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AbstratIn this paper some analytial and numerial aspets of time-dependent models with in-ternal variables are disussed. The fous lies on elasto/viso-plasti models of monotonetype arising in the theory of inelasti behavior of materials. This lass of problems inludesthe lassial models of elasto-plastiity with hardening and visous models of the Norton-Ho� type. We disuss the existene theory for di�erent models of monotone type, give anoverview on spatial regularity results for solutions to suh models and illustrate a numeri-al solution algorithm at an example. Finally, the relation to the energeti formulation forrate-independent proesses is explained and temporal regularity results based on di�erentonvexity assumptions are presented.1 IntrodutionIn metalli materials various phenomena on the mirosale indue marosopially inelasti be-havior: The hindering of the disloation motion by other disloations or grain boundaries ausehardening e�ets, whih are observed on the marosopi sale. The nuleation and growth ofgrain boundary avities initiate the development of miroraks whih may ause the failure thewhole struture.From the phenomenologial point of view the marosopi state of inelasti bodies is ompletelydetermined by the displaement or deformation �eld, the stress tensor and a �nite number ofinternal variables representing internal proesses on the mirosale. The orresponding maro-sopi models onsist of the balane of fores, an evolution law for the internal variables andonstitutive equations whih relate the stresses with the displaement gradient and the internalvariables. A thermodynamially onsistent framework for suh models is the lass of generalizedstandard materials de�ned by Halphen and Nguyen Son and the more general lass of models ofmonotone type introdued by Alber. From the mathematial point of view these models lead tooupled systems of linear hyperboli/ellipti partial di�erential equations and nonlinear ordinarydi�erential equations/inlusions. A typial appliation of suh models is elasto(viso)-plastiitywith hardening at small strains. In the rate-independent ase an alternative energeti formula-tion for suh models was proposed by Mielke et al. in the last years. This formulation provides ageneral tool to rigorously analyze e�ets like damage, frature or hystereti behavior in magnetiand ferroeletri bodies at both, small and �nite strains. The aim of this paper is to review somereent analytial and numerial aspets of models of this type.The starting point for the models disussed in this paper is the following: Given a time interval
[0, T ] and a state spae Q = U × Z let u : [0, T ] → U denote the generalized displaementsand z : [0, T ] → Z the internal variables. It is assumed that U and Z are real, separable andre�exive Banah spaes. In the appliations of plastiity, typial hoies are Z = Lp(Ω) and U isidenti�ed with a suitable subspae of the Sobolev spae W 1,p(Ω). The set Ω ⊂ R

d desribes thephysial body. In the �rst hapters of this presentation the assoiated elasti energy Ψ : Q → Ris assumed to be quadrati and positive semide�nite, i.e. we have
Ψ(u, z) =

1

2
〈A ( u

z ) , ( u
z )〉1



where A =
(

A11 A12
A21 A22

)
: Q = U×Z → Q∗ is a linear, bounded symmetri and positive semide�niteoperator. In addition to the elasti energy Ψ we also onsider the energy

E(t, u, z) = Ψ(u, z) − 〈b(t), u〉for given external loadings b ∈ C1([0, T ];U∗). The evolution law for the internal variable z isharaterized by a monotone, multivalued mapping G : Z → P(Z∗) with the property 0 ∈ G(0).Thereby U∗, Z∗ and Q∗ are the duals of the Banah spaes U , Z and Q respetively and P(Z∗)denotes the power set of Z∗. The assumptions on E and G are motivated by thermodynamialonsiderations whih are arried out in Setion 2.1. There also the link to elasto-plastiity isexplained more detailed. The evolution model assoiated with E and G onsists of the forebalane equation (1.1) whih is oupled with the evolution law (1.2) for the internal variable:Find absolutely ontinuous funtions u ∈ AC([0, T ];U) and z ∈ AC([0, T ];Z) with z(0) = z0 ∈ Zsuh that for almost every t ∈ [0, T ] it holds
0 = ∂uE(t, u(t), z(t)) = A11u(t) +A12z(t) − b(t), (1.1)

∂tz(t) ∈ G(−∂zE(t, u(t), z(t)) = G(−(A21u(t) +A22z(t))). (1.2)Systems of this struture onstitute the lass of models of monotone type introdued by Alber[1℄. The sublass of generalized standard materials is obtained if in addition to the above it isassumed that G is the onvex subdi�erential of a onvex and proper funtion. The partiularhoie G = ∂χK, where 0 ∈ K ⊂ Z is onvex and losed, and where χK denotes the harateristifuntion related to K, �nally leads to the sublass of rate-independent evolution models. Typialexamples for these lasses of models are elasto-plastiity in the small strain setting omprising forexample linear kinemati hardening. An example for a rate-dependent model is the viso-plastiNorton-Ho� model.The mathematial analysis of rate-independent elasto-plasti models has its roots in the fun-damental ontributions by Moreau, Duvaut/Lions and Johnson, [32, 53, 78℄. More reent in-vestigations, whih also over rate-dependent models, are due to Alber/Chelminski [2℄, see also[47℄. If A and hene Ψ are positive de�nite, i.e. if Ψ(u, z) ≥ α
2 (‖u‖2

U + ‖z‖2
Z) for all (u, z) ∈ Q,and if in addition G is maximal monotone, then lassial results state the existene of a uniquesolution (u, z) ∈ AC([0, T ];Q) for su�iently regular given data b and z0, whih satisfy a ertainompatibility ondition.In ontrast to the positive de�nite ase it is quite hallenging to prove existene results for(1.1)�(1.2) if A is positive semide�nite, only. Typial examples for suh models are the elasti-perfetly plasti Prandtl-Reuss model and models with linear isotropi hardening and we referto [53, 28, 47, 23℄ for the disussion of existene questions. In Setion 2.5 we present an existeneproof for a model with a positive semi-de�nite energy Ψ under the assumption that a ertainoupling ondition is satis�ed between the operators A12 and A22. Here, we study the solvabilityfor u ∈ Lq(S;W 1,q(Ω)) and z ∈ AC(S;Lq(Ω)) for suitable q ∈ (1,∞).Apart from existene results it is of great interest to gain more insight into the qualitativeproperties of solutions, suh as spatial or temporal regularity and stability. This knowledge isthe basis for the onstrution of e�ient and robust numerial algorithms. Setion 3 is devoted tothe disussion of spatial regularity results for solutions of models of monotone type. Dependingon the positivity properties of the free energy Ψ di�erent regularity results may be ahieved.In the positive semi-de�nite ase one typially obtains the spatial regularity

σ ∈ L∞((0, T );H1lo(Ω))2



for the stress tensor σ. The basi observation enabling this result is the fat that the omple-mentary energy, whih is the onvex onjugate of the free energy, is positive de�nite with respetto the generalized stresses, although the energy Ψ might not be positive de�nite. In addition tothe semide�nite ase, for positive de�nite energies the following global spatial regularity resultsare available for domains with smooth boundary: For every δ > 0 it holds
u ∈ L∞((0, T );H

3
2
−δ(Ω)) ∩ L∞((0, T );H2lo(Ω)), (1.3)

σ, z ∈ L∞((0, T );H
1
2
−δ(Ω)) ∩ L∞((0, T );H1lo(Ω)). (1.4)The proof of the global results relies on stability estimates for the solutions of (1.1)�(1.2) and are�etion argument. A disussion onerning the optimality of (1.3)�(1.4) as well as an overviewof the related literature is provided in Setions 3.2 and 3.3. Moreover, we disuss an examplewhih shows that in spite of smooth data and a smooth geometry one should not expet aomparable spatial regularity result for the time derivatives ∂tu and ∂tz.In Setion 4 we disuss and analyze a numerial algorithm for solving rate-independent elasto-plasti models. After a time disretization with an impliit Euler sheme the time inrementalproblem an be reformulated as a quasilinear ellipti system of partial di�erential equations todetermine the displaements at time step tk from the displaements and internal variables ofthe previous time step. The internal variable of the urrent time step then an be alulatedvia a straightforward update formula. Sine the nonlinear ellipti operator is not Gâteaux-di�erentiable, lassial Newton methods are not appliable for solving the PDE. Instead wedisuss an approah where we use a so-alled slanting funtion instead of the derivative resultingin a Slant Newton Method. The behavior of this algorithm is illustrated at some examples.In the last setion, Setion 5, we fous on rate-independent models of the type (1.1)-(1.2) with

G = ∂χK. As already mentioned, in this ase the model (1.1)�(1.2) an be reformulated in theglobal energeti framework for rate-independent evolution proesses introdued by Mielke andTheil [70℄. Indeed we will show in Setion 5 that the model is equivalent to the following problem:Find a pair (u, z) : [0, T ] → Q with (u(0), z(0)) = (u0, z0) whih for every t ∈ [0, T ] satis�esstability relation (S) and the energy balane (E)(S) for every (v, ζ) ∈ Q we have E(t, u(t), z(t)) ≤ E(t, v, ζ) + R(ζ − z(t)),(E) E(t, u(t), z(t)) +

∫ t

0
R(∂tz(τ))dτ = E(0, u(0), z(0)) +

∫ t

0
∂tE(τ, u(τ), z(τ))dτ,where R : Z → [0,∞] is the onvex onjugate of the harateristi funtion χK and hene isonvex and positively homogeneous of degree one.The energeti framework allows for more general energies E , whih not neessarily have aquadrati struture or strit onvexity properties, or whih might not be Gâteaux di�erentiablewith respet to u or z. The energeti formulation of rate-independent proesses provides a gen-eral tool, whih also applies to further physial phenomena like damage, frature, shape memorye�ets or ferroeletri behavior. Sine the energy E is not neessarily stritly onvex, solutionsmay our whih are disontinuous in time. A general existene theorem is ited. Subsequentit is investigated to what extend di�erent onvexity assumptions on the energy yield solutionswhih are ontinuous, Hölder-ontinuous or even Lipshitz-ontinuous in time. These onvexityassumptions are disussed for di�erent examples modeling elasto-plastiity, shape memory e�etsand damage. 3



2 Elasto(viso)-plasti models of monotone type2.1 Thermodynami frameworkIn this subsetion we show that the problem (1.1) - (1.2) is thermodynamially admissible. Westart with a marosopi model desribing inelasti response of solids at small strains in the mostgeneral form, and then we extrat a sublass of models, for whih the Clausius-Duhem inequalityis naturally satis�ed. This sublass of models onsists of problems of the type (1.1) - (1.2).Setting of the problemFor the subsequent analysis we restrit ourselves only to the 3-dimensional ase, although allof our results hold in any spae-dimension. Let Ω ⊂ R
3 be a bounded domain with Lipshitzboundary ∂Ω and let S3 be the linear spae of symmetri 3×3-matries. Let Te denote a positivenumber (time of existene). For 0 ≤ t ≤ Te we introdue the spae-time ylinder Ωt = Ω× (0, t).The initial boundary value problem for the unknown displaement u(x, t) ∈ R

3, the Cauhystress tensor T (x, t) ∈ S3 and the vetor of internal variables z(x, t) ∈ R
N in a quasi-statisetting is formed by the equations

− divx T (x, t) = b(x, t), (2.1)
T (x, t) = A(ε(∇xu(x, t)) −Bz(x, t)), (2.2)

∂

∂t
z(x, t) ∈ f(ε(∇xu(x, t)), z(x, t)), (2.3)whih must hold for all x ∈ Ω and all t ∈ [0,∞). The initial value for z(x, t) and the Dirihletboundary ondition for u(x, t) are given by

z(x, 0) = z(0)(x), for x ∈ Ω, (2.4)
u(x, t) = γ(x, t), for (x, t) ∈ ∂Ω × [0,∞). (2.5)Here ∇xu(x, t) denotes the 3× 3-matrix of �rst order derivatives of u, the deformation gradient,

(∇xu(x, t))
T denotes the transposed matrix, and

ε(∇xu(x, t)) =
1

2
(∇xu(x, t) + (∇xu(x, t))

T ) ∈ S3,is the strain tensor. The linear mapping B : R
N 7→ S3 is a projetor with εp(x, t) = Bz(x, t),where εp ∈ S3 is a plasti strain tensor. We denote by A : S3 → S3 a linear, symmetri, positivede�nite mapping, the elastiity tensor. The given data of the problem are the volume fore

b : Ω × [0,∞) 7→ R
3, the boundary displaement γ : ∂Ω × [0,∞) 7→ R

3, and the initial data forthe vetor of the internal variables z(0) : Ω 7→ R
N . The given funtion f : D(f) ⊆ S3×R

N 7→ 2R
Nis a onstitutive funtion with the domain D(f).The di�erential inlusion (2.3) with a presribed funtion f together with the equation (2.2)de�ne the material behavior. They are the onstitutive relations whih model the elasto(viso)-plasti behavior of solid materials at small strains, whereas (2.1) is the fore balane arising fromthe onservation law of linear momentum.The initial boundary value problem (2.1) - (2.5) is written here in the most general form and,to the best of our knowledge, inludes all elasto(viso)-plasti models at small strains used in4



the engineering. To guarantee that by equations (2.1) - (2.5) a thermodynamially admissibleproess is desribed, we laim the existene of a free energy density ψ : D(f) → [0,∞) suh thatthe Clausius-Duhem inequality
ρ
∂

∂t
ψ(ε(∇xu), z) − divx(Tut) − b · ut ≤ 0 (2.6)holds in Ω × (0,∞) for all solutions (u, T, z) of (2.1) - (2.5). The funtion ρ denotes the massdensity and it is assumed to be onstant. The requirement (2.6) restrits the possible hoies of

f . Indeed, let (u, z) be a su�iently smooth solution of (2.1) - (2.6). Firstly, we note that thesymmetry of the stress tensor implies
T · ε(∇xut) = T · ∇xut = divx(T Tut) − (divx T ) · ut.Then, as a diret onsequene of the Clausius-Duhem inequality (2.6), one gets with the help ofthe previous relation and the symmetry of T the following inequality

ρ∇εψ · ε(∇xut) + ρ∇zψ · zt − divx(Tut) − b · ut

= ρ∇εψ · ε(∇xut) + ρ∇zψ · zt − T · ε(∇xut) = (ρ∇εψ − T ) · ε(∇xut) + ρ∇zψ · zt
≤ 0.Due to the arbitrariness of the strain rate ε̇ = ε(∇xut), we onlude that

ρ∇εψ(ε, z) = T, (2.7)
ρ∇zψ(ε, z) · ζ ≤ 0 (2.8)for every ζ ∈ f(ε, z) and for all (ε, z) ∈ D(f). Inequality (2.8) is alled the dissipation inequality.Therefore, we all the onstitutive equations (2.2) and (2.3) thermodynamially admissible if afree energy density ψ exists suh that (2.7) and (2.8) are satis�ed.Now it is easy to extrat a sublass of onstitutive funtions f , for whih the dissipation inequality(2.8) is naturally ful�lled. This sublass onsists of those funtions f , whih an be written inthe form

f(ε, z) = g(−ρ∇zψ(ε, z)), (2.9)with a suitable free energy density ψ : D(f) → [0,∞) satisfying (2.7), and with a suitablemonotone funtion g : D(g) ⊆ R
N → 2RN with the property 0 ∈ g(0).Relations (2.2) and (2.7) allow us to �nd the preise form of the free energy density: Integrating(2.7) with respet to ε we an easily obtain that

ρψ(ε, z) =
1

2
A(ε−Bz) · (ε−Bz) + ψ1(z)with a suitable funtion ψ1 : D(ψ1) ⊆ R

N → [0,∞) as a onstant of integration. For mathemat-ial reasons we assume in this hapter that the free energy density ψ has a speial form, namelyit is a positive semi-de�nite quadrati form given by
ρψ(ε, z) =

1

2
A(ε−Bz) · (ε−Bz) +

1

2
(Lz) · z (2.10)with a symmetri, non-negative N ×N -matrix L. Di�erentiating (2.10) with respet to z yields

−ρ∇zψ(ε, z) = BTA(ε−Bz) − Lz = BTT − Lz.5



In view of these onsiderations the initial boundary value problem (2.1) - (2.5) an be written as
− divx T (x, t) = b(x, t), (2.11)

T (x, t) = A(ε(∇xu(x, t)) −Bz(x, t)), (2.12)
∂

∂t
z(x, t) ∈ g(BTT (x, t) − Lz(x, t)) (2.13)
z(x, 0) = z(0)(x), (2.14)for all x ∈ Ω and all t ∈ [0,∞), together with the Dirihlet boundary ondition

u(x, t) = γ(x, t) for x ∈ ∂Ω, t ∈ [0,∞). (2.15)The initial boundary value problem (2.11) - (2.15) is alled the problem/model of monotonetype. As we have already mentioned in the introdution, this lass of models was introdued byAlber in [1℄ and it naturally generalizes the lass of problems of generalized standard materialsproposed by Halphen and Nguyen Quo Son. We reall that the models of generalized standardmaterials are formed by equations (2.11) - (2.15) with the monotone funtion g given expliitlyby the subdi�erential of a proper onvex funtion. Typial examples for models of monotonetype are elasto-plasti models with linear or nonlinear hardening (for more details, onsult thebook [1, Chapter 3.3℄).First existene results for the lassial model of perfet plastiity (Prandtl-Reuss-model) werederived in [76, 32, 53℄. Sine the elasti energy in this ase is positive semide�nite, only, thedisplaements in general belong to the spae of bounded deformations, only, [102, 104, 105℄. Theexistene theory for elasto-plasti models with a positive de�nite energy (like elasto-plastiitywith linear kinemati hardening) was initiated by Johnson [54℄, we refer to the monographs[47, 39℄ for a historial survey on the subjet. In the late 90ies these results were extended tomodels of monotone type with general maximal monotone funtions g, still assuming that theenergy is positive-de�nite, [1, 2℄. In [3, 23, 22, 24, 82, 84, 85℄ an approah for the derivationof the existene of solutions to the problem (2.11) - (2.15) initiated in [1℄ was ontinued andextended to partiular models of monotone type with a positive semi-de�nite energy. In thepresent paper, we brie�y disuss the existene result in [2℄ for models with a positive de�niteenergy in order to point out the main di�erenes and di�ulties whih arise in the treatment ofmonotone problems with a positive semi-de�nite energy. An existene proof for a speial lasswith a positive semi-de�nite energy is disussed afterwards.2.2 Funtion spaes and notationFor m ∈ N, q ∈ [1,∞], we denote by Wm,q(Ω,Rk) the Banah spae of Lebesgue integrablefuntions having q-integrable weak derivatives up to order m. This spae is equipped with thenorm ‖ · ‖m,q,Ω. If m = 0 we also write ‖ · ‖q,Ω. If m is not integer, then the orrespondingSobolev-Slobodekij spae is denoted by Wm,q(Ω,Rk). We set Hm(Ω) = Wm,2(Ω), f. [42℄.We hoose the numbers p, q satisfying 1 < p, q < ∞ and 1/p + 1/q = 1. For suh p and q onean de�ne the bilinear form on the produt spae Lp(Ω,Rk) × Lq(Ω,Rk) by
(ξ, ζ)Ω =

∫

Ω
ξ(x) · ζ(x)dx.6



If (X,H,X∗) is an evolution triple (known also as a �Gelfand triple� or �spaes in normal posi-tion�), then
Wp,q(0, Te;X) =

{
u ∈ Lp(0, Te;X) | u̇ ∈ Lq(0, Te;X

∗)
}is a separable re�exive Banah spae furnished with the norm

‖u‖2
Wp,q

= ‖u‖2
Lp(0,Te;X) + ‖u̇‖2

Lq(0,Te;X∗),where the time derivative u̇ of u is understood in the sense of vetor-valued distributions. We re-all that the embedding Wp,q(0, Te;X) ⊂ C([0, Te],H) is ontinuous ([50, p. 4℄, for instane). Fi-nally we frequently use the spaesW k,p(0, Te;X), whih onsist of Bohner measurable funtionswith a p-integrable weak derivatives up to order k. Observe thatW2,2(0, Te;X) = W 1,2(0, Te;X).2.3 Basi properties of the operator of linear elastiityHere, we state the assumptions on the oe�ient matries in (2.11) - (2.13):
A ∈ L∞(Ω,Lin(S3,S3)) is symmetri and uniformly positive de�nite,i.e. there exists α > 0 suh that A(x)ε · ε ≥ α ‖ε‖2 for all ε ∈ S3 and a.e. x ∈ Ω,
L ∈ L∞(Ω; Lin(RN ,RN )) is symmetri and positive semi-de�nite. (2.16)Sine the linear mapping A(x) : S3 → S3 is uniformly positive de�nite, a new bilinear form on

Lp(Ω,S3) × Lq(Ω,S3) an be de�ned by
[ξ, ζ]Ω = (Aξ, ζ)Ω.From [108, Theorem 4.2℄ we reall an existene theorem for the following boundary value problemdesribing linear elastiity:

−divxT (x) = b̂(x), for x ∈ Ω, (2.17)
T (x) = A(x)(ε(∇xu(x)) − ε̂p(x)), for x ∈ Ω, (2.18)

u(x) =γ̂(x), for x ∈ ∂Ω. (2.19)To given b̂ ∈ W−1,q(Ω,R3), ε̂p ∈ Lp(Ω,S3) and γ̂ ∈ W 1,p(Ω,R3) the problem (2.17) - (2.19) hasa unique weak solution (u, T ) ∈ W 1,p(Ω,R3) × Lp(Ω,S3) with 1 < p < ∞ and 1/p + 1/q = 1provided A ∈ C(Ω,Lin(S3,S3)) and Ω is of lass C1. For p = 2 this result for the problem (2.17)- (2.19) holds provided that A satis�es ondition (2.16) and that Ω is a Lipshitz domain. For
b̂=γ̂=0 there is a onstant C > 0 suh that the solution of (2.17) - (2.19) satis�es the inequality

‖ε(∇xu)‖p,Ω ≤ C‖ε̂p‖p,Ω.De�nition 2.1. For every ε̂p ∈ Lp(Ω,S3) we de�ne a linear operator Pp : Lp(Ω,S3) → Lp(Ω,S3)by Ppε̂p = ε(∇xu), where u ∈ W 1,p
0 (Ω,R3) is the unique weak solution of (2.17) - (2.19) for thegiven funtion ε̂p and b̂ = γ̂ = 0.Let the subset Gp ⊂ Lp(Ω,S3) be de�ned by

Gp = {ε(∇xu) | u ∈W 1,p
0 (Ω,R3)}.The following lemma states the main properties of Pp.7



Lemma 2.2. For every 1 < p <∞ the operator Pp is a bounded projetor onto the subset Gp of
Lp(Ω,S3). The projetor (Pp)

∗, whih is the adjoint with respet to the bilinear form [ξ, ζ]Ω on
Lp(Ω,S3) × Lq(Ω,S3), satis�es

(Pp)
∗ = Pq, where 1

p + 1
q = 1.This implies ker(Pp) = Hp

sol with Hp
sol = {ξ ∈ Lp(Ω,S3) | [ξ, ζ]Ω = 0 for all ζ ∈ Gq}.The projetion operator

Qp = (I − Pp) : Lp(Ω,S3) → Lp(Ω,S3)with Qp(L
p(Ω,S3)) = Hp

sol is a generalization of the lassial Helmholtz projetion.Corollary 2.3. Let (BTAQpB + L)T be the adjoint operator of
BTAQpB + L : Lp(Ω,RN ) → L

p(Ω,RN )with respet to the bilinear form (ξ, ζ)Ω on the produt spae Lp(Ω,RN )×Lq(Ω,RN ). Then
(BTAQpB + L)T = BTAQqB + L : Lq(Ω,RN ) → L

q(Ω,RN ).Moreover, the operator BTAQ2B + L is non-negative and self-adjoint.The last result in this orollary is proved in [2℄.Remark 2.4. If the matrix L is uniformly positive de�nite, then the operator BTAQ2B + L ispositive de�nite.Remark 2.5. Hp
sol is a re�exive Banah spae with dual spae Hq

sol.Finally we ite an existene result for the following Cauhy problem in a Hilbert spae H witha maximal monotone operator A : D(A) ⊂ H → 2H :
d

dt
u(t) +A(u(t)) ∋ f(t), (2.20)

u(0) = u0. (2.21)Theorem 2.6. [11, 97℄ Assume that u0 ∈ D(A). If f ∈ W 1,1(0, Te;H), then the Cauhyproblem (2.20) - (2.21) has a unique solution u ∈ W 1,∞(0, Te;H). If A = ∂φ, where ∂φ is thesubdi�erential of a proper onvex lower-semi-ontinuous funtion, then for every f ∈ L2(0, Te;H)the problem (2.20) - (2.21) has a unique solution u ∈W 1,2(0, Te;H).2.4 Existene of solutions in the ase of positive de�nite energyIt is already known (see [2, Theorem 1.3℄) that the initial boundary value problem (2.11) - (2.15)has a unique solution provided the mapping z 7→ g(z) is maximal monotone and the matrix L isuniformly positive de�nite. We now state the existene result due to Alber and Chelminski [2℄.Theorem 2.7. Assume that the oe�ient matries satisfy (2.16), that in addition L in (2.13)is uniformly positive de�nite and that the mapping g : R
N → 2RN is maximal monotone with8



