q,(z) C G. For all I € §, and w € L*(I; H}(Q,(z))) the
SOBOLEV—-FRIEDRICHS inequality yields

// (5)[*d\" ds < 4r? // [Vw(s)|* dA™ ds.

3.2. Otherwise we have Qs(z) C U; for some index i € J;. Setting
y:ECU) € Q+7 U:ﬂil[QLrQ/)L V:GﬂQr<x>7

for all 0 < r < §/L* we get the inclusions

Qr(x) cUCQs(x), T[VICQ NQr(y), VcCcGnU.
Forall 0 <r <{§/L* [ €8,, and w € L*(I; H} (V) we set

w; = [Ti_l]*zl,GmUw S LZ(L Hol(QLr(y) N Q+))

Applying the SOBOLEV—-FRIEDRICHS inequality we get the estimate

// |w(3)\2d)\"ds§01// lw;(s)]* dA™ ds
1Jv 1JQLr(y)NQ~
< dey(Lr)? / / |V ws(s)|? A" ds
1 Lr(y)mQ7

§02T2// [Vw(s)||* dA™ ds,
rJv

where the constants c;, co > 0 depend on n and L, only.
3.3. We have found a constant c3 = c3(n, L) > 0, such that for all 0 < r < §/L?,
I1e€8,,Ves, andwe L*(I; H(V)) we have

2 n n
‘(LI,Vf,w>L2(1;H5(V))‘ §037’2//|g0(5)\2d)\ ds// HVw(s)HQd)\ ds,
1Jv 1Jv
and, hence,
(5.2) 21w ey < o [ [ ()P s

4. We extend gr € L3 '(S; L*(F)) by zero to a function which belongs to the
space Ly 1(S; L2(0G)). Hence, it suffices to consider the case F' = G, only. Since

the trace map Ky from H}(G) into L?*(F) is continuous, we define a functional
feL*S;H1(G)) by

(fsw) L2(s;H3 () :/S/ng(s) Krw(s)d\pds for w e L*(S; Hy(G)).
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Let r >0,z € G, I €38,, and set
V=GNnQ.(z), I'=FNQ. ().
For all w € L*(I; H}(V)) we obtain

‘(LI,Vf7w>L2(I;H(}(V))‘2S//‘9F<S>|2d>\Fd3//‘KFw<3)‘2d)\FdS-
IJT IJT

To estimate the second integral of the right hand side it is sufficient to consider
0 <r <4/L? and x € G which satisfy I' = F N Q,(z) # &. In that case we find an
index i € J; with Qs(z) C U;. Moreover, setting again

y="Tx) €Q", U=T;"[Quy),
we get the inclusions
Qr(r) CU CQs(z), TVICQ NQL(y), VcCGNU.

Forall 0 < r < 4§/L* and x € G with ' = FNQ,(z) # &, every [ € §, and
w € L*(I; H} (V) we set

w; = [7;1]*ZI,GﬂUw S L2([§ H&<QLr(y) N Q+))

Using the SOBOLEV—FRIEDRICHS trace inequality we obtain the estimate

//|pr(s)|2d)\pds§c4// | K500y, o) wi(s)]* dAs ds
rJr I J30QLr(y)
< 204Lr// | Vw;(s)||* dA™ ds
I Q_QQLT(?J)

§c57’// [Vw(s)|]? d\™ ds,
rJv

where the constants ¢y, ¢ > 0 depend on n and L, only. Thus for all 0 < r < §/L?,
r€G, I€S,,andwe L*(I; H}(V)) we have proved

oty < [ [lors)Pareds [ [ v o s,
rJr rJv
where V =GN Q,(x) and I' = F N Q,(x), which yields

(5.3) 1orv P < car / / lgr(s)? A ds.

5. Combining (5.1), (5.2), and (5.3) we end up with the desired result. O
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6. SOBOLEV-MORREY SPACES FOR EVOLUTION EQUATIONS

Suppose that U C R" is a relatively open subset of the regular set G C R". Fur-
thermore, let V' C R™ be relatively open in U, I C R be an open subinterval of
S = (to,t1), and w € [0,n + 2].

For our following considerations let € € (0, 1] be constant. We define the duality
map Jy : H — H* on the HILBERT space H = L*(U°) as usual by (Jyv,w)y =
(v|w)y for v, w € H, but note, that we equip H with the weighted scalar product

(v|w)H:/avwd)\" for v, w e H,
U

where a € L*(U°) is a nonsmooth capacity coefficient, which is supposed to be
e-definite with respect to U°, that means, we assume that

1
e <essinfa(y), esssupa(y) < -
yelUe yelUe° €

holds true. Corresponding to Section 1 we set Y = H}(U), and we consider some
closed subspace H}(U) € X C H'(U°) of H'(U°) equipped with the usual scalar
product. We choose for K the completely continuous embedding of X into H. Then,
the set K[Y] is dense in H. The map F = (K|Y)*JgK : X — Y*, associated with
the coefficient a being e-definite with respect to U°, is a bounded linear operator.
Its restriction E|Y onto Y is symmetric and positively semidefinite:

(Ev,w)y = (JuKv, Kw)g = (v|lw)g for allv, w € Y.
We define the bounded linear operator € : L?(S; X) — L?*(S;Y™) associated with S
and E via (&u)(s) = Fu(s) for u € L*(S; X) and s € S.
Based on Definition 1.1, 3.2, and 5.2, we construct our class of SOBOLEV-MORREY

spaces suitable for the regularity theory of second order parabolic boundary value
problems with nonsmooth data, see GRIEPENTROG [9, 11]:

Definition 6.1 (SOBOLEV-MORREY space). We define the SOBOLEV-MORREY
space W (S;X) as the set of all elements u € L§(S5; X) for which the weak time
derivative (Eu) of Eu € L*(S;Y™*) exists and belongs to Ly (S;Y*):

Wi (S; X) ={ue Ly(S; X) : (Euw) € LY(S;Y™)}.
We introduce the norm of an element u € W (S; X) by

HUHIQ/VE(S;X) = HuHig(s;X) + ”<8u)/H%§J(S;Y*)'
For w < 0 we set Wi (S; X) = Wg(S; X).

