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Signatures  The shuffle algebra
Consider a d-dimensional vector space V and define
TW)=RleVae(VeaV)a(VVeV)d---.
For p > 1, the degree p component T(V), = V®F is spanned by the set
{e,-1..‘,-p =€, ® - -®€j, 1 M,...,0p= 1,...,d}
In particular dim T(V) = co.
For a given w € T(V)* := T(V)) we write

d
Y = Z Z(l[/, e,-1...,-p)e,-1...,-p.

p=0i1,..ip=1
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Signatures  The shuffle algebra

There are two products on T (V):

@ the tensor product: Ciyoiy ® €. € T(V)p+q and,

ciprg = e,-1...,-p+q
@ the shuffle product:
€y LU Cipitriprg = Z eio‘(1)i0'(2)"'i0'(p+q) S T(V)p+q.
o€Sh(p,q)

Examples:
ejLie; =ejtej, € Leik==ejjkt ekt .

On both cases 1 € T(V)g acts as the unit.
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Signatures  The shuffle algebra

The shuffle algebra carries a coalgebra structure: define A: T(V) - T(V)® T(V) by

p—1
Ae,-1...,-p = €iy--iy RT+1® €i-eip + Z 6/1...// ® e,-j+1...,-p.
J=1
This structure is dual to the tensor product in the sense that if ¢,y € T(V)) then

d
@ (2 Yy = Z Z((p ® v, Ae,-I...,'p)e,'T..;p.

p=0 i],...,l'p=1
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Signatures Curves on euclidean space

Let x: [0,1] — R be a curve of bounded variation.

Definition

Its signature over the interval [s, t] C [0, 1] is the tensor series with coefficients
! i
<S(X)S,Ua 1> = 1a <S(X)S,t’ ei1-"ip> = / <S(X)S,U’ el'1~--l'p_1 > dXUp‘
S

Example:

t . . ) t u . .
(SCucen = [ dx=xi-xt (Sucep) = [ [ dxiax,
S S S

In total:

t . t up ) . ) )
S(X)se =1 +/ dx, & +/ / dx;,dxy, e + ///dxfndxﬁdxi eijk +
S S S

s<ur<ur<usz<t
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Signatures Curves on euclidean space

Chen (1954) shows that S(x) satsifies:
@ the shuffle relation:
(S(X)s,t5 €iy.ip L €ipyipig) = (S(X)s 1, €710y (S (X)s 5 €y ) -
@ Chen's rule: for any s < u < t, we have
S(X)st = S(X)s.u ® S(X)ue-
© If y is another path and x - y is their concatenation then

S(x - ¥)st =S(X)s,t ® S(¥)s.t-
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Signatures Curves on euclidean space

The shuffle identity generalizes integration by parts.

t u . t u . )
(Scey+ey= [ [ axad+ [ [ ardax;

t _ t _ .
:/Y%—£M%+/Xd—%m%
= (x} - xD)(x} - x0)
= (S(X)s,t, €)(S(X)s.t» ej)-
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Signatures Curves on euclidean space

Chen'’s rule generalizes the splitting of integrals.

(S(X)s.1. €) = / t dx!

u . t .
:/ dx(,+/ dx,

= <S(X)s,u ® S(X)u,t, ei).
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Signatures Curves on euclidean space

t ) .

(S(X)ss €7 = / (x, = xi)dx]
u . t . .
=/<4—XQM¢+/<w—x9M¢

u ) t , ) . . ) )
=/R4—4mw+/kw—mm4+uw«md—%)
= (S(X)su ® S(X)us €5)
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Signatures Curves on euclidean space

Signatures can be easily computed for certain paths.

If x is a straight line, i.e. x; = a + bt with a,b € RY then

_sy £
<S(X)s,t, ei1~--ip> = % l_[ b,j
! =

Indeed
(u=s)p! T
<S(X)s,t, ei1-~-ip> = } (p — 1)| 1—[ b,Jb du
(t—s)P
= T l_[ blj
j=1
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Signatures Curves on euclidean space

Therefore

(t- s)2b (t—s)

SX)st=1+(t—s)b+ 2 ®b+Tb®b®b+~--:exp®((t—s)b).