0 ∈ g(0). Suppose that b ∈ W 2,1(0, Te;L
2(Ω,R3)) and γ ∈ W 2,1(0, Te;H

1(Ω,R3)). Finally,assume that z(0) ∈ L2(Ω,RN ) and that there exists ζ ∈ L2(Ω,RN ) suh that
ζ(x) ∈ g(BTT (0)(x) − L(x)z(0)(x)), a.e. in Ω, (2.22)where (u(0), T (0)) is a weak solution of the elastiity problem (2.17)-(2.19) to the data b̂ = b(0),

ε̂p = Bz(0), γ̂ = γ(0).Then for every Te > 0 there is a unique solution of the initial boundary value problem (2.11) -(2.15)
(u, T, z) ∈W 1,2(0, Te;H

1(Ω,R3) × L2(Ω,S3) × L2(Ω,RN )).If g = ∂χK , where ∂χK is the subdi�erential of the harateristi funtion assoiated with theonvex, losed set 0 ∈ K ⊂ R
N , then it is su�ient to require b ∈ W 1,2(0, Te;L

2(Ω,R3)) and
γ ∈W 1,2(0, Te;H

1(Ω,R3)).Remark 2.8. We note that L is uniformly positive de�nite if and only if the free energy density ψis a positive de�nite quadrati form on S3 ×R
N . The onstitutive equations for linear kinematihardening satisfy this requirement, while models for linear isotropi hardening are not overed.The main idea of the proof of Theorem 2.7 onsists in the redution of the equations (2.11) -(2.15) to an autonomous evolution inlusion in a Hilbert spae governed by a maximal monotoneoperator. To this evolution inlusion Theorem 2.6 is applied, whih allows to onlude that theinitial boundary value problem (2.11) - (2.15) has a (unique!) solution. For the redution itis ruial that the oe�ient funtion L is uniformly positive de�nite. To indiate the maindi�erenes between the ase of a positive de�nite free energy density ompared to a positivesemi-de�nite density we brie�y sketh the proof of Theorem 2.7. Details an be found in [2℄.Proof. We note that equations (2.11) - (2.12), (2.15) form a boundary value problem for theomponents (u(t), T (t)) of the solution. Obviously one has an additive deomposition

(u(t), T (t)) = (ũ(t), T̃ (t)) + (v(t), σ(t)),with the solution (v(t), σ(t)) of the Dirihlet boundary value problem (2.17) - (2.19) to the data
b̂ = b(t), γ̂ = γ(t), ε̂p = 0, and with the solution (ũ(t), T̃ (t)) of the problem (2.17) - (2.19) to thedata b̂ = γ̂ = 0, ε̂p = Bz(t). We thus obtain

ε(∇xu) −Bz = (P2 − I)Bz + ε(∇xv).Inserting this into (2.12) we reeive that (2.13) an be rewritten in the form
zt(t) ∈ G

(
− (BTAQ2B + L)z(t) +BTσ(t)

)
, (2.23)where G : D(G) ⊂ L2(Ω,RN ) → 2L2(Ω,RN ) de�ned by G(ξ) = {ξ̂ ∈ L2(Ω,RN ) | ξ̂(x) ∈

g(ξ(x)) a.e.}. The funtion σ, as a solution of the problem (2.17) - (2.19) to the given data
b, γ, is onsidered as known.Aording to Remark 2.4 the operator BTAQ2B + L is positive de�nite, therefore the equation(2.23) an be redued to an autonomous evolution equation in L2(Ω,RN ) using the transforma-tion h(t) = −(BTAQ2B + L)z(t) +BTσ(t). It then reads as

ht(t) + C(h(t)) ∋ BTσt(t) with C(ξ) = (BTAQ2B + L)G(ξ) for ξ ∈ L2(Ω,RN ). (2.24)9



The ruial step in the proof is that the operator C is maximal monotone with respet to thenew salar produt [[ξ̂, ξ]] := ((BTAQ2B+L)−1ξ̂, ξ) (see [2℄). This salar produt is well de�ned,sine the operator BTAQ2B+L is positive de�nite due to the uniform positivity of L. Therefore,Theorem 2.6 an be applied to (2.24) in L2(Ω,RN ) equipped with the salar produt [[ξ̂, ξ]] toderive the existene and uniqueness of solutions. The assumption (2.22) guarantees that theinitial value h(0) belongs to the domain of the operator C. Substituting the solution of (2.23),whih exists due to the equivalene of (2.23) and (2.24), into the boundary value problem formedby equations (2.11) - (2.12) and (2.15) yields the existene of (u, T ) by the existene theory forlinear ellipti problems.2.5 Existene of solutions in the ase of a positive semi-de�nite energyAs we saw in the proof of Theorem 2.7 the positivity of L plays the essential role: It allowed tode�ne a new salar produt in L2(Ω,RN ), with respet to whih the operator C from (2.24) ismaximal monotone so that Theorem 2.6 is appliable. Obviously, this strategy annot be appliedif L is only positive semi-de�nite and one has to overome this di�ulty. In the following werestrit ourselves to a sublass of problems of monotone type with a positive semi-de�nite freeenergy density, for whih the existene of solutions an be veri�ed. Existene theorems for theentire lass of models of monotone type are still an open problem. For simpliity, we assumethat the oe�ient matries in (2.11) - (2.13) are independent of x.Under the assumption that g is single-valued and that KerB + KerL = R
N , the authors of[3℄ showed that the initial boundary value problem (2.11) - (2.15) is equivalent to the followingproblem: for all t ∈ [0,∞) and x ∈ Ω

− divx T (x, t) = b(x, t), (2.25)
T (x, t) = A

(
ε(∇xu(x, t)) − εp(x, t)

)
, (2.26)

∂tεp(x, t) = g1

(
T (x, t),−z̃(x, t)

)
, (2.27)

∂tz̃(x, t) = g2

(
T (x, t),−z̃(x, t)

)
, (2.28)

u(x, t) = γ(x, t), (x, t) ∈ ∂Ω × [0,∞), (2.29)
εp(x, 0) = ε(0)p (x), z̃(x, 0) = z̃(0)(x). (2.30)Here the vetor of internal variables z(x, t) is split into two parts, i.e. z(x, t) = (εp(x, t), z̃(x, t)) ∈

S3 × R
N−6. We assume for simpliity that ε(0)p (x) = 0. The funtions g1 : S3 × R

N−6 → S3and g2 : S3 × R
N−6 → R

N−6 are given suh that (T, y) → (g1(T, y), g2(T, y)) : R
N → R

N is amonotone mapping.Following [3℄ we rewrite the problem (2.25) - (2.29) in terms of an operator H : F (ΩTe ,S3) →
F (ΩTe ,S3), where F (ΩTe ,S3) denotes the set of all funtions mapping ΩTe to S3. The operator
H is de�ned by the following rule: For given T and z̃(0) let (h, z̃) be a solution of the problem

h(x, t) = g1
(
T (x, t),−z̃(x, t)

) for (x, t) ∈ ΩTe , (2.31)
∂tz̃(x, t) = g2

(
T (x, t),−z̃(x, t)

) for (x, t) ∈ ΩTe , (2.32)
z̃(x, 0) = z̃(0)(x) for x ∈ Ω, (2.33)Then the operator H on F (ΩTe ,S3) is given by H(T ) = h. In terms of the operator H the10



problem (2.25) - (2.29) reads as follows: for all (x, t) ∈ ΩTe

−divxT (x, t) = b(x, t), (2.34)
T (x, t) = A

(
ε(∇xu(x, t)) − εp(x, t)

)
, (2.35)

∂tεp(x, t) = H(T ), (2.36)
εp(x, 0) = 0, (2.37)
u(x, t) = γ(x, t), (x, t) ∈ ∂Ω × [0,∞). (2.38)Now we an state the existene result of [82℄ for the problem (2.34) - (2.38).Theorem 2.9. Let 2 ≤ p < ∞ and 1 < q ≤ 2 be numbers with 1/p + 1/q = 1. Assume that

H : Lp(ΩTe ,S3) → Lq(ΩTe ,S3) is maximal monotone and that the inverse H−1 is loally boundedat 0 1 and strongly oerive, i.e. either D(H−1) is bounded or D(H−1) is unbounded and
〈v∗, v〉
‖v‖q,ΩTe

→ +∞ as ‖v‖q,ΩTe
→ ∞, v∗ ∈ H−1(v).Suppose that b ∈ Lp(ΩTe ,R

3) and γ ∈ Lp(0, Te,W
1,p(Ω,R3)). Then there exists a solution of theproblem (2.34) - (2.38)

u ∈ Lq(0, Te;W
1,q(Ω,R3)), T ∈ Lp(ΩTeS3), εp ∈W 1,q(0, Te, L

q(Ω,S3)).Remark 2.10. The monotoniity of H is implied by the monotoniity of the mapping (T, y) →
(g1(T, y), g2(T, y)) (see [3, Lemma 4.1℄).Remark 2.11. To gain the existene of solutions to (2.25) - (2.29) one has to hek �rst whetherthe operator H : Lp(ΩTe ,S3) → Lq(ΩTe ,S3) is well de�ned, i.e. whether the problem (2.31)-(2.33) has a solution (not neessary unique). Then apply Theorem 2.9.Remark 2.12. The proof of Theorem 2.9 in [82℄ ontains a gap, although the result remains true.The operator de�ned in Lemma 4.1 of [82℄ is not maximal monotone as it is stated there. Theproof of this is given in the end of this setion.In [3℄ Theorem 2.9 is proved for H with polynomial growth and under the additional assumptionthat H is oerive. The last assumption auses there di�ulties in the derivation of the existeneof the solutions to the model of nonlinear kinemati hardening (see the next setion for moredetails). In order to show the oerivity of the operator H de�ned by the onstitutive relations(spei� hoie of the funtions g1 and g2) of nonlinear kinemati hardening, the authors of [3℄had to impose a restrition on the exponents in the onstitutive relations for the di�erent internalvariables. The approah initiated in [82℄ is atually based on the onstrutions in [3℄ and repeatsthe main steps of that work with the major di�erene that the general duality priniple for thesum of two operators from [9℄ is used to obtain the existene of the solutions to the problem(2.34) - (2.38). The appliation of this duality priniple allows to avoid the oerivity assumptionon H. Here we present the improved version of the proof of Theorem 2.9 presented in [82℄.Proof. Let us denote

W = Lp(Ω,S3), W = Lp(0, Te;W ), X = Hp
sol(Ω,S3), X = Lp(0, Te;X).1An operator A : V → 2V ∗ is alled loally bounded at a point v0 ∈ V if there exists a neighborhood U of v0suh that the set

A(U) = {Av | v ∈ D(A) ∩ U } is bounded in V ∗. 11



Repeating word by word the proof of Theorem 2.7 one an redue the initial-boundary valueproblem (2.34) - (2.38) to the following abstrat equation
Lεp = H

(
−AQpεp + σ

)
, (2.39)where the linear operator L : W → W∗ is de�ned by

Lη = ∂tη with D(L) = {η ∈Wp,q(0, Te;W ) | η(0) = 0}.The funtion σ in (2.39) is given as in the proof of Theorem 2.7. Applying the operator Qq to(2.39) from the left formally and denoting τ = Qqεp we arrive at the equation
Lτ = QqH

(
−Aτ + σ

)
, (2.40)where now L : X → X ∗ denotes the operator

Lη = ∂tη with D(L) = {η ∈Wp,q(0, Te;X) | η(0) = 0}.The strategy of Theorem 2.7 is not appliable here, sine the omposition of two operators,one of them being monotone, ξ → QqH
(
− Aξ + σ

) is not monotone in general. It turns outthat applying the general duality priniple (see [9℄) it is possible to �release� the monotoneoperator from another operator preserving its monotoniity property and use the lassial theoryof monotone operators. This is the main idea of the proof of Theorem 2.9.By the general duality priniple [9℄, the inlusion (2.40) in X is equivalent to the followinginlusion in X ∗

L−1AQqw + H−1w ∋ σ, w ∈ X ∗. (2.41)Indeed, (2.40) holds i� there exists v ∈ Lτ ∩Qqw with w = H(−Aτ + σ). Taking the inverse ofthe operators L and H gives (2.41). Thus, if we an solve (2.41), by the equivalene we obtainthat the problem (2.40) has a solution as well.Due to Lemma 2.13 here below the operator L−1AQq : D(L−1AQq) ⊂ X ∗ → X is linear andmaximal monotone.Now we an show that (2.41) has a solution. Note �rst that the operator H−1 is maximalmonotone as the inverse of a maximal monotone operator. Sine H−1 is loally bounded at 0,by Lemma III.24 2 in [48℄ the point 0 belongs to the interior of D(H−1) = R(H). Therefore, theoperators L−1AQq and H−1 satisfy the ondition
D(L−1AQq) ∩ intD(H−1) 6= ∅,yielding that the sum L−1AQq + H−1 is maximal monotone (by Theorem II.1.7 in [11℄). Theoerivity of H−1 implies the oerivity of the sum, i.e.

〈
L−1AQqv + v∗, v

〉

‖v‖ ≥ 〈v∗, v〉
‖v‖ → +∞ as ‖v‖ → ∞, v∗ ∈ H−1(v).Theorem III.2.10 in [83℄ guarantees that the maximal monotone and oerive operator L−1AQq+

H−1 is surjetive. Thus, equation (2.41) is solvable and, as onsequene, problem (2.40) has asolution.2This result is proved in a Hilbert spae, but it an be easily generalized to re�exive Banah spaes.12



The onstrution of the solution of the problem (2.34) - (2.38) an be now performed as in [3℄:Let (v(t), σ(t)) be the solution of the Dirihlet boundary value problem (2.17) - (2.19) to thedata b̂ = b(t), γ̂ = γ(t), ε̂p = 0 and let τ ∈ X be the unique solution of (2.40). With the funtion
τ let εp ∈W 1,q(0, Te, L

q(Ω,S3)) be the solution of
∂tεp(t) = H

(
−Aτ(t) + σ(t)

)
, for a.e. t ∈ (0, Te) (2.42)

εp(0) = 0. (2.43)Moreover, by the linear ellipti theory, there is a unique solution (ũ(t), T̃ (t)) of problem (2.17) -(2.19) to the data b̂ = γ̂ = 0, ε̂p = εp(t). The solution of (2.34) - (2.38) is now given as follows
(u, T, εp) = (ũ+ v, T̃ + σ, εp) ∈ Lq(0, Te;W

1,q(Ω,R3)) × Lp(ΩTeS3) ×W 1,q(0, Te, L
q(Ω,S3)).To see that (u, T, εp) satis�es (2.36), we apply the operator Qq to (2.42) - (2.43) from the leftand obtain

∂t(Qqεp) = QqH
(
−Aτ(t) + σ(t)

)
= ∂tτ, Qqεp(0) = τ(0) = 0.The last line implies that Qqεp = τ . Thus

T = T̃ + σ = −AQqεp + σ = −Aτ + σ ∈ Lp(ΩTeS3).The last observation ompletes the proof.Lemma 2.13. The operator L−1AQq : D(L−1AQq)⊂X ∗ → X is linear and maximal monotone.Proof. Aording to Theorem 2.7 in [83℄, the operator L−1AQq is maximal monotone, if it is adensely de�ned losed monotone operator suh that its adjoint (L−1AQq)
∗ is monotone. Sineall these properties of L−1AQq an be easily established, we leave their veri�ation to the reader.More details an be also found in [81℄.Now we prove the result announed in Remark 2.12.Lemma 2.14. The operator QpL−1 : W∗ → W is not maximal monotone (we use the notationsintrodued above).Proof. Note �rst of all that the following identity

QpL−1v = L−1Qqv (2.44)holds for all v ∈ D(QpL−1) = D(L−1) 3. The previous identity (2.44) follows easily from
PpL−1v = L−1Pqv, (2.45)whih holds for v ∈ D(L−1). Relation (2.45) an be proved as follows: Choose v ∈ D(L−1).Then, aording to the de�nition of Pp, the boundary value problem

− divAε(∇u(x, t)) = − divAv(x, t) for x ∈ Ω, (2.46)
u(x, t) = 0 for x ∈ ∂Ω, (2.47)3Reall that D(L−1) = {z ∈ W∗ |

R t

0
z(s)ds ∈ W} 13



has a unique solution u(t) ∈W 1,q
0 (Ω,R3), i.e. the funtion u satis�es the equation

(Aε(∇u(t)), ε(∇φ))Ω = (Av(t), ε(∇φ))Ω, for all φ ∈W 1,p
0 (Ω,R3).Similarly, we obtain that the problem

− divAε(∇w(x, t)) = − divA
(∫ t

0
v(x, s)ds

) for x ∈ Ω,

w(x, t) = 0 for x ∈ ∂Ωhas a unique solution w(t) ∈W 1,p
0 (Ω,R3). Integrating (2.46) we get that the identity

(
Aε

(
∇

∫ t

0
u(s)ds

)
, ε(∇φ)

)
Ω

=
(
A

(∫ t

0
v(s)ds

)
, ε(∇φ)

)
Ωholds for all φ ∈W 1,p

0 (Ω,R3). Thus, by the de�nition of Pp, we have that w(t) =
∫ t
0 u(s)ds. Thisproves (2.45).Next we show that the operator QpL−1 is not maximal monotone. To this end, onsider afuntion ψ ∈ W ∗ suh that ψ = ε(∇u) with u ∈ W 1,q

0 (Ω,R3) and ε(∇u) 6∈ W for any p > q(sine ε(∇u) 6∈ D(L−1) ). Obviously, suh a funtion u is the solution of the problem
− divAε(∇û) = − divAψ, û ∈W 1,q

0 (Ω,R3).The last relation implies that ψ ∈ R(Pq) and onsequently that ψ ∈ kerQq.To show that QpL−1 is not maximal monotone, we need to �nd a pair (y∗, y) ∈ W ×W∗ suhthat the inequality
(QpL−1v − y∗, v − y)Ω ≥ 0 (2.48)holds for all v ∈ D(L−1), but (y∗, y) 6∈ Graph (QpL−1). Take any v ∈ D(L−1). Set y = v+ψ with

ψ from above and y∗ = L−1Qqy, i.e. y∗ = L−1Qqv = QpL−1v. Then (QpL−1v− y∗, v− y)Ω = 0.Therefore (2.48) is ful�lled for all v ∈ D(L−1), but v + ψ 6∈ D(QpL−1). Thus, the proof isomplete.2.6 Model of nonlinear kinemati hardeningWe apply Theorem 2.9 to the model of nonlinear kinemati hardening. It onsists of the equations(f. [1, 3℄)
−divxT = b, (2.49)

T = A
(
ε(∇xu) − εp

)
, (2.50)

∂tεp = c1|T − k(εp − εn)|r T − k(εp − εn)

|T − k(εp − εn)| , (2.51)
∂tεn = c2|k(εp − εn)|m k(εp − εn)

|k(εp − εn)| , (2.52)
εn(0) = ε0n, εp(0) = 0, (2.53)

u = γ, x ∈ ∂Ω, (2.54)14



where c1, c2, κ > 0 are given onstants and εp, εn ∈ S3. The equations (2.49) - (2.53) an bewritten in the general form (2.25) - (2.29) with g = (g1, g2) : S3 × S3 → S3 × S3 de�ned by
(g1, g2)(T, z̃) =

(
c1|T + k1/2z̃|r T + k1/2z̃

|T + k1/2z̃| , c1k
1/2|T + k1/2z̃|r T + k1/2z̃

|T + k1/2z̃| + c2k
1/2|k1/2z̃|m z̃

|z̃|
)
,where z̃ = k1/2(εp − εn). Maximal monotoniity of the mapping (T, z̃) → (g1(T, z̃), g2(T, z̃))follows from the fat that g = (g1, g2) is the gradient of the ontinuous onvex funtion

φ(T, z̃) =
c1

r + 1
|T + k1/2z̃|r+1 +

c2
m+ 1

|k1/2z̃|m+1.We have the following existene result for the problem (2.49) - (2.54) (see also [3℄).Theorem 2.15. Let c1, c2, k be positive onstants and let r and m satisfy r,m > 1. Let usde�ne p = 1 + r, q = 1 + 1/r, p̂ = max {p, 1 +m} and q̂ = min {q, 1 + 1/m}. Suppose that
b ∈ Lp(ΩTe ,R

3), γ ∈ Lp(0, Te,W
1,p(Ω,R3)) and ε(0)n ∈ L2(Ω,S3). Then there exists a solution

u ∈ Lq(0, Te;W
1,q(Ω,R3)), T ∈ Lp(ΩTe ,S3),

εp ∈W 1,q(0, Te, L
q(Ω,S3)), εn ∈W 1,q̂(0, Te, L

q̂(Ω,S3))of the problem (2.49) - (2.54). Moreover, εp − εn ∈Wp̂,q̂(0, Te, L
p̂(Ω,S3)).Remark 2.16. In [3℄ Theorem 2.15 is proved provided m and r satisfy the inequality m > r. Thisondition the authors of [3℄ use to show that the operator H de�ned by the equations (2.51) -(2.53) aording to the rule given above is oerive.Remark 2.17. Using the theory of Orli spaes and the monotone operator method similar resultsare obtained in [85℄ with the same restritions on m and r as in Theorem 2.15.Proof. To apply Theorem 2.9 one has to show that the operator H de�ned by (2.51) - (2.53) iswell-de�ned, the (multivalued) inverse H−1 is loally bounded at 0 and oerive . The oerivityof H−1 as well as the fat that the well-posedness of H are shown in [82℄. Therefore, it remainsto verify that H−1 is loally bounded at 0. Here we show that H−1 is not only loally boundedat 0, but has even a polynomial growth.For the funtion y = εp − εn we have

∂t
k

2
|y(x, t)|2 = ky·c1|T−ky|r

T − ky

|T − ky|−ky·c2|ky|
m ky

|ky| ≤ c1

( 1

pαp
|ky|p+α

q

q
|T−ky|qr

)
−c2|ky|m+1.Here we used Young's inequality with α > 0. Therefore,

k

2
‖y(Te)‖2

2,Ω + c2‖ky‖m+1
m+1,ΩTe

≤ c1

( 1

pαp
‖ky‖p

p,ΩTe
+
αq

q
‖T − ky‖p

p,ΩTe

)
+
k

2
‖y(0)‖2

2,Ωand onsequently
c2‖ky‖m+1

m+1,ΩTe
≤ c1

( 1

pαp
‖ky‖p

p,ΩTe
+
αq

q
‖T − ky‖p

p,ΩTe

)
+
k

2
‖y(0)‖2

2,Ω. (2.55)On the other hand we have
‖T‖p

p,ΩTe
≤ ‖ky‖p

p,ΩTe
+ ‖T − ky‖p

p,ΩTe
. (2.56)15



Multiplying (2.56) by 1
pαp and then subtrating (2.55) we get the estimate

1

pαp
‖T‖p

p,ΩTe
− c2
c1
‖ky‖m+1

m+1,ΩTe
≤

( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
− k

2c1
‖y(0)‖2

2,Ω

≤
( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
. (2.57)For su�iently small α the onstant (

1
pαp − αq

q

) is positive. More preisely, α ∈ (0, α0) with
α0 := (q/p)1/(p+q). Later we give more preisely the upper bound for α.Now we derive the estimate for ‖ky‖m+1,ΩTe

in terms of ‖T‖p,ΩTe
:

∂t
k

2
|y(x, t)|2 = −(T − ky) · c1|T − ky|r T − ky

|T − ky| − ky · c2|ky|m
ky

|ky| + T · c1|T − ky|r T − ky

|T − ky|

≤ −c1|T−ky|p−c2|ky|m+1+c1|T ||T−ky|r ≤ −c1|T−ky|p−c2|ky|m+1+c1

( 1

pδp
|T |p+δ

q

q
|T−ky|qr

)
.Here we used Young's inequality with δ. Choosing δ = (q/2)1/q we arrive at the estimate

k

2
‖y(Te)‖2

2,Ω +
c1
2
‖T − ky‖p

p,ΩTe
+ c2‖ky‖m+1

m+1,ΩTe
≤ k

2
‖y(0)‖2

2,Ω + c1
1

pδp
‖T‖p

p,ΩTeand onsequently
c2‖ky‖m+1

m+1,ΩTe
≤ k

2
‖y(0)‖2

2,Ω + c1
1

pδp
‖T‖p

p,ΩTe
. (2.58)Thus from (2.57) and (2.58) we obtain

( 1

pαp
− 1

pδp

)
‖T‖p

p,ΩTe
− k

2c1
‖y(0)‖2

2,Ω ≤
( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
. (2.59)Choosing α = min {δ/2, α0/2} in (2.59) we obtain

C1‖T‖p
p,ΩTe

−C2 ≤ C3‖T − ky‖p
p,ΩTe

(2.60)with some positive onstants C1, C2 and C3. Realling that ‖H(T )‖q
q,ΩTe

= cq1‖T − ky‖p
p,ΩTe

, theinequality (2.60) implies
C1‖T‖p

p,ΩTe
− C2 ≤ C3c

q
1‖H(T )‖q

q,ΩTe
,whih yields the polynomial growth for the inverse of H(T ), i.e.