Lemma 6.1. The function space W (S; X) is a BANACH space.
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Proof. 1. Note, that the functional is correctly defined for u € W§(S; X), and that
it has the properties of a norm.

2. To prove the completeness of W§(S; X), let (ux) be a CAUCHY sequence in
WE(S; X). Then (ug) and ((Euy)’) are CAUCHY sequences in the BANACH spaces
Ly (S; X) and Ly(S;Y™), respectively. Hence, for k — oo both sequences converge
in Lg(S; X) and Lg(S;Y*) to some functions v € L§(S; X) and f € L§(S;Y™),
respectively. The continuity of the operator € : L*(S; X) — L?(S;Y*) and the
embeddings from L% (S; X) into L?(S; X) and from L% (S;Y™*) into L*(S;Y™) yields
the convergence of (Euy) to Eu in L*(S;Y*) and of ((Euy)’) to f in L*(S;Y™).
Passing to the limit £ — oo in

/S((Suk)’(s),w)y I(s)ds = — /S((Suk)(s),w)y V' (s)ds,

for all ¥ € C§°(S) and w € Y we get

/ (F(s), w)y 9(s) ds = — / () (5), why (s) ds
S S
which proves (Eu)' = f € Ly(S;Y™*) and u € WE(S; X). O

Invariance principles. We consider the behaviour of functions from the above
SOBOLEV-MORREY spaces with respect to localization, LIPSCHITZ transformations,
and reflections.

Lemma 6.2 (Multiplication). Let X = H(U°) and Y = H}(U). Then, for every
X € CP(R™) the assignment u — xu is a bounded linear map from W (S; X) into
itself as well as from WEW(S; Y') into itself.

Proof. Because of Remark 3.2 and Lemma 5.2 for all u € W§(S; X) we have
xu € Ly(S;X), x(Eu)' € L3(S;Y7),
and we find some constant ¢ = ¢(y) > 0 such that
Ixullzgs:x) < ¢ llullzgs:x),
Ix(Eu)llzg(sive) < cll(€w)llogsys)-

Because of the identities €(xu) = xEu and (yEu) = x(Eu) this yields yu €
W (S; X) with a corresponding norm estimates. The multiplier property in the
space Wiy (S;Y) follows analogously. O

Lemma 6.3 (Localization). Let E € L(H'(U®); HY(U)) be associated with the
coefficient a and consider the map Ey € L(HY(V°); H (V) associated with the
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restricted coefficient ay = Rya. Then the assignment uw— Ry yu defines a bounded
linear map from Wg(S; H'(U®)) into Wi, (I; H'(V°)).

Proof. Due to Lemma 3.1 and 5.3 we observe that for all u € Wg(S; H'(U?))
Ryvu € Ly (L HY(V®)), Lryv(&u) € Ly(I; H'(V)),
and we find some constant ¢ > 0 such that

||RI,VU||L§’(I;H1(V°)) <c ||U||L§’(S;H1(U°))v
1Crv(€u) |y rsm—rvy < ell(€) || Ly(sin—wy)-
Let &y : L*(I; HY(V°)) — L*(I; H'(V)) be associated with I and Ejy. Since
EvRivu = LryEu and (LryvEu) = Lry(Eu) holds true this yields R;yu €
Wi, (I; H'(V°)). The result follows from the above estimates. O

Lemma 6.4 (Transformation). Suppose that T is a LIPSCHITZ transformation from
an open neighborhood of G into R™ with a LIPSCHITZ constant L > 1. Moreover,
we set U, = T[U], and consider

X =HYU®), Y =Hy(U), X,=H'UY), Y,=HU,).
Let e, = ¢/L™ and E, € L(X,;Y)) be associated with the transformed coefficient

a, = |JT7Y| - T ta, which is e,-definite with respect to US. Then the assignment
u— T, u defines a bounded linear map from Wg(S; X) into Wg (S; X.) as well as

from WE‘Y(S; Y') into Wg*‘y*(s; Y,).
Proof. Using Lemma 3.2 and 5.4 for all u € Wg(S; X) we get
Tl e I5(S;X.), T (8u) € L(S; Y7,
and we find some constant ¢ = ¢(7") > 0 such that
177 ey esixn) < cllullzgsix,
1T (€u) g sivey < e () [l (sve)-
Let &, : L*(S; X,) — L*(S;Y}) be associated with S and E,. Due to &,T,'u = T*Eu
and (T*Eu)’ = T*(Eu)’ this leads to the desired result T, 'u € W (S; X,) together

with the norm estimates. The proof of the continuity of the map u + T 'u from
Wiy (S;Y) into Wiy (S;Y5) is exactly the same. O

Lemma 6.5 (Reflection). Let both the maps E+ € L(H}(QT); H-Y(QT)) and E~ €
L(HNQ™); H Q™)) be associated with the coefficient a™ which is assumed to be e-
definite with respect to Q~, and consider the operator E € L(H}(Q); H1(Q)) asso-
ciated with the reflected coefficient a = Rta™ being e-definite with respect to Q). Then
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the assignment u — Rtu maps Wi, (S; Hy (Q")) continuously into Wg(S; Hy(Q))
and the assignment u — R~ is a bounded linear operator from W¢_(S; HH Q™))
into Wi(S; Hy(Q)).

