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AbstractThe aim of this paper is to prove an isoperimetric inequality relative to a convex domain Ω ⊂ Rdintersected with balls with a uniform relative isoperimetric constant, independent of the size of theradius r > 0 and the position y ∈ Ω of the center of the ball. For this, uniform Sobolev, Poincaré andPoincaré-Sobolev inequalities are deduced for classes of (not necessarily convex) domains that satisfya uniform cone property. It is shown that the constants in all of these inequalities solely dependon the dimensions of the cone, space dimension d, the diameter of the domain and the integrabilityexponent p ∈ [1, d).1 IntroductionMain goal of this paper is to prove a uniform relative isoperimetric inequality for a suitable class ofbounded domains Ω ⊂ Rd intersected with balls. More precisely, we shall verify the following statement:Let Ω ⊂ Rd be a suitable, bounded domain. Then, there exists a constant CΩ > 0 such that for all y ∈ Ω,for all ρ > 0 and for every Ld-measurable set A ⊂ Ω with �nite perimeter in Ω, i.e. P (A, Ω) < ∞, itholds:
min

{
Ld(A ∩ (Ω ∩Bρ(y))), Ld((Ω ∩Bρ(y))\A)} d−1

d ≤ CΩP (A, Ω ∩Bρ(y)) . (1.1)Here and in the following, d ∈ N denotes the space dimension, Ld the d-dimensional Lebesgue-measureand Bρ(y) ⊂ Rd the open ball of radius ρ with center in y ∈ Rd. Moreover, ∂Ω stands for the topologicalboundary of Ω.As it is pointed out in e.g. [BZ80, pp. 132] the relative isoperimetric constant (in an isoperimetricinequality relative to a domain Ω) can be understood as a domain characteristic in the sense that itsvalue is essentially determined by the geometrical properties of the domain. Thus, in other words, thedomains Ω suited for (1.1) shall be such that a change of ρ > 0 or y ∈ Ω does not exorbitantly worsen thegeometrical properties of Ω ∩Bρ(y), so that the respective relative isoperimetric constants CΩ∩Bρ(y) canbe bounded uniformly from above. In particular, if Ω ∩Bρ(y) = Ω for ρ su�ciently large, the respectiverelative isoperimetric constant CΩ∩Bρ(y) should coincide with the one for Ω.For a set A such that min
{
Ld(A ∩ (Ω ∩ Bρ(y))), Ld((Ω ∩ Bρ(y))\A)} = Ld(A ∩ (Ω ∩ Bρ(y))) therelative isoperimetric inequality (1.1) is equivalent to the Poincaré-Sobolev inequality (for functions withzero mean value) between BV(Ω∩Bρ(y)) and Ld/(d−1)(Ω∩Bρ(y)), applied to the characteristic functionof the �nite-perimeter set A. This is exactly the strategy of our proof: We will �rst verify that thePoincaré-Sobolev inequality in domains Ω holds with a constant that depends solely on certain geometricproperties of the domain. All the domains with the same geometric properties will be gathered in a classand it will be shown that, for Ω ∩Bρ(y), changes of ρ > 0 and y ∈ Ω do not lead out of this class.Also for Ω = Rd the Poincaré-Sobolev inequality and the isoperimetric inequality (on Rd) are equiv-alent. The isoperimetric inequality in Rd states that the perimeter P (A) in Rd of an Ld-measurable set

A is necessarily larger than the perimeter of a ball with the same volume, i.e.
dω

1/d
d Ld(A)(d−1)/d ≤ P (A) ,where ωd is the volume of the ball in Rd with radius r = 1. In order to quantify the deviation of a �nite-perimeter set A from being a ball, so-called quantitative isoperimetric inequalities have been studied ine.g. [Fug89, FMP10, FMP08, CN10]:

dω
1/d
d Ld(A)(d−1)/d(1 + λ(A)) ≤ P (A) ,where the function λ measures how far A is from being a ball; in particular λ(A) = 0 i� A ⊂ Rd is a ball.Analogously, in [FMP07], a quantitative (Poincaré-)Sobolev inequality has been derived which expresseshow far a BV(Rd)-function is from being the characteristic function of a ball.The above mentioned works, however, are concerned with estimates in Rd and it is not obvious atall whether and how the constants obtained in Rd relate to the constants of the respective inequalitieson bounded domains, i.e. relative to a bounded domain Ω. In the latter context, it is elaborated in[GG01, GG03, Gaj01] that the optimal relative isoperimetric constant is given by the �rst non-trivial1



eigenvalue of the 1-Laplacian equation in Ω ⊂ Rd subject to homogeneous Neumann boundary condi-tions. Furthermore, the relation of this optimal constant to the optimal constant of the Poincaré-Sobolevinequality for convex Ω ⊂ R2 is described in [EFK+12] and it is proved that the respective optimalconstants for Ω are always bounded from above by the ones for a ball of volume Ld(Ω). In the presentwork, however, we are rather interested in the uniform applicability of such constants for a collection ofdomains. Hence, to obtain (1.1) we rather rely on the �classical� methods to derive embedding inequali-ties on bounded domains, like they are elaborated in e.g. [Agm65, Ada75, Maz11, Zie89]. In particular,for the derivation of uniform estimates we will con�ne the analysis to bounded domains Ω ⊂ Rd withdiameter diamΩ ≤ b, which satisfy the uniform cone property. Hereby, we will use the de�nition of theuniform cone property given by Chenais in [Che75, Che77], see De�nition 1.2 here below, and in orderto distinguish it from other de�nitions, see De�nition 2.2, we will from now on refer to it as Chenais'uniform cone property. Let us mention that in subsequent works related to shape optimization, this typeof cone property is also called ε-cone property, see e.g. [Pir87, LS04, BC07]. The advantage of Chenais'uniform cone property is that this de�nition is tuned according to the relevant parameters that enter intothe constants in inequalities on such type of bounded domains. Therefore it is possible to gather domainssatisfying Chenais' uniform cone property with the same parameters into a class, see De�nition 1.3 andto thus conclude uniform constants within this class.De�nition 1.1 (Convex cone K(ξ, θ, h)) Let h > 0, θ ∈ (0, π/2) and ξ ∈ Rd with |ξ| = 1. The set
K(ξ, θ, h) := {x ∈ Rd; x · ξ > |x| cos θ, |x| < h} (1.2)is the cone of angle θ, height h and axis ξ.The restriction θ ∈ (0, π/2) is for the reason of convexity of the cone and because of cosπ/2 = 0. Since

x · ξ = |x||ξ| cosα(x, ξ) with α(x, ξ), the intersection angle between the lines tx and tξ, t ∈ R, and since
cos(·) is monotonously decreasing on (0, π/2), the cone K(ξ, θ, h) indeed consists of the vectors x ∈ Rdwith |x| < h and α(x, ξ) < θ.De�nition 1.2 (Chenais' uniform cone property [Che77]) Let h > 0, θ ∈ (0, π/2) and r > 0 with
2r ≤ h �xed. A set Ω ⊂ Rd is said to satisfy the uniform cone property i� for all x ∈ ∂Ω there exists acone Kx = K(ξx, θ, h) of angle θ, height h and axis ξx with vertex in x such thatfor all y ∈ Br(x) ∩ Ω it holds y + Kx ⊂ Ω. (1.3)All the sets Ω ⊂ Rd with diameter diamΩ ≤ b, which satisfy the cone property from De�nition 1.2 withcones congruent to the same cone K(ξ, θ, h) with �xed parameters θ, h, r are now gathered in the class
Π(θ, h, r, b). In particular, note that Π(θ1, h1, r1, b) ⊂ Π(θ2, h2, r2, b) for all θ2 ≤ θ1, h2 ≤ h1 and r2 ≤ r1.De�nition 1.3 (Π(θ, h, r, b)) Let b > 0 �xed. The class Π(θ, h, r, b) is the set of all the domains Ω ⊂ Rdwith diameter diamΩ ≤ b, satisfying the cone property of De�nition 1.2 with the parameters θ, h, r.Since Chenais' uniform cone property looks quite restrictive compared to other de�nitions of coneproperties, we give an overview on geometrical properties of domains and discuss their relations in Section2.1. Moreover, in Section 2.2, we state and explain existing results developed in [Che75, Che77, BC07] onthe classΠ(θ, h, r, b), such as a uniform extension theorem and Poincaré inequalities as well as compactnessresults with respect to di�erent types of convergence of sets. By re�ning the arguments of [Ada75, L. 5.10,p. 103] we will derive a uniform Sobolev inequality in Section 3.1. Combined with the uniform Poincaréinequality this results in a uniform Poincaré-Sobolev inequality and in a uniform relative isoperimetricinequality for domains Ω ∈ Π(θ, h, r, b). This will �nally allow us in Section 3.2 to deduce the uniformrelative isoperimetric inequality (1.1) for convex domains.2 Qualities of Π(θ, r, h, b) & comparison of geometrical properties2.1 Comparison of geometrical properties of domainsIn the following we give an (incomplete) list of geometrical properties of domains. Moreover, we compareChenais' uniform cone property with other de�nitions of the uniform cone property. We will observe2