‖H−1(v)‖p,ΩTe
≤ C4(1 + ‖v‖q/p

q,ΩTe
) (2.61)with some positive onstant C4. Thus H−1 is oerive and bounded. Hene, Theorem 2.9 yieldsthe existene of u, T and εp. The existene of εn is shown in [82℄ (see also [3℄). Therefore, theproof of Theorem 2.15 is omplete.
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3 Spatial regularity for elasto-(viso)plasti models of monotonetypeIn order to predit onvergene rates of numerial shemes, more information about higher spatialregularity of solutions is needed. Depending on the properties of the onstitutive funtion g in(2.9) di�erent results an be obtained.While loal regularity properties were derived in the reent years for a quite large lass of modelsof monotone type, only very few results are known onerning the global regularity. In Setion3.1 we present in detail global regularity results and disuss their optimality in Setion 3.2 . Anoverview on the literature on spatial regularity results for models of monotone type, for visousregularizations of these models and for models whih appear as a time disretized version of theevolution models is given in Setion 3.3. By S = [0, T ] we denote the time interval.3.1 Regularity for maximal monotone g and positive de�nite elasti energyHistorially, loal spatial regularity results were �rst dedued by Seregin [93℄ for elasto-plastiitywith linear kinemati or isotropi hardening and with a von Mises �ow rule. The proof is doneby arrying over loal regularity properties of a time-disretized version to the time-ontinuousproblem. Here we follow a di�erent approah working diretly with the time-ontinuous model.The model of monotone type formulated in (2.11)�(2.15), onsists of an ellipti system of par-tial di�erential equations, whih is strongly oupled with an evolutionary variational inequalitydesribing the evolution of the displaements u and the internal variable z subjeted to externalloadings. There exist various powerful analyti tools to haraterize the spatial regularity ofsystems of ellipti PDEs both on smooth and nonsmooth domains. The problem in the elasto-plasti ase is to maintain the regularity properties of the ellipti system in spite of the strongoupling between the ellipti system and the evolutionary variational inequality.Let Q ⊂ H1(Ω) × L2(Ω) ∋ (u(t), z(t)) denote the state spae and assume for the momentthat the initial datum z0 = 0. The intrinsi di�ulty of proving spatial regularity results forplastiity problems stems from the fat that the �ow rule (2.12) is non smooth and has no regu-larizing terms. As a onsequene the data-to-solution-map is not Lipshitz from W 1,1(S;Q∗) →
W 1,1(S;Q), but only as a map from W 1,1(S;Q∗) → L∞(S;Q). The latter Lipshitz propertyis the basis for proving the loal and tangential regularity results in Sobolev spaes. Roughlyspoken, the loal regularity of (u, z) follows from the Lipshitz estimate

‖(uh − u, zh − z)‖L∞(S;Q) ≤ cLip ‖fh − f‖W 1,1(S;Q∗) , (3.1)where the index h indiates a loal shift of the funtions u and z by a (small) vetor h ∈ R
d.The funtion fh ontains the shifted datum f and further orretions due to the shift, so that

(uh, zh) is a solution to (2.11)�(2.13) with respet to the datum fh. If f is smooth enough suhthat the estimate
sup|h|<h0

|h|−1 ‖fh − f‖W 1,1(S;Q∗) ≤ cf (3.2)is valid, then it follows that (u, z) ∈ L∞(S;H2lo(Ω)×H1lo(Ω)). Sine a similar Lipshitz estimateis not known for the time derivatives (∂tu, ∂tz), we annot show that e.g. ∂tz ∈ L1(S;H1lo(Ω)).Indeed, the example in Setion 3.2 reveals that the latter regularity is not valid in spite of smooth17



data. Similar arguments an be applied in order to derive tangential regularity properties at theboundary of smooth domains.In order to obtain information on the regularity in the normal diretion, the problem is re�etedat ∂Ω. The re�eted funtions (ũ, z̃) solve an evolution system of similar type with new datum
f̃ , whih onsists of the re�eted datum f and the tangential derivatives of ∇u and z: f̃ =
(fre�, ∂tang∇u, ∂tangz). Due to the terms ∂tang∇u and ∂tangz the new datum does not have thetemporal regularity allowing for an estimate like (3.2). In view of the tangential regularity results,we an guarantee at least that

sup|h|<h0
|h|−1

∥∥f̃h − f̃
∥∥

L∞(S;Q∗)
≤ c.Hene, the Lipshitz estimate (3.1) has to be replaed with the following weaker version for theextended funtions (ũ, z̃):

‖(ũh − ũ, z̃h − z̃)‖L∞(S;Q) ≤ c
∥∥f̃h − f̃

∥∥ 1
2

L∞(S;Q∗) ≤ c |h| 12 , (3.3)see Theorem 3.2. From the latter estimate we �nally dedue that (u, z) ∈ L∞(S;H
3
2
−δ(Ω) ×

H
1
2
−δ(Ω)) for every δ > 0. These steps are explained in detail in Setions 3.1.1-3.1.3.3.1.1 Basi assumptions and stability estimatesThe arguments explained above are not restrited to the operator of linear elastiity ouringin (2.11)�(2.12). We onsider here the ase with general displaements u : S × Ω → R

m, where
Ω ⊂ R

d is a bounded domain, and replae the operator of linear elastiity by a more generallinear ellipti operator. For θ ∈ R
m×d and z ∈ R

N the energy density ψ is assumed to be of theform
ψ(x, θ, z) =

1

2
〈A(x) ( θ

z ) , ( θ
z )〉 ≡ 1

2
(〈A11(x)θ, θ〉 + 〈A12(x)z, θ〉 + 〈A21(x)θ, z〉 + 〈A22(x)z, z〉)(3.4)where A ∈ L∞(Ω; Lin(Rm×d × R

N ,Rm×d × R
N)) is a given oe�ient matrix and 〈·, ·〉 denotesthe inner produt in R

s. For u ∈ H1(Ω,Rm) and z ∈ L2(Ω,RN ) the orresponding elasti energyis de�ned as
Ψ(u, z) =

∫

Ω
ψ(x,∇u(x), z(x)) dx. (3.5)The basi assumptions in this setion are the followingR1 Ω ⊂ R

d is a bounded domain with C1,1-smooth boundary, see e.g. [42℄.R2 The oe�ient matrix A belongs to C0,1(Ω,Lin(Rm×d × R
N ,Rm×d × R

N )), is symmetriand there exists a onstant α > 0 suh that Ψ(v, z) ≥ α
2

(
‖v‖2

H1(Ω) + ‖z‖2
L2(Ω)

) for all
v ∈ H1

0 (Ω) and z ∈ L2(Ω).R3 The funtion g:RN → 2R
N is maximal monotone with 0 ∈ g(0) and G : D(G) ⊂ L2(Ω,RN ) →

P(L2(Ω,RN )) is de�ned as G(η)={ z ∈ L2(Ω,RN ) ; z(x) ∈ g(η(x)) a.e. in Ω }.18



Observe that G is a maximal monotone operator. The energy density ψ introdued in (2.10) isontained as a speial ase and further examples are given in Setion 3.1.3.In order to shorten the presentation, the disussion is restrited to the ase with vanishingDirihlet onditions on ∂Ω. Hene, with V = H1
0 (Ω,Rm) and Z = L2(Ω,RN ) the state spae

Q takes the form Q = V × Z. We investigate the spatial regularity properties of funtions
(u, z) : [0, T ] → Q whih for all v ∈ V and almost every t ∈ S satisfy

DuΨ(u(t), z(t))[v] =

∫

Ω
〈A

(
∇u(t)
z(t)

)
,
(
∇v
0

)
〉dx = 〈b(t), v〉, (3.6)

∂tz(t) ∈ G(−DzΨ(u(t), z(t)) + F (t)), (3.7)
z(0) = z0, u(t)

∣∣
∂Ω

= 0. (3.8)Here, DuΨ and DzΨ denote the variational derivatives of Ψ with respet to u and z, and F isa further foring term not present in (2.11)-(2.13). The data b, F are omprised in the funtion
(b, F ) = f : S → V ∗ × Z ≡ Q∗. We all the initial value z0 and the fores f ompatible if thereexists u0 ∈ V with DuΨ(u0, z0) = b(0) and −DzΨ(u0, z0) + F (0) ∈ D(G), where D(G) denotesthe domain of G. The ompatibility assumption is equivalent to the assumption in Theorem 5.8,where the initial data shall belong to the set of stable states.Sine the elasti energy Ψ is assumed to be positive de�nite on Q, see R2, similar arguments aspointed out in Setion 2.4 lead to the following existene theorem:Theorem 3.1. Assume that R2 and R3 are satis�ed and that the data z0 ∈ L2(Ω,RN ) and
f = (b, F ) ∈ W 2,1(S;Q∗) are ompatible. Then there exists a unique pair (u, z) ∈ W 1,1(S;Q)satisfying (3.6)�(3.8). If G = ∂χK, where K ⊂ L2(Ω,RN ) is onvex, losed and with 0 ∈ Kand χK is the harateristi funtion of the onvex set K, then it is su�ient to assume that
f = (b, F ) ∈W 1,1(S;Q∗).The next stability estimates rely on the positivity of the energy Ψ and are the basis for ourregularity results.Theorem 3.2. Assume that R2 and R3 are satis�ed.(a) There exists a onstant κ > 0 suh that for all ui ∈ W 1,1(S;H1(Ω)), zi ∈ W 1,1(S;L2(Ω)),

i ∈ {1, 2}, whih satisfy (3.6)�(3.8) with fi ∈W 1,1(S;Q∗) and z0
i ∈ L2(Ω,RN ), it holds

‖u1 − u2‖L∞(S;H1(Ω)) + ‖z1 − z2‖L∞(S;L2(Ω)) ≤ κ
(∥∥z0

1 − z0
2

∥∥
L2(Ω)

+
∥∥f1 − f2

∥∥
W 1,1(S;Q∗)

)
.(3.9)(b) There exists a onstant κ > 0 suh that for all ui ∈ L∞(S;H1(Ω)), zi ∈ W 1,1(S;L2(Ω)),

i ∈ {1, 2}, whih satisfy (3.6)�(3.8) with fi ∈ L∞(S;Q∗) and z0
i ∈ L2(Ω,RN ), it holds

‖u1 − u2‖L∞(S;H1(Ω)) + ‖z1 − z2‖L∞(S;L2(Ω))

≤ κ
(∥∥z0

1 − z0
2

∥∥
L2(Ω)

+
∥∥f1 − f2

∥∥
L∞(S;Q∗)

+ ‖z1 − z2‖
1
2

W 1,1(S;L2(Ω))
‖f1 − f2‖

1
2

L∞(S;Q∗)

)
.(3.10)Part (a) of the theorem gives the Lipshitz ontinuity of the data-to-solution mapping T :

Z×W 1,1(S;Q∗) → L∞(S;Q); (z0, f) 7→ (u, z), while part (b) desribes Hölder-like ontinuity ofthe data-to-solution mapping in the ase where the data have less temporal regularity. We referto [62, 58℄ and the referenes therein for a proof of the estimates.19



3.1.2 Loal spatial regularity and tangential regularityLoal and tangential regularity results are derived with a di�erene quotient argument in om-bination with the stability estimates of Theorem 3.2. Conerning the data it is assumed thatR4a z0 ∈ H1(Ω), f = (b, F ) ∈W 1,1(S;Y1) with Y1 = L2(Ω,Rm) ×H1(Ω,RN ).R4b z
0 ∈ H1(Ω), f = (b, F ) ∈ L∞(S;Yi) with Yi = L2(Ω,Rm) × { θ ∈ L2(Ω,RN ) ; ∂iθ ∈
L2(Ω,RN ) } for a �xed i ∈ {1, . . . , d}.Let x0 ∈ Ω and hoose ϕ ∈ C∞

0 (Ω,R) with ϕ ≡ 1 in a ball Bρ(x0). For h ∈ R
d, the innervariation τh : Ω → R

d is de�ned as τh(x) = x + ϕ(x)h. There exists a onstant h0 > 0 suhthat the mappings τh : Ω → Ω are di�eomorphisms for every h ∈ R
d with |h| ≤ h0. Let the pair

u ∈ L∞(S;V ) and z ∈ W 1,1(S;Z) be a solution of (3.6)�(3.8). We de�ne uh(t, x) = u(t, τh(x)),
zh(t, x) = z(t, τh(x)). Straightforward alulations show that the shifted pair (uh, zh) solves(3.6)�(3.8) with respet to the shifted initial ondition z0

h and modi�ed data f̃h having theproperty
∥∥f̃h − f

∥∥
W 1,1(S;Q∗)

≤ c |h| ‖(f, u, z)‖W 1,1(S;Y1×V ×L2(Ω)) (3.11)if f satis�es R4a, and
∥∥f̃h − f

∥∥
L∞(S;Q∗)

≤ c |h| ‖(f, u, z)‖L∞(S;Yi×V ×L2(Ω)) (3.12)if f is given aording to R4b. The loal regularity Theorem 3.3 here below is now an immediateonsequene of the stability estimates in Theorem 3.2.Theorem 3.3. Let onditions R2 and R3 be satis�ed.(a) Let (u, z) ∈ W 1,1(S;V × Z) be a solution of (3.6)�(3.8) with data satisfying R4a. Then
u ∈ L∞(S;H2lo(Ω)) and z ∈ L∞(S;H1lo(Ω)).(b) Let u ∈ L∞(S;V ) and z ∈ W 1,1(S;Z) be a solution of (3.6)�(3.8) with data aording toR4b. Then there exists h0 > 0 suh that

sup
0<h<h0

h−
1
2 ‖∇uhei

−∇u‖L∞(S;L2(Bρ(x0))) <∞,

sup
0<h<h0

h−
1
2 ‖zhei

− z‖L∞(S;L2(Bρ(x0))) <∞.Proof. Estimate (3.11) in ombination with Theorem 3.2, part (a), yields
sup

|h|≤h0

|h|−1
(
‖u− uh‖L∞(S;H1(Bρ(x0))) + ‖z − zh‖L∞(S;L2(Bρ(x0)))

)
≤ ‖(f, u, z)‖W 1,1(S;Y1,V,Z)from whih we onlude with Lemma 7.24 in [41℄ that u∈L∞(S;H2lo(Ω)) and z∈L∞(S;H1lo(Ω)).The results in part (b) of the theorem are obtained in a similar way.If R4b is satis�ed for all basis vetors ei, 1 ≤ i ≤ d, and all x0 ∈ Ω, then u(t) and z(t) belongto the Besov spaes B 3

2
2,∞(Ω′) and B

1
2
2,∞(Ω′) for every Ω′

⋐ Ω. Via the embedding theorems20



for Besov spaes into Sobolev-Slobodekij spaes we onlude that u ∈ L∞(S;H
3
2
−δlo (Ω)) and

z ∈ L∞(S;H
1
2
−δlo (Ω)) for every δ > 0.In a similar way, tangential regularity properties an be dedued after a suitable loal transfor-mation of the boundary to a subset of a hyperplane. Here, the assumption R1 on the smoothnessof ∂Ω is essential.Part (a) of Theorem 3.2 with a general maximal monotone funtion g and with ψ as in (2.10) wasproved by Alber and Nesenenko in [4, 5℄ and extended in [25℄ to an elasto-plasti model inludingCosserat e�ets. In the paper [58℄ the result was extended to the slightly more general situation,where the operator of linear elastiity and the Cosserat operators are replaed by a more generallinear ellipti system, part (b) was added and more general boundary onditions allowing fordi�erent kinds of boundary onditions in the di�erent omponents of u were investigated. Werefer to Setion 3.3 for a more detailed disussion of the related literature.3.1.3 Global spatial regularityThe �rst global spatial regularity result for problems of the type (3.6)�(3.8) was proved byAlber and Nesenenko [4, 5℄. The authors showed that the loal and tangential regularityproperties in Theorem 3.3, part (a), already imply that the solution belongs to the spaes

u ∈ L∞(S;H1+ 1
4 (Ω)), z ∈ L∞(S;H

1
4 (Ω)). By an iteration proedure the �nal regularity

u ∈ L∞(S;H1+ 1
3 (Ω)) and z ∈ L∞(S;H

1
3 (Ω)) was obtained. With a ompletely di�erent ar-gument, a re�etion argument, the result an be improved. This will be explained in detail inthis setion.To shorten the presentation we assume that there is a point x0 ∈ ∂Ω suh that ∂Ω loally oinideswith a hyperplane and that Ω lies above the hyperplane. The general ase an be redued tothis situation by a suitable loal transformation of oordinates. Moreover it is assumed that thedata are given aording to R4a.Let C+ = (−1, 1)d−1 × (0, 1) be the upper half ube, C− = (−1, 1)d−1 × (−1, 0) the lower halfube and assume that Γ = (−1, 1)d−1 × {0} ⊂ ∂Ω and that C+ ∩ Ω = C+ and C− ∩ Ω = ∅, seeFigure 1. By C = (−1, 1)d we denote the unit ube in R

d. Let R = I−2ed⊗ed be the orthogonalre�etion at Γ. The elasto-plasti model is extended from C+ to C by means of an odd extensionfor the displaements and an even extension for the internal variable and the initial datum:
ue(t, x) =

{
u(t, x) x ∈ C+

−u(t, Rx) x ∈ C−

, ze(t, x) =

{
z(t, x) x ∈ C+

z(t, Rx) x ∈ C−

, z0
e =

{
z0 in C+

z0◦R in C−

.(3.13)Moreover, the extended oe�ient matrix Ae and the extended elasti energy are de�ned as
Ae =

{
A in C+

A◦R in C−

, Ψe(v, z) =
1

2

∫

Ω∪C
〈Ae (∇v

z ) , (∇v
z )〉dx (3.14)for v ∈ H1(Ω ∪C) and z ∈ L2(Ω ∪C). Tehnial alulations show that the extended funtionssatisfy for all v ∈ H1

0 (C)
∫

C
〈Ae

(
∇ue(t)
ze(t)

)
,
(
∇v
0

)
〉dx =

∫

C
be(t) · v dx,

∂tze(t) ∈ G(−DzΨe(∇ue(t), ze(t)) + Fe(t)),21



where
be(t, x) =

{
b(t, x) x ∈ C+

−b(t, Rx) − div
((
A11∇u(t) +A12z(t)

)∣∣
Rx

(R+ I)
)

x ∈ C−
, (3.15)

Fe(t, x) =

{
F (t, x) x ∈ C+

F (t, Rx) −A21,e(∇u(t)
∣∣
Rx

(R+ I)) x ∈ C−

. (3.16)The tangential regularity results from the previous setion guarantee that be∣∣C−
∈ L∞(S;L2(C−)).Indeed, due to the fator (R + I) terms like ∂2

du and ∂dz do not appear in the de�nition of beand hene, tangential derivatives of ∇u and z enter in the de�nition of be, only, whih, byTheorem 3.3, belong to L∞(S;L2(C−)). Again from the regularity results in the previous se-tion we obtain that ∂dFe

∣∣
C±

∈ L∞(S;L2(C±)). Taking into aount that u∣∣
Γ

= 0, it followsthat ∇u(R + I)
∣∣
Γ

= 0 and hene the traes of Fe

∣∣
C+

and Fe

∣∣
C−

oinide on Γ. This impliesthat ∂dFe ∈ L∞(S;L2(C)). The loal regularity result desribed in Theorem 3.3, part (b), istherefore appliable and leads to the following theorem:Theorem 3.4. Assume that R1�R3 and R4a are satis�ed. Then the unique solution (u, z) ofproblem (3.6)�(3.8) satis�es: For every δ > 0

u ∈ L∞(S;H
3
2
−δ(Ω)) ∩ L∞(S;H2lo(Ω)), z ∈ L∞(S;H

1
2
−δ(Ω)) ∩ L∞(S;H1lo(Ω)). (3.17)Moreover, for every δ > 0 there exists a onstant cδ > 0 suh that

‖u‖
L∞(S;H

3
2−δ(Ω))

+ ‖z‖
L∞(S;H

1
2−δ(Ω))

≤ cδ(
∥∥z0

∥∥
H1(Ω)

+ ‖f‖W 1,1(S;Y1)
). (3.18)We refer to [58℄ for a detailed proof of the global results and a slightly more general variant ofTheorem 3.4, where also further types of boundary onditions are disussed.Estimates (3.9) and (3.18) allow to apply Tartar's nonlinear interpolation theorem showing thatfor data with less spatial regularity than required in Theorem 3.4, one obtains the orrespondingspatial regularity of the solution in a natural way. We assume here that g = ∂χK , where K ⊂ R

Nis onvex, losed and 0 ∈ K. ∂χK denotes the onvex subdi�erential of the harateristifuntion χK assoiated with K. Let Y0 := Q∗, Y1 := L2(Ω,Rm) × H1(Ω,RN ) and Qδ
1 :=

(H1
0 (Ω,Rm) ∩ H 3

2
−δ(Ω,Rm)) × H

1
2
−δ(Ω,RN ) for δ > 0. Due to Theorem 3.1 and the stabilityestimate (3.9) for all r, q ∈ [1,∞] the solution operator T de�ned by

T : L2(Ω,RN ) ×W 1,r(S;Y0) → Lq(S;Q), (z0, f) 7→ T (z0, f) = (u, z),where (u, z) ∈ W 1,1(S;Q) is the unique solution of (3.6)�(3.8) with data f = (b, F ) and initialondition z0, is well de�ned and Lipshitz-ontinuous. Moreover, for all δ > 0 the solutionoperator
T : H1(Ω,RN ) ×W 1,r(S;Y1) → Lq(S;Qδ

1)is a bounded operator aording to Theorem 3.4. Hene, Tartar's interpolation Theorem [103,Thm. 1℄ guarantees that for all θ ∈ (0, 1) and all p ∈ [1,∞] the following impliation holds true:
z0 ∈ (H1(Ω);L2(Ω))θ,p, f ∈ (W 1,r(S;Y1);W

1,r(S;Y0))θ,p

=⇒ T (z0, f) = (u, z) ∈ (Lq(S;Qδ
1);L

q(S;Q))θ,p.22



Here, (· ; ·)θ,p stands for real interpolation, see e.g. [107℄. If for example r = q = p = 2and θ ∈ (0, 1), then given z0 ∈ Hθ(Ω), b ∈ W 1,2(S; (H̃1−θ(Ω))∗), where H̃s(Ω) = { η ∈
Hs(Ω) ; ∃η̃ ∈ Hs(Rm) with supp η̃ ⊂ Ω, η̃

∣∣
Ω

= η }, and F ∈ W 1,2(S;Hθ(Ω)) we obtain that
u ∈ L2(S;H1+θ( 1

2
−δ)(Ω)) and z ∈ L2(S;Hθ( 1

2
−δ)(Ω)).Example 3.5. Theorem 3.4 and the interpolation result are appliable to rate-independentelasto-plastiity with linear kinemati hardening and with a von Mises or a Tresa �ow rule.Here, the vetor of internal variables is identi�ed with the plasti strains εp ∈ R

d×dsym,dev (i.e.
tr εp = 0) and the elasti energy takes the form

Ψ(u, εp) =

∫

Ω
ψ(ε(∇u), εp) dx with ψ(ε, εp) = 1

2A(ε− εp) · (ε− εp) + 1
2Lεp · εp, (3.19)for (ε, εp) ∈ R

d×dsym × R
d×dsym,dev. The oe�ient tensors A ∈ C0,1(Ω,Lin(Rd×dsym,Rd×dsym)) and L ∈

C0,1(Ω,Lin(Rd×dsym,dev,Rd×dsym,dev)) are assumed to be symmetri and uniformly positive de�nite.Hene, due to Korn's inequality, assumption R2 is satis�ed. Let K ⊂ R
d×dsym,dev be onvex, losedand with 0 ∈ K. The set K desribes the set of admissible stress states. Choosing g = ∂χK asthe onvex subdi�erential of the harateristi funtion χK assoiated with K, we obtain lassialrate-independent models for elasto-plasti material behavior. In partiular, the von Mises �owrule is assoiated with the set KvM = { τ ∈ R

d×dsym,dev ; (τ · τ) 1
2 ≤ c0 }, whereas the Tresa �owrule is based on the set KT = { τ ∈ R

d×dsym,dev ; maxi6=j |τi − τj| ≤ c0 }. Here, { τi ; 1 ≤ i ≤ d }are the eigenvalues (priniple stresses) of τ ∈ R
d×dsym,dev. The regularity Theorem 3.4 and theinterpolation result are appliable to these models.Example 3.6. In [80℄ an elasti-plasti model was introdued whih inorporates Cosserat mi-ropolar e�ets. This model is analyzed in [80, 25℄ with respet to existene and loal regularityand in [59℄ with respet to global regularity of a time disretized version. In this model, notonly the displaements u but also linearized miro-rotations Q are taken into aount. The gen-eralized displaements are given by the pair (u,Q) ∈ R

d × R
d×dskew ∼= R

m, whereas the internalvariable z is identi�ed with the plasti strain tensor z = εp ∈ R
d×dsym, dev. For u ∈ H1(Ω,Rd),

Q ∈ H1(Ω,Rd×dskew) and εp ∈ L2(Ω,Rd×dsym,dev) the elasti energy reads
ΨC((u,Q), εp) =