Proof. Let the maps €T, €7, & be associated with S, E*, E~, E, respectively.
Applying Lemma 4.5 and 5.5, for all u € W, (S; H}(QT)) we obtain

Ru € L5(S; Hy(Q)), RT(ETw) € Ly(S; HH(Q))
together with the estimates

IR ull g (s5m3.)) < V2 lull g (s:m20+))»
IR (€ ) ||y sim-1@) < V2II(EW) || g(s:-10+))-

Using the identities ERTu = RTETu and (RTETw) = RFT(EFw) this yields Rtu €
Wi (S; HY(Q)) which leads to the desired result. Analogously, we get ER™u =
R€ wand (R™E u) =R (Eu) for all u € Wg_(S; Hj(Q™)) and, hence, R™u €
We(S; H} (Q)) together with the corresponding norm estimates. O

Embedding theorems. We prove the (complete) continuity of the embedding of
SOBOLEV-MORREY spaces in CAMPANATO spaces. Here, the key estimate is some
variant of the POINCARE inequality, see Theorem A.3.

Lemma 6.6. Let 0 < 6 < 1 and E € L(HY(Q); H1(Q)) be associated with the
coefficient a which is assumed to be e-definite with respect to Q. Then we find a
constant ¢ = c(e,w,n,d) > 0 such that for all u € Wg(S; HY(Q))

[l ayv2(s.c2() < € (HHVuHH%g(s;L%Q)) + H(E“)/”%g(s;ffﬂ@))) '

Proof. Let 0 <r <1—6,1 €8, and x € Q5. Applying the minimal property of
integral mean values and Theorem A.3 we find a constant ¢; = ¢i(e,n) > 0 such
that

/I / (@)NQs

2
d\" ds

u(s) — ]{ ][ TN

< /I / RCE ]{ ][ s

= 017«2/[ (/Q (@) [Vu(s)||* dA™ + IILQTm(Eu)'(3)||§f—1<czr<x>>) ds.

2

d\" ds
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Hence, there exists a constant ¢y = co(e,w,n,d) > 0 such that for all functions
u € W¥(S; HY(Q)) the estimate

6225200 < € (V550200 + 1€ g si-10n)
holds true. OJ

Lemma 6.7. Let 0 < 6 < 1 and E € L(HYQ™); H Q™)) be associated with the
coefficient a which is assumed to be e-definite with respect to Q~. Then we find a
constant ¢ = c(e,w,n,d) > 0 such that for allu € Wg(S; H{(Q™))

[U]Qggu(s;p(%—)) <c (H HVUHH%g(S;LQ(Q—)) + ||(8U)/||%g(S;H—1(Q—))) :

Proof. Let 0 < r < min{d,1 — ¢}. Furthermore, we consider / € §, and = € Q.
Note, that Q,(xz) N Qy is included in the cube Q,(y) C @~ if we set y = (9,yn),
y = & and y,, = min{z,, —r}. Using the minimal property of integral mean values
and Theorem A.3, we obtain

/I/ r(@)NQ; v ]{][ H(©)NQ5 uraxdr
= /z/r(y) us) - ]{ ][r(y)u(T) d\" dr

<ot [[(f  ITUOI D+ g (€0 s )
rY

where ¢; = ¢i1(e,n) > 0 is some constant. Therefore, we find a further constant

¢y = ca(g,w,n, ) > 0 such that for all u € Wg(S; H{(Q7))

2

d\" ds

2

d\" ds

W22y < © (Vg2 + 1€ 125 10
holds true. ]

Theorem 6.8 (Continuous embedding). If E € L(H'(G®); H Y(G)) is associated
with a coefficient a being e-definite with respect to G°, then the space W¥(S; H'(G®))
is continuously embedded in £57%(S; L*(G®)).

Proof. 1. Let Q@ = G° and {(Tl, U)o, (T, Um)} be an atlas of G, see Lemma 4.2.
Furthermore, let L > 1 be a common LIPSCHITZ constant for all the transformations,
and {x1,...,Xm} C C(R™) be a smooth partition of unity subordinate to the
above covering. In view of the LEBESGUE property of the covering we choose radii
0 < ¢ < <1 such that the sets

Vi =T (Qx], Vi=T7"(Qs,
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satisfy the condition
supp(x;) CV/ CcV; forallie {1,...,m}.

Hence, {V{,...,V/}and {V4,...,V,,} are still open coverings of G. We consider the
decomposition of the set {1,...,m} into the index sets

Jo={ie{l,...om}:U;CQ}, Ji={ie{l,....m}:U;NO0N#o}.