that all of them coincide for bounded domains, while, for unbounded domains there is a hierarchy withChenais' uniform cone property as the most restrictive one.De�nition 2.1 (Cone property [Ada75, 4.3, p. 66]) A domain Ω ⊂ Rd has the cone property i�there exists a �nite cone K such that each point x ∈ Ω is the vertex of a �nite cone Kx ⊂ Ω congruentto K.Following the lines of [Ada75, p. 66] a countable collection O of open subsets of Rd is said to be a locally�nite open cover of a set S ⊂ Rd i� any compact set C ⊂ Rd intersects at most �nitely many elementsof O. Involving this notion of covering more restrictive cone properties can be formulated.De�nition 2.2 (Uniform/restricted cone property) A domain Ω ⊂ Rd has the1) (Adams') uniform cone property, [Ada75, 4.4, p. 66], i� there exists a locally �nite open cover {Uj}of ∂Ω and a corresponding sequence {Kj} of �nite cones, each congruent to a �xed �nite cone K,such that:(i) For some �nite M ∈ R �xed, every Uj has diameter less than M .(ii) For some δ > 0, it is Ωδ ⊂ ∪∞j=1Uj, where Ωδ := {x ∈ Ω, dist(x, ∂Ω) < δ}.(iii) For every j there holds Qj := ∪x∈Ω∩Uj (x + Kj) ⊂ Ω.(iv) For some �nite R ∈ N, every collection of R + 1 of the sets Qj has empty intersection.2) (Agmon's) restricted cone property, [Agm65, Def. 2.1, p. 11], i� there exists a locally �nite opencover {Oi} of ∂Ω and a corresponding sequence {Ki} of �nite cones, each congruent to a �xed �nitecone K, such that: for all x ∈ Oi ∩ Ω : x + Ki ⊂ Ω . (2.1)On the �rst glance, Chenais' uniform cone property introduced in [Che77] seems to be more restrictivethan the uniform cone property stated in [Ada75] or the restrictive cone property used in [Agm65]. Indeed,in Proposition 2.3 we will verify the hierarchy that Chenais' uniform cone property implies Adams' uniformcone property, which, in turn implies Agmon's restricted cone property, while the converse implicationsare in general false in the case of unbounded domains, as can be seen from Examples 2.5 and 2.6. Forbounded domains, however, we will observe in Proposition 2.4 that the three properties are equivalent.For this, we �rst verify the followingProposition 2.3 Let Ω ⊂ Rd be a domain.1.) Assume that Ω satis�es Chenais' uniform cone property (Def. 1.2). Then the collection of openballs {Br(x), x ∈ ∂Ω} contains a locally �nite subcover {Br(xj), j ∈ N} with the properties:
• For every xj and any of its nearest neighbours xk the distance is less than r, (2.2a)
• Ωr/2 ⊂ ∪j∈NBr(xj), (2.2b)
• for every j there holds Qj := ∪x∈Ω∩Br(xj)(x + Kxj ) ⊂ Ω. (2.2c)
• For some �nite R ∈ N, every collection of R + 1 of the sets Qj has empty intersection, (2.2d)i.e. the domain Ω satis�es Adams' uniform cone property (Def. 2.2)2.) Assume that Ω has Adams' uniform cone property. Then Ω also satis�es Agmon's restricted coneproperty.Proof: Ad 1.): Let Ω ⊂ Rd satisfy Chenais' uniform cone property. Firstly, we �ll Rd with thecountable collection of closed cubes {Ci}i∈N of uniform diagonal length diag Ci < r/2 and intCi∩int Cj =

∅ for all i 6= j. We consider all the cubes Ci that have nonempty intersection with ∂Ω and in each ofthe Ci we pick one point xi ∈ ∂Ω ∩ Ci. In particular, both {Br/2(xi), i ∈ N} and {Br(xi), i ∈ N} arelocally �nite open covers of ∂Ω. Moreover, as diag Ci < r/2, we have that dist(xi, xj) < r for xi xj inneighboring cubes Ci, Cj . This implies that Ωr/2 ⊂ ∪i∈NBr(xi).By Chenais' cone property, for any y ∈ Br(xi) ∩ Ω we have that y + Kxi ⊂ Br+h(xi) ∩ Ω. Moreover,for any z ∈ Br+h(xi) there is a cube Cj such that z ∈ Cj . Clearly, Br+h(y) intersects with at most Rcubes and R is a �nite number R ∈ N, depending on d, r, and h, only. Hence, z is an element of at most
R of the sets Qi. 3



Ad 2.): Clearly, an locally �nite open cover corresponding to Adam's uniform cone property alsoserves as a suitable open cover for Agmon's restricted cone property.As a direct consequence of of Proposition 2.3 we deduce the equivalence of the three uniform coneproperties in the case of bounded domains.Proposition 2.4 Let Ω ⊂ Rd be a bounded domain. Then, the uniform cone properties of Chenais (Def.1.2), Adams (Def. 2.2, 1.)), and Agmon (Def. 2.2, 2.)) are equivalent.Proof: In view of Proposition 2.3 it remains to verify that Agmon's restricted cone property impliesChenais' uniform cone property for a bounded domain Ω ⊂ Rd. Thus, let O = {Oi, i ∈ N} be a locally�nite open cover serving for Agmon's restricted cone property. As Ω is bounded, we have that ∂Ω = Ω\Ωis compact. By Heine-Borel's covering theorem there exists a �nite subcover {Oi, i = 1, . . .N} ⊂ O. We�rst show that there is δ > 0 such that Ωδ ⊂ ∪N
i=1Oi as claimed in (ii) of Adams' uniform cone property.In other words, this ensures that ∪x∈∂ΩBr(x) ∩ Ω ⊂ Ω for every r < δ, which is needed for Chenais'uniform cone property.For every x ∈ ∂Ω we introduce δx := sup{ρ > 0 : Bρ(x) ⊂ ∪i∈NOi}. As ∪i∈NOi is open we have that

δx > 0 for all x ∈ ∂Ω. Proceeding by contradiction we assume that there exists a sequence (xn)n∈N ⊂ ∂Ωand a sequence of radii (δn)n∈N with δn = δxn such that δn → 0 as n →∞. But by compactness there isa subsequence xn′ → x ∈ ∂Ω. Hence δx > 0 in contradiction to the assumption δn′ → 0 and we concludethat indeed δ := min{δx, x ∈ ∂Ω} > 0.Let now r := δ/8. Then Br(x)∩Ω ⊂ Ωδ for all x ∈ ∂Ω. Moreover, consider K̃, the cone from Agmon'scone property of, say, opening angle θ and height h̃. We shorten K̃ to the cone K of opening angle θand height h = δ/2. Then, with this choice of r and h we have ensured that 2r ≤ h and in particularthat y + Kx ⊂ Ωδ ⊂ Ω for every y ∈ Br(x) and every x ∈ ∂Ω, independently of the vertex orientation ξx.Thus, the bounded domain Ω has Chenais' uniform cone property.In the following we give two examples con�rming that the three cone properties are not necessarilyequivalent in the case of unbounded domains. We start with an example of a domain with Adams' uniformcone property but lacking Chenais' uniform cone property.Example 2.5 (Adams' uniform cone property 6⇒ Chenais' uniform cone property) As in Fig.2.1 we consider a semi-in�nite strip Ω ⊂ R2 perforated by a sequence of holes of degenerating width. Fora clearer presentation of the arguments we �x Ω := [0,∞)× [−5, 5]\∪n∈NHn, where Hn = [5n−1/n, 5n+
1/n]× [−1, 1]∪B 1

n
((5n, 1))∪B 1

n
((5n,−1)) is the hole centered in (5n, 0). Clearly, the collection of opensets O = {U1, U2, U3, U1n , U2n , U3n , U4n , U5n , U6n , n ∈ N ∪ {0}} where