∫

Ω
µ |ε(∇u) − εp|2 + µc |skew (∇u−Q)|2 +

λ

2
|tr∇u|2 + γ |∇Q|2 dx.Here, λ, µ > 0 are the Lamé onstants, µc > 0 is the Cosserat ouple modulus and γ > 0depends on the Lamé onstants and a further internal length parameter. It is shown in [80℄ that

ΨC satis�es ondition R2. If G is hosen aording to R3, then solutions to (3.6)�(3.8) with ΨChave the global regularity properties desribed in Theorem 3.4. In addition, Q ∈ L∞(S;H2(Ω)),sine Q is oupled with ε(∇u) and εp through lower order terms, only, see [25℄.3.2 Disussion of the regularity resultsIt is an unsolved problem whether the result in Theorem 3.4 is optimal or whether one shouldexpet the regularity u ∈ L∞(S;H2(Ω)), z ∈ L∞(S;H1(Ω)) for domains with smooth bound-aries. This would extend the loal regularity results desribed in Theorem 3.3 in a natural way.If u is a salar funtion, then under ertain oupling onditions on the oe�ients the spatialregularity u ∈ L∞(S;H2(Ω)) an be ahieved for the evolution model (see Setion 3.2.1). InSetion 3.2.2 we give an example whih shows that in spite of smooth data a similar regularityresult is not valid for the time derivatives ∂tu and ∂tz.23



3.2.1 Improved regularity for salar uThe regularity results in Theorem 3.4 an be improved if u is salar and if ertain ompatibilityonditions between the submatries Aij of A and the onstitutive funtion g are satis�ed. Herethe idea is to onstrut a re�etion operator R, whih is adapted to the struture of the theoe�ient matrix A11. In ontrast to Setion 3.1.3 the problem is not re�eted perpendiularto the boundary but with respet to the vetor A11ν, where ν : ∂Ω → ∂B1(0) ⊂ R
d is theinterior normal vetor to ∂Ω. Due to the ompatibility onditions between the oe�ients andthe onstitutive funtion g the re�eted data do not ontain seond spatial derivatives of u or�rst derivatives of z. Hene the re�eted data have the regularity (be, Fe) ∈W 1,1(S;Y1) insteadof (be, Fe) ∈ L∞(S;Y1) with Y1 = L2(Ωe) ×H1(Ωe). Thus, we may apply part (a) of Theorem3.3 and obtain the improved global regularity desribed in Theorem 3.7 here below.To be more preise, the problem under onsideration reads: Find u : S × Ω → R, z : S ×

Ω → R
N suh that for given A11 ∈ C0,1(Ω,Rd×dsym), A12 = A⊤

21 ∈ C0,1(Ω,Lin(RN ,Rd)) and
A22 ∈ C0,1(Ω,RN×Nsym ) we have

DuΨ(u(t))[v] =

∫

Ω
(A11∇u(t) +A12z(t)) · ∇v dx =

∫

Ω
b(t) · v dx ∀v ∈ V,

∂tz(t) ∈ G(−(A21∇u(t) +A22z(t)) + F (t)),

z(0) = z0.It is assumed that A =
(

A11 A12
A21 A22

)
∈ C0,1(Ω; R(d+N)×(d+N)) is uniformly positive de�nite. Let

ν : ∂Ω → ∂B1(0) be the interior normal vetor on ∂Ω. In order to formulate the ompatibilityonditions, we de�ne for x ∈ ∂Ω

Rν(x) = I − 2

A11(x)ν(x) · ν(x)
A11(x)ν(x) ⊗ ν(x). (3.20)The matrix Rν loally determines the re�etion at ∂Ω. Simple alulations show that R2

ν(x) = Iand Rν(x)A11(x)R
⊤
ν(x) = A11(x). The basi assumptions and ompatibility onditions are:R5 Ω ⊂ R

d is a bounded domain with a C2,1-smooth boundary (it is used that ν ∈ C1,1(∂Ω)).R6 (b, F ) ∈W 1,1(S;Y1) with Y1 from R4a, z0 = 0.R7 There exists a mapping P ∈ C0,1(∂Ω,RN×N ) suh that for every x ∈ ∂Ω the inverse matrix
(P (x))−1 exists and the following onditions hold for all η ∈ R

N

Rν(x)A12(x)P (x) = A12(x), P (x)⊤A22(x)P (x) = A22(x), −P (x)−1g(−P (x)−⊤η) = g(η).Theorem 3.7. [58℄ Let R5-R7 be satis�ed and assume that the pair (u, z) ∈ W 1,1(S;H1
0 (Ω) ×

L2(Ω)) solves (3.6)�(3.8). Then u ∈ L∞(S;H2(Ω)) and z ∈ L∞(S;H1(Ω)).We refer to [58℄ for a detailed proof.Example 3.8. Assume that the oe�ient matrix A is onstant, that N = d, A12 = −A11 and
A22 = A11 + L with L ∈ R

d×dsym positive de�nite. Hene, Ψ(u, z)= 1
2

∫
ΩA11(∇u − z) ·(∇u − z)+

Lz · zdx. Moreover we assume that A11=I, whih an always be ahieved after a suitable hangeof oordinates and a suitable transformation in the state spae of z. The mapping Rν now takesthe form Rν = I − 2ν ⊗ ν for ν ∈ ∂B1(0) and the ompatibility onditions redue to24



R7' Pν = Rν , R⊤
ν LRν = L and −R⊤

ν g(−Rνη) = g(η) for all η ∈ R
d.It is shown in [58℄ that R7' is satis�ed if and only if there exists α > 0 suh that L = αI.Moreover, if g = ∂χK with K ⊂ R

d onvex, losed and 0 ∈ K, then R7' holds if and only if
K = −RνK for all ν ∈ R

d. In this situation, Theorem 3.7 yields the improved regularity result.This example shows that if the �anisotropy� in Hooke's law given by the matrix A11 is orrelatedwith the anisotropy in the hardening oe�ients A22 and L and the onstitutive funtion g, thenthe displaements u(t) have full H2-regularity up to the boundary ∂Ω. It is an open questionwhether this regularity is still valid if the ompatibility ondition R7 is violated. Moreover it isnot known, whether a similar result is true for real elasto-plasti models, where u is not a salarfuntion.3.2.2 Example: ∂tz(t) /∈ H1(Ω)The following example shows that in spite of smooth data there might exist a time interval (t1, t2)suh that ∂tz(t) /∈ H1(Ω) for all t ∈ (t1, t2). Hene, one should not expet z ∈ W 1,1(S;H1(Ω)).The example is inspired by Seregin's paper [95℄.Let 0 < R1 < R2. We set Ω = BR2(0)\BR1(0) and hoose the following energy for u, z : Ω → R:
Ψ(u, z) = 1

2

∫

Ω

∣∣∇u− x
|x|z

∣∣2 + z2 dx.Moreover, g(η) := ∂χ[−1,1](η) for η ∈ R. It is assumed that u(t)∣∣
∂BR1

= 0, u(t)∣∣
∂BR2

= t,
z0 = 0 and that the remaining data (F , b) vanish. It is easily heked that the assumptionsof Theorem 3.7 are satis�ed and hene the problem has a unique solution with the regularity
∇u, z ∈ W 1,1(S;L2(Ω)) ∩ L∞(S;H1(Ω)). Due to the rotational symmetry of the problem thesolution does not depend on the angle and an be alulated expliitly. Introduing polar-oordinates, the solution u, z : S × (R1, R2) → R has to satisfy for r ∈ (R1, R2) and t ∈ S

∂2
ru+ r−1∂ru− ∂rz − r−1z = 0 in S × (R1, R2),

∂tz ∈ ∂χ[−1,1](∂ru− 2z) in S × (R1, R2),

z(0, ·) = 0, u(t, R1) = 0, u(t, R2) = t.For t ≤ t1 := R1 ln(R2/R1) it follows that u(t, r) = t ln(r/R1)
ln(R2/R1) , z(t, r) = 0. In this regime, noplasti strains are present. For t > t1 the plasti variable z starts to grow and there exists r∗(t)suh that z(t, r) > 0 for r < r∗ and z(r, t) = 0 for r > r∗, i.e. r∗(t) separates the plasti regionfrom the elasti region. The dependene of r∗ on t is given impliitly by the relation

t(r∗) = R1 − r∗ + r∗(lnR2r∗ − lnR2
1).Simple alulations show that t(r∗) is stritly inreasing, and hene r∗(t) ≥ R1 is stritly growing,as well. Moreover, for t ≥ t1 we have

u(t, r) =

{
b(t) − r + 2r∗(t) ln r if r ≤ r∗(t)

c(t) + r∗(t) ln r else , z(t, r) =

{
−1 + r∗(t)r

−1 if r ≤ r∗(t),

0 else ,with funtions b(t) = R1 − 2r∗(t) lnR1 and c(t) = t− r∗(t) lnR2. Sine ∂tr∗(t) > 0 for t ≥ t1 itfollows that ∂tz(t, ·) /∈ H1(R1, R2) for t > t1, see also Figure 1.25
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Figure 1: Example for the notation in Setion 3.1.3 (left); Graph of the solution z : (0, T ) ×
(R1, R2) → R (middle) and of the time derivative ∂tz (right).3.3 Regularity for variants of the elasto-plasti model and overview on theorresponding literatureThe starting point for the review of the literature on spatial regularity properties of elasto-plastimodels is the system introdued in (3.6)�(3.8) with the partiular energy density

ψ(ε, z) = 1
2

(
A(ε−Bz) · (ε−Bz) + Lz · z

) (3.21)for ε ∈ R
d×dsym and z ∈ R

N . It is assumed that A ∈ Lin(Rd×dsym,Rd×dsym) is symmetri and positivede�nite, L ∈ Lin(RN ,RN ) is symmetri and positive semi-de�nite and B ∈ Lin(RN ,Rd×dsym). Theorresponding evolution model reads
div σ(t) + b(t) = 0, σ(t) = A(ε(∇u(t)) −Bz(t)), (3.22)

∂tz(t) ∈ G(−∂zψ(ε(∇u(t)), z(t)) + F (t)). (3.23)together with initial and boundary onditions. Depending on the properties of L and G di�erentspatial regularity results were derived in the literature.3.3.1 Regularity for models with positive semi-de�nite elasti energy and mono-tone, multivalued gOnly very few regularity results are available for models where the elasti energy density ψ in(3.21) is positive semi-de�nite but not positive de�nite. The orresponding elasti energy is on-vex but not stritly onvex on the full state spae Q. As a onsequene, a-priori estimates likethose provided in Theorem 3.2 annot be obtained in general. In ontrast, the omplementaryenergy, whih is expressed via the generalized stresses, is still oerive. The regularity investi-gations therefore typially take a stress based version of (3.22)�(3.23) as a starting point. Inthis framework to the authors' knowledge only the Prandtl-Reuss model and models with linearisotropi hardening are disussed in the literature with regard to regularity questions.The Prandtl-Reuss model desribes elasti, perfetly plasti material behavior without hardening.The internal variable z is identi�ed with the plasti strain tensor εp ∈ R
d×dsym,dev, B = I and L = 0.Moreover, the onstitutive funtion g is typially identi�ed with ∂χK , where K is a onvex setgiven aording to the von Mises or the Tresa �ow rule, see Example 3.5.The existene theorems provide stresses with σ(t) ∈ L2(Ω) and u(t) ∈ BD(Ω), where BD(Ω)denotes the spae of bounded deformations, see e.g. [53, 67, 102, 8, 105, 28℄. Higher spatialregularity is derived by Bensoussan and Frehse [13℄ and Demyanov [31℄ for the ase that K isde�ned by the von Mises yield ondition. They obtain σ ∈ L∞([0, T ];H1lo(Ω)), whih oinides26



with the loal results in Theorem 3.4. The stress regularity is proved by approximating thePrandtl-Reuss model with the visous power-law like Norton-Ho� model [13℄ and by time dis-retization [31℄. Tangential properties are disussed in [18℄. To the author's knowledge theseare the only known spatial regularity results for the Prandtl-Reuss model. In partiular there isno information about higher global regularity. In the dynamial ase, Shi proved a loal spatialresult for σ and u [96℄.If z(0) = 0, then the �rst step in the time disretization of the Prandtl-Reuss model leads to thestationary, elasti, perfetly plasti Henky model. Here, it is proved for the von Mises ase that
σ ∈ H1lo(Ω)∩H 1

2
−δ(Ω) for every δ > 0, where Ω is a bounded Lipshitz domain whih satis�es anadditional geometrial ondition near those points, where the Dirihlet and Neumann boundaryinterset. We refer to [12℄ and [92, 39℄ together with the referenes therein for the loal resultand to [56, 15℄ for the global and a tangential result. The key of the proofs is to approximatethe Henky model with nonlinear elasti models and to derive uniform regularity estimates forthe approximating models. In addition, the authors in [39℄ obtain a result onerning partialregularity of the solutions. It is an open problem whether the global result an be improved in thease of a smooth boundary with pure Dirihlet or pure Neumann onditions, see the disussionin [95℄.A further typial elasto-plasti model with a positive semide�nite energy density ψ desribeslinear isotropi hardening. Here, the internal variable z onsists of the plasti strains εp and asalar hardening variable γ haraterizing the radius of the set of admissible stress states. Thequadrati elasti energy is given by ψ(ε, εp, γ) = 1

2

(
A(ε − εp) · (ε − εp) + αγ2

) for ε ∈ R
d×dsym,

εp ∈ R
d×dsym,dev and �xed α > 0. The onstitutive funtion is de�ned as g = ∂χK with K =

{ (τ, µ) ∈ R
d×dsym,dev × R ; µ ≥ 0, |τ | ≤ σ0 + σ1µ } and onstants σi > 0. The �rst investigationsonerning spatial regularity in the isotropi ase were arried out by Seregin [93℄. Here, theresults σ ∈ L∞(S;H1lo(Ω)), γ ∈ L∞(S;H1lo(Ω)), ∇u ∈ L∞(S;BDlo(Ω)) were obtained bystudying the regularity properties of a time-disretized version and proving uniform bounds.Hölder properties of the solutions were investigated in [37℄.3.3.2 Spatial regularity for regularized modelsReplaing the maximal monotone onstitutive funtion G : L2(Ω,RN ) → P(L2(Ω,RN )) from(3.23) with its Yosida approximation leads to regularized elasto-viso-plasti models with aLipshitz-ontinuous nonlinearity in the evolution law. The therewith obtained models are asublass of the elasto-viso-plasti models studied e.g. by Sofonea et al., see [52, 35℄. Given anenergy Ψ : Q → R as de�ned in (3.4)�(3.5) with a oe�ient matrix A ∈ L∞(Ω,Lin(Rm×d ×

R
N ,Rm×d × R

N )) and given a Lipshitz-ontinuous operator F : Q → L2(Ω,RN ) these modelsread as follows:
DuΨ(u(t), z(t)) = b(t), ∂tz(t) = F(u(t), z(t)), z(0) = z0 (3.24)together with boundary onditions on ∂Ω. If the submatrix A11 ∈ L∞(Ω,Lin(Rm×d,Rm×d)) of

A is symmetri and if the indued bilinear form a(u, v) =
∫
ΩA11∇u · ∇v dx is oerive on V ,then a standard appliation of Banah's �xed point theorem implies the existene of a uniquesolution (u, z) ∈W 1,∞(S;Q) provided that b ∈W 1,∞(S;V ∗).For these models the loal spatial regularity was investigated in [75℄ with a di�erene quotientargument and in [61℄, while the global regularity was studied in [19℄. The global regularity the-orem in [19℄ states that if the linear ellipti operator indued by A11 is an isomorphism between27



the spaes H1
ΓDir(Ω) ∩ H1+s(Ω) and Ys for some s ∈ (0, 1], where Ys is a suitable subspae of

Hs−1(Ω), then for every b ∈ W 1,∞(S;Ys) the solution of (3.24) satis�es u ∈ W 1,∞(S;H1+s(Ω))and z ∈ W 1,∞(S;Hs(Ω)). In this way, global regularity properties of ellipti operators on pos-sibly nonsmooth domains and with mixed boundary onditions diretly in�uene the regularityproperties of the visous evolution model (3.24). The proof is arried out by deriving uniformregularity bounds for the sequene of approximating solutions generated via the Banah �xedpoint theorem. Here it is not needed that the elasti energy Ψ is oerive on Q, the oerivityof a(u, v) :=
∫
ΩA11∇u · ∇v dx on V is su�ient.While for elasto-plastiity models (with a multivalued monotone onstitutive funtion g) loalregularity results an be dedued by proving uniform regularity bounds for the sequene of theapproximating Yosida-regularized models, see e.g. [5℄, it is an unsolved problem, how to obtainuniform bounds in order to arry over global spatial regularity results from the visous model tothe elasto-plasti limit problem.A further possibility to regularize elasto-plasti models is to replae the onstitutive funtion

G = ∂χK with a power-law like ansatz. This approah is used in [105℄ in order to regularize thePrandtl-Reuss model. Assume again that z = εp ∈ R
d×dsym,dev, B = I, L = 0 and replae ∂χKvM(f. Example 3.5) with

gN (σ) = c1−N
0

∣∣σD
∣∣N−2

σD,for σ ∈ R
d×dsym. Here, σD = σ− 1

d tr σ I denotes the deviatori part of the tensor σ. The parameter
N > 1 is a strain hardening exponent, whereas c0 an be interpreted as a yield stress. Theresulting visous model is the so alled Norton/Ho� model and onsists of the relation (3.22)whih is ompleted by the evolution law ∂tεp(t) = gN (σ(t)). For N → ∞, the Norton/Ho�model approximates the Prandtl/Reuss model [105℄. After eliminating the plasti strains εp oneobtains the usual form of the Norton/Ho� model:

div σ(t) + b(t) = 0, A−1∂tσ(t) + c1−N
0

∣∣σD(t)
∣∣N−2

σD(t) = ∂tε(∇u(t)).Bensoussan/Frehse [12℄ proved the loal spatial regularity result σ ∈ L∞((0, T );H1lo(Ω)) for thestress tensor via a di�erene quotient argument. A global result seems not to be available in theliterature.A time disretization of the Norton/Ho� model leads to the stationary Norton/Ho� or Ram-berg/Osgood model, whih is given by equation (3.22) in ombination with the relation ε(∇u) =

A−1σ + c1−N
0

∣∣σD
∣∣N−2

σD. Several authors studied loal and global regularity and the Hölderproperties of the stresses and displaements of this model for domains with smooth boundariesas well as for domains with nonsmooth boundaries [12, 101, 55, 56, 14, 33℄.3.3.3 Spatial regularity for time inremental versionsA further way to prove regularity properties of elasto-visoplasti models is to study the smooth-ness of solutions to time-disretized versions and to derive regularity bounds whih are uniformwith respet to the time step size. This method was applied e.g. in [93℄ to obtain loal results,while for global results uniform bounds are not known. We disuss here global regularity prop-erties for the time disretized version under the assumption that the elasti energy Ψ is oeriveand that g = ∂χK with a onvex and losed set K. The di�erent equivalent formulations of28



the disretized equations, whih we present here below, are ommonly used in a omputationalontext of elasto-plastiity, [99, 98℄.Let R1 and R2 be satis�ed and assume that g = ∂χK , where K ⊂ R
N is onvex, losed and with

0 ∈ K. Let further K = { η ∈ L2(Ω) ; η(x) ∈ K a.e. in Ω }. A time disretization via an impliitEuler sheme leads to the following problem with ∆t = T/n, 0 = tn0 < tn1 < . . . < tnn = T : Find
(un

k , z
n
k ) ∈ V × L2(Ω), 1 ≤ k ≤ n, whih satisfy

DuΨ(un
k , z

n
k ) − b(tnk ) = 0, 1

∆t(z
n
k − zn

k−1) ∈ ∂χK(−DzΨ(un
k , z

n
k )). (3.25)Observe that zn

k solves (3.25) if and only if
zn
k = argmin{F (un

k , η, z
n
k−1,∆t) ; η ∈ L2(Ω) }, (3.26)

F (un
k , η, z

n
k−1,∆t) =

1

2

∫

Ω
A22(η − zk−1) · (η − zk−1) dx+ ∆t χK(−(A21∇un

k +A22z
n
k )). (3.27)In terms of the new variables Σtrial

k = −(A21∇un
k + A22z

n
k−1) and Σk = −(A21∇un

k + A22z
n
k ), itfollows that zk satis�es (3.26) if and only if

zn
k = zn

k−1 +A−1
22 (Σtrial

k − Σk), (3.28)
Σk = argmin{ F̃ (θ,Σtrial

k ,∆t) ; θ ∈ L2(Ω) }, (3.29)
F̃ (θ,Σtrial

k ,∆t) =
1

2

∫

Ω
A−1

22 (θ − Σtrial
k ) · (θ − Σtrial

k ) dx+ ∆t χK(θ). (3.30)Sine the oe�ient matrix A−1
22 indues a salar produt on L2(Ω), Σk an be interpreted asthe projetion of Σtrial

k onto the onvex and losed set K with respet to this salar produt. Let
PA−1

22 ,K : L2(Ω) → L2(Ω) be the projetion operator on K. Hene, Σk = PA−1
22 ,K(Σtrial

k ) and inaddition, Σk(x) = PA−1
22 (x),K(Σtrial

k (x)) in Ω, where PA−1
22 (x),K : R

N → R
N is the orrespondingpointwise projetion operator on K. With these notations, problem (3.25) is equivalent to thefollowing problem: Find un

k ∈ V and zn
k ∈ L2(Ω) suh that for given zn

k−1 ∈ L2(Ω) we have
∫

Ω
M(x,∇un

k (x), zn
k−1(x)) · ∇v(x) dx = 〈b(tnk), v〉 ∀v ∈ V, (3.31)

zn
k = −A−1

22

(
A21∇un

k + PA−1
22 ,K( −A21∇un

k −A22z
n
k−1)

)
, (3.32)where the mapping M : Ω × R

m×d × R
N → R

m×d is de�ned as
M(x, F, z) = L1(x)F −A12(x)A22(x)

−1PA−1
22 (x),K

(
−A21(x)F −A22(x)z

)with the Shur omplement matrix L1 = A11−A12A
−1
22 A21 ∈ C0,1(Ω,Lin(Rm×d,Rm×d)). Observethat in general M is not di�erentiable with respet to F and z. The Lipshitz-ontinuity of theprojetion operator, assumption R2 and the assumption 0 ∈ K imply that the mapping Mhas the following properties: there exist onstants c1, c2 > 0 suh that for every x, xi ∈ Ω,

F,Fi ∈ R
m×d and z, zi ∈ R

N we have
|M(x1, F, z) −M(x2, F, z)| ≤ c1(|F | + |z|) |x1 − x2| , (3.33)

|M(x, F1, z1) −M(x, F2, z2)| ≤ c2(|F1 − F2| + |z1 − z2|), (3.34)
M(x, 0, 0) = 0. (3.35)29



Moreover, M indues a strongly monotone operator on V , i.e. there exists a onstant β > 0 suhthat for all u1, u2 ∈ V and z ∈ L2(Ω) we have:
∫

Ω

(
M(x,∇u1, z) −M(x,∇u2, z)

)
: ∇(u1 − u2) dx ≥ β ‖u1 − u2‖2

H1(Ω) .This follows from the monotoniity of the projetion operator and from the fat that due toassumption R2, the indued bilinear form b(u, v) :=
∫
Ω L1∇u · ∇v dx, u, v ∈ V , is symmetriand V -oerive. Finally, the mapping M is strongly rank-one monotone. That means that thereexists a onstant cLH > 0 suh that for every x ∈ Ω, F ∈ R

m×d, z ∈ R
N , ξ ∈ R

m and η ∈ R
d wehave

(
M(x, F + ξ ⊗ η, z) −M(x, F, z)) : ξ ⊗ η ≥ cLH |ξ|2 |η|2 . (3.36)This is a onsequene of the monotoniity of the pointwise projetion operator and the positivityproperties of L1, see e.g. [108, Th. 6.1℄. Altogether it follows that M generates a quasilinearellipti system of PDEs of seond order for determining un

k . Standard existene results forequations involving Lipshitz-ontinuous, strongly monotone operators guarantee the existeneof a unique element un
k ∈ V solving (3.31) for arbitrary data zn

k−1 ∈ L2(Ω) and b ∈ V ∗, [110℄.Moreover, un
k depends Lipshitz-ontinuously on the data. The regularity result in [59℄ guaranteesthat for given b(tk) ∈ L2(Ω) and zn

k−1 ∈ H1(Ω) we have the global regularity (un
k , z

n
k ) ∈ H2(Ω)×

H1(Ω) provided that R1 and R2 are satis�ed. Unfortunately it is not known how to deriveestimates for ‖un
k‖H2(Ω) whih are uniform with respet to the time step ∆t.Quasilinear ellipti systems of a similar struture resulting from various regularizing ansatzesfor elasto-plasti models were also studied with respet to regularity questions in the referenes[86, 20, 57, 91, 94, 38, 79, 89℄.4 Numerial realization via a Slant Newton MethodAs it is pointed out in Setion 3.3.3 one possibility to numerially solve the system of elasto-plastiity is to solve the system of nonlinear ellipti equations whih emerges after an (impliit)time disretization and an elimination of the internal variables. This system in general involves anonlinearity whih is not di�erentiable as an operator between funtion spaes. Hene, a standardNewton's method, whih relies on the derivative of the nonlinear operator, is not appropriate tosolve the nonlinear system. Instead we disuss a Newton-like method, where the derivative isreplaed by a slanting funtion leading to a Slant Newton Method. This approah is explainedfor a rate-independent elasto-plasti model with linear isotropi hardening.4.1 Problem Spei�ationConsider the Prandtl-Reuÿ elastoplastiity problem with isotropi hardening, whih is a speial-ization of (2.1)�(2.5) in the following way: De�ne the internal variable with size N = 7 via

z(x, t) = (z1(x, t), . . . , z6(x, t), γ(x, t)), and the projetion
B : R

N → S3 , z 7→ εp =



z1 z4 z5
z4 z2 z6
z5 z6 z3


 . (4.1)30



For easier notation let us, from now on, denote the plasti strain by p instead of εp. Theassoiated free energy density is assumed to be of the form
ψ(ε, p, γ) =