2. Let u € Wg(S; HY(Q)). For every i € {1,...,m} we define the map E’ €
L(HYV; N Q); H1(V; N Q)) associated with the restricted coefficient a' = Ry.~qa
being e-definite with respect to V; N€). Since V; N is an open subset of G for every
i€ {l,...,m}, the localization principle, see Lemma 6.2 and 6.3, leads to

u; = Rsvina(xiu) € Wii(S; H' (VN Q)
and the estimate
[willwe, s viney) < erllullwgs;a @,

where ¢; > 0 is some constant depending on w and G, only.
We introduce inverse transformations and transformed coefficients by

T"=T':Q—U=UnNQ, da =|JT"| -Ta" foric Jy,
T"=T71Q : Q" —U;NQ, da. =|JT" -T'a" foriec J.
Due to the properties of the JACOBI determinant JT°, the coefficient a is €,-definite
with respect to Qs for i € Jy and to Q5 for i € J;, where ¢, = ¢/L". We con-
sider the operators Ei € L(HY(Qs); H*(Qs)) associated with a® for i € Jy and

El e L(HYQ5); HH(Qj)) associated with @’ for ¢ € J;. From the transformation
invariance, see Lemma 6.4, it follows that

Tiu; € Wi (S5 HY(Q;)) foralli € Jy,
Tiu,; € Wi (S; HY(Q5)) forall i€ J;.
Moreover, we find some constant ¢y = c3(n, e, w,d, L, G) > 0 such that
||(‘Tiui||ng(S;H1(Q5)) < e [Jullwyg(s.aie) foralli € Jo,
|’ﬂui|ngi(S;Hl(Qg)) < e |ullwesimi ) foralli € Ji.
Setting v; = Rgyna(xiu) and applying Lemma 6.6 and 6.7, we get
Tiv; € L572(S; L*(Qs))  for all i € Jy,
T, € £572(S; L*(Qy)) foralli € J.
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Additionally, we find some constant ¢3 > 0 depending on the quantities n, &, w, ¢,
0, L, and G such that

”Tivngngz(S;Lg(Qy)) < C3 HUHW};(S;Hl(Q)) for all 7 € Jo,
||(‘Tj<vi||£‘;+2(S;L2(Q6_,)) < e ||lullwesimi ) forallie Ji.

Using Lemma 3.2, the transformation invariance of CAMPANATO spaces leads to
v; € £572(S; L2(V/ N Q)) together with the estimates

”’UZ'”’Q;J‘FQ(S;LQ(‘/Z’IOQ)) S Cy HUHWE(S,Hl(Q)) fOI‘ all 7 c {1, e ,m},
where ¢y = ¢4(n,e,w, 0,8, L, G) > 0 is some constant. Since x; € C§°(R"™) satisfies

supp(x;) C V/ for every i € {1,...,m}, we extend v; by zero to see that y;u €
£572(S; L*(Q)) and

Ixiull gov2(s.r20y) < €5 lullwgsimqy forallie {1,...,m},

where the constant ¢5 > 0 depends n, €, w, 6, ¢, L, and GG, see Remark 3.3. Summing
up, for all u € Wg(S; H'(2)) we obtain the estimate

[ull w2520y < Z IXiull gor2s12(0)) < s l|ullwgs o)),
i=1

which finishes the proof. O

Theorem 6.9 (Completely continuous embedding). Let o € [0,w + 2) be given,
and let E € L(HY(G®); H-Y(Q)) be associated with the coefficient a being e-definite
with respect to G°. Then the embedding of W (S; HY(G®)) in £572(S; L*(G®)) is
completely continuous.

Proof. Let (uy) be a bounded sequence in W(S; H'(G°)) and 6 > 0. Due to
Theorem 1.10 the embedding of Wg(S; H'(G®)) in L*(S; L*(G°)) is completely
continuous. Together with the continuity of the embedding of W¥(S; H'(G®)) in
Wg(S; HY(G®)) we find an increasing subsequence (k;) C N and some ¢y = £4(5) > 0
such that
|| ug, — Usz%2(s;L2(Go)) <4é foralli, £> 4.
We introduce the notation # = o/(w + 2) and use the minimal property of the
integral mean value to get
[uki - uke]%g(S;LQ(G’O)) < Hu/ﬂ - uke”%g?se;L?(GO)) [u/ﬂ - ukf]?}%’“(S;L?(GO))

< §1-¢ [ukl — ukl]?{:e;’“(s;L?(GO))'
In view of the boundedness of (u;) in W¥(S; H'(G®)) and the arbitrary choice of
0 > 0 at the beginning of the proof, the continuity of the embedding operator from
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We(S; HY(G®)) in £572(S; L*(G°)), see Theorem 6.8, yields the convergence of the
sequence (ug,) in £3(S; L*(G®)). O

Trace theorems. Finally, we show the (complete) continuity of the trace map from
SOBOLEV-MORREY spaces in CAMPANATO spaces. Again, these results are based
on some variant of the POINCARE inequality, see Theorem A.4.

Lemma 6.10. Let 0 < d < 1 and E € L(HY(Q™); H Q™)) be associated with the
coefficient a which s supposed to be e-definite with respect to Q—. We find some
constant ¢ = c(e,w,n,d) > 0 such that for all u € Wg(S; HY(Q™)) we have

[KS,E(SU]QQS"H(S;LQ(Z&)) <c (HHVUHH%‘;(S;LQ(Q—)) + ||(8U),||%g(S;H—1(Q—))> :

Proof. Let 0 <r <1—6,1 € §,, and x € ;5. Using the minimal property of integral
mean values and Theorem A.4 we find a constant ¢; = ¢;(e,n) > 0 such that

/ / Ksu(s) — ][ ][ Ksu(r) dis dr
1 r(@)NEs 1 r(@)NEs
</
IJ%(x)

< Clr/l (/Q( | IVu(s)|* dA" ds + ||LQr(x>(8“)/(5)”§fI(Q:(x») ds.