By Chen'’s rule, if x is a general piecewise linear path with slopes b, ..., b, € RY
between times s < t; < --- < t;—1 < t then

S(X)s.t = expg((t1 = $)b1) ® - - - ® expg((t = tm-1)bpm).
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Signatures Curves on euclidean space

Some further properties:

@ Invariant under reparametrization: if ¢ is an increasing diffeomorphism on [0, 1]

then
S(xo ‘P)s,t = S(X)s,t-

@ Characterizes the path up-to irreducibility. If S(x) = S(y) for two irreducible
paths then y is a translation of x.

The signature takes values on a group G with ® as composition.

In practice, a suitable truncation of S(x) is considered, and this also belongs to a
group G, m > 1.
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Signatures  Some applications

The basic workflow for signatures in applications is to convert data streams into paths.

This can be done in several ways: linear interpolation, axis paths, lead-lag transforms,
cumulative sums, etc. ..

One also has to choose the truncation level.

There is some redundancy in the signature due to the shuffle relations. A more
efficient approach is to work with the so-called log-signature.
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Signatures  Some applications

Applying some transformations one can read off some information from the signature:

@ Mean

@ Quadratic variation, i.e. variance

For Machine Learning applications, levels of the signature are selected as explanatory
variables for the features of a path. An example of objective function (taken from
Gyurkd, Lyons, Kontkowski & Field; 2014)

2

min Bw(S(Xk)o1. W) = ¥k | +a |Bw|
B

k=1 \|w|=m lwl<M
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Signatures  Some applications

This framework has been applied to

@ finanical data streams,

@ sound compression (Lyons & Sidorova, 2005),

© chinese character recognition (Graham, 2013; Lianwen, Weixin & Manfei, 2015),
@ pattern recognition in MEG scans (Gyurkd, Lyons & Oberhauser, 2014) and

© behavioural patterns of patients with bipolar disorder.
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Rough Paths
Definition (Lyons (1998))

A rough path of roughness 6 > 1 is a map X: [0,1]?> — T(V)<m such that
Xs,t = Xsu ® Xy¢ and

[{ Xs.¢ e,-1...,-p)| < Gplt - 5|p/9, = 1

where m = [0].

The (trucated) signature is the “canonical lift” of a path of bounded variation to a
rough path of roughness 6.

Theorem (Lyons (1998))

Any path X : [0,1]> — T(V)).,, satisying Chen’s rule and the analytic bound admits
a unique extension X : [0,1] — T (V) with the same properties.
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Rough Paths

Definition (Lyons (1998))
A geometric rough path of roughness @ is the limit of canonical lifts of bounded
variation paths in a certain @-variation metric.

Geometric rough paths are G, valued, where again m = [0].

Definition (Friz=Victoir (2006))
A weakly-geometric rough path of roughness 6 is a G,,-valued path of finite
@-variation.

Geometric rough paths provide a “universal” description of flows controlled by x.
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Rough Paths  Link to ODEs
For a 1-dimensional smooth path x, consider the controlled differential equation

e = V(ye)X.

To first order we have

t
Ve ys = V<ys>/ %o du + o(] - s])
S

To second order

t t u
Ve —ys = V(ys) / %o du + V' (ys)V (ys) / / % %o dvdu + o(|¢ - s[2).
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Rough Paths  Link to ODEs

We know that Brownian motion a.s. has finite 8-variation for any 6 > 2.

For 2 < 6 < 3 and any fixed realization
. . t . . H
Xse=T1+ (B; — Bls) e + / (BL - B’s) o dB{, ejj
N

is a weakly-geometric rough path over B.
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Shape analysis

Shapes are modeled as unparametrized curves, i.e. equivalence classes of elements
under the action of the orientation-preserving diffeomorphism group of a fixed interval.

The similarity between two shapes [c] and [¢’] is defined by a distance ds on shape
space, defined as

ds([c], [¢')) = igf dp(c, c’ o ).

A possible choice is the elastic metric

dp(c,c’) = \//”R(C)t — R(c")|? dt
I
_ (Lg)(eo)

where R(c); = = is the Square-Root Velocity Transform (SRVT).
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Shape analysi

is

Motion capture records a set of 3 Euler angles for some of the actor's joints.

head
hand I
. wrist upper neck hand
radius Jlower neclf/'/'gr'ist
radius
humerus ™, [/./humerus
clavicle~—"Tlavicle
thorax
upper back
lower back
root
hipjoin / \