U1 := (−1, 1)× (−5, 5), U2 := (−1, 1)× (4, 6), U3 := (−1, 1)× (−6,−4),

U1n := (n− 1/3, n + 1/3)× (4, 6), U2n := (n− 1/3, n + 1/3)× (−6,−4),

U3n := (5n− 1, 5n + 1/n + 1/(3n)× (−2, 2), U4n := (5n + 1/n− 1/(3n), 5n + 1)× (−2, 2),

U5n := (5n− 1, 5n + 1)× (1, 1 + 1/n), U6n := (5n− 1, 5n + 1)× (−1− 1/n,−1),provides an open cover of ∂Ω with the properties (i)�(iv) of Adams' cone property. More precisely, theopen cover is chosen in correspondence to the cones sketched in Fig. 2.1 and, in particular (i) holds truefor all M > 2, (ii) for all δ ∈ (0, 1) and at most 3 of the open sets have nonempty intersection, i.e. R = 3in (iv). However, as n → ∞, the width of the holes Hn tends to 0 and hence there is no uniform radius
r > 0 such that the cone Kx can be used in the ball Br(x) for x ∈ ∪n∈N∂Hn. Hence, Ω does not satisfyChenais' uniform cone property.Now we state an example for an unbounded domain enjoying Agmon's uniform cone property but lackingAdams' uniform cone property.Example 2.6 (Agmon's uniform cone property 6⇒ Adams' uniform cone property) As indica-ted in Fig. 2.2 we consider a semi-in�nite strip Ω ⊂ R2 perforated by a sequence of non-convex holesof degenerating width and distance such that condition (iii) of Adams' uniform cone property is vio-lated. To simplify our arguments we �x Σ := ((0,∞) × (−5, 5)) the semi-in�nite strip and the domain4



PSfrag replacements ΩFigure 2.1: Unbounded domain with holes of degenerating width and cones corresponding to O.
Ω := S\∪i,n∈N Hi

n, where Hi
n are the holes constructed and positioned as follows: For every n ∈ N we puta rectangle (5n−1/(4n), 5n+1/(4n))×(−1, 1). Inside of these rectangles we cut out squares of edge length

1/(2n) and distance 1/(2n), , i.e. at each horizontal position 5n the semi-in�nite strip S is perforated by nsquares Si
n, i ∈ {1, . . . , n}. Now we �x a cone K of opening angle θ ∈ (0, π/2) and height h < 3. For each

n ∈ N �xed, for all i ∈ {1, . . . , n} we choose a point xi
n ∈ Si

n with coordinate component in horizontaldirection larger than 5n. In addition, for all i ∈ {1, . . . , n} we choose an orientation ξi
n with positivehorizontal component such that xi

n + K(θ, h, ξi
n) ∈ Σ and such that ξi

n 6= ξj
n for all i, j ∈ {1, . . . , n}.For all n ∈ N, i ∈ {1, . . . , n} the hole Hi

n is then de�ned by Hi
n := Si

n\(xi
n + K(θ, h, ξi

n)), i.e. optically,each square Si
n has a cone-shaped notch N i

n formed by xi
n + K(θ, h, ξi

n). For every Hi
n there exists a�nite open cover of ∂Hi

n and corresponding cones congruent to K such that for Ω Agmon's restrictedcone property (2.1) holds true. In particular, we note that we can �nd elements U i
n of the open coversuch that Si

n ∩ (xi
n + K(θ, h, ξi

n)) ⊂ U i
n and such that Qi

n := ∪y∈Ui
n
(y + K(θ, h, ξi

n)) ∈ Ω. But since thedistance between the holes Hi
n and their edge length is 1/(2n) we conclude that the number of sets Qi

nwith nonempty intersection tends to ∞ as n →∞.
PSfrag replacements ΩFigure 2.2: Unbounded domain with non-convex holes of degenerating size and distance and cones cor-responding to O.In the following we state several types of Lipschitz properties and compare them with Chenais' uniformcone property.De�nition 2.7 (Lipschitz properties of bounded domains) Let (X, d) and (X̃, d̃) be two metricspaces. A mapping F : X → X̃ is called Lipschitzian if there exists a constant L > 0 such that for all
x, y ∈ X we have d̃(F (x), F (y)) ≤ Ld(x, y). If F−1 is injective and also Lipschitzian, the mapping F iscalled bi-Lipschitzian, see [Reh12].1. Domain with strong local Lipschitz property [Ada75, 4.5, p. 67] (≡ Domains of the class C0,1[Maz11, Def. 2, p. 15, Rem. 2, p. 16]): A bounded domain Ω ⊂ Rd belongs to the class C0,1 ifeach point x ∈ ∂Ω has a neighborhood Ux such that the set Ux ∩ Ω is represented by the inequality

xd < Fx(x1, . . . , xd−1) in some Cartesian coordinate system and the function Fx is Lipschitzian. Inother words, [Ada75, p. 67], Ω is a domain with (locally) Lipschitz boundary.2. Lipschitz domain [Maz11, Def. 3, p. 16]: A bounded domain Ω is a Lipschitz domain (Lipschitzian)i� each point of its boundary has a neighborhood Ux ⊂ Rd such that a quasi-isometric transformationmaps Ux ∩ Ω onto a cube. 5



Clearly, Ω being of class C0,1 implies that Ω being a Lipschitz domain.Compared to the strong local Lipschitz property in De�nition 2.7 above [Che75, Def. III.1, p. 201] givesa re�ned de�nition, which allows it to gather all the bounded domains Ω with neighborhoods Ux beingballs Bδ(x) and Lipschitz constants of Fx of the same size L > 0 in the class Lip(L, δ). For this, we willmake use of the following notation: Let δ, δ′ > 0 and x = (x̂, xd)> ∈ Rd with x̂ = (x1, . . . , xd−1)> ∈ Rd−1.We introduce the sets
Pδδ′ (x) := {y ∈ Rd, |yi − xi| < δ for i = 1, . . . , d− 1 and |yd − xd| < δ′} ,

Pδ(x̂) := {ŷ ∈ Rd−1, |xi − yi| < δ for i = 1, . . . , d− 1} .De�nition 2.8 (Chenais' strong Lipschitz property) Let L > 0 and δ > 0 be given and δ′ :=
Lδ(d − 1)1/2. We denote by Lip(L, δ) the set of all open sets Ω ⊂ Rd with diamΩ ≤ b such that for all
x ∈ ∂Ω there exists a local coordinate system and a function Φx : P (x̂) → R, which is Lipschitzian withLipschitz constant L such that

y ∈ Pδδ′(x) ∩ Ω ⇔
{

y ∈ Pδδ′ (x),
yd > Φx(ŷ) .

(2.3)We �rst convince ourselves that Chenais' strong Lipschitz property is equivalent to the one stated inDe�nition 2.7, item 1..Lemma 2.9 A bounded domain Ω of class C0,1 with diameter diamΩ ≤ b satis�es Chenais' strongLipschitz property and vice versa.Proof: Consider an open set Ω ⊂ Rd with diameter diamΩ ≤ b of class C0,1. For all x ∈ ∂Ω thereexists an open neighborhood Ux with x ∈ Ux. Hence, each Ux contains an open ball Brx(x) with centerin x. Assume that there is a sequence of points (xj)j ⊂ ∂Ω such that rxj → 0 for the respective radii.Since Ω is bounded there exists a subsequence (xj′ )j′ ⊂ (xj)j such that xj′ → x and by compactness of
∂Ω we have that x ∈ ∂Ω with rx = 0. This states a contradiction to the fact that Ux is open. Thus thereis a lower bound δ̃ > 0 such that rx > δ̃ for all x ∈ ∂Ω. We �x δ̃ > 0 such that Bδ(x) ⊂ Ux for all x ∈ ∂Ω.With the same arguments we can conclude that the Lipschitz constants Lx of the Lipschitz mappings
Fx are uniformly bounded for all x ∈ ∂Ω, both from below and from above. Hence, there exists a Lipschitzconstant L such that |Fx(x̂)− Fx(ŷ)| ≤ L|x̂− ŷ| for all y ∈ Bδ̃(x), uniformly for all x ∈ ∂Ω.Moreover, by Def. 2.7, Item 1., we �nd that, for all x ∈ ∂Ω, the set Bδ(x)∩Ω is represented by the rela-tion yd < Fx(ŷ). Since Fx is Lipschitz continuous on Ux ⊃ Bδ̃(x) we conclude that maxy∈Bδ̃(x) |Fx(ŷ)| =:
Mx is attained. Additionally, we have that mx < yd < m̃x for all y ∈ Bδ̃(x). Therefore, Φx :=
Fx −Mx + mx is Lipschitzian with Lipschitz constant L and satis�es yd > Φx(ŷ) for all y ∈ Bδ̃(x).It remains to determine δ in a suitable relation to δ̃ such that (2.3) holds true. For this, consider
y ∈ Pδδ′ (x). We have to ensure that |y − x|2 < (d− 1)(L2 + 1)δ2 =: δ̃2, because then y ∈ Pδδ′(x) impliesthat y ∈ Bδ̃(x) and thus, (2.3) is guaranteed.In order to verify that a domain Ω ∈ Lip(L, δ) is of class C0,1, just observe that Pδδ′ (x) is a particularchoice of neighbourhood Ux. With analogous calculations as above one can turn the Lipschitzian Φx intoa Lipschitzian Fx satisfying Fx(ŷ) > yd for all y ∈ Ux ∩Ω.Chenais' re�ned de�nition of the strong local Lipschitz property allows it to establish the equivalencebetween the classes Lip(L, δ) and Π(θ, h, r, b), see [Che75, Prop. III.1, p. 203 and Prop. III.2, p. 204].Proposition 2.10 (Chenais' uniform cone property ⇔ strong Lipschitz property) For all θ, h, ras in Def. 1.3 there exist L, δ > 0 as in Def. 2.8 such that Π(θ, h, r, b) ⊂ Lip(L, δ) and, vice versa, for all
L, δ > 0 as in Def. 2.8 there exist θ, h, r as in Def. 1.3 such that Lip(L, δ) ⊂ Π(θ, h, r, b).A weaker property of domains is the segment property, which will be exploited later in Section 3.1for the proof of the uniform Sobolev inequality.De�nition 2.11 (Segment property [Ada75, 4.2, p.66]) An open domain Ω ⊂ Rd has the segmentproperty if there exists a locally �nite open cover {Uj} of ∂Ω and a corresponding sequence {yj} of nonzerovectors such that if x ∈ Ω ∩ Uj for some j, then x + tyj ∈ Ω for all t ∈ (0, 1).6