1

2
〈A(ε− p), ε− p〉F +

1

2
γ2 ,where ε ∈ S3, p ∈ S3, γ ∈ R, the Frobenius salar produt for matries is de�ned 〈B,C〉F =∑

ij Bij Cij, and it is assumed that the elastiity tensor A haraterizes isotropi material be-havior and has the expliit form
A : S3 → S3, ε 7→ 2µε+ λ tr ε I .Here, λ, µ > 0 are the Lamé onstants and desribe the elasti behavior of the material. Thishoie of the elasti energy density indues the following relation between the generalized plastistrains Π = (p, γ) ∈ S3 × R and the generalized stresses Σ = (T, α) ∈ S3 × R:

T = ∂εψ(ε, p, γ) = −∂pψ(ε, p, γ) = A(ε− p) ,

α = −∂γψ(ε, p, γ) = −γ .The onstitutive �ow law (2.3) in the Prandtl-Reuss ase with isotropi hardening reads
∂tΠ(x, t) ∈ ∂χK(Σ(x, t)) , (4.2)where ∂χK denotes the subgradient of the indiator funtion regarding the onvex set K ofadmissible generalized stresses, whih is given by

K = {Σ ∈ S3 × R ; φ(Σ) ≤ 0 } (4.3)with the yield funtion
φ(Σ) = ‖dev T‖F − Ty(1 +Hα) + χ[0,∞)(α). (4.4)The parameters yield stress Ty > 0 and modulus of hardening H > 0 desribe the plasti behaviorof the material, the deviator, a projetion onto the trae-free subspae of S3, is alulated by

dev T = T − (tr T/ tr I) I, and the Frobenius norm reads ‖T‖2
F = 〈T, T 〉F . Notie, that (4.2)is a speialization of (2.3). Geometrially spoken, the subgradient ∂χK desribes the normalone of the onvex set of admissible stresses K at the point Σ. In other words, the presription

∂Π
∂t ∈ ∂χK(Σ) means that either there is no solution with respet to the generalized strain Π (if
Σ is not in K), or Π remains onstant (if Σ is in the interior of K), or ∂Π

∂t has to be hosen suhthat it is orthogonal to the boundary of the set of admissible stresses K at the point Σ (if Σ ison the boundary of K).Summarizing, the problem of Prandtl-Reuÿ elastoplastiity with isotropi hardening reads: Findthe displaement u(x, t) ∈ R
3, the plasti strain p(x, t) ∈ S3, and the hardening parameter

α(x, t) ∈ R, whih solve
− divx T (x, t) = b(x, t) , (4.5)

T (x, t) = A(ε(u(x, t)) − p(x, t)) , (4.6)
∂ Π

∂t
(x, t) ∈ ∂χK(Σ(x, t)) , where Π = (p,−α) and Σ = (T, α) , (4.7)

Π(x, 0) = Π(0)(x) , (4.8)
u(x, t) = γD(x, t) , if x ∈ ΓD ⊂ ∂Ω , (4.9)

T (x, t)n(x, t) = γN (x, t) , if x ∈ ΓN ⊂ ∂Ω . (4.10)31



We turn to the numerial solution of the problem (4.5)�(4.10). The algorithm desribed in thissetion is of Newton's type, enjoying the property of loal super-linear onvergene. It is aninteresting question for future investigation, whether there is a more general lass of problemsovered by the laws (2.1)�(2.5), to whih this algorithm is appliable.We de�ne V :=
[
H1(Ω)

]3, V0 := { v ∈ V ; v = 0 on ΓD }, VD := { v ∈ V ; v = uD on ΓD } for
uD ∈

[
H1/2(ΓD)

]3, Q :=
[
L2(Ω,S3)

], and R := R ∪ {+∞}.Analogously to the disussion in Setion 5 the problem (4.5)�(4.10) may equivalently be formu-lated in the global energeti framework based on the energy
E(t, u,Π) =

∫

Ω
ψ(ε(∇u), p, γ) dx − 〈b(t), u〉and the dissipation potential

R(u, p, γ) =

∫

Ω
ρ(p(x), γ(x)) dxfor u ∈ VD, p ∈ Q and γ ∈ L2(Ω). The density ρ is given as the onvex onjugate of χK and hasthe struture

ρ(p, γ) = χ∗
K(p, γ) =

{
Ty ‖p‖F if tr p = 0 and ‖p‖F ≤ − γ

TyH ,

∞ otherwise .Using an impliit Euler-disretization for a partition 0 = t0 < t1 < . . . < tn = T and the sets
L2

+(Ω) = { f ∈ L2(Ω) ; f ≥ 0 almost everywhere } ,
L2
−(Ω) = { f ∈ L2(Ω) ; f ≤ 0 almost everywhere } ,the time disretized problem reads:Problem 4.1. Given (uk−1, pk−1, γk−1) ∈ VD ×Q× L2

−(Ω) �nd (uk, pk, γk) ∈ VD ×Q× L2
−(Ω)suh that

(uk, pk, γk) ∈ argmin{ E(tk, v, q, ξ) + R(v − uk−1, q − pk−1, ξ − γk−1) ; (v, q, ξ) ∈ VD ×Q× L2
−(Ω) } .It is shown in [21, 6℄ that the hardening variable αk = −γk an be eliminated from the min-imization problem in suh a way that for determining (uk, pk,−αk) one an equivalently solvethe following problem:Problem 4.2. Given (uk−1, pk−1, αk−1) ∈ VD ×Q×L2

+(Ω) �nd (uk, pk, αk) ∈ VD ×Q×L2
+(Ω)suh that

(uk, pk) ∈ argmin{ J̄k(v, θ) ; (v, θ) ∈ VD ×Q } , (4.11)
αk = αk−1 + TyH ‖pk − pk−1‖F . (4.12)Here, the global energy funtional J̄k : VD ×Q→ R is de�ned by

J̄k(v, q) :=
1

2
‖ε(v) − q‖2

A + ψk(q) − lk(v) , (4.13)32



with
〈q1, q2〉A :=

∫

Ω
〈Aq1(x) , q2(x)〉F dx , ‖q‖A := 〈q, q〉1/2

A , (4.14)
α̃k(q) := αk−1 + TyH‖q − pk−1‖F , (4.15)
ψk(q) :=

{ ∫
Ω

(
1
2 α̃k(q)

2 + Ty‖q − pk−1‖F

)
dx if tr q = tr pk−1 ,

+∞ else , (4.16)
lk(v) :=

∫

Ω
bk · v dx+

∫

ΓN

γN,k · v ds . (4.17)The body fore b(tk) = bk ∈
[
L2(Ω)

]3 and the tration γN (tk) = γN,k ∈
[
H−1/2(ΓN )

]3 are given.The funtional J̄k expresses the mehanial energy of the deformed system at the kth time step.Notie, that J̄k is smooth with respet to the displaements v, but not with respet to the plastistrains q.4.2 Solver AnalysisIn [21℄ a method of an alternate minimization regarding the displaement v and the plasti strain
q was investigated to solve Problem 4.2. The global linear onvergene of the resulting methodwas shown and a loal super-linear onvergene was onjetured. Another interesting tehniqueis to redue Problem 4.2 to a minimization problem with respet to the displaements v only.This an be ahieved by substituting the known expliit minimizer of Jk with respet to theplasti strain �eld for some given displaement v, namely by q = p̃k(ε(v)). We will observethat suh a redued minimization problem is smooth with respet to the displaements v and itsderivative is expliitly omputable.The following theorem is formulated for funtionals mapping from a Hilbert spae H providedwith the salar produt 〈◦, ⋄〉H and the norm ‖·‖2

H
:= 〈·, ·〉H. If a funtion F is Fréhet di�eren-tiable, we shall denote its derivative in a point x by DF (x) and its Gâteaux di�erential in thediretion y by DF (x ; y). We refer to [34℄ onerning the de�nitions of onvex, proper, lowersemi-ontinuous, and oerive.Theorem 4.3. Let the funtion f : H × H → R be de�ned

f(x, y) =
1

2
‖x− y‖2

H + ψ(x) (4.18)where ψ is a onvex, proper, lower semi-ontinuous, and oerive funtion of H into R. Then
F (y) := infx∈H f(x, y) maps into R, and there exists a unique funtion x̃ : H → H suh that
F (y) = f(x̃(y), y) for all y ∈ H. Moreover, it holds:1. F is stritly onvex and ontinuous in H.2. F is Fréhet di�erentiable with the Fréhet derivative

DF (y) = 〈y − x̃(y) , ·〉H for all y ∈ H . (4.19)Proof. See [77, 7.d. Proposition℄.We apply Theorem 4.3 to Problem 4.2 and obtain the following proposition.33



Proposition 4.4. Let k ∈ {1, . . . , n} denote the time step, and let J̄k be de�ned as in (4.13).Then there exists a unique mapping p̃k : Q→ Q satisfying
J̄k (v, p̃k (ε (v))) = inf

q∈Q
J̄k (v, q) ∀v ∈ VD . (4.20)Let Jk be a mapping of VD into R de�ned as

Jk(v) := J̄k(v, p̃k(ε(v))) ∀v ∈ VD . (4.21)Then, Jk is stritly onvex and Fréhet di�erentiable. The assoiated Gâteaux di�erential reads
DJk(v ; w) = 〈ε(v) − p̃k(ε(v)) , ε(w)〉A − lk(w) ∀w ∈ V0 (4.22)with the salar produt 〈◦, ⋄〉A de�ned in (4.14) and lk de�ned in (4.17).Proof. The funtional J̄k : V × Q → R de�ned in (4.13) using (4.14), (4.16) and (4.17) an bedeomposed in J̄k(v, q) = fk(ε(v), q)−lk(v), where the funtional fk : Q×Q→ R reads fk(s, q) :=

1
2‖q − s‖2

A + ψk(q). Theorem 4.3 states the existene of a unique minimizer p̃k : Q → Q whihsatis�es the ondition fk(s, p̃k(s)) = infq∈Q fk(s, q), where the funtional Fk(s) := fk(s, p̃k(s))is stritly onvex and di�erentiable with respet to s ∈ Q. Sine the strain ε(v) is a Fréhetdi�erentiable, linear and injetive mapping from VD into Q, the omposed funtional Fk(ε(v))is Fréhet di�erentiable and stritly onvex with respet to v ∈ VD. Considering the Fréhetdi�erentiability and linearity of lk with respet to v ∈ VD, we onlude the strit onvexity andFréhet di�erentiability of the funtional Jk de�ned in (4.21). The expliit form of the Gâteauxdi�erential DJk(v ; w) in (4.22) results from the linearity of the two mappings lk and ε, and theFréhet derivative DFk(ε(v) ; ·) = 〈ε(v) − p̃k(ε(v)) , ·〉A as in (4.19), ombined with the hainrule.The minimizer p̃k an be alulated by hand (see [6, 43℄) and it exatly reovers the lassialreturn mapping algorithm [98℄. Let the trial stress T̃k : Q → Q at the kth time step and theyield funtion φk−1 : Q→ R at the k − 1st time step be de�ned by
T̃k(q) := A(q − pk−1) and φk−1(T ) := ‖dev T‖F − Ty(1 +H αk−1) . (4.23)Then, the minimizer p̃k reads

p̃k(ε(v)) =
1

2µ+ T 2
yH

2
max{0, φk−1(T̃k(ε(v)))}

dev T̃k(ε(v))

‖dev T̃k(ε(v))‖F

+ pk−1 . (4.24)We obtain a smooth minimization problem by using Jk as in (4.21) with p̃k as in (4.24):Problem 4.5. Find uk ∈ VD suh that Jk(uk) = infv∈VD
Jk(v).Remark 4.6. Problem 4.5 is uniquely solvable. This is due to the fat that funtional Jk is stritlyonvex, oerive, proper and lower semi-ontinuous (see, e. g., [34, Chapter II, Proposition 1.2℄).Solving Problem 4.5 numerially might be realized by applying Newton's Method vj+1 = vj −(

D 2Jk(v
j)

)−1
DJk(vj) . Unfortunately, the seond derivative of Jk does not exist sine the max-funtion in (4.24) is not di�erentiable. Therefore, we apply a Newton-like method whih usesslanting funtions (see [26℄) instead of the seond derivative. We shall all suh a method a SlantNewton Method. 34



Figure 2: Problem setup.Heneforth, let X and Y be Banah spaes, and L(X,Y ) denote the set of all linear mappingsof X into Y .De�nition 4.7. Let U ⊆ X be an open subset and x ∈ U . A funtion F : U → Y is said to beslantly di�erentiable at x if there exists a mapping F o : U → L(X,Y ) whih is uniformly boundedin an open neighborhood of x, and a mapping r : X → Y with limh→0‖r(h)‖Y ‖h‖−1
X = 0 suhthat F (x + h) = F (x) + F o(x + h)h + r(h) holds for all h ∈ X satisfying (x + h) ∈ U . Wesay, F o(x) is a slanting funtion for F at x. F is alled slantly di�erentiable in U if there exists

F o : U → L(X,Y ) suh that F o is a slanting funtion for F for all x ∈ U . F o is then alled aslanting funtion for F in U .Theorem 4.8. Let U ⊆ X be an open subset, and F : U → Y be a slantly di�erentiable funtionwith a slanting funtion F o : U → L(X,Y ). We suppose, that x∗ ∈ U is a solution to thenonlinear problem F (x) = 0. If F o(x) is non-singular for all x ∈ U and {‖F o(x)−1‖L(Y,X) : x ∈
U} is bounded, then the Newton-like iteration

xj+1 = xj − F o(xj)−1F (xj) (4.25)onverges super-linearly to x∗, provided that ‖x0 − x∗‖X is su�iently small.The proof an be found in [26, Theorem 3.4℄ or [49, Theorem 1.1℄.We apply the Slant Newton Method (4.25) to elastoplastiity by hoosing F = DJk as in (4.22).The max-funtion is slantly di�erentiable [49, Proposition 4.1℄ as a mapping of Lp(Ω) into Lq(Ω)if p > q but not if p ≤ q. Therefore, if it holds φk−1(T̃k(ε(v))) ∈ L2+δ(Ω) for some δ > 0, then
DJk (f. (4.22),(4.24)) has a slanting funtion whih reads

(DJk)o (v;w, w̄) := 〈ε(w) − p̃o
k(ε(v); ε(w)) , ε(w̄)〉A (4.26)with a slanting funtion for p̃k, e. g.,

p̃o
k(ε(v) ; q) :=





0 if βk ≤ 0 ,

ξ
(
βk dev q + (1 − βk)

〈dev T̃k , dev q〉F
‖dev T̃k‖

2
F

dev T̃k

) else , (4.27)where the abbreviations ξ := 2µ
2µ+T 2

y H2 , T̃k := T̃k(ε(v)) and βk :=
φk−1(T̃k)

‖dev T̃k‖F
with φk−1 and T̃kde�ned in (4.23) are used. (DJk)

o in Equation (4.26) is ommonly known as the onsistenttangent, see [98℄. For �xed v ∈ VD, the bilinear form (DJk)
o (v; ·, ·) in (4.26) is ellipti andbounded in V0 (see [43, Lemma 2℄). 35



Corollary 4.9. Let k∈{1, . . . , n}, δ>0 be �xed and tk denote the kth time step. Let the mapping
DJk : VD → V0

∗ be de�ned DJk(v) := DJk(v ; ◦) as in (4.22), and (DJk)
o : VD → L(V0, V0

∗)be de�ned (DJk)o (v) := (DJk)o (v ; ⋄, ◦) as in (4.26). Then, the Slant Newton iteration
vj+1 = vj −

[
(DJk)

o (vj)
]−1

DJk(vj)onverges super-linearly to the solution uk of Problem 4.5, provided that ‖v0−uk‖V is su�ientlysmall, and that φk−1(T̃k(ε(v))) as in (4.23) is in L2+δ(Ω) for all v ∈ VD.Proof. We hek the assumptions of Theorem 4.8 for the hoie F = DJk. Let v ∈ VD bearbitrarily �xed. The mapping (DJk)o (v) : V0 → V0
∗ serves as a slanting funtion for DJk at

v, sine φk−1(T̃k(ε(v))) is in L2+δ(Ω). Moreover, (DJk)o (v) : V0 → V0
∗ is bijetive if and only ifthere exists a unique element w in V0 suh, that for arbitrary but �xed f ∈ V0

∗ there holds
(DJk)

o (v ; w, w̄) = f(w̄) ∀w̄ ∈ V0 . (4.28)Sine the bilinear form (DJk)o (v) is ellipti and bounded (see [43, Lemma 4.9℄), we apply theLax-Milgram Theorem to ensure the existene of a unique solution w to (4.28). Finally, with κ1denoting the v-independent elliptiity onstant for (DJk)o (v; ⋄, ◦), the uniform boundedness of
[(DJk)o (·)]−1 : VD → L(V0

∗, V0) follows from the estimate
‖[(DJk)

o (v)]−1‖ = sup
w∗∈V0

∗

‖[(DJk)
o (v)]−1 w∗‖

‖w∗‖V0
∗

= sup
w∈V0

‖w‖V

‖(DJk)o (v ; w, ·)‖V0
∗

= sup
w∈V0

inf
w̄∈V0

‖w‖V ‖w̄‖V

|(DJk)
o (v ; w, w̄)| ≤ sup

w∈V0

‖w‖2
V

|(DJk)o (v ; w,w)| ≤
1

κ1
.Remark 4.10. Notie the required assumption on the integrability of φk−1(T̃k(ε(v))). It is stillan open question, under whih extra onditions this property an be satis�ed for all v ∈ VD,or, at least for all Newton iterates vj . The loal super-linear onvergene in the spatially dis-rete ase (after FE-disretization) an be shown without any additional assumption, see [43,Theorem 4.14℄.4.3 Numerial ExamplesFinite Element Method with nodal linear shape funtions was used in the test examples be-low. The interested reader is referred to [44, 45, 46℄ for more onvergene tables and numerialexamples. The super-linear onvergene was observed in both 2D and 3D omputations.4.3.1 2D-ExampleWe simulate the deformation of a srew-wrenh under pressure, the problem geometry is shownin Figure 2. A srew-wrenh stiks on a srew (homogeneous Dirihlet boundary ondition) anda surfae load g is applied to a part of the wrenh's handhold in interior normal diretion. Thematerial parameters are set

λ = 1.15e8 N
m , µ = 7.7e7 N

m , Ty = 2e6 N
m , H = 0.001 ,36



Figure 3: Elastoplasti zones (left) and yield funtion (right) of the deformed wrenh geometry.The displaement is magni�ed by a fator 10 for visualization reasons.and the tration intensity amounts |g| = 6e4 N
m . Figure 3 shows the yield funtion (right) andthe elastoplasti zones (left), where purely elasti zones are light, and plasti zones are dark.Table 1 reports on the super-linear onvergene of the Newton-like method for graded uniformmeshes. The implementation was done in Matlab.DOF: 202 . . . 10590 41662 165246 658174 2627070j=1: 1.000e+00 . . . 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00j=2: 6.510e-04 . . . 3.394e-01 4.344e-01 4.682e-01 5.038e-01 5.417e-01j=3: 4.238e-09 . . . 4.018e-02 5.786e-02 8.919e-02 1.892e-01 2.552e-01j=4: 1.266e-12 . . . 1.009e-03 3.076e-03 1.642e-02 2.253e-02 3.049e-02j=5: . . . 2.679e-07 4.550e-05 1.473e-03 7.595e-04 1.294e-03j=6: 3.817e-13 2.244e-09 1.014e-04 6.519e-05 1.264e-04j=7: 6.000e-13 2.628e-08 7.342e-09 8.528e-06j=8: 1.047e-12 1.892e-12 4.153e-08j=9: 3.638e-12Table 1: The relative error in displaements |vj − vj−1|ε/

(
|vj |ε + |vj−1|ε

) is displayed for in-reasing degrees of freedom (DOF), where |v|ε :=
(∫

Ω〈ε(v) , ε(v)〉F dx
)1/2.4.3.2 3D-ExampleThis three dimensional test example is similar to a two dimensional example in [100℄. Figure 4shows the quarter of a thin plate (−10, 10) × (−10, 10) × (0, 2) with a irular hole of the radius

r = 1 in the middle. One elastoplasti time step is performed, where a surfae load g with theintensity |g| = 450 N
m2 is applied to the plate's upper and lower edge in outer normal diretion.Due to the symmetry of the domain, the solution is alulated on one quarter of the domain only.Thus, homogeneous Dirihlet boundary onditions in the normal diretion (gliding onditions)are onsidered for both symmetry axes. The material parameters are set

λ = 110744
N

m2
, µ = 80193.8

N

m2
, σY = 450

√
2/3

N

m2
, H =

1

2
.Di�erently to the original problem in [100℄, the modulus of hardening H is nonzero, i.e., hardeninge�ets are onsidered. Figure 5 shows the norm of the plasti strain �eld p (right) and the37



Figure 4: Here, the geometry of the example domain is outlined. Due to reasons of symmetry,only one of the quarters is solved.oarsest re�nement of the geometry (left). Table 2 reports on the onvergene of the SlantNewton Method. The implementation was done in C++ using the NETGEN/NGSolve softwarepakage developed by J. Shöberl [90℄.