Hence, there exists a constant ¢y = co(e,w,n,d) > 0 such that for all functions

u € Wg(S; HY(Q™)) the estimate

2

dXs ds

2

dXs, ds

KgU(S) — ][I‘ - )Kz;u(T) d)\g dr

[KS,ZN]QQ;H(S;LQ(E&)) <6 (HHVUHH%‘;(S;LQ(Q—)) + ||(8U)/||%g(s;ﬂ—1(cg—))>
holds true. O

Theorem 6.11 (Continuous trace map). Let E € L(H'(G°); H (QG)) be associated
with the coefficient a being e-definite with respect to G°. Then the trace map Kgac
is a bounded linear operator from W (S; HY(G®)) in £57(S; L*(0G)).

Proof. 1. Let Q = G° and {(Tl,Ul),...,(Tm,Um)} be an atlas of I' = O0G, see
Lemma 4.2. Moreover, let . > 1 be a common LIPSCHITZ constant for all the trans-
formations, and {x1, ..., xm} C C5°(R") be a smooth partition of unity subordinate
to the above covering. Because of the LEBESGUE property of the covering we find
radii 0 < ¢’ < § < 1 such that

Vi =T (Qx], Vi=T7"(Qs,
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satisfy the relations
supp(x;) CV/ CcV; forallie{1,...,m}.

Therefore, {V/,..., V. } and {V4,...,V,,} are open coverings of I, too.

2. Let u € Wg(S; H'(Q)). For every i € {1,...,m} we introduce the operator
E' e L(HY(V;NQ); H1(V;NN)) associated with the restricted coefficient a' = Ry:qa
which is e-definite with respect to V; N €). Because V; N (2 is an open subset of G for
every i € {1,...,m}, the localization principle, see Lemma 6.2 and 6.3, yields

u; = Rsonv: (xiu) € Wei(S; HY(V; N Q))
and the estimate
Hui”W;i(S;Hl(VmQ)) < HUHW;;J(S;Hl(Q))7

where ¢; > 0 is some constant depending on w and G, only.
We consider inverse transformations and transformed coefficients given by

T'=T7'Q :Q~ - UnQ, d =|JT| -Tla'" foriec{l,....,m}.

In view of the properties of the JACOBI determinant JT° the coefficient a’ is
e.~definite with respect to Q5 , where e, = ¢/L". We define the operator E! €
L(HYQ5); H1(Qy)) associated with a’ for i € {1,...,m}. The transformation
invariance yields

Tiu,; € Wi (S; HY(Q5)) forie{l,...,m},
see Lemma 6.4, and we find some constant ¢y = ¢3(e,n,w,d, L, G) > 0 with
||jiui||W;i(S;H1(Qg)) < e ||ullwesimi) forallie {1,...,m}.
Setting v; = Kgy/aru; and using Lemma 3.7 and 6.10, we obtain
Tiv; = Koy, Tou; € £571(S; L (Sy)) for alli € {1,...,m},
and we find some c3 > 0 depending on ¢, n, w, 9, ¢, L, and G such that
HTin-HEgH(S;LQ(E&/)) < csllullwy s,y forallie {1,...,m}.
Due to Lemma 3.5, the transformation invariance of CAMPANATO spaces yields
v; € £57H(S; L2(V/ NT)) and the norm estimate
[vill o1 (si22(vimry) < allullwgcsimiey  for every i € {1,...,m},

where ¢4 = ¢4(e,n,w,0,0', L,G) > 0 is a constant. Because x; € Ci°(R"™) satisfies
supp(x;) C V/ for every i € {1,...,m}, we extend v; by zero to see that Kgr(x;u) €
£571(S; L*(T)) and

”KS,F(XW)”;:g“(s;m(r)) < s [ullwygs;mo) forallie{1,... ,m},
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where ¢ > 0 depends on ¢, n, w, 0, ¢, L, and G, only, see Remark 3.6. Finally, for
all u € Wg(S; HY(2)) we end up with the estimate

[Ksrul| gosr g2y < > 1 Ks,r (Xiw) || g1 (52
=1

< esm ||ullwe s @),
and, therefore, Kgru € £57(S; L2(T)). O
Theorem 6.12 (Completely continuous trace map). Let o € [0,w + 1) be a given
parameter and E € L(HY(G®); H-Y(Q)) be associated with the coefficient a being

e-definite with respect to G°. Then the trace operator Xgpc maps Wg(S; HY(G®))
completely continuous into £57(S; L*(0G)).

Proof. 1. Let I' = 0G. Due to the multiplicative inequality (3.1) we find some
constant ¢ > 0 such that for all v € H(G°) and § > 0 YOUNG’s inequality yields

2
C
vllzzge) < 60l an) + 75 I0l1Z2(Goy-

1Kol Z2y < e llolla oo

In view of the complete continuity of both the embedding of H'(G°) in L?(G°) and
the trace map Kr : H(G°) — L*(T") we apply Corollary 1.11 to get the complete
continuity of the trace operator K from Wg(S; H'(G?)) in L*(S; L*(T)).