Clearly, the segment property is implied by the uniform cone property, since, by compactness of ∂Ω thereis a �nite open cover with balls Br(xi), xi ∈ ∂Ω and the direction yi is given by the axis ξxi of the cone
Kxi . The existence of line segments inside Ω is crucial for the proof of embedding theorems in Sobolevspaces and we will exploit this in the proof of the Sobolev inequality. Nevertheless, the existence ofsegments in Ω is already guaranteed by the cone property, see De�nition 1.2, since, due to a theorem byGagliardo, see [Ada75, Thm. 4.8, p. 68], a bounded domain Ω with the cone property can be composedby a �nite collection of C0,1-domains, which means that each of them has the uniform cone property byProposition 2.10.Remark 2.12 (Further properties of domains) In [AF77] it was established that for many of theembedding and interpolation theorems in Sobolev spaces the so-called weak cone condition of a domainis su�cient: A domain Ω ⊂ Rd satis�es the weak cone condition i� there exists δ > 0 such that

Ld(Γ(x)) ≥ δ for all x ∈ Ω . (2.4)Here, Γ(x) := {y ∈ R(x), |y − x| < 1} and, given x ∈ Ω, the set R(x) consists of all points y ∈ Ω suchthat the line segment joining x to y lies entirely in Ω; thus R(x) is a union of rays and line segmentsemanating from x (see [AF77, p. 714] or [AF03, 4.7, p. 82]).When treating elliptic or parabolic PDEs with mixed boundary conditions, it is necessary that theunderlying domain Ω is of better regularity. A geometrical property which has been established exactlyfor this setting is the notion of regular domains in the sense of Gröger. This geometrical conditionenhances the notion of Lipschitz domains, see Def. 2.7, Item 2., with the re�nement that the Dirichletand Neumann parts of the boundary are mapped suitably by the bi-Lipschitz functions, i.e. the Dirichletand the Neumann parts of the boundary ∂Ω are separated by a Lipschitzian hypersurface of the boundary.See [Grö89, Def. 2, p. 680 and Rem. 1, p. 681] for the de�nition and e.g. [GGKR02, GR01] for furtherapplications.2.2 Properties of Π(θ, h, r, b)In this section we give an overview over the uniform properties of the class Π(θ, h, r, b), which were mainlyestablished in [Che75, Che77, BC07]. Since these results will be relevant in Section 3, we will explaintheir relations and outline the methods used for the proofs.The following way to de�ne a uniform covering for sets Ω ∈ Π(θ, h, r, b) is a slight modi�cation of theone given in [Che75, Prop. II.2, p. 198].Proposition 2.13 (Uniform covering & partition of unity for Ω ∈ Π(θ, h, r, b)) Let θ ∈ (0, π/2),
h > 0, r > 0 with 2r ≤ h �xed. There exists an integer N(r, b, d) and a constant M(r, b) > 0 such that foreach Ω ⊂ Π(θ, h, r, b), the closure Ω has an open covering OΩ := OI

Ω ∪ OB
Ω with the following properties:

• OB
Ω := {B′

i := B(xi(r/2), xi ∈ ∂Ω, i = 1, . . . , νB(Ω)},
• OI

Ω := {B′
i := B(xi(r/2), xi ∈ Ω, i = νB(Ω)+1, . . . , ν(Ω)},

• ν(Ω) ≤ N(r, b, d),
• B′

0 := ∪ν(Ω)
i=νB(Ω)+1B

′
i ⊂ Ω.Moreover, there exist νB(Ω) + 1 functions ζi ∈ C∞

0 (Rd), i = 0, 1, . . . , ν(Ω) such that:
• supp ζi ⊂ B′

i, ζi(x) ∈ [0, 1] for all x ∈ Rd and ∑ν(Ω)
i=0 ζi(x) = 1 for all x ∈ Ω,

• supx∈Rd |∇ζi(x)| ≤ M(r, b).Proof: The second part of the proposition is proved in detail in [Che75, Prop. II.2, p. 198]. Here, weclarify the existence of a uniform upper bound N(r, b, d) on the number of open sets. Let Ω ∈ Π(θ, h, r, b)arbitrarily but �xed. Since diamΩ ≤ b, the set Ω is contained in a closed cube Qb̃ of edge length
b̃ := ([2b/r] + 1)r. Here [·] denotes the Gauÿ bracket, i.e. [a] = n ∈ N for a = n + λ with λ ∈ [0, 1).The cube Qb̃ can be covered with open balls Br/2 of radius r/2 as follows: Starting in each corner weput a ball Br/2 with center in the corner. We cover the edges of Qb̃ with balls Br/2 with their centers onthe edges and with the distance r/2 of their centers. We �ll the faces of the cube by translating the ballsfrom the edges, normal to the edges such that the center of every ball to its neighbor has distance r/2.7



We �ll the interior of the cube in a similar way. We observe that every edge is covered with 2([2b/r] + 1)balls, which implies that Qb̃ is covered by N(r, b, d) = 2d([2b/r] + 1)d balls Br/2.In what follows, the collection of balls Br/2 constructed above is denoted by O and the correspondingcollection of their center points by CQb̃
.The open covering OΩ ⊂ O for Ω ⊂ Qb̃ can now be picked as follows: Those balls in O which donot intersect with Ω do not contribute to the cover OΩ. Furthermore, we introduce the set of centerpoints CI := {xi ∈ Rd, Br/2(xi) ⊂ Ω, Br/2(xi) ∈ O} and we �nd B′

0 = ∪xi∈CI Br/2(xi). For balls
Br/2(yi) ∈ O with Br/2(yi)∩Ω 6= ∅ but Br/2(yi) 6⊂ Ω we choose a point xi ∈ ∂Ω such that Br/2(yi)∩Ω ⊂
Br/2(xi). The collection of these center points is denoted by CB. Hence, the collection of open balls
OΩ := {Br/2(xi), xi ∈ CI ∪ CB} is an open cover of Ω. It consists of ν(Ω) balls with ν(Ω) ≤ N(r, b, d)by construction.The uniform partition of unity is the crucial tool to construct linear, continuous extension operators EΩ :
W 1,p(Ω) → W 1,p(Rd), p ∈ [1,∞) with their operator norms uniformly bounded for all Ω ∈ Π(θ, h, r, b).Theorem 2.1 (Uniform extension) Let θ ∈ (0, π/2), 0 < 2r ≤ h and p ∈ [1,∞). Then there existsa constant K(θ, h, r, b, d, p) > 0 and for every Ω ∈ Π(θ, h, r, b) there is a linear, continuous extensionoperator EΩ : W 1,p(Ω) → W 1,p(Rd) such that:

‖EΩ‖ ≤ K(θ, h, r, b, d, p) . (2.5)The above statement was proved in [Che75, Thm. II.1, p. 199] for p = 2 using Calderon-Zygmund kernelsfor the construction of the extension operators; see also [Agm65, Chap. 11] for more details related toextensions via Calderon-Zygmund kernels. This method, however, cannot be applied for p = 1. This caseis covered by [Che77, Thm. II.1, p. 213] using re�ection techniques to construct the extension operators.In that work the uniform statements are developed for the class Lip(L, δ). Nevertheless, Proposition 2.10directly translates this result into the Π(θ, h, r, b)-setting.De�nition 2.14 (Di�erent notions of set convergence) Consider a sequence sets (Ak)k ⊂ Rd.1. Convergence in the sense of characteristic functions: For all k ∈ N assume that Ak is Ld-measurable. The sequence (Ak)k is said to converge to an Ld-measurable set A, i.e. Ak
ch→ A, i�the sequence of their characteristic functions (XAk

)k converge strongly in L1(Rd), i.e. XAk
→ XAin L1(Rd).2. Convergence of compact sets in Hausdor�-sense: For two compact sets K1 and K2 the Hausdor�distance can be de�ned by, see [Hau62, p. 167], or e.g. [RW98, p. 117],

dH(K1, K2) := inf{η ∈ [0,∞), K1 ⊂ K2 + Bη(0) and K2 ⊂ K1 + Bη(0)} . (2.6)For all k ∈ N, assume that Ak are compact. We say that (Ak)k converges in Hausdor�-sense to acompact set A ⊂ Rd, i.e.
Ak

H→ A i� dH(Ak, A) → 0 . (2.7)3. Convergence of open sets in Hausdor�-complement-sense: Let D ⊂ Rd be open. For all k ∈ N,assume that Ak is open and Ak ⊂ D. We say that (Ak)k converges in Hausdor�-complement-senseto an open set A ⊂ D, i.e.
Ak

Hc

→ A i� dH(D\Ak, D\A) → 0 . (2.8)Remark 2.15 (Translations of sets Ω ∈ Π(θ, h, r, b)) Since diamΩ ≤ b for any set Ω ∈ Π(θ, h, r, b),there are points xΩ ∈ Ω such that Ω ⊂ Qb̃(xΩ), where Qb̃(xΩ) is the cube with center xΩ ∈ Rd andedge length b̃ := ([2b/r] + 1)r with edges parallel to the planes spanned by the coordinate axes. Here, [·]denotes the Gauÿ bracket, i.e. [a] = n ∈ N for a = n+λ with λ ∈ [0, 1). The collection of sets Π(θ, h, r, b)therefore can be composed by translating Π(θ, h, r, Qb̃(0)) := {Ω ⊂ Qb̃(0) and Ω ∈ Π(θ, h, r, b)}, i.e.
Π(θ, h, r, b) =

⋃

x∈Rd

x + Π(θ, h, r, Qb̃(0)) . (2.9)In addition, for all u ∈ W 1,p(Ω) we have that ‖u‖W 1,p(Ω) = ‖u◦τ−1
Ω ‖W 1,p(τΩΩ), where τxΩ : Qb̃(xΩ) → Qb̃(0)is the translation that centers the cube Qb̃(xΩ) in the origin.8



For the collection of sets Π(θ, h, r, Qb̃(0)) introduced in Remark 2.15 the results in [LS04, Lemma 3.3, p.4] state compactness with respect to the above convergences.Lemma 2.16 (Compactness of Π(θ, h, r, Qb̃(0))) Let (Ωk)k ⊂ Π(θ, h, r, Qb̃(0)). Then, there exists asubsequence (Ωk′)k′ ⊂ (Ωk)k and a set Ω ∈ Π(θ, h, r, Qb̃(0)) such that
Ωk′

Hc

→ Ω , Ωk′
ch→ Ω and Ωk′

H→ Ω . (2.10)With the aid of Remark 2.15 one can therefrom conclude the closedness of the class Π(θ, h, r, b) withrespect to the above convergences.Theorem 2.2 (Closedness of Π(θ, h, r, b)) The set Π(θ, h, r, b) is closed with respect to both the con-vergence in the sense of characteristic functions and the convergence in Hausdor�-complement-sense.The compactness result in combination with the uniform extension is used in [BC07, Thm. 1, p. 1442] toderive a uniform Poincaré inequality; in the following,
[u]Ω := 1

Ld(Ω)

∫

Ω

u dx (2.11)denotes the mean value of u in Ω.Theorem 2.3 (Uniform Poincaré inequality for Ω ∈ Π(θ, h, r, b)) Let p ∈ [1,∞). There exists aconstant CP = CP(θ, h, r, d, p) such that for every Ω ∈ Π(θ, h, r, b) and for all u ∈ W 1,p(Ω) it is
‖u− [u]Ω‖Lp(Ω) ≤ CP‖Du‖Lp(Ω) . (2.12)The way to prove the above uniform result is indirect, by contradiction. It reveals its dependence onthe quantities θ, h, r, d, b and p but it does not render the constant CP in detail. For convex domains inarbitrary space dimension, however, optimal constants in Poincaré inequalities for functions with zero-mean value could be derived in [PW60] for p = 2 and in [AD03] for p = 1. In these cases it turns outthat the optimal constant solely depends on the diameter of the domain. In particular, for p = 1, [AD03,Thm. 1, p. 199] states that

CP = b/2 for every convex domain Ω ⊂ Rd with diameter b . (2.13)3 Uniform inequalities for Π(θ, h, r, b)In this section we derive uniform Poincaré-Sobolev inequalities and a relative isoperimetric inequalityfor the class Π(θ, h, r, b) as well as the uniform relative isoperimetric inequality for convex domains Ω ∈
Π(θ, h, r, b) intersected with balls. Similar to the works [Che75, Che77, BC07], where uniform extensionoperators and Poincaré inequalities are deduced, we will obtain that the constant in the Poincaré-Sobolevinequality for Ω ∈ Π(θ, h, r, b) solely depends on the the exponent p, space dimension d, the bound onthe diameter b and on the parameters θ, h and r of the cone that de�nes the cone property for theclass Π(θ, h, r, b). This uniform dependence carries over both to the relative isoperimetric inequalityin Π(θ, h, r, b) in Section 3.1 and to the uniform relative isoperimetric inequality for convex domains
Ω ∈ Π(θ, h, r, b) intersected with balls in Section 3.2.3.1 Uniform Poincaré-Sobolev and isoperimetric inequalities for Π(θ, h, r, b)It was elaborated in [AF77, Thm. 1, p. 715 and pp. 726] that the Sobolev embedding W 1,1(Ω) →
Ld/(d−1)(Ω), i.e. the respective Sobolev inequality, holds also for domains with the weak cone property,only, see Remark 2.12. It is even pointed out there, that the respective embedding constants exhibit thedependence on the previously mentioned parameters, also for Ω having the weak cone property, only.However, the deduction of the Sobolev-Poincaré inequality from this Sobolev inequality requires the useof the uniform Poincaré inequality from Theorem 2.3, which in turn is proven via Theorem 2.1 on the9



existence of a uniform extension operator. Thus, to have these uniform results at hand, we will con�neourselves to the strengthened assumption that Ω even has the strong local Lipschitz property and provethe Sobolev inequality for domains Ω ∈ Π(θ, h, r, b), only.The sole dependence of the Sobolev constant on the previously mentioned parameters for domainswith strong local Lipschitz property, is also pointed out in [Ada75, L. 5.10, p. 103], but the proof thereindoes not reveal how exactly these parameters enter the constant. Therefore, we will here give a modi�edproof of [Ada75, L. 5.10, p. 103] where the in�uence of the parameters in the constant is displayed moreclearly. In the proof, we will apply the uniform, �nite covering given in Proposition 2.13. In each ofthe subdomains we will derive the uniform Sobolev inequality by exploiting the segment property of thedomain, as suggested in the proof of [Ada75, L. 5.10, p. 103]. The uniform boundedness of the numberof elements in the covering will then allow it to �nd a global inequality for Ω ∈ Π(θ, h, r, b).Theorem 3.1 (Sobolev inequality in Ω ∈ Π(θ, h, r, b)) Let p < d. There is a constant CS = CS(θ, h, r, d, p)such that for all Ω ∈ Π(θ, h, r, b) and for all u ∈ W 1,p(Ω) it holds
‖u‖Ldp/(d−p)(Ω) ≤ CSN(r, b, d)1−