Figure 5: The Frobenius norms of the total strain ε (left) and of the plasti strain p (right).5 Rate-independent evolutionary proesses � Temporal regular-ity of solutionsThis setion is devoted to the sublass of quasistati, rate-independent evolutionary proesses.The time-evolution of a system an be onsidered as rate-independent if the time sales imposedto the system from the exterior are muh larger than the intrinsi ones, i.e. if the externalloadings evolve muh slower than the internal variables. Throughout this setion we will applythe energeti formulation of a rate-independent proess. This approah does not use the lassialformulation (2.1)�(2.5) but onsiders the energy funtional E : [0, T ] × Q → R∞ =: R ∪ {∞}and the dissipation distane D : Q × Q → [0,∞] related to the evolution equation (2.3) in anappropriate state spae Q, whih is assumed to be a Banah spae with dual Q∗. An energetisolution of the rate-independent system (Q, E ,D) is de�ned as follows38



DOF: 717 5736 45888 367104j=1: 1.000e+00 1.000e+00 1.000e+00 1.000e+00j=2: 1.013e-01 1.254e-01 1.367e-01 1.419e-01j=3: 7.024e-03 6.919e-03 7.159e-03 6.993e-03j=4: 1.076e-04 9.359e-05 1.263e-04 1.176e-04j=5: 2.451e-08 6.768e-07 1.744e-06 1.849e-06j=6: 7.149e-15 6.887e-12 4.874e-09 1.001e-08j=7: 4.298e-13 2.368e-14Table 2: This table outlines the onvergene of the Slant Newton Method in 3D. We observesuper-linear onvergene and (almost) a onstant number of iterations at eah re�nement.De�nition 5.1. The proess q=(u, z) : [0, T ] → Q is an energeti solution of the rate-independentsystem (Q, E ,D), if t 7→ ∂tE(t, q(t)) ∈ L1((0, T )), if for all t ∈ [0, T ] we have E(t, q(t)) < ∞ andif the global stability inequality (S) and the global energy balane (E) are satis�ed:Stability : for all q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃), (S)Energy balane : E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +

∫ t

0
∂ξE(ξ, q(ξ)) dξ (E)with DissD(q, [0, t]) := sup

∑N
j=1 D(q(ξj−1), q(ξj)), where the supremum is taken over all parti-tions of [0, t].In Setion 5.1.1 we will larify the relations between the lassial and the energeti formulation.Sine the onditions (S) & (E) do not require that q̇ exists, an energeti solution may in generalhave jumps with respet to time. In partiular, (S) provides the uniform boundedness of E(t, q(t))and hene (E) yields that q : [0, T ] → Q is only of bounded variation in time with respet tothe dissipation distane providing an L1-norm in spae. This means that in general the timederivative q̇ is only given as a Radon-measure. Therefore, Setion 5.2 pays speial attention tothe temporal regularity of energeti solutions. It is investigated how their temporal regularityan be improved due to additional onvexity assumptions on the energy E . In Setion 5.2.1it is explained that strit onvexity of E on Q yields ontinuity of the solutions with respetto time. Setion 5.2.2 deals with the Hölder- and Lipshitz-ontinuity of energeti solutions,whih an be obtained by laiming a kind of uniform onvexity on E . In Setion 5.3 the theoryintrodued in Setion 5.2 is applied to evolutionary proesses modeling plastiity, damage orphase transformations in shape memory alloys and we give examples on stored elasti energydensities that lead to suh improved temporal regularity.5.1 The energeti formulation of rate-independent proessesThe outline of this setion is to larify the energeti formulation of rate-indepedent proesses.Thereto Setion 5.1.1 indiates the relation of energeti solutions to the onept of solution usedin the Setions 2, 3. Moreover Setion 5.1.2 gives a short introdution to the existene theoryof energeti solutions. At this point we want to start our disussion with the mathematialharaterization of rate-independene.The energeti formulation of a rate-independent proess is solely based on an energy funtional

E : [s, T ] × Q → R∞, whih depends on time t and the state q, and a dissipation potential39



R : Q → [0,∞] depending on the veloity q̇. It is assumed that the potential R is onvex andpositively 1-homogeneous, i.e. R(0) = 0 and R(λv) = λR(v) for all λ> 0 and all v ∈Q. Due tothese two properties R satis�es a triangle inequality, i.e. for all q1, q2, q3∈Q it holds
R(q1−q2) = 2R

(
1
2 (q1−q3) + 1

2(q3−q2)
)
≤ 2

(
1
2R(q1−q3) + 1

2R(q3−q2)
)

= R(q1−q3) + R(q3−q2) .Hene the dissipation potential generates a dissipation distane
D(q, q̃) = R(q̃ − q) , (5.1)whih is an extended pseudo-distane on the state spae Q. This means that D satis�es theaxioms of a metri (positivity, triangle inequality), exept symmetry and it may attain the value

∞, as we will see in the examples of Setion 5.3.Rate-independene of a proess (Q, E ,R) with the initial ondition q(s) = q0 ∈ Q, the givenexternal loadings b ∈ C1([s, T ],Q∗) and a solution q : [s, T ] → Q an be de�ned using aninput-output operator
H[s,T ] : Q× C1([s, T ],Q∗) → L∞([s, T ],Q) ∩BVD([s, T ],Q), (q0, b) 7→ q , (5.2)where BVD([s, T ],Q) := {q : [s, T ] →Q|DissD(q, [s, T ])<∞}. Thus, the input-output operatormaps the given data (q0, b) onto a solution of the problem. Therewith the rate-independene ofthe system (Q, E ,R) an be haraterized as followsDe�nition 5.2. An evolutionary proess (Q, E ,R), whih an be expressed by (5.2), is alledrate-independent if for all s⋆ < T⋆ and all α ∈ C1([s⋆, T⋆]) with α̇ > 0 and α(s⋆) = s, α(T⋆) = Tthe following holds:

H[s⋆,T⋆](q0, b ◦ α) = H[s,T ](q0, b) ◦ α . (5.3)We verify now that the positive 1-homogeneity of R implies (5.3). We prove this impliationfor input-output operators H[s,t] :Q×C1([s, t],Q∗)→W 1,1([s, t],Q). Thereby, Q is in general aLebesgue or Sobolev spae de�ned with respet to a domain Ω ⊂ R
d. By molli�ation, see also [7℄,one an therefore show that for any q∈BVD([0, T ],Q) there is a sequene (qn)n∈N⊂C∞([0, T ],Q)satisfying qn→q in L1([0, T ]×Ω), DissD(qn, [0, t])<C and DissD(qn, [0, t])→DissD(q, [0, t]) for all

t∈ [0, T ]. Thus, the above mentioned impliation also holds true for the input-output operatorsfrom (5.2).Proposition 5.3. Let H[s,T ] : Q × C1([s, T ],Q∗) → W 1,1([s, t],Q), (q0, b) 7→ q, be the input-output-operator for the rate-independent system (Q, Eb,R), where Eb depends ontinuously on theexternal loading b and where R is onvex and positively 1-homogeneous. Then (5.3) holds true.Proof. Let s⋆ < T⋆ and α ∈ C1([s⋆, T⋆]) with α̇ > 0 and α(s⋆) = s, α(T⋆) = T. In partiularit holds s⋆ = α−1(s), T⋆ = α−1(T ) and (α−1)′ > 0. Assume that q : [s, T ] → Q is an energetisolution of (Q, Eb,R, ) satisfying q(s) = q0. Hene (S)&(E) are satis�ed for all t ∈ [s, T ]. Now thetime interval is resaled, i.e. t = α(t⋆) for all t ∈ [s, T ]. Then (S) implies that Eb◦α(t⋆, q ◦α(t⋆)) ≤
Eb◦α(t⋆, q̃)+D(q◦α(t⋆), q̃) for all q̃ ∈ Q, i.e. (S) holds true for all t⋆ ∈ [s⋆, T⋆] for q◦α : [s⋆, T⋆] → Qand the system (Q, Eb◦α,R).For a funtion q ∈ W 1,1([s, T ],Q) it holds that DissD(q, [s, t]) =

∫ t
s R(q̇(ξ)) dξ, whih an beveri�ed by applying the positive 1-homogeneity of R and the mean value theorem of di�eren-tiability to the de�nition of DissD(q, [s, t]). Then, for s = α(s⋆) and t = α(t⋆) the applia-tion of the hain rule on q(α(t⋆)) together with the positive 1-homogeneity of R imply that40



∫ t
s R(q̇(ξ)) dξ=

∫ t⋆
s⋆

R(∂αq(α(ξ)))α̇(ξ) dξ=
∫ t⋆
s⋆

R(∂αq(α(ξ))α̇(ξ)) dξ=
∫ t⋆
s⋆

R(∂ξq ◦ α(ξ)) dξ, whihproves that DissD(q, [s, t]) = DissD(q ◦ α, [s⋆, t⋆]). Again by the hain rule we alulate that∫ t
s ∂ξEb(ξ, q(ξ)) dξ =

∫ t⋆
s⋆
∂αEb◦α(ξ, q(ξ))α̇(ξ) dξ =

∫ t⋆
s⋆
∂ξEb◦α(ξ, q(ξ)) dξ and hene (E) is veri�edfor all t⋆ ∈ [s⋆, T⋆] for q ◦ α and (Q, Eb◦α,R). Moreover the initial ondition is satis�ed sine

q0 = q(s) = q ◦ α(s⋆).With the same arguments we an verify for an energeti solution q⋆ : [s⋆, T⋆]→Q of (Q, Eb◦α,R)with q⋆(s⋆) = q0 that q⋆ ◦ α−1 satis�es (S)&(E) with (Q, Eb,R) for all t ∈ [s, T ] and with q0 =
q⋆(s⋆)=q⋆ ◦ α−1(s). Thus, (5.3) is proved.5.1.1 Di�erent onepts of solutions and their relationsIn this setion we larify the relation of energeti solutions with other types of solutions. To doso, we only treat the simplest ase here, namely when E : [0, T ] ×Q → R∞ is quadrati, i.e.

E(t, q) := 1
2 〈A q, q〉 − 〈b(t), q〉 (5.4)for the given linear, symmetri, positive de�nite operator A : Q → Q∗ and the given externalloading b ∈ C1([0, T ],Q∗). Thereby Q is a Banah spae and qn → q in Q indiates the on-vergene of a sequene (qn) ⊂ Q in the weak topology of Q. As it an be easily veri�ed in thissetting, E satis�es1. Continuity: If ‖qn − q‖Q → 0, then |E(t, qn) − E(t, q)| → 0 for all t ∈ [0, T ].2. Coerivity: There is a onstant c > 0 suh that E(t, q) ≥ c‖q‖2

Q for all q ∈ Q and all
t∈ [0, T ]. (Cf. R2 in Setion 3.1.1)3. Uniform onvexity: There is a onstant cA > 0 suh that for all t ∈ [0, T ], all q0, q1 ∈ Qand all θ ∈ [0, 1] it holds

E(t, θq1+(1−θ)q0) ≤ θE(t, q1) + (1−θ)E(t, q0) − cAθ(1−θ)‖q1−q0‖2
Q. (5.5)4. Uniform ontrol of the powers: For all q ∈ Q with E(t⋆, q) <∞ for some t⋆ ∈ [0, T ] wehave ∂tE(·, q) ∈ L1([0, T ]) with ∂E(t, q) = −〈ḃ(t), q〉 and there are onstants c1 > 0, c2 ≥ 0suh that |∂tE(t, q)| ≤ c1(E(t, q) + c2).5. Uniform ontinuity of the powers: For all (t, qn) → (t, q) in Q it holds ∂tE(t, qn) →

∂tE(t, q).6. Closedness of stable sets: If (tn, qn) satisfy (S) for all n ∈ N and (tn, qn) → (t, q) in
[0, T ] ×Q, then also (t, q) satis�es (S).7. Di�erentiability: For all t ∈ [0, T ] and all q ∈ Q the energy funtional E(t, ·) is Gâteaux-di�erentiable with DqE(t, q) = Aq − b(t).Thereby Items 1-5 and 7 an be easily veri�ed using the properties of A and b. Item 6 anbe obtained by hoosing q̃n = qn+v−q with v ∈ Q for all n ∈ N, whih yields D(qn, q̃n) =

R(q̃n − qn) = R(v− q) for all n ∈ N. Sine b is ontinuous in time we have 〈b(tn), q̃n〉 → 〈b(t), v〉and sine A ∈ Lin(Q,Q∗) it holds 〈A(v− q), qn〉 → 〈A(v− q), q〉. Using these observations in (S)for all n ∈ N one reovers (S) for the limit (t, q).41



In Setion 5.1.2 it is explained that the properties 1�6 together with the properties of the ex-tended pseudo-distane D : Q×Q → R∞ allow to prove the existene of an energeti solution.Furthermore in Setion 5.2.2 it is disussed that property 3 yields Lipshitz-ontinuity of theenergeti solution q : [0, T ] → Q with respet to time, i.e. there is a onstant CL > 0 suh that
‖q(s)−q(t)‖Q ≤ CL|s−t|. Hene q ∈W 1,∞([0, T ],Q), whih means that q̇ exists a.e. in [0, T ].Sine the dissipation potential R : Q → [0,∞] is onvex and positively 1-homogeneous but notneessarily di�erentiable we introdue its subdi�erential

∂vR(v) := {q∗ ∈ Q∗ |R(w) ≥ R(v) + 〈q∗, w−v〉 for all w ∈ Q} . (5.6)Due to the validity of 1�7 and (5.6) we may onsider the subdi�erential formulation (SDF) andthe formulation as a variational inequality (VI), whih diretly use q̇, as alternative formulationsto the energeti one. The subdi�erential formulation of the evolutionary proess reads as followsDe�nition 5.4 (Subdi�erential formulation). For a given initial ondition q0 ∈ Q �nd q :
[0, T ] → Q suh that for a.e. t ∈ [0, T ] it holds

0 ∈ ∂R(q̇(t)) + DqE(t, q(t)) ⊂ Q∗ and q(0) = q0 ∈ Q . (SDF)Moreover (SDF) is equivalent to −DqE(t, q) ∈ ∂R(q̇) and due to the de�nition of the subdi�er-ential we may equivalently formulate the rate-independent proess as a variational inequalityDe�nition 5.5 (Variational inequality). For a given inital ondition q0 ∈ Q �nd q : [0, T ] → Qsuh that for a.e. t ∈ [0, T ] and for all v ∈ Q it holds
〈DqE(t, q), v − q̇〉 + R(v) −R(q̇) ≥ 0 and q(0) = q0 ∈ Q . (VI)Between the three di�erent formulations (S) & (E), (SDF) and (VI) the following relation holdsLemma 5.6. If E : Q → R∞ satis�es the properties 1�7, if D : Q ×Q → [0,∞] is an extendedpseudo-distane and lower semiontinuous on the Banah spae Q and if q0 satis�es (S) at t = 0,every energeti solution of the rate-independent system (Q, E ,D) also is a solution in the senseof (SDF) as well as (VI) and vie versa, i.e. (S)& (E) ⇔ (SDF) ⇔ (VI).Proof. Let q : [0, T ] → Q solve (S) & (E). By Theorem 5.13 we have q ∈ W 1,∞([0, T ],Q), sothat DissD(q, [0, t]) =

∫ t
0 R(q̇(ξ)) dξ for all t ∈ [0, T ]. Hene (E) reads E(t, q(t))+

∫ t
0 R(q̇(ξ)) dξ =

E(0, q(0))+
∫ t
0 ∂tE(ξ, q(ξ)) dξ. Applying d

dt leads to d
dtE(t, q(t))+R(q̇(t)) = ∂tE(t, q(t)) for almostall t ∈ [0, T ]. Using the hain rule on d

dtE(t, q(t)) yields
〈DqE(t, q(t)), q̇(t)〉 + R(q̇(t)) = 0 . (Eloc)Furthermore, inserting q(t) + hv for v ∈ Q in (S) together with Item 7 results in

〈DqE(t, q(t)), v〉 + R(v) ≥ 0 for all v ∈ Q (Sloc)and subtrating (Eloc) from (Sloc) �nally yields (VI), whih is equivalent to (SDF).Assume now that q solves (VI) and (SDF) for a.e. t ∈ [0, T ]. Multiply (VI) by h > 0 and put
v = q̃

h . For h → 0 one obtains (Sloc). Due to the onvexity and the Gâteaux-di�erentiablilityof E(t, ·) for all q ∈ Q we �nd from (Sloc) with v = q̃ − q(t) that 0 ≤ 〈DqE(t, q(t)), q̃ − q(t)〉 +
R(q̃ − q(t)) ≤ E(t, q̃) − E(t, q(t)) + R(q̃ − q(t)) for a.e. t ∈ [0, T ]. But sine q : [0, T ] → Q is42



Lipshitz-ontinuous in time and sine E(·, q̃) is ontinuous for all q̃ ∈ Q we observe that (S)holds for all t ∈ [0, T ]. Now (E) has to be proven. Choosing thereto v = q̇(t) in (Sloc) gives
〈DqE(t, q(t)), q̇(t)〉 + R(q̇(t)) ≥ 0 and v = 0 in (VI) yields 〈DqE(t, q(t)),−q̇(t)〉 − R(q̇(t)) ≥ 0,whih proves (Eloc). By integrating (Eloc) over [0, t] we verify that (E) holds for all t ∈ [0, T ].The equivalene established in Lemma 5.6 is in general only true for energies satisfying theuniform onvexity inequality in property 3. For onvex energies it an be veri�ed if energetisolutions are supplied with su�ient temporal regularity. In the ase of nononvex energies, orenergies whih are onvex but not jointly onvex in q = (u, z), energeti solutions are of boundedvariation with respet to time. Hene they may have jumps in time and the time-derivative isonly a Radon-measure. Relations between the three di�erent formulations with q̇ as a Radon-measure are disussed in [70℄. Furthermore it omments on their relations in the ase of doublynonlinear problems, whih were introdued in [27℄ and where E is only subdi�erentiable but notGâteaux-di�erentiable.In many appliations the dissipation potential only depends on the internal variable z, not onthe full state q = (u, z), i.e. R(q̇) = R̃(ż), so that ∂R(q̇) = ∂u̇R̃(ż) × ∂żR̃(ż) = {0} × ∂R̃(ż).This is also the ase in the setting of plastiity studied in Setions 2, 3. Using the dualitytheory of funtionals one an establish a relation between the �ow rule given by (2.3) and(2.9) and the dissipation potential R : Z → [0,∞] under the assumption that Z is a re�exiveBanah spae. In view of the de�nition of the subdi�erential ∂R(z) = {z∗ ∈ Z∗ |R(z̃)−R(z) ≥
〈z∗, z̃−z〉 for all z̃ ∈ Z} the diret alulation of the Legendre-Fenhel transform of the positively
1-homogeneous dissipation potential R : Z → [0,∞] yields that its dual funtional is given as theindiator funtion of ∂R(0), i.e. R∗(z∗) = supz∈Z

(
〈z∗, z〉 − R(z)

)
= I∂R(0)(z

∗) for all z∗ ∈ Z∗,where I∂R(0)(z
∗) = 0 if z ∈ ∂R(0) and I∂R(0)(z

∗) = ∞ otherwise.Sine R : Z → [0,∞] is assumed to be onvex and lower semiontinuous on the re�exive Banahspae Z the theorem of Fenhel-Moreau implies that R = (R∗)∗, see [51℄. Assume now thatthe dissipation potential is an integral funtional, i.e. for all z ∈ Z it is R(z) =
∫
ΩR(z(x)) dx,where R is a positively 1-homogeneous, onvex density and Ω ⊂ R

d is a d-dimensional domain.Then [51, p. 296, Th. 1℄ states that R∗(·) =
( ∫

ΩR(·) dx
)∗

=
∫
ΩR

∗(·) dx, i.e. for the density
R : V → [0,∞], where V ∈ {R,Rd,Rd×d}, holds the analogous relation to its Legendre-Fenheltransformed: R(z) = R∗∗(z) for all z ∈ V. Thus, between the subdi�erential formulation (SDF)of De�nition 5.4 and the �ow rule given by (2.3) and (2.9) we have established the relation
ż ∈ g(−∇zψ(e, z)) = ∂R∗(−∇zψ(e, z)), where R∗ is the Legendre-Fenhel transformed of thedensity R of the positively 1-homogeneous dissipation potential R.Throughout this hapter we will in general onsider dissipation potentials R : Z → [0,∞] of theform

R(z) =

∫

Ω
R(z) dx with R : V → [0,∞], R(z) =

{
̺|z| if z ∈ A ⊂ V ,
∞ otherwise , (5.7)where 0 < ̺0 ≤ ̺ ∈ L∞(Ω).Example 5.7. For KvM={τ ∈ R

d×d
sym,dev | |τ | ≤ c0} from Example 3.5 it is RvM (εp) = c0|εp| forall εp ∈ R

d×d
sym,dev.
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5.1.2 Existene of energeti solutionsThe quasistati evolution of mehanial proesses in solids suh as elasto-plasti deformations,damage, rak propagation or ontat angle hystheresis of droplets have been analyzed in variousontributions, amongst these e.g. [28, 63, 40, 29, 16, 30℄. All these proesses an be desribed interms of an energy funtional E and a dissipation distane D, so that the energeti formulationfrom De�nition 5.1 applies. Within the works [65, 71, 36, 69℄ an abstrat existene theoryfor energeti solutions of rate-independent proesses has been developed. It is based on theassumption that D : Z × Z → [0,∞] satis�esQuasi-distane: ∀ z1, z2, z3 ∈ Z : D(z1, z2) = 0 ⇔ z1 = z2 and
D(z1, z3) ≤ D(z1, z2) + D(z2, z3);

(D1)Lower semi-ontinuity: D : Z × Z → [0,∞] is weakly seq. lower semi-ontinuous. (D2)and it uses the following assumptions on the energy E : [0, T ] ×Q → R∞Compatness of energy sublevels: ∀ t∈[0, T ] ∀E∈R :
LE(t) := {q ∈ Q | E(t, q) ≤ E} is weakly seq. ompat. (E1)Uniform ontrol of the power: ∃ c0∈R ∃ c1>0 ∀ (tq, q)∈[0, T ]×Q with E(tq, q) <∞ :

E(·, q) ∈ C1([0, T ]) and |∂tE(t, q)| ≤ c1(c0+E(t, q)) for all t∈[0, T ].
(E2)These properties ensure the following existene result for energeti solutions of rate-independentproesses.Theorem 5.8 ([69℄). Let (Q, E ,D) satisfy onditions (E1), (E2) and (D1), (D2). Moreover, letthe following ompatibility onditions hold: For every sequene (tk, qk)k∈N with (tk, qk) ⇀ (t, q)in [0, T ] ×Q and (tk, qk) satisfying (S) for all k ∈ N we have

∂tE(t, qk) → ∂tE(t, q) , (C1)
(t, q) satis�es (S) . (C2)Then, for eah initial ondition (t = 0, q0) satisfying (S) there exists an energeti solution q :

[0, T ] → Q for (Q, E ,D) with q(0) = q0.The proof of Theorem 5.8 is based on a time-disretization, where onditions (E1), (D2) ensurethe existene of a minimizer for the time-inremental minimization problem at eah time-step.Thereto the diret method of the alulus of variations is applied. In partiular onditions (E1)and (D2) an be veri�ed if E and D are onvex and oerive. Hene, for a given partition
Π := {0 = t0 < t1 < . . . < tM = T}, for every k = 1, . . . ,M one has to�nd qk ∈ argmin{E(tk, q̃) + D(zk−1, z̃) | q̃ = (ũ, z̃) ∈ Q} . (IP)One then de�nes a pieewise onstant interpolant qΠ with qΠ(t) := qk−1 for t ∈ [tk−1, tk) and
qΠ(T ) = qM . Choosing a sequene (Πm)m∈N of partitions, where the �neness of Πm tends to 0 as
m→ ∞, it is possible to apply a version of Helly's seletion priniple to the sequene (qΠm)m∈N,see thereto [65℄. Using (E2) and the ompatibility onditions (C1), (C2) it an be shown thatthe limit funtion ful�lls the properties (S) and (E) of an energeti solution. See e.g. [69℄ for adetailed proof. 44



In various works this abstrat theory has been applied to prove the existene of energeti solutionsto rate-independent proesses in the �eld of plastiity, damage, delamination, rak-propagation,hystheresis or shape memory alloys, amongst these [66, 68, 106, 87, 60, 70, 73, 72℄. The way toverify the abstrat onditions depends on the properties of the proess under onsideration. Inpartiular, unidiretional proesses suh as damage or delamination proesses require additionaltehiques to obtain ompatibility ondition (C2). In suh a setting the dissipation distane takesthe form (5.7) with A 6= V , where the value ∞ models the unidiretionality, i.e. it prohibitshealing. This leads to the fat that the dissipation distane is neither ontinuous nor weaklyontinuous on Z, so that (C2) annot be diretly obtained from the stability of the approximatingsequene (tk, qk) → (t, q) in [0, T ] ×Q. Suh unidiretional proesses and alternative tehniquesto prove (C2) are studied in [68, 106, 87℄.Finally it is worth mentioning that the quadrati energy de�ned in (5.4), whih satis�es Items1�7 �ts into the abstrat setting of (E1), (E2) and Theorem 5.8.5.2 The temporal regularity of energeti solutionsThe two properties (S)& (E) provide a very weak result on the temporal regularity of an energetisolution only. (S) implies that E(t, q(t)) is uniformly bounded for all t ∈ [0, T ] and under theassumption of oerivity we �nd q ∈ L∞([0, T ],Q). Furthermore one obtains from (E) that
DissD(z, [0, T ]) is �nite and hene z ∈ BV ([0, T ], L1(Ω)). Thus neither the omponent u nor
z of an energeti solution has to be ontinuous � not to mention ontinuously di�erentiable intime. In other words, it annot be exluded that an energeti solution has jumps with respetto time. The aim of this setion is to disuss settings whih lead to a better temporal regularityof an energeti solution. In partiular we want to obtain ontinuity in time, so that jumps areforbidden.5.2.1 Continuity with respet to timeIn this setion we disuss the temporal ontinuity of energeti solutions, whih an be obtainedin settings that guarantee unique minimizers of the funtional Jz∗ : Q → R∞, Jz∗(q̃) = E(t, q̃)+
D(z∗, z̃) for any z∗ ∈ Z. In the following the results are skethed. The details are developed in[106, Th. 4.2, 4.3℄.The uniqueness of the minimizer, whih is guaranteed by the strit onvexity of Jz−(t), enablesto state the following jump relationsLemma 5.9 (Jump relations). Assume that (Q, E ,D) satis�es (E1)�(C2). Moreover,

∀ t ∈ [0, T ] ∀ q = (u, z) ∈ S(t) : {u} = Argmin
ũ∈U

E(t, ũ, z). (5.8)Then, for all t ∈ [0, T ] the weak limits q−(t) = w-limτ→t− q(τ) and q+(t) = w-limτ→t+ q(τ)(where q−(0) := q(0) and q+(T ) = q(T )) exist and satisfy
E(t, q−(t)) = E(t, q(t)) + D(q−(t), q(t)),

E(t, q(t)) = E(t, q+(t)) + D(q(t), q+(t)),

D(q−(t), q+(t)) = D(q−(t), q(t))+D(q(t), q+(t)).