2. Let (ug) be a bounded sequence in W¥(S; H'(G®)) and § > 0 a fixed con-
stant. Because of the boundedness of the embedding operator from W¥(S; H'(G®))
in Wg(S; H(G®)) and the complete continuity of the trace operator Kgr from
Wg(S; HY(G®)) in L*(S; L*(T)), we find an increasing subsequence (k;) C N and
some £y = {y(0) > 0 such that

1K s, rug, — g<57Fuke||%2(S;L2(F)) <4 foralli, £ > (.

We introduce the notation § = o/(w + 1), and use the minimal property of the
integral mean value to get

[Ksrur, — KS,FUke]QEg(S;H(F))

< [|[Ksruw, — KS,FUIWHiE?g;Lz(p))[xs,Fuki — :K:S,Fukz]i?;Jrl(S;LQ(p))

S 51_6[JCS7FUI§Z- - gCS,Fukg]zng-H(s;LQ(F))-

Due to the boundedness of (uy) in W (S; H'(G°)) and the arbitrary choice of § > 0
at the beginning, the continuity of the trace map Kgr from Wg(S; H'(G®)) into

£4771(S; LA()), see Theorem 6.11, yields the convergence of the sequence (Kgrus,)
in £9(5; L*(T)). O
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APPENDIX A. SOME VARIANTS OF POINCARE INEQUALITIES

Here, we collect some variants of POINCARE inequalities. As a starting point we
cite the following generalized version, see ZIEMER [34]:

Theorem A.1 (POINCARE inequality). Let X C H be two BANACH spaces equipped
with the norms || ||x and || ||g, respectively, where
lwllx = llwlf + lwlx  for allw € X

holds true for a seminorm | |x on X. We assume that the embedding of (X, || |x)
in (H,|| ||g) is completely continuous. Moreover, we consider the subspace X, =
{w € X :|wlx = 0} of X. Then, we find some constant ¢ > 0 such that for every
projector L € L(X; Xo) from X onto Xy we have

|lw—Lw||g < c|L||lexxo|wlx  forallw e X.

We apply this theorem to get some weighted variant of the POINCARE inequality
for cubes @, (x) with € R™ and r > 0.

Lemma A.2 (POINCARE inequality). For all a,e € (0,1] we find some constant
c=c(a,e,n) > 0 such that for allr >0, z € R", and w € H'(Q,.(x)) we have

(A.1) / w — ][ wdA,
Qr(z) Qr(z)

whenever the weight function a € L>®(Q,(x)) satisfies

1
0<a(y) < o a(y) > e for N"-almost all y € Q,(x) and g € F,

2

dx §0r2/ V|2 dAn,
Qr(z)

where F' C Q,(x) is some LEBESGUE measurable set with \"(F') > ar™, and the
weighted LEBESGUE measure N is defined as

AN(Q) = /Qad)\" for LEBESGUE measurable subsets 2 C Q,(x).

Proof. Let T : Q — Q,.(x) be the homothecy defined by T'(y) = = + ry for y € Q.
We consider the projector L € L(H'(Q);R) given by

fQ vT.ad\"

=29 "
O T Tadx

for v € H'(Q).

Note that there exists some constant ¢; > 0 which depends on n, «, and ¢, only, such
that || L c(a1 (@yr) < 1 holds true, whenever the assumptions on a € L*>(Q,(x)) are
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satisfied. Using the complete continuity of the embedding of H'(Q) into L*(Q) and
Theorem A.1, for all w € H'(Q,(x)) we obtain

/ |Tow — LT, w|?d\" < 02/ |V Tow||* d\",
Q Q

where ¢y = co(a,e,n) > 0 is some constant. Together with the identity

LT.w = Jo Trlaw) dX” - Jo, i a0 A" = ][ w d\"

for all w € HY(Q,(z)) we get the desired estimate

/ w — ][ wdA,
Q@r(z) Qr(z)

where ¢3 = ¢3(a, e,n) > 0 is some constant. O

2

d\" < 037“2/ [ Vw|* dA",
Qr(z)

Finally, we present versions of the POINCARE inequality which are of main im-
portance for both the regularity theory of solutions to parabolic initial boundary
value problems and the theory of SOBOLEV—MORREY spaces suitable for the treat-
ment of these problems, see GRIEPENTROG [9, 11]. The proof generalizes ideas of
STRUWE [30].

Theorem A.3 (POINCARE inequality). There exists some constant ¢ > 0 depending
onn and €, only, such that for all0 <r <1, z € R", and u € Wg(I; HY(Q,(z)))
the inequality

/] RICE + RGN

< ch(/I/ ()|]Vu(s)H2d)\”d8+/IH(EU)/@)”?{1(Qr(x)) ds)’

holds true, whenever I = (0,t) C R is an interval with 0 < t — 0 < r%. Here, the
operator E € L(HY Q. (x)); HY(Q,(x))) is associated with the coefficient a being
e-definite with respect to Q,.(z).