1
p ‖u‖W 1,p(Ω) . (3.1)Proof: Let Ω ∈ Π(θ, h, r, b). Recall that Ω satis�es Chenais' uniform cone property and that thesets B′

i ∈ OΩ from Proposition 2.13 have the radius r/2. Hence, for all x ∈ B′
i ∩ Ω we have that acone Ki = K(θ, h, ξi) with opening angle θ, height h and vertex orientation ξi is contained in Ω. Inparticular, 2r ≤ h. Therefore, Ki contains a parallelepiped Pi with opening angle θ and edge length l =

h/(2 cos(θ/2)). The parallelepiped can be transformed into a cube Ql/2i of edge length l = h/(2 cos(θ/2))by a suitable transformation T .In a �rst step we assume that the parallel epiped indeed is the cube Qi
l/2 and we derive a local Sobolevestimate for Qi

l . This can be done in analogy to the proof of [Ada75, L. 5.10, p. 103], where we exploitthat the domain Ωi := (Ω∩B′
i)+Qi

l/2 can be regarded as the parallel translate of the cube Qi
l/2. Secondlywe treat the general case of a parallel epiped Pi 6= Qi

l/2 by applying the above mentioned transformation
T that allows it to lead this case back to the setting of the cube Qi

l/2. Here, for Ωi := (Ω ∩ B′
i) + Pi,the transformed domain TΩi is then again given as the parallel translate of the cube Qi

l/2, so that theresults of Step 1 apply. With the aid of [Ada75, Thm. 3.35, p. 63] the Sobolev estimate obtained for thetransformed domain can be carried over to Ωi.In a third step, the Poincaré-Sobolev estimate for Ω is obtained by summing up the local contributions.Step 1 (Estimate for Pi = Qi
l/2): We choose a local coordinate system with axes in parallel tothe faces of the cube Qi

l/2. We introduce the set Ωi := (Ω ∩ B′
i) + Qi

l/2, which is the parallel translateof the cube Qi
l/2. For x ∈ Ωi let wj(x) denote the intersection of Ωi with the straight line through x inparallel to the xj -axis. Hence, wj(x) contains the line segment {x + tej , 0 ≤ t < 1}. Here, ej is a vectorin parallel to the xj -axis with |ej| = l which points either in the positive or in the negative xj-directionin dependence of the position of x ∈ Ωi.Let γ = (dp− p)/(d− p) and consider u ∈ C∞(Ωi). Then, integration by parts yields

∫ 1

0

|u(x + (1 − t)ej|γ dt = |u(x)|γ − γ

∫ 1

0

t|u(x + (1− t)ej |γ−1 ∂t|u(x + (1− t)ej)|dt , (3.2)where |u(x + (1− t)ej |γ−1 ∂t|u(x + (1− t)ej)| is well-de�ned for every u ∈ C∞(Ωi) although the absolutevalue function is non-di�erentiable in 0. To see this, assume that u(x0) = 0, but u(y) 6= 0 for all y in aneighborhood B(x0) of x0. Otherwise, if u ≡ 0 in B(x0), the part of the line segment intersecting with
B(x0) can be neglected on the left-hand side of (3.2). Then limh→0(|u(x0 ± hej)|γ−1∂xj |u(x0 ± hej)|) =
limh→0(|u(x0±hej)|γ−1 sign(u(x0± hej))∂xj u(x0±hej)) = 0. In particular, this observation implies thefollowing estimate, which will be used later:For all z ∈ Ωi : |u(z)|γ−1∂zj |u(z)| ≤ |u(z)|γ−1|∂zj u(z)| . (3.3)Rearranging the terms in (3.2) leads to

|u(x̃)|γ =
∫ 1

0

|u(x̃ + (1− t)ej)|γ dt + γ

∫ 1

0

t|u(x̃ + (1− t)ej)|γ−1 ∂t|u(x̃ + (1− t)ej)|dt , (3.4)10



which holds true for every x̃ ∈ wj(x) with ej pointing either in the positive or in the negative xj-direction.Let x̂j = (x1, . . . , xj−1, xj+1, . . . , xd) and set
Fj(x̂j) = sup

x̃∈wj(x)

|u(x̃)|p/(d−p) . (3.5)Assume that x̃s realizes the supremum in (3.5). Since γ = p(d − 1)/(d − p) we deduce from (3.4) with
x̃ = x̃s that
|Fj(x̂j)|d−1 = |u(x̃s)|γ =

∫ 1

0

|u(x̃s + (1− t)ej)|γ dt + γ

∫ 1

0

t|u(x̃s + (1− t)ej |γ−1 ∂t|u(x̃s + (1− t)ej)|dt

≤
∫

wj(x)

|u(x̃)|γ dx̃j + γ

∫

wj(x)

|u(x̃)|γ−1|Dju(x̃)| dx̃j ,where the second integral is estimated with the aid of (3.3).Until now we have just integrated in xj -direction. Integration with respect to the remaining coordi-nates can be done by integration over Oj , the projection of Ωi onto the plane with xj = 0. This leadsto ∫

Oj

|Fj(x̂j)|d−1 dx̂j ≤
∫

Q′
i

|u(x)| |u(x)|γ−1 dx + γ

∫

Ωi

|u(x)|γ−1|Dju(x)| dx . (3.6)If p > 1, then γ > 1 and we apply Hölder's inequality with exponent p to the right-hand side. Hence,
p′(γ − 1) = dp/(d− p) = q and we obtain
‖Fj‖d−1

Ld−1(Oj)
≤ γ

(∫

Ωi

(
|u|+ |∇u|

)p dx

) 1
p

(∫

Ωi

|u(x)|(γ−1)p′ dx

) 1
p′

≤ 2(p−1)/pγ‖u‖W 1,p(Ωi)‖u‖
q/p′

Lq(Ωi)
.(3.7)Now, [Ada75, L. 5.9, p. 101] guarantees that F (x̂) = Πd

i=1Fj(x̂j) ∈ L1(Ωi) and ‖F‖L1(Ωi) ≤ Πd
j=1‖Fj‖Lλ(Oj)with λ = d− 1. Hence,

‖u‖q
Lq(Ωi)

=
∫

Ωi

|u|dp/(d−p) dx ≤
∫

Ωi

|Πd
j=1Fj(x̂j)| dx ≤ Πd

j=1‖Fj‖Ld−1(Oj)

≤
(
2(p−1)/pγ‖u‖W 1,p(Ωi)‖u‖

q/p′

Lq(Ωi)

)d/(d−1)
.Since q(d− 1)/d− q/p′ = 1 we �nd

‖u‖Lq(Ωi) ≤ 2(p−1)/pγ‖u‖W 1,p(Ωi) , (3.8)i.e. we have �rst taken the root (d−1)/d and then divided by ‖u‖q/p′

Lq(Ωi)
> 0. For ‖u‖q/p′

Lq(Ωi)
the inequalityclearly holds. We put 2(p−1)/pγ = K.Step 2 (General case Pi 6= Qi

l/2): Recall that Ω satis�es Chenais' uniform cone property and thatthe sets B′
i ∈ OΩ have the radius r/2. Hence, for all x ∈ B′

i∩Ω we have that a cone Ki = K(θ, h, ξi) withopening angle θ, height h and vertex orientation ξi is contained in Ω. In particular, 2r ≤ h. Therefore,
Ki contains a parallelepiped Pi with opening angle θ and edge length l = h/(2 cos(θ/2)). We introducethe set Ωi := (Ω ∩ B′

i) + Pi. The parallel epiped Pi can be obtained by a suitable transformation of acube with edge length l, having one face in common with Pi, by the angle π/2− θ. We denote this cubeby Qi
l/2. In particular, we can choose the shear transformation T : Pi → Qi

l/2 uniformly for all the sets
B′

i ∈ OΩ. For all Tx ∈ T (Ωi ∩ B′
i) we have that Tx + Qi

l/2 ⊂ TΩi. In other words, the domain TΩi isthe parallel translate of the cube Qi
l/2, as in Step 1. For u ∈ C∞(Ωi) we set ũ := u ◦ T−1 ∈ W 1,p(TΩi).By [Ada75, Thm. 3.35, p. 63] there exists constants c0(T ), C0(T ), c1(T ) and C1(T ) such that

c0(T )‖u‖Lγ(Ωi) ≤ ‖ũ‖Lγ(TΩi) ≤ C0(T )‖u‖Lγ(Ωi) , (3.9)
c1(T )‖u‖W 1,p(Ωi) ≤ ‖ũ‖W 1,p(TΩi) ≤ C1(T )‖u‖W 1,p(Ωi) . (3.10)Since the parallelepiped for TΩi is a cube, we can treat the domain TΩi as described in Step 1. Fromthis we obtain that ‖ũ‖Lγ(TΩi) ≤ K‖ũ‖W 1,p(TΩi). Applying the estimates (3.9) and (3.10) results in