(5.9)
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The existene of the limits z−(t) = w-limτ→t− z(τ) and z+(t) = w-limτ→t+ z(τ) is due to
DissD(z, [0, T ]) < ∞ for an energeti solution, see [65℄. From (E1) one �nds u(t±k ) ⇀ v± for
t±k → t and (C2) yields that (t, v±, z±) satisfy (S). Due to assumption (5.8) the limits v± areuniquely determined and thus they are the desired left and right limits to u±(th) in the weaksense. To verify the jump relations (5.9) the energy balane for the energeti solution q(t) is used

E(s, q(s)) + DissD(z, [r, s]) = E(r, z(r)) +

∫ s

r
∂τE(τ, q(τ)) dτ for all 0 ≤ r < s ≤ T .The �rst and the seond identity in (5.9) are based on the fat that both q−(t) and q+(t) as wellas q(t) satisfy (S). Hene they an be obtained by onsidering s = t together with r → t− and

r = t together with s→ t+. The third identity is due to (D1) and the �rst two identities.The next theorem provides the temporal ontinuity of the energeti solution q = (u, z) : [0, T ] →
Q = U×Z in the ase that the energy E(t, ·) is stritly onvex on Q. This requirement is satis�edfor an energy, whih is de�ned via a stored elasti energy density W : R

m → R∞ being stritlyonvex on R
m, i.e. for a bounded domain Ω ⊂ R

d it is E(t, u, z) :=
∫
ΩW

(
F (ũ+uD(t), z̃)

)
dx−

〈b(t), ũ+uD(t)〉. Thereby F (u, z) stands for all ouring omponents of the pair (u, z) andall ouring derivatives, e.g. F (u, z) = (e(u), z) for kinemati hardening, whereas F (u, z) =
(e(u), z,∇z) for damage. In partiular, F (u, z) has to be of suh a form that it indues a normfor (u, z) on Q.Theorem 5.10. Let the stored elasti energy density W : R

m → R∞ be ontinuous and stritlyonvex on R
m. Let the the given data satisfy uD ∈ C1([0, T ],U), b ∈ C1([0, T ],U∗). Then for all

t ∈ [0, T ], z∗ ∈ Z the funtional Jz∗(t, q̃) =
∫
ΩW (F (ũ+uD(t), z̃)) dx−〈b(t), ũ+uD(t)〉+D(z∗, z̃)is stritly onvex in q̃. Assume that q = (u, z) : [0, T ] → Q is an energeti solution to (Q, E ,D).Then q is (norm-) ontinuous with respet to time, i.e. q ∈ C0([0, T ],Q).The strit onvexity allows us to show that energeti solutions q = (u, z) : [0, T ] → Q have weakleft and right limits q−(t) and q+(t) for all t ∈ [0, T ]. Exploiting the jump relations one obtainsthat q−(t), q(t) and q+(t) all provide the same value Jz−(t)(t, q−(t)), whih has to be the globalminimum by stability of q−(t). Sine the strit onvexity of Jz−(t) guarantees a unique minimizer,all three states must oinide and weak ontinuity follows. Strong ontinuity is dedued from aresult of Visintin [109, � 2 & Th. 8℄, whih onverts weak onvergene and energy onvergeneinto strong onvergene by exploiting the strit onvexity one again.5.2.2 Hölder- and Lipshitz-ontinuity in timeThe temporal Hölder- or Lipshitz-ontinuity is based on the uniform onvexity of the funtional

Jz∗(t, q) = E(t, q) + D(z∗, z) on a subset of a suitable Banah spae V. As we will see in theexamples of Setion 5.3, the Banah spae V may di�er signi�antly from the state spae Qthat is used to prove existene. This is due to fat that the hoie of V in�uenes the temporalregularity obtained, so that the use of a bigger spae may lead to a better temporal regularityresult. The uniform onvexity is de�ned as followsDe�nition 5.11. The funtional J : V → R∞ is uniformly onvex on the onvex set M ⊂ V, ifthere exist onstants c⋆ > 0, 2 ≤ α <∞, suh that for all onvex ombinations qθ := θq1+(1−θ)q0with θ ∈ (0, 1) and q0, q1 ∈ M the following holds
J (t, qθ) ≤ θJ (t, q1) + (1−θ)J (t, q0) − θ(1−θ)c⋆‖q1 − q0‖α

V . (5.10)46



For a better understanding of this notion of onvexity we �rst investigate the de�nition forreal valued, salar funtions. A funtion f : R → R is uniformly onvex if there are onstants
2 ≤ α <∞, c⋆ > 0 suh that for all onvex ombinations qθ = (1−θ)q0 + θq1 with θ ∈ (0, 1), q0,
q1 ∈ R the following holds

f(qθ) ≤ θf(q1) + (1−θ)f(q0) − θ(1−θ)c⋆|q1−q0|α . (5.11)In other words, if f : R → R is uniformly onvex, then for any two points f(q0), f(q1) of itsgraph there �ts some polynomial that is quadrati in θ, between the funtion and the hord, seeFig. 6. Hene uniform onvexity implies strit onvexity.PSfrag replaements f

q0 qθ q1Figure 6: Uniformly onvex funtion.The meaning of the exponent α an be understood from the following example.Example 5.12. First, onsider the funtion f(q) = q2. We immediately see that f is stritlyonvex, sine f ′′(q) = 2 > 0 for all q ∈ R and by simple alulation we verify f(qθ) =
θf(q1)+(1−θ)f(q0)−θ(1−θ)(q1−q0)2. But there are also funtions being stritly onvex although
f ′′(q) = 0 for some q ∈ R. Suh a andidate is e.g. f(q) = q4 with f ′′(0) = 0. Sine f is on-tinuously di�erentiable, the uniform onvexity inequality (5.11) is equivalent to f(q1)− f(q0) ≥
f ′(q0)(q1−q0) + c⋆|q1−q0|α and hene equivalent to (f ′(q1)−f ′(q0))(q1−q0) − 2c⋆|q1−q0|α ≥ 0.Therewith we verify for c⋆ = 1/4 and α = 4 that (f ′(q1)−f ′(q0))(q1−q0) − 2c⋆|q1−q0|α =
1
2(q1−q0)4 + 6

2(q21−q20)2 ≥ 0 and thus we onlude that (5.11) holds for f(q) = q4 with c⋆ = 1/4and α = 4.This notion of onvexity is now transfered to the ontext of energy funtionals. The theorembelow generalizes the ideas developed in [70, 74℄, where Lipshitz-ontinuity with respet to timewas derived. The generalization has two aspets. First it is emphasized that the onvexityproperties an be formulated with respet to a norm ‖ ·‖V that may di�er signi�antly from thatunderlying the state spae Q. In partiular, if Q is hosen as small as possible under preservationof the oerivity of E (see (E1)), it may be an advantage to investigate the temporal regularityof energeti solutions with respet to the norm of a larger Banah spae V ⊃ Q, sine temporalregularity may improve. Seond, as an be seen from (5.10) the notion of uniform onvexity isnot restrited to the exponent α = 2, so that a weaker lower bound is admissible due to α ≥ 2.Previous work [70, 74℄ asked α = 2 and β = 1 and enfored the uniform onvexity onditionon whole Q, while the theorem below only requires it on sublevels. In fat, the formulationof the onditions on sublevels is su�ient, sine an energeti solution q : [0, T ] → Q satis�es
q(t) ∈ LE⋆(s) for some �xed E⋆ > 0 and all s, t ∈ [0, T ]. This is due to stability (S) and thetemporal Lipshitz-estimate |E(s, q) − E(t, q)| ≤ cE |s− t| for a onstant cE > 0 and for all �xedstates q ∈ Q with E(r, q) < E for some r ∈ [0, T ], whih is a diret onsequene of (E2) andGronwall's inequality.Theorem 5.13 (Temporal Hölder-ontinuity). Let (Q, E ,D) be a rate-independent system, where
Q is a losed, onvex subset of a Banah spae X . Let LE(t) = {q ∈ Q | E(t, q) ≤ E}. Assume47



that there is a Banah spae V and that there are onstants α ≥ 2, β ≤ 1 suh that for all E∗there exist onstants C∗, c∗ > 0 so that for all t ∈ [0, T ], q0, q1 ∈ LE⋆(t) and all θ ∈ [0, 1] thefollowing holds:
E(t, qθ) + D(z0, zθ) + c∗θ(1−θ)‖q1−q0‖α

V ≤ (1−θ)
(
E(t, q0)+D(z0, z0)

)
+ θ

(
E(t, q1)+D(z0, z1)

)(5.12a)
|∂tE(t, q1) − ∂tE(t, q0)| ≤ C∗‖q1 − q0‖β

V , (5.12b)where (uθ, zθ) = qθ = (1−θ)q0 + θq1.Then, any energeti solution q : [0, T ] → Q of (Q, E ,D) is Hölder-ontinuous from [0, T ] to Vwith the exponent 1/(α−β), i.e. there is a onstant CH > 0 suh that
‖q(s)−q(t)‖V ≤ CH|t−s|1/(α−β) for all s, t ∈ [0, T ] . (5.13)The main idea of the proof is to use uniform onvexity inequality (5.12a) to derive an improvedstability estimate, whih ontains the additional term c∗θ(1−θ)‖q1−q0‖α

V . Using assumption(5.12b) one obtains an upper estimate for ‖q1−q0‖α
V from the energy balane. Finally the Hölderestimate (5.13) an be proved with the aid of a di�erential inequality and Gronwall's lemma.The details are arried out in [106℄.5.3 AppliationsIn this setion we disuss examples for uniformly onvex stored elasti energy densities arisingfrom various types of rate-independent proesses, suh as plastiity, phase transformations inshape memory alloys and damage. All these appliations an be treated as rate-independentproesses in terms of the energeti formulation. As the unknowns their models involve the thelinearized strain tensor e(u) = 1

2(∇u+∇uT ) in terms of the displaement �eld u : Ω → R
d and aninternal variable z whih may be salar-, vetor- or tensor valued depending on the problem. Theway, how u and z are linked in the model di�ers and here we distinguish between energies, whihompose the di�erent variables additively, suh as in the Example 3.5 for kinemati hardening,and energies whih use a multipliative omposition of the variables, suh as in the ase ofdamage, see Examples 5.16�5.18.5.3.1 Additive energies: Plastiity, phase transformations in shape memory alloysIn the following we treat two appliations with quadrati energies. We will obtain that V = Q inthese settings, that α = 2 and β = 1, so that energeti solutions are Lipshitz-ontinuous withrespet to time. This regularity is in good aordane with the results proven in [70℄ and withlassial existene results for elastoplastiity.Example 5.14. As a �rst example for Theorem 5.13 we onsider the partiular situation where

E(t, ·) is quadrati. Let Q be a re�exive Banah spae and assume that A ∈ Lin(Q,Q∗) is alinear, bounded operator with 〈Aq, q〉 ≥ c‖q‖2
Q for all q ∈ Q and for some onstant c > 0. Given

qD ∈ C1([0, T ],Q) and b ∈ C1([0, T ],Q∗) the energy E : [0, T ] ×Q → R is de�ned by
E(t, q) = 1

2〈A(q+qD(t)), (q+qD(t))〉 − 〈b(t), q+qD(t)〉 .48



Moreover assume that the dissipation distane D : Z × Z → [0,∞] is de�ned as D(z1, z2) =
R(z2−z1) with R : Z → [0,∞) being positively 1-homogeneous, onvex, weakly sequentiallylower semiontinuous and satisfying R(z) ≤ cR‖z‖Z for all z ∈ Z and for a onstant cR > 0.Then, for all qi ∈ Q, the system (Q, E ,D) satis�es the assumptions (5.12) with V = Q, α = 2and β = 1. Thus, from (5.13) we obtain that energeti solutions q : [0, T ] → Q are Lipshitz-ontinuous with ‖q(s) − q(t)‖Q ≤ CH |s− t| 1

2−1 .Thereby the uniform onvexity inequality (5.12a) is a diret onsequene of (5.5) and the on-vexity of D. Estimate (5.12b) an be vieri�ed by straight forward alulations.Observe that the models of elastoplastiity with linear kinemati hardening and of elastoplastiitywith Cosserat miropolar e�ets from Examples 3.5 and 3.6 �t into this framework. Let us �nallynote that the result on the temporal Lipshitz-ontinuity due to Theorem 5.13 is in aordanewith known results for equations of this type, see e.g. [17, 47℄.Example 5.15 (The Souza-Aurihio model for thermally driven phase transformations in shapememory alloys[73℄). In the ontext of phase transformations in shape memoryalloys the internal variable z : Ω → R
d×d
sym,dev is the mesosopi transformation strain re�etingthe phase distribution. The dissipation distane, whih measures the energy dissipated due tophase transformation, is assumed to take the form D(z, z̃) = ̺‖z−z̃‖L1(Ω) with ̺ > 0.The phase transformations are onsidered to be thermally indued. For a body that is small inat least one diretion, it is reasonable to assume that the temperature ϑ ∈ C1([0, T ],H1(Ω)),with Cϑ := ‖ϑ‖C1([0,T ],H1(Ω)), is a priori given, sine it in�uenes the transformation proess likean applied load, see [10℄. Thus the energy density takes the form

W (F (u, z), ϑ) = 1
2

(
e(u)−z

)
: B(ϑ) :

(
e(u)−z

)
+ h(z, ϑ) + σ

2 |∇z|2with the onstant σ > 0 and the elastiity tensor B ∈ C1([ϑmin, ϑmax],R
(d×d)×(d×d)) beingsymmetri and positive de�nite for all ϑ, i.e. there are onstants cB1 , cB2 > 0 so that cB1 |A|2 ≤ A :

B : A ≤ cB2 |A|2 for all A ∈ R
d×d. Moreover, let cBϑ := ‖B‖C1([ϑmin,ϑmax],R(d×d)×(d×d)). The funtion

h : R
d×d
sym,dev × R → R is given by

h(z, ϑ) := c1(ϑ)
√
δ2 + |z|2 + c2(ϑ)|z|2 + 1

δ (|z|−c3(ϑ))3+ ,where δ > 0 is onstant and ci ∈ C1([ϑmin, ϑmax]) with 0 < c1i ≤ ci(ϑ) for all ϑ ∈ [ϑmin, ϑmax]and cϑi := ‖ci‖C1([ϑmin,ϑmax]), i = 1, 2, 3. Thereby c1(ϑ) is an ativation threshold for the initi-ation of martensiti phase transformations, c2(ϑ) measures the ourene of an hardening phe-nomenon with respet to the internal variable z and c3(ϑ) represents the maximum modulus oftransformation strain that an be obtained by alignment of martensiti variants. Furthermore
(f)+ := max{0, f}. For given data b ∈ C1([0, T ],H−1(Ω,Rd)) and uD ∈ C1([0, T ],H1(Ω,Rd))the energy funtional is de�ned by E(t, q) =

∫
ΩW (F (u+uD(t), z), ϑ) dx−〈b(t), u+uD(t)〉. Henewe have

∂tE(t, q) =

∫

Ω

(
∂uW (F (u+uD, z), ϑ) : e(u̇D)+ϑ̇ ∂ϑW (F (u+uD, z), ϑ)

)
dx− 〈ḃ, u+uD〉 − 〈b, u̇D〉,

∂uW (F (u+uD, z), ϑ) : u̇D = (e(u+uD)−z):B(ϑ):e(u̇D) ,

ϑ̇ ∂ϑW (F (u+uD, z), ϑ) = ϑ̇
(
(e(u+uD)−z):∂ϑB(ϑ):(e(u+uD)−z) + ∂ϑh(ϑ, z)

)
.To gain a Lipshitz-estimate for ∂tE(t, ·) for the present model it is important that Theorem 5.13is formulated for energy-sublevels LE⋆(t) = {q ∈ Q | E(t, q) ≤ E⋆}, sine this provides the bound49



‖ui‖H1+‖zi‖H1 ≤ CE⋆. Thus for all (u0, z0), (u1, z1) ∈ LE⋆(t) it holds
∫

Ω
|ϑ̇

(
e(u1−u0)−(z1−z0)

)
:∂ϑB(ϑ):

(
e(u1−u0)−(z1−z0)

)
|dx ≤ Cϑc

B

ϑ

(
‖e(u1−u0)‖L2+‖z1−z0‖L2

)2

≤ Cϑc
B

ϑ

( 1∑

i=0

‖e(ui)‖L2+‖zi‖L2

)(
‖e(u1−u0)‖L2+‖z1−z0‖L2

)

≤ 2CE⋆Cϑc
B

ϑ

(
‖u1−u0‖H1+‖z1−z0‖L2

)
.Furthermore the appliation of the main theorem on di�erentiable funtions yields

|
√
δ2+|z1|2−

√
δ2+|z0|2| ≤ |z1−z0|,

||z1|2−|z0|2| ≤ 2(|z1|+|z0|)|z1−z0|,
|(|z1|−c3(ϑ))3+−(|z0|−c3(ϑ))3+| ≤ 2(|z1|+|z0|)2|z1−z0|,so that

∫

Ω
|∂ϑh(ϑ, z1)−∂ϑh(ϑ, z0)| ≤ ‖z1−z0‖L1

(
cϑ1 + 2(Ld(Ω)CE⋆)

1
2 cϑ2 + 6

δ c
ϑ
3CE⋆

)
≤ C̃⋆‖z1−z0‖L2with C̃⋆ := Ld(Ω)

1
2

(
cϑ1 + 2(Ld(Ω)CE⋆)

1
2 cϑ2 + 6

δ c
ϑ
3CE⋆

)
, where Ld(Ω) denotes the d-dimensionalLebesgue-measure of Ω. Therefore Lipshitz-estimate (5.12b) holds true with β = 1 and with

C⋆ = (C̃⋆ + 2CE⋆Cϑc
B

ϑ + cBϑcD + cl).Now it has to be veri�ed that the density W is uniformly onvex with respet to F (u, z). Theretowe �rst alulate that wθ:B(ϑ):wθ ≤ θw1:B(ϑ):w1+(1−θ)w0:B(ϑ):w0−θ(1−θ)cB1 |w1−w0|2 for
wi=ei−zi with (ei, zi) ∈ R

d×d
sym × R

d×d
sym,dev, i = 0, 1, wθ = θw1 + (1−θ)w0 with θ ∈ (0, 1).Thereby a binomi formula and the positive de�niteness of B(ϑ) for all ϑ were applied. Theuniform onvexity of |∇z|2 = ∇z : ∇z an be obtained similarly. We now show that h is uni-formly onvex. We immediately see that h̃1(z) := (δ2 + |z|2) 1

2 is onvex in z. Furthermore,sine h̃3(z) := (|z| − c3(ϑ))3+ is the omposition of the monotone funtion x3 and the onvexfuntion (·)+, we onlude that also h̃3(z) is onvex in z. Additionally we obtain with similaralulations as applied for the other quadrati terms that h̃2(z) := |z|2 is uniformly onvex. Sine
ci(ϑ) ≥ c1i > 0 for all ϑ ∈ [ϑmin, ϑmax] and i = 1, 2, 3 we have proven that h is uniformly onvexin z with h(zθ, ϑ) ≤ θh(z1, ϑ) + (1−θ)h(z0, ϑ) − θ(1−θ)c12|z1−z0|2. Summing up all terms andtaking into aount all prefators yields a uniform onvexity estimate for W, whih leads to
E(t, qθ) ≤ θE(t, q1) + (1−θ)E(t, q0) − θ(1−θ)

(
cB

1
2 ‖w1−w0‖2

L2 + σ
2 ‖∇(z1−z0)‖2

L2 + c12‖z1−z0‖2
L2

)
.Thereby we have used that the term desribing the work of the external loadings is linear in u.Moreover we �nd with Korn's inequality that ‖w1−w0‖2

L2 ≥ 1
2‖e(u1)−e(u0)‖2

L2 − ‖z1−z0‖2
L2 ≥

1
2C2

K
‖u1−u0‖2

H1 − ‖z1−z0‖2
L2 . Under the assumption that (c12 − (cB1 /2)) > 0 we onlude that(5.12a) holds for α = 2, c∗ := min

{
cB1 /(4C

2
K), σ/2, (c12−(cB1 /2))

} and the spae
V = Q = {ũ ∈ H1(Ω,Rd) | ũ = 0 on ΓD} × {z̃ ∈ H1(Ω,Rd×d

sym,dev)}.Hene any energeti solution q : [0, T ] → Q is temporally Lipshitz-ontinuous: q ∈ C0,1([0, T ],Q).50



5.3.2 Multipliative energies: DamageIn the following we apply the temporal regularity results stated in Theorems 5.10 and 5.13 toenergies used in the modeling of partial, isotropi damage proesses. Thereby, damage meansthe reation and growth of raks and voids on the miro-level of a solid material. To desribethe in�uene of damage on the elasti behavior of the material one de�nes an internal variable,the damage variable z(t, x) ∈ [z⋆, 1], as the volume fration of undamaged material in a neigh-bourhood of material dependent size around x ∈ Ω at time t ∈ [0, T ]. Thus z(t, x)=1 meansthat the material around x is perfetly undamaged, whereas z(t, x)=z⋆ ≥ 0 stands for maximaldamage of the neighbourhood. The ondition z⋆ > 0 models partial damage and the fat that
z is salar valued re�ets the isotropy of the damage proess, whih means that the raks andvoids are presumed to have a uniform orientation distribution in the material. Furthermore itis assumed that damage is a unidiretional proess, so that healing is forbidden and ż(t, x) ≤ 0.This ondition is preserved by the dissipation distane, i.e. for ̺ > 0 it is

D(z0, z1) :=

{∫
Ω ̺(z0 − z1) dx if z1 ≤ z0,

∞ else, (5.14)whih punishes a derease of damage with the value ∞. The energy in the framework of damageis given by
E(t, u, z) :=

∫

Ω
W̃ (e(u+uD(t)), z) dx+

∫

Ω

κ

r
|∇z|r dx−

∫

Ω
l(t)(u+uD(t)) dx . (5.15)The �rst term in (5.15) is the stored elasti energy, the seond desribes the in�uene of damagewith 1 < r <∞ and κ > 0 and the third term aounts for the work of the external loadings.As in the previous setions we set W (F (u, z)) = W̃ (e(u+uD(t)), z)+ κ

r |∇z|r. In engineering, seee.g. [64℄, a typial ansatz for the stored elasti energy density is the following
W̃ (e, z) := f1(z)W1(e) +W2(e) + f2(z) and ∂zW (e, z) ≥ 0 . (5.16)In Setion 5.2.1 we obtained that the joint strit onvexity of W̃ in (z, e) will ensure the temporalontinuity of the energeti solution. But the ruial point, whih may spoil this regularity inthe ase of damage is, that not many stored elasti energy densities W̃ (e, z) := f1(z)W1(e), thatsatisfy ∂zW̃ (e, z) ≥ 0, are also jointly stritly onvex, although both f1, W1 may be onvex. Asa negative example we present the wellknown (1−d)-model for isotropi damage, see e.g. [64℄:Example 5.16. For the symmetri, positive de�nite fourth order tensor B the stored elastienergy density

Ŵ (e, d) =
(1−d)

2
e:B:e =

z

2
e:B:e = W̃ (e, z)is not jointly onvex in (e, z). This an be seen from alulating the Hessian; evaluating it in

(e, z)=(e, 1), e ∈ R
d×d
sym , in the diretion (ẽ, z̃)=(− e

2 , 1) yields D2W̃ (e, z)[(ẽ, z̃), (ẽ, z̃)] = zẽ:B:ẽ+

2z̃e:B:ẽ = −3
4 e:B:e < 0.To �nd a positive example on stored elasti energy densities satisfying (5.16) one may use theideas of [88℄. 51



Example 5.17. For B as in Example 5.16 the energy density Ŵ (e, z) := e:B:e
2(2−z) is jointly onvexin (e, z) and

W̃ (e, z) :=
e:B:e

2(2−z) +
z2

2is stritly onvex in (e, z). Calulating the Hessian yields
D2Ŵ (e, z)[(ẽ, z̃), (ẽ, z̃)] =

z̃e:B:z̃e

(2−z)3 − 2
z̃e:B:ẽ

(2−z)2 +
ẽ:B:ẽ

(2−z) =
1

2−z (ê−ẽ):B:(ê−ẽ) ≥ 0with ê := z̃e/(2−z) for all (e, z̃) ∈ R
d×d
sym × [z⋆, 1]. Sine we have D2Ŵ (e, z)[(ẽ, z̃), (ẽ, z̃)] = 0 forall (0, z̃) whenever e = 0, we �nd that Ŵ is jointly, but not stritly onvex. We onlude that

W̃ is jointly stritly onvex due to the term f(z) = z2

2 , sine f ′′(z) = 1, so that f ′′(z)z̃2 > 0for all z̃ 6= 0, whih ensures that D2W̃ (e, z)[(ẽ, z̃), (ẽ, z̃)]>0 for all (ẽ, z̃) 6= 0 and for all (e, z)∈
R

d×d
sym × [z⋆, 1].Finally we disuss an example whih refers to Theorem 5.13 on the Hölder-and Lipshitz-ontinuity of energeti solutions. With this example we want to point out the importane ofthe Banah spae V. We will see that its hoie is not unique and that it may lead to di�erentonstants α > 2. This is due to the fat that the energy will be hosen non-quadrati in ontrastto the Examples 5.14�5.15. We will larify how the spae V in�uenes the magnitude of theHölder onstant and explain how to ahieve better regularity by a lever identi�ation of V.Example 5.18 (The e�etive use of V). For B as above and onstants a, â, c > 0 onsider

W (e, z,∇z) :=
e:B:e

2
√

2−z +G(e) + a
2z

2 + κ
2 |∇z|2 with G(e) := c

4(â+|dev e|2)2 (5.17)with the deviator dev e := e− tr e
d Id and the energy

E(t, u, z) :=

∫

Ω
W (e+eD(t), z,∇z) dx −

∫

Ω
b(t)(u+uD(t)) dx.We now determine V suitably. We �rst treat the ase of time-dependent Dirihlet data, asinvestigated in [106℄. Similarly to the ideas applied in Example 5.12 we thereto dedue thefollowing uniform onvexity inequality for W