2

d\" ds

Proof. 1. Let sy, so € I with s; < sy be given. We choose some cut-off function
¢ € C5°(Q(z)) which satisfies

0<Cly) <1, VSl <4/r forye Q.(x), ((y)=1 forye Qplr).
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In addition to that, for k¥ € N we consider cut-off functions ¥;, € HJ(R) with
supp(¥y) = [s1, s2] C I defined by

e

0 if s < sy,
4k(s—s1) -
s st < s < sy,
Ue(s) = 41 if 515, < 5 < s9p,
4k(sa—s) -
s U so < s <oso,
\0 if 59 <'s,
where we have used the notation
S2 — 851 S2 — 851
Sip = S1 + Sop. = S9 — for k£ € N.
1k 1 I 2k 2 m

2. For a shorter notation we use the abbreviations X = H'(Q,(z)) and Y =
H(Q,(z)). We introduce the weighted LEBESGUE measure u by

u(Q)) = / C?ad)\" for LEBESGUE-measurable sets 2 C Q,(z).
Q

To prove the desired result, we start with the case u € C3°(R; X)) and estimate the
following difference of weighted mean values

u(sy, s9) = ][ u(se) du — ][ u(sy) dp.
Qr(z) Qr(z)

To do so, for k£ € N we introduce functions
wy, = (81, 82) (U, € HY(R;Y).

In view of supp(9) C I and Cu € C§°(R;Y), for every k € N we integrate by parts
to see that

A2 U )y ds+ [ {(Ewn)(s). Culo)yds =0,
I I
Using the properties of the cut-off functions and applying YOUNG’s inequality to

the first integral, we find some constant ¢; = ¢1(¢,n) > 0 such that for all k € N

/I (E(Cu))Y(s), wils))y ds = / (€Y (5), 51, 52) CO(8))y ds

52 , er™
<o [ 1€ ds+ T lalsi s

S1
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For all & € N the second integral in (A.2) equals to

Ji@wy @ cutspyas= [ [ ) Gl X s

1

= // u(s1, 82) 05.(s)u(s) duds.
I r(x)
Due to the properties of the cut-off functions this yields

lim [ ((Ewy) (s), Cu(s))y ds = / u(sy, s2)(u(s1) — u(sz)) dp

k=00 Jp Qr(z)

= —/ |u(sq, 52)|2C2a dN\" < —er™|u(sy, 52)\2.
Qr(z)

Hence, passing to the limit £ — oo in (A.2) we obtain

201 52

(A.3) [a(si,s2)l” < 5 [ I(€u)'(s)]

~ S ds
-

S1

for all S1, S2 € I with S1 S S9.
3. Next, we use the minimal property of integral mean values to get

(A4) /I / R ]{ ][ s
: Q/I/T(w 1= ]érm ue
+2/1/r(x> ]ér(x)u@) = ]{][rm ulr) dpdr

To estimate the first integral on the right hand side of (A.4) we apply a weighted
version of the POINCARE inequality, see Lemma A.2: We make use of the fact, that
there is some constant ¢y = cy(e,n) > 0 such that for all s € I we have

(A5) /Qr(x) 1= ]érm ue

2

d\" ds

2
d\" ds

2
d\" ds.

2

A" < oy / IVu(s)|| dA™.
Qr(z)
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For the second integral on the right hand side of (A.4) we use HOLDER’s inequality
and FUBINI's Theorem to obtain

2
(A.6) // ][ u(sy) dp — ][][ u(se) du dsy
1JQr(z) | JQr(2) I JQr(x)
S/][/ ‘ﬂ<81782)‘2d)\nd82d81
1JrI r(x)
—2][// 81,82| d\" dSQdSl

In view of (A.3) we find some constant ¢z = c3(e,n) > 0 such that

][// (s, 59)]? dA"d32d51<03][// |(Eu)’
(A <er? [ (€af )R- ds
1

Applying (A.4), (A.5), (A.6), and (A.7), for all u € C3°(R; X) we end up with

[y o, e
I r(x) r(x)
< 202r2// ||Vu(s)||2d)\"ds+403r2/||(8u)'(s) 2. ds
1 'r(fl') I

Due to the density of the set {u|l:u € C3°(R; X)} in Wg(I; X), see Theorem 1.6,
this estimate holds true for all u € Wg([; X), too. O

d\" ds;

Y* ds dss ds;

2

d\"ds

Remark A.1. A simple rescaling argument shows, that the result of Theorem A.3
remains true if we replace the cube @, (x) by the halfcube Q. ().

Theorem A.4 (POINCARE inequality). There exists some constant ¢ > 0 depending
onn and €, only, such that for all0 <r <1, x € R", and u € Wg(I; HY(Q, (x)))
the inequality

I s

2

d)‘Zr () dS

(8) — ][ Kgr(x)u(r) d)\Er(x) dT
Zr(z)

n 2
(//r(xnvu ||d>\ds+/||8u R )

holds true, whenever I = (6,t) C R is an interval with 0 < t — 60 < r*. Here, the
map E € L(HYQ, (2)); H Q. (x))) is associated with the coeﬁ‘iczent a which is
supposed to be e-definite with respect to Q, (x).
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Proof. Let T : Q— — Q. (x) be defined by T(y) = = + ry for y € Q. Using
the continuity of the trace operator Ky : H'(Q~) — L*(X) we find some constant
¢ = c(n) > 0 such that for all v € H'(Q,(x)) we have
/|KZT*U|2d>\E gc/ (| T + [|[VToo|?) dA™
> Q-

Hence, for all v € HY(Q,(z)) we get

2
[ s pla, <a | ('”' +|rwu?)dv
3 (x) Qr (z)

As a consequence, for all u € Wg(I; H(Q, (z))) we obtain

oo = f o
gcr/l/rm(r v

In view of the minimal property of integral mean values and Remark A.1, this yields
the desired result. 0J

2

d)\Er(m) ds

2

+ [[Vu(s )H2> d\" ds.