‖u‖Lγ(Ωi) ≤ c0(T )−1‖ũ‖Lγ(TΩi) ≤ c0(T )−1K‖ũ‖W 1,p(TΩi) ≤ c0(T )−1C1(T )K‖u‖W 1,p(Ωi) .11



Step 3 (Sobolev estimate for Ω): Let u ∈ C∞(Ω). Recall that the covering OΩ consists of ν(Ω)sets with ν(Ω) ≤ N(r, b, d). Hence we conclude that
‖u‖Lγ(Ω) ≤

ν(Ω)∑

i=1

‖u‖Lγ(Ωi) ≤ (c0(T )−1C1(T ))K
ν(Ω)∑

i=1

‖u‖W 1,p(Ωi)

≤ (c0(T )−1C1(T ))KN(r, b, d)1−
1
p ‖u‖W 1,p(Ω) .We set CS = (c0(T )−1C1(T ))K.By density of C∞(Ω) in W 1,p(Ω) we carry the estimate over to functions f ∈ W 1,p(Ω).As a direct consequence of Theorem 3.1 we obtain the Poincaré-Sobolev inequality, which involvesthe mean value of f, see (2.11). It can be deduced by setting u = f − [f ]Ω in (3.1) and by applying theuniform Poincaré inequality (2.12).Corollary 3.1 (Poincaré-Sobolev inequality in Ω ∈ Π(θ, h, r, b)) Let p < d. There is a constant

CPS = CPS(θ, h, r, d, p) such that for all Ω ∈ Π(θ, h, r, b) and for all f ∈ W 1,p(Ω) it holds
‖f − [f ]Ω‖Ldp/(d−p)(Ω) ≤ CPSN(r, b, d)1−

1
p ‖Df‖Lp(Ω) . (3.11)Proof: By Theorem 3.1 it follows that there is a constant CS such that for all Ω ∈ Π(θ, h, r, b) and all

u ∈ W 1,p(Ω) the uniform Sobolev inequality holds true. Consider u = f − [f ]Ω with f ∈ W 1,p(Ω). Then,the uniform Poincaré inequality (2.12) can be applied and we �nd
‖u‖Ldp/(d−p)(Ω) ≤ CSN(r, b, d)1−

1
p ‖u‖W 1,p(Ω) ≤ CSN(r, b, d)1−

1
p (CP + 1)1/p‖∇u‖Lp(Ω) ,Setting CPS = CS(CP + 1)1/p yields (3.11).Exploiting that characteristic functions XA ∈ BV(Ω) of sets A of �nite perimeter in Ω can be approx-imated by a sequence of molli�ers (fk)k ⊂ C∞(Ω) such that fk → XA in L1(Ω) and their total variations

‖∇fk‖L1(Ω) = |Dfk|(Ω) → |DXA|(Ω) = P (A, Ω) the Poincaré-Sobolev inequality (3.11) can be carriedover to sets of �nite perimeter. By carrying out the classical steps of the proof of the relative isoperimetricinequality in balls, see e.g. [Zie89, Thm. 5.4.3, p. 230] or [EG92, Thm. 2, p. 190], one obtains the uniformisoperimetric inequality relative to Ω ∈ Π(θ, h, r, b).Corollary 3.2 (Uniform relative isoperimetric inequality for Ω ∈ Π(θ, h, r, b)) Let Ω ∈ Π(θ, h, r, b).There exists a constant CI = 2CPS(θ, h, r, b, d) such that for all sets A ⊂ Ω with �nite perimeter in Ω,i.e. P (A, Ω) < ∞, it holds
min

{
Ld(A ∩ Ω), Ld(Ω\A)

} d−1
d ≤ CIP (A, Ω) . (3.12)Proof: See Steps 2 and 3 in the proof of Theorem 3.2 for details.Let us mention the works [MV05, MV08], where optimal Poincaré-Sobolev inequalities with traceterms and related inequalities are deduced using transportation techniques. This includes the isoperi-metric inequality in Rd. Clearly, since our proof of the uniform Sobolev inequality involves the uniformcovering from Proposition 2.13, which does not use the minimal number of sets needed to cover a set

Ω ∈ Π(θ, h, r, b), the uniform constants obtained with our method are not the optimal ones.3.2 Uniform isoperimetric inequality in convex domains intersected with ballsIt is well known for balls, see e.g. [Zie89, Thm. 5.4.3, p. 230] or [EG92, Thm. 2, p. 190], that the relativeisoperimetric inequality in balls is scaling invariant, i.e. that the isoperimetric constant does not dependon the radius of the ball. An analogous result holds when replacing the ball by an arbitrary Lipschitzdomain, see [Pfe01, Thm. 1.8.7, p. 36]. In this section we aim at a slightly di�erent situation, whichcannot be concluded solely from scaling arguments: We deduce a relative isoperimetric inequality for a�xed convex domain Ω intersected with a ball Bρ(y) of radius ρ > 0 and center y ∈ Ω. We obtain that12



the isoperimetric constant is independent of both the radius ρ > 0 and the choice of the center y ∈ Ω.In particular the constant will solely depend on space dimension d, the bound b on the diameter of Ωand on the angle θ, the height h and the radius r, i.e. the three parameters governing the uniform coneproperty of Ω.By [Gri85, Cor. 1.2.2.3] it is ensured that every convex domain is of class C0,1. Hence it has Chenais'unform cone property. Furthermore, clearly, the intersection of two convex domains results in a convexdomain, and hence, again in a C0,1-domain with Chenais' uniform cone property. This is why the result isestablished for convex domains Ω, since, on the one hand the assumption of convexity yields the uniformcone property, and on the other hand it ensures that Ω ∩ Bρ(y) is connected for every choice of ρ > 0and y ∈ Ω. The latter property is crucial to apply the Poincaré-Sobolev inequality with the mean value(3.11) and it must not hold if Ω is non-convex. A further crucial reason to rule out non-convex domains
Ω is the fact that the intersection angle of a ball with ∂Ω may degenerate to 0 as the center of the ball ismoved along ∂Ω, see Fig. 3.1. More precisely, in the proof of the uniform relative isoperimetric inequalityit is exploited that every domain Ω∩Bρ(y) for y ∈ Ω satis�es the cone property with a cone of the sameopening angle as the one of Ω. This is due to the fact that the intersection angle α(y) of the boundary
∂Ω and a ball Bρ(y) with center y ∈ Ω is at least 90◦ for a convex domain Ω. Hence, the cone de�ningthe cone property for Ω ∩ Bρ(y) may have a smaller height than the one for Ω, but the opening anglesof the cones are the same. In this case the cones can be scaled to the same size by a suitable scalingof Ω ∩ Bρ(y). In contrast, for a non-convex domain Ω, the intersection angle α(y) can degenerate tozero as the center y moves along the boundary ∂Ω away from a re-entrant corner, indicated in Fig. 3.1.Therefore, the opening angle of the cone di�ers for every domain Ω∩Bρ(y) in dependence of the locationof y ∈ Ω. Thus, in the non-convex case, the cones of Ω and Ω ∩ Bρ(y) cannot be transformed into eachother simply by scaling.
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Figure 3.1: The intersection angle α(y) → 0 as y moves from the re-entrant corner to the right.In the following we consider a convex domain Ω ⊂ Π(θ∗, h∗, r∗, b) for θ∗, h∗, r∗ �xed. Then also
Ω ⊂ Π(θ∗, 2a∗, a∗, b) with a∗ = min{h∗/2, r∗}. As Ω is convex we observe that its intersection Ω ∩Bρ(y)with any ball Bρ(y) with center y ∈ Ω and arbitrary radius ρ > 0 is again a convex domain. In particularwe conclude that the opening angle of the cone, which constitutes the cone property for Ω ∩ Bρ(y), isagain θ∗, the opening angle of the cone for Ω. This is due to the fact that the boundary ∂Ω intersectswith ∂Bρ(y) in an angle larger or equal than π/2, because the center y ∈ Ω. Moreover, there are
h◦, r◦ > 0, which depend on y ∈ Ω and ρ > 0, such that Ω ∩ Bρ(y) ∈ Π(θ∗, h◦, r◦, b). Again, we set
a◦ := min{h◦/2, r◦} and �nd that Ω ∩Bρ(y) ∈ Π(θ∗, 2a◦, a◦, b).Assume that a◦ 6= a∗. Then we may rescale domain Ω∩Bρ(y) to the size such that the correspondingcone has the height 2a∗ and the balls of radius a∗. More precisely, the rescaled domain is given by

a∗
a◦

(Ω ∩Bρ(y)) = a∗
a◦

Ω ∩Ba∗ρ/a◦(a∗y/a◦) (3.13)and satis�es a∗
a◦

(Ω∩Bρ(y)) ∈ Π(θ∗, 2a∗, a∗, b). By Corollary 3.1 there is a constant CPS = CPS(θ, 2a∗, a∗, d, p)such that the uniform Poincaré-Sobolev inequality (3.11) for p = 1 holds in a∗
a◦