W (eθ, zθ) ≤ (1−θ)W (e0, z0) + θW (e1, z1) − θ(1−θ)c̃
(
|E|2 + |Z|2 + |devE|4 + |∇Z|2

) (5.18)with E := e1−e0, Z := z1−z0. For q0, q1 ∈ LE⋆(t) we an verify
E(t, qθ) ≤ (1−θ)E(t, q0) + θE(t, q1) − θ(1−θ)c⋆

(
‖E‖L2 + ‖Z‖L2 + ‖devE‖L4 + ‖∇Z‖L2

)α(5.19)for α = 4, c⋆ = 2−3c̃ min{(2E⋆)
2−α, (2E⋆)

4−α}. This estimate determines the Banah spae
V1 := {ũ ∈ H1(Ω,Rd) | dev e(ũ) ∈ L4(Ω,Rd×d)} × {z̃ ∈ H1(Ω)} .At this point we notie that the right-hand side of (5.19) is inreased if we use the Lp̃(Ω,Rd×d)-norm for some 1 < p̃ ≤ 4, whih would lead to a smaller α = max{2, p̃} and hene to a Hölderexponent loser to 1. 52



In order to �nd out whether the hoie of p̃ = 2 is suitable, assumption (5.12b) has to beinvestigated. Thereto we alulate
∂tE(t, u, z)=

∫

Ω
∂eW (e(u)+eD(t), z,∇z):ėD(t) dx−

∫

Ω
ḃ(t)(u+uD(t)) dx−

∫

Ω
b(t)u̇D(t) dx .The term DG(dev e):ê = c(â+|dev e|2) 4−2

2 (dev e):ê, with G de�ned in (5.17), plays the deisiverole in estimate (5.12b). Using Taylor expansion one an prove that∣∣DG(dev(ẽ1)):ėD(t) − DG(dev(ẽ0)):ėD(t)
∣∣ ≤ C

(
1+W0+W1

) p−2
p |devE|,where Wi=W (ẽi, zi,∇zi), ẽi=ei+eD(t), eD(t)=e(uD(t)) and ėD(t)∈C0([0, T ],W 1,∞(Ω,Rd×d)).Thus integration and Hölder's inequality with p̃=2 and p̃′=2 yield

∫

Ω

∣∣DG(dev(e1+eD(t))):ėD(t) − DG(dev(e0+eD(t))):ėD(t)
∣∣ dx ≤ C1‖devE‖

L
4
2
≤ C2‖u1−u0‖H1with ei = e(ui) for (ui, zi) ∈ LE⋆(t). This implies β = 1 and it is suitable to introdue the Banahspae

V2 := {ũ ∈ H1(Ω,Rd)} × {z̃ ∈ H1(Ω)} .With this hoie of V = V2 we have α = 2, whih leads to the Hölder exponent 1
α−1 = 1, sothat an energeti solution q : [0, T ] → Q satis�es q ∈ C0,1([0, T ],V2), whereas V = V1 yields

q ∈ C0, 1
3 ([0, T ],V1).Finally we onsider the ase of time-independent Dirihlet data uD, i.e. u̇D(t) = 0 for all t ∈ [0, T ].Then we have ∂tE(t, q)=−

∫
Ω ḃ(t)(u+uD) dx. Therefore we may drop ‖E‖Lp in (5.19) and hoose

V = Q. For this hoie we �nd α = 2 and the Hölder-exponent 1/(α−1) = 1, whih means thatthe energeti solution is Lipshitz-ontinuous in time. This is in aordane to the regularityresult obtained [70℄, where only time-independent Dirihlet data were applied.AknowledgementD. K. and S. N. thank the GAMM for the possibility to organize a Young Researhers' Minisym-posium at the GAMM Annual Meeting 2009 in Gda«sk, where this paper was initiated.P. G. is pleased to aknowledge �nanial support by the Austrian siene fund FWF under grantSFB F013/F1306.D. K. aknowledges the partial �nanial support by the Robert Bosh Stiftung within the FastTrak Programme.S. N. aknowledges the �nanial support by the Alexander von Humboldt Stiftung within FeodorLynen Fellowship Programme. S. N. thanks F. Murat for pointing out a mistake in the proof ofthe existene result in [82℄.M. T.'s thanks go to A. Mielke and T. Roubí£ek for many fruitful disussions. Her researhwas funded by the DFG within the Researh Training Group 1128 Analysis, Numeris andOptimization of Multiphase Problems.Bibliography[1℄ H.-D. Alber. Materials with Memory. Initial-Boundary Value Problems for Constitutive Equations withInternal Variables, volume 1682 of Leture Notes in Mathematis. Springer, Berlin, 1998.53



[2℄ H.-D. Alber and K. Cheªmi«ski. Quasistati problems in visoplastiity theory I: Models with linear hard-ening. In I. Gohberg, A.F. dos Santos, F.-O. Spek, F.S. Teixeira, and W. Wendland, editors, TheoretialMethods and Appliations to Mathematial Physis., volume 147 of Operator Theory. Advanes and Appli-ations, pages 105�129. Birkhäuser, Basel, 2004.[3℄ H.-D. Alber and K. Cheªmi«ski. Quasistati problems in visoplastiity theory. II. Models with nonlinearhardening. Math. Models Meth. Appl. Si., 17(2):189�213, 2007.[4℄ H.-D. Alber and S. Nesenenko. Loal and global regularity in time dependent visoplastiity. In B. DayaReddy, editor, IUTAM Symposium on Theoretial, Computational and Modelling Aspets of Inelasti Media,volume 11 of IUTAM Bookseries, pages 363�372. Springer, Netherlands, 2008.[5℄ H.-D. Alber and S. Nesenenko. Loal H1-regularity and H1/3−δ-regularity up to the boundary in timedependent visoplastiity. Asymtoti Analysis, 63(3):151�187, 2009.[6℄ Johen Alberty, Carsten Carstensen, and Darius Zarrabi. Adaptive numerial analysis in primal elastoplas-tiity with hardening. Comput. Methods Appl. Meh. Engrg., 171(3-4):175�204, 1999.[7℄ L. Ambrosio, N. Fuso, and D. Pallara. Funtions of Bounded Variation and Free Disontinuity Problems.Oxford University Press, 2005.[8℄ Gabriele Anzellotti. On the existene of the rates of stress and displaement for Prandtl- Reuss plastiity.Q. Appl. Math., 41:181�208, 1983.[9℄ H. Attouh and M. Thera. A general duality priniple for the sum of two operators. J. Convex Anal.,3(1):1�24, 1996.[10℄ F. Aurihio. A robust integration algorithm for a �nite-strain shape-memory-alloy superelasti model. Int.J. Plastiity, 17:971�990, 2001.[11℄ V. Barbu. Nonlinear Semigroups and Di�erential Equations in Banah Spaes. Editura Aademiei,Buharest, 1976.[12℄ A. Bensoussan and J. Frehse. Asymptoti behaviour of Norton-Ho�'s law in plastiity theory and H1regularity. In J.-L. Lions and C. Baiohi, editors, Boundary value problems for partial di�erential equationsand appliations, volume 29 of RMA, pages 3�25. Masson, Paris, 1993.[13℄ A. Bensoussan and J. Frehse. Asymtoti behaviour of the time dependent Norton-Ho� law in plastiiytheory and H1
loc regularity. Comment. Math. Univ. Carolinae, 37(2):285�304, 1996.[14℄ Mihael Bildhauer and Martin Fuhs. Continuity properties of the stress tensor in the 3-dimensional Ram-berg/Osgood model. J. Appl. Anal., 13(2):209�233, 2007.[15℄ H. Blum and J. Frehse. Boundary di�erentiability for the solution to Henky's law of elasti plasti planestress. Preprint SFB 611 435, University Bonn, 2008.[16℄ B. Bourdin, G. Franfort, and J.-J. Marigo. The variational approah to frature. J. Elastiity, 91:5�148,2008.[17℄ Haïm Brézis. Opérateurs maximaux monotones et semi-groupes de ontrations dans les espaes de Hilbert.North-Holland Mathematis Studies, 1973.[18℄ M. Bulí£ek, J. Frehse, and J. Málek. On boundary regularity for the stress in problems of linearizedelasto-plastiity. Preprint SFB 611 443, University Bonn, 2009.[19℄ A. Bumb and D. Knees. Global spatial regularity for a regularized elasto-plasti model. WIAS PreprintNo. 1419, Weierstrass Institute for Applied Analysis and Stohastis, Berlin, 2009.[20℄ C. Carstensen and S. Müller. Loal stress regularity in salar nononvex variational problems. SIAM J.Math. Anal., 34(2):495�509, 2002.[21℄ Carsten Carstensen. Domain deomposition for a non-smooth onvex minimization problem and its appli-ation to plastiity. Numer. Linear Algebra Appl., 4(3):177�190, 1997.[22℄ K. Cheªmi«ski. Global existene of weak-type solutions for models of monotone type in the theory ofinelasti deformations. Math. Methods Appl. Si., 25:1195�1230, 2002.[23℄ K. Cheªmi«ski and P. Gwiazda. Nonhomogenious initial boundary value problems for oerive and self-ontrolling models of monotone type. Continuum Meh. Thermodyn., 12:217�234, 2000.[24℄ K. Cheªmi«ski and Z. Naniewiz. Coerive limits for onstitutive equations of monotone-gradient type.Nonlin. Anal., 48:1197�1214, 2002.[25℄ Krzysztof Cheªmi«ski and Patrizio Ne�. H1lo-stress and strain regularity in Cosserat plastiity. Z. Angew.Math. Meh., 89(4):257�266, 2009. 54



[26℄ Xiaojun Chen, Zuhair Nashed, and Liqun Qi. Smoothing methods and semismooth methods for nondi�er-entiable operator equations. SIAM Journal on Numerial Analysis, 38(4):1200�1216, 2000.[27℄ P. Colli and A. Visintin. On a lass of doubly nonlinear evolution equations. Commun. in Partial Di�erentialEquations, 15(5):737�756, 1990.[28℄ G. Dal Maso, A. De Simone, and M. G. Mora. Quasistati evolution problems for linearly elasti - perfetlyplasti materials. Arh. Ration. Meh. Anal., 180:237�291, 2006.[29℄ G. Dal Maso, G. Franfort, and R. Toader. Quasistati rak growth in nonlinear elastiity. Arh. Ration.Meh. Anal., 176(2):165�225, 2004.[30℄ A. De Simone, N. Grunewald, and F. Otto. A new model for ontat angle hysteresis. Netw. Heterog. Media(eletroni), 2007.[31℄ A. Demyanov. Regularity of stresses in Prandtl-Reuss perfet plastiity. Cal. Var. Partial Di�er. Equ.,34(1):23�72, 2009.[32℄ G. Duvaut and J.L. Lions. Inequalities in Mehanis and Physis, volume 219 of A Series of ComprehensiveStudies in Mathematis. Springer, Berlin, 1976.[33℄ C. Ebmeyer. Mixed boundary value problems for nonlinear ellipti systems with p-struture in polyhedraldomains. Math. Nahrihten, 236:91�108, 2002.[34℄ Ivar Ekeland and Roger Témam. Convex analysis and variational problems, volume 28 of Classis in AppliedMathematis. Soiety for Industrial and Applied Mathematis (SIAM), Philadelphia, PA, english edition,1999. Translated from the Frenh.[35℄ J.R. Fernández, W. Han, M. Sofonea, and J.M. Viaño. Variational and numerial analysis of a fritionlessontat problem for elasti-visoplasti materials with internal state variables. Q. J. Meh. Appl. Math.,54(4):501�522, 2001.[36℄ G. Franfort and A. Mielke. Existene results for a lass of rate-independent material models with nononvexelasti energies. J. reine angew. Math., 595:55�91, 2006.[37℄ J. Frehse and D. Löbah. Hölder ontinuity for the displaements in isotropi and kinemati hardening withvon Mises yield riterion. Z. Angew. Math. Meh., 88(8):617�629, 2008.[38℄ M. Fuhs. On a lass of variational problems related to plastiity with polynomial hardening. Appl. Anal.,60:269�275, 1996.[39℄ M. Fuhs and G. Seregin. Variational Methods for Problems from Plastiity Theory and for GeneralizedNewtonian Fluids, volume 1749 of Leture Notes in Mathematis. Springer, Berlin, 2000.[40℄ A. Giaomini. Ambrosio-Tortorelli approximation of quasi-stati evolution of brittle frature. Cal. Var.Partial Di�erential Equations, 22:129�172, 2005.[41℄ D. Gilbarg and N. S. Trudinger. Ellipti partial di�erential equations of seond order. Number 224 inGrundlehren der mathematishen Wissenshaften. Springer Verlag, 1977.[42℄ P. Grisvard. Ellipti Problems in Nonsmooth Domains. Pitman Publishing In, Boston, 1985.[43℄ P. G. Gruber and J. Valdman. Solution of one-time-step problems in elastoplastiity by a Slant NewtonMethod. SIAM J. Si. Comput., 31(2):1558�1580, 2009.[44℄ Peter G. Gruber and Jan Valdman. Solution of elastoplasti problems based on the Moreau-Yosida Theorem.SFB Report 5, Johannes Kepler University Linz, SFB F013 "Numerial and Symboli Sienti� Computing",2006.[45℄ Peter G. Gruber and Jan Valdman. Implementation of an elastoplasti solver based on the Moreau-YosidaTheorem. Mathematis and Computers in Simulation, 76(1-3):73 � 81, 2007.[46℄ Peter G. Gruber and Jan Valdman. Newton-like solver for elastoplasti problems with hardening and itsloal super-linear onvergene. SFB Report 6, Johannes Kepler University Linz, SFB F013 "Numerial andSymboli Sienti� Computing", 2007.[47℄ W. Han and B. D. Reddy. Plastiity, Mathematial Theory and Numerial Analysis. Springer Verlag In.,New York, 1999.[48℄ A. Haraux. Nonlinear Evolution Equation - Global Behavior of Solutions, volume 841 of Leture Notes inMathematis. Springer, Berlin, 1981.[49℄ M. Hintermüller, K. Ito, and K. Kunish. The primal-dual ative set strategy as a semismooth Newtonmethod. SIAM J. Optim., 13(3):865�888 (eletroni) (2003), 2002.55



[50℄ Sh. Hu and N. S. Papageorgiou. Handbook of Multivalued Analysis. Volume II: Appliations. Mathematisand its Appliations. Kluwer, Dordreht, 2000.[51℄ A.D. Io�e and V.M. Tihomirov. Theorie der Extremalaufgaben. VEB Deutsher Verlag der WissenshaftenBerlin, 1979.[52℄ I.R. Ionesu and M. Sofonea. Funtional and numerial methods in visoplastiity. Oxford University Press,1993.[53℄ C. Johnson. Existene theorems for plastiity problems. J. Math. Pures Appl., IX. Sér, 55:431�444, 1976.[54℄ C. Johnson. On plastiity with hardening. J. Math. Anal. Appl., 62(2):325�336, 1978.[55℄ D. Knees. Regularity results for quasilinear ellipti systems of power-law growth in nonsmooth domains:boundary, transmission and rak problems. PhD thesis, Universität Stuttgart, 2005. http://elib.uni-stuttgart.de/opus/volltexte/2005/2191/.[56℄ D. Knees. Global regularity of the elasti �elds of a power-law model on Lipshitz domains. Math. MethodsAppl. Si., 29:1363�1391, 2006.[57℄ D. Knees. Global stress regularity of onvex and some nononvex variational problems. Ann. Mat. PuraAppl., 187:157�184, 2008.[58℄ D. Knees. Global spatial regularity for time dependent elasto-plastiity and related problems. WIAS-Preprint No. 1395, Weierstrass Institute for Applied Analysis and Stohastis, Berlin, 2009.[59℄ D. Knees and P. Ne�. Regularity up to the boundary for nonlinear ellipti systems arising in time�inremental in�nitesimal elasto�plastiity. SIAM J. Math. Anal., 40(1):21�43, 2008.[60℄ Dorothee Knees, Alexander Mielke, and Chiara Zanini. On the invisid limit of a model for rak propaga-tion. Math. Models Meth. Appl. Si. (M3AS), 18:1529�1569, 2008.[61℄ V.G. Korneev and U. Langer. The regularity of solutions of problems from plasti-�ow theory. Di�er.Uravn., 20(4):597�515, 1984.[62℄ P. Krej£í. Evolution variational inequalities and multidimensional hysteresis operators. Drábek, Pavel (ed.)et al., Nonlinear di�erential equations. Proeedings of talks given at the seminar in di�erential equations,Chvalatie, Czeh Republi, June 29-July 3, 1998. Boa Raton, FL: Chapman &amp; Hall/CRC. ChapmanHall/CRC Res. Notes Math. 404, 47-110, 1999.[63℄ K. L. Kuttler and M. Shillor. Quasistati evolution of damage in an elasti body. Nonlinear Analysis: RealWorld Appliations, 7:674�699, 2006.[64℄ J. Lemaitre and R. Desmorat. Engineering damage mehanis. Springer, 2005.[65℄ A. Mainik and A. Mielke. Existene results for energeti models for rate-independent systems. Cal. Var.Partial Di�er. Equ., 22:73�99, 2005.[66℄ Andreas Mainik and Alexander Mielke. Global existene for rate-independent gradient plastiity at �nitestrain. J. Nonlinear Siene, 19(3):221�248, 2009.[67℄ H. Matthies. Existene theorems in thermo-plastiity. J. Me., 18:659�712, 1979.[68℄ A. Mielke and T. Roubí£ek. Rate-independent damage proesses in nonlinear elastiity. M3AS Math. ModelsMethods Appl. Si., 16:177�209, 2006.[69℄ A. Mielke, T. Roubí£ek, and U. Stefanelli. Γ-limits and relaxations for rate-independent evolutionaryproblems. Cal. Var. Partial Di�er. Equ., 31:387�416, 2008.[70℄ A. Mielke and F. Theil. On rate�independent hysteresis models. Nonl. Di�. Eqns. Appl. (NoDEA), 11:151�189, 2004. (Aepted July 2001).[71℄ Alexander Mielke. Evolution in rate-independent systems (Ch. 6). In C.M. Dafermos and E. Feireisl,editors, Handbook of Di�erential Equations, Evolutionary Equations, vol. 2, pages 461�559. Elsevier B.V.,Amsterdam, 2005.[72℄ Alexander Mielke, Laetitia Paoli, and Adrien Petrov. On the existene and approximation for a 3D model ofthermally indued phase transformations in shape-memory alloys. SIAM J. Math. Anal., 2009. To appear.WIAS preprint 1330.[73℄ Alexander Mielke and Adrien Petrov. Thermally driven phase transformation in shape-memory alloys.Gakk	otosho (Adv. Math. Si. Appl.), 17:667�685, 2007.[74℄ Alexander Mielke and Riarda Rossi. Existene and uniqueness results for a lass of rate-independenthysteresis problems. M3AS Math. Models Methods Appl. Si., 17:81�123, 2007.56



[75℄ E. Miersemann. Zur Regularität der quasistatishen elasto-viskoplastishen Vershiebungen und Spannun-gen. Math. Nahrihten, 96:293�299, 1980.[76℄ J.-J. Moreau. Sur l'evolution d'un systeme elasto-viso-plastique. C. R. Aad. Si. Paris Ser. A-B, 273:118�121, 1971.[77℄ Jean Jaques Moreau. Proximité et dualité dans un espae Hilbertien. Bull. So. Math. Frane, 93:273�299,1965.[78℄ J.J. Moreau. Appliation of onvex analysis to the treatment of elastoplasti systems. Appl. Methods Funt.Anal. Probl. Meh., IUTAM/IMU-Symp. Marseille 1975, Let. Notes Math. 503, 56-89 (1976)., 1976.[79℄ J. Naumann and J. Wolf. Interior di�erentiability of weak solutions to the equations of stationary motionof a lass of non-Newtonian �uids. J. Math. Fluid Meh., 7(2):298�313, 2005.[80℄ P. Ne� and K. Cheªmi«ski. In�nitesimal elasti-plasti Cosserat miropolar theory. Modelling and globalexistene in the rate independent ase. Pro. Roy. So. Edinburgh Se. A, 135:1017�1039, 2005.[81℄ S. Nesenenko. Lq-almost solvability of viso-plasti problems of monotone type. Submitted.[82℄ S. Nesenenko. A note on existene result for visoplasti models with nonlinear hardening. Math. Meh.Solids �rst published on Marh 20, 2009 as doi:10.1177/1081286509103818.[83℄ D. Pasali and S. Sburlan. Nonlinear Mappings of Monotone Type. Editura Aademiei, Buharest, 1978.[84℄ W. Pompe. Existene Theorems in the Visoplastiity Theory. Dissertation, Darmstadt University ofTehnology, 2003.[85℄ W. Pompe. Linear funtionals on nonlinear spaes and appliations to problems from visoplastiity theory.Math. Methods Appl. Si., 31(7):775�792, 2008.[86℄ S.I. Repin. Errors of �nite element method for perfetly elasto-plasti problems. Math. Models Meth. Appl.Si., 6(5):587�604, 1996.[87℄ T. Roubí£ek, L. Sardia, and C. Zanini. Quasistati delamination problem. Continuum Mehanis andThermodynamis, 2009. Submitted.[88℄ Tomá² Roubí£ek. Rate independent proesses in visous solids at small strains. Math. Meth. Appl. Si.,32(7):825 � 862, 2008.[89℄ G. Savaré. Regularity results for ellipti equations in Lipshitz domains. J. Funt. Anal., 152:176�201, 1998.[90℄ J. Shöberl. Netgen - an advaning front 2d/3d-mesh generator based on abstrat rules. Comput.Visual.Si,1:41�52, 1997.[91℄ G.A. Seregin. On di�erential properties of weak solutions of nonlinear ellipti systems arising in plastiitytheory. Math. USSR Sbornik, 58(2):289�309, 1987.[92℄ G.A. Seregin. On di�erential properties of extremals of variational problems arising in the theory of plas-tiity. Di�er. Equations, 26(6):756�766, 1990.[93℄ G.A. Seregin. Di�erential properties of solutions of evolutionary variational inequalities in plastiity theory.Probl. Mat. Anal., 12:153�173, 1992.[94℄ G.A. Seregin. On the regularity of the minimizers of some variational problems of plastiity theory. St.Petersbg. Math. J., 4(5):989�1020, 1993.[95℄ G.A. Seregin. Remarks on the regularity up to the boundary for solutions to variational problems inplastiity theory. J. Math. Si., 93(5):779�783, 1999.[96℄ P. Shi. Interior regularity of solutions to a dynami yli plastiity model in higher dimensions. Adv. Math.Si. Appl., 9(2):817�837, 1999.[97℄ E. Showalter. Monotone Operators in Banah Spaes and Nonlinear Partial Di�erential Equations, vol-ume 49 of Mathematial Surveys and Monographs. AMS, Providene, 1997.[98℄ J.C. Simo and J.R. Hughes. Computational Inelastiity, volume 7 of Interdisiplinary Applied Mathematis.Springer, Berlin, 1998.[99℄ J.C. Simo and R. L. Taylor. Consistent tangent operators for rate-independent elasto-plastiity. Comp.Meth. Appl. Meh. Engrg., 48:101�118, 1985.[100℄ E. Stein. Error-ontrolled Adaptive Finite Elements in Solid Mehanis. Wiley, Chihester, 2003.[101℄ M. Steinhauer. On analysis of some nonlinear systems of partial di�erential equations of ontinuum me-hanis. PhD thesis, Universität Bonn, Mathematish-Naturwissenshaftlihe Fakultät, 2003.57



[102℄ P.-M. Suquet. Evolution problems for a lass of dissipative materials. Quart. Appl. Math., 38(4):391�414,1980/81.[103℄ L. Tartar. Interpolation non linéaire et régularité. J. Funt. Anal., 9:469�489, 1972.[104℄ R. Temam. Mathematial Problems in Plastiity. Bordas, Paris, 1983.[105℄ R. Temam. A generelized Norton-Ho� model and the Prandtl-Reuss law of plastiity. Arh. Rational Meh.Anal., 95(2):137�183, 1986.[106℄ Marita Thomas and Alexander Mielke. Damage of nonlinearly elasti materials at small strain: existeneand regularity results. WIAS-Preprint 1397, ZAMM, 2009. Submitted.[107℄ H. Triebel. Interpolation Theory, Funtion Spaes, Di�erential Operators. North Holland Publishing Com-pany, Amsterdam, New York, Oxford, 1978.[108℄ T. Valent. Boundary Value Problems of Finite Elastiity. Springer, Berlin, 1988.[109℄ A. Visintin. Strong onvergene results related to strit onvexity. Communiations in Partial Di�erentialEquations, 9(5):439�466, 1984.[110℄ Eberhard Zeidler. Nonlinear funtional analysis and its appliations. II/B: Nonlinear monotone operators.New York et.: Springer-Verlag. xv, 733 p. DM 264.00 , 1990.

58