APPENDIX B. SOME SPECIAL CHAIN RULE

As a further technical instrument we provide the following combination of integration
by parts and chain rule:

Lemma B.1 (Chain rule). Let S = (to,t1) C R and Q@ C R™ be some bounded open
set, ¢ € C°(Q), ¥ € C(R), and let . € C*(R) satisfy " € BC(R). Then for all
v € Wg(S; HY(Q)) N C(S; L*(R2)) we have

(B.1) /S<(8U)I<S),<2L1<U(S))>Hé(g ds+// s) CCad\"ds
:/Qa(v(tl))CQﬂ(tl)ad)\"—/QL(v(to))Czﬁ(to)adA”.

Here, the operator E € L(H(Q)); H=(Q)) is associated with the coefficient a being
e-definite with respect to €.

Proof. Tn our proof we set Y = H(Q), X = H'(Q), and H = L*(Q).
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1. Because of t € C?*(R), // € BC(R) there exists some constant ¢; = ¢;(¢) > 0
such that for all z € R we have | (z)| < ¢; and, consequently,
()] < e(0)] + [£(0)]]2] + el 2l* < [(0)] + 51£(O)* + 5(ex + D)%,
()] < |/ O)] + 11(2) = LO)] < [£(0)] + =],
This ensures that for every v € Wg(S; X)NC(S; H) all terms in (B.1) are correctly
defined.
Due to Theorem 1.6 we find a sequence (v;) C C3°(R; X) such that (vg]S) con-

verges to v in Wg(S; X) for k — oo. Using the chain rule and integrating by parts
for all k£ € N we get

(B.2) /<(evk)'()<b(z}k( d5+// Lo () 9 (5) Cad\" ds

// Y )Cad)\"ds+// Lo () ' (s) CCad\" ds
- /Q W(op(t1)) C2O(81) a dA™ — /Q W(va(te)) C20(te) a dA™.

Our plan is to prove formula (B.1) by passing to the limit in (B.2):

2. We start with the first integral term on the left hand side of (B.2). Due to
the convergence of (vg|S) to v in Wg(S; X) it suffices to show that a subsequence
of (¢* o vg|S) converges weakly to (% ov|S in L*(S;Y).

Note, that for all z, 2 € R we have |/(z) — /(2)| < 1|z — Z|. Because for every
k € N the identity

V(¢ owy) = 2(¢t o vp) V¢ + (C3 o vy,) Vy,

holds true, it remains to consider the sequence (1" ovg) C L*®(R; L>°(€2)). We choose
some increasing sequence (k;) C N which satisfies

// ok, (8) — v(s)|*dA\"ds < 27° for all £ € N.
S JQ

Using the monotone convergence theorem this leads to

//QZ|% —v( |2(1l)\"d3—2//|v;w —v(s)[d\"ds < 1,

(=1

that means, the sequence (vg,(s)) converges to v(s) A"-almost everywhere on € for
almost all s € S. Due to " € BC(R) the functions " (v, (s)) converge to " (v(s))
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A"-almost everywhere on €2 for almost all s € S. Using the dominated convergence
theorem for all h € L'(S; L*(€2)) we obtain

lim///’(vk[(s)) d)\"ds—// s)d\"ds.
t=JsJa

Consequently, the convergence of (vg|S) to v in Wg(S; X) yields

hm//g 0y (5)) Vo (5) — " (0(5))Vo(s)) - Veo(s) dA" ds = 0

f— 00

for all w € L?(S;Y), that means, the weak convergence of (¢ o vy,|S) to (*// ov|S
in L*(S;Y). Smce (vg|S) converges to v in Wg(S; X), it follows

Jim S<(8%)( 5), (' (vk, (5)))y 9(s) ds = /S<(Sv)'(8),CQL'(U(S)»Y"!?(S) ds.
3. Similar to Step 1 for all 6 > 0 and z, 2 € R we get
|e(2) = e(2)] S ()2 = 2| + ealz — 27
(B.3) <5(|C0)*+c|217) + (a1 + 25) |z — 2|~

Consequently, for all 6 > 0 and k € N we obtain
// L(vr(5)) — t(v(s))]| V' (s) CPad\" ds
sJa
< 5/ / (1/(0)]* + cflv(s)[?) ¥ (s) CCadA™ ds
s Ja

4 <c1+%)/S/Q\vk@)—v(s)\?ﬂ'(s) CCad)\" ds.

Passing to the limit k& — oo, the convergence of (vg|S) to v in Wg(S; X) and the
arbitrary choice of § > 0 leads to

khm// (v (s)) V' (s Qad)\"dS—// s) CCad\" ds.

4. Again using (B.3), for all § > 0, s € S, and k € N we get

/ (0n(s)) — (0(s))| CO(s) ad\" < / () + Elo(s)]?) ¢9(s) adr®
Q Q

+ (c1+ ) /\Cvk v(s)]” adA".

Since the map C' € L(X;Y), defined by Cw = (w for w € X, satisfies (1.1), the
sequence (Cug|S) converges to (v in Wiy (S;Y) for K — oo, see Lemma 1.2. The
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continuity of the embedding from Wy (S;Y) into C(S; H), see Theorem 1.7, and
the arbitrary choice of § > 0 yields

lim [ o(vr(s)) CP9(s) ad\"* = / L(v(s)) (*I(s)ad\" forall s € S.

k—oo Q Q

5. Finally, passing to the limit k; — oo in (B.2) and using the results of Step 2,
3, and 4, we end up with the desired formula (B.1). O
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