(Ω ∩ Bρ(y)) for all
f ∈ C∞(a∗

a◦
(Ω ∩Bρ(y))) independently of the upper bound N(r, b, d) on the order of the covering:

‖f − [f ] a∗
a◦ (Ω∩Bρ(y))‖Ld/(d−1)( a∗

a◦ (Ω∩Bρ(y))) ≤ CPS‖Df‖L1( a∗
a◦ (Ω∩Bρ(y))) . (3.14)13



By a change of variables it can be proved that (3.14) holds true independently of the fraction a∗/a◦,i.e. that CPS is independent of the radius ρ and the center y of the ball Bρ(y) that was used for theintersection with Ω. Then, by density arguments, (3.14) can be carried over to BV and the followingisoperimetric inequality relative to Ω ∩ Bρ(y) can be proved with a constant CΩ = CPS(θ, 2a∗, a∗, d),uniformly for all y ∈ Ω and all ρ > 0.Theorem 3.2 (Uniform relative isoperimetric inequality for convex Ω intersected with balls)Let Ω ∈ Π(θ, 2a∗, a∗, b) be a convex domain and Bρ(y) the open ball with radius ρ > 0 and center y ∈ Ω.There exists a constant CΩ = 2CPS(θ, 2a∗, a∗, d) such that for all y ∈ Ω, all ρ > 0 and every set A ⊂ Ωof �nite perimeter in Ω, i.e. P (A, Ω) < ∞, it holds
min

{
Ld(A ∩ (Ω ∩Bρ(y))), Ld((Ω ∩Bρ(y))\A)

} d−1
d ≤ CΩP (A, Ω ∩Bρ(y)) . (3.15)Proof: As a �rst step we perform a change of variables in (3.14). This will reveal that rescalingthe domain a∗

a◦
(Ω ∩ Bρ(y)) to Ω ∩ Bρ(y) does not change the constants in (3.14). As a second step wecarry (3.14) over to BV-functions via density arguments. Finally, in a third step, we deduce the relativeisoperimetric inequality by applying (3.14) to the characteristic function of A∩(Ω∩Bρ(y)) for an arbitrarybut �xed set A with �nite perimeter.Step 1 (Change of variables in (3.14)): Let f ∈ C∞(a∗

a◦
(Ω ∩Bρ(y))). For σ ∈ Ω ∩Bρ(y) we set

x = a∗
a◦

σ ∈ a∗
a◦

(Ω ∩Bρ(y)). Then σ = a◦
a∗

x and dx = (a∗
a◦

)ddσ. Thus, it is
[f ]a∗

a◦
(Ω∩Bρ(y))

= (a∗
a◦

)−dLd(Ω∩Bρ(y))−d

∫
a∗
a◦

(Ω∩Bρ(y))

f(x) dx =
∫

Ω∩Bρ(y)

f(a∗σ/a◦) dσ = [f◦]Ω∩Bρ(y) , (3.16)where we introduced the notation f◦(σ) = f(a∗σ/a◦). With the same ideas we can transform the fullnorm on the left-hand side of (3.14), i.e. we �nd
‖f − [f ]a∗

a◦
(Ω∩Bρ(y))

‖
Ld/(d−1)(

a∗
a◦

(Ω∩Bρ(y)))
=

(
(a∗

a◦
)d

∫

Ω∩Bρ(y)

f◦ − [f◦]Ω∩Bρ(y) dσ
)(d−1)/d

= (a∗
a◦

)d−1‖f◦ − [f◦]a∗
a◦

(Ω∩Bρ(y))
‖Ld/(d−1)(Ω∩Bρ(y))) ≤ CPS(θ, 2a∗, a∗, d)‖Df‖

L1(
a∗
a◦

(Ω∩Bρ(y)))
. (3.17)It remains to transform ‖Df‖

L1(
a∗
a◦

(Ω∩Bρ(y)))
in (3.17) to the domain Ω ∩ Bρ(y). Using that Dxf(x) =

Dxf(a∗
a◦

σ) = a◦
a∗

Dσf(a∗
a◦

σ) = a◦
a∗

Dσf◦ we �nd
‖Df‖

L1(
a∗
a◦

(Ω∩Bρ(y)))
=

∫
a∗
a◦

(Ω∩Bρ(y))

|a∗a◦
Dxf(x)|a◦a∗

dx =
∫

a∗
a◦

(Ω∩Bρ(y))

|a∗a◦
Dxf(x)|(a◦

a∗
)d(a∗

a◦
)d−1 dx

= (a∗
a◦

)d−1

∫

Ω∩Bρ(y)

|Dσf◦(σ)| dσ = (a∗
a◦

)d−1‖Df◦‖L1(Ω∩Bρ(y)) . (3.18)Comparing (3.17) and (3.18) we see that the transformation factor (a∗
a◦

)d−1 cancels out and hence wehave for all f◦ ∈ C∞(Ω ∩Bρ(y))

‖f◦ − [f◦](Ω∩Bρ(y))‖Ld/(d−1)(Ω∩Bρ(y)) ≤ CPS‖Df◦‖L1(Ω∩Bρ(y)) (3.19)with the constant CPS = CPS(θ, a∗, d) depending solely on the parameters of the cone ensuring the coneproperty for Ω but being independent of Bρ(y).Step 2 ((3.19) for characterstic functions by density): Let A ⊂ Ω ∩ Bρ(y) be a set of �niteperimeter in Ω∩Bρ(y). For f = XA we consider a sequence of molli�ers (fk)k ⊂ C∞(Ω∩Bρ(y)) such that
fk → f in L1(Ω∩Bρ(y)) and |Dfk|(Ω∩Bρ(y)) = ‖Dfk‖L1(Ω∩Bρ(y)) → |Df |(Ω∩Bρ(y)) = P (A, Ω∩Bρ(y)).Since fk → f in L1(Ω∩Bρ(y)) there is a subsequence converging pointwise a.e.. Hence, we can concludeby lower semicontinuity of ‖ · ‖Ld/(d−1)(Ω∩Bρ(y)) that

‖f − [f ]Ω∩Bρ(y)‖Ld/(d−1)(Ω∩Bρ(y)) ≤ lim inf
k→∞

‖fk − [fk]Ω∩Bρ(y)‖Ld/(d−1)(Ω∩Bρ(y))

≤ CPS lim
k→∞

‖Dfk‖L1(Ω∩Bρ(y)) = CPSP (A, Ω ∩Bρ(y)) .
(3.20)14



Step 3 (Deduction of the relative isoperimetric inequality from (3.20)): This step is thesame as the proof of the relative isoperimetric inequality in balls, see e.g. [Zie89, Thm. 5.4.3, p. 230] or[EG92, Thm. 2, p. 190]. Consider f = XA∩(Ω∩Bρ(y)) as the characteristic function of the set A∩(Ω∩Bρ(y))with A ⊂ Ω and P (A, Ω) < ∞. Immediate calculation yields
‖f − [f ]Ω∩Bρ(y)‖Ld/(d−1)(Ω∩Bρ(y))

=
(

Ld((Ω∩Bρ(y))\A)
Ld(Ω∩Bρ(y))

)
Ld((Ω ∩Bρ(y)) ∩A)(d−1)/d +

(
Ld((Ω∩Bρ(y))∩A)

Ld(Ω∩Bρ(y))

)
Ld((Ω ∩Bρ(y))\A)(d−1)/d(3.21)Assume that Ld((Ω ∩Bρ(y))\A) ≥ Ld((Ω ∩Bρ(y)) ∩A). Then Ld((Ω ∩Bρ(y))\A)/Ld(Ω ∩Bρ(y)) ≥ 1/2and hence ‖f − [f ]Ω∩Bρ(y)‖Ld/(d−1)(Ω∩Bρ(y)) ≥ 1

2Ld((Ω ∩Bρ(y))∩A). Similarly, if Ld((Ω∩Bρ(y))∩A) ≥
Ld((Ω ∩ Bρ(y))\A), we �nd ‖f − [f ]Ω∩Bρ(y)‖Ld/(d−1)(Ω∩Bρ(y)) ≥ 1
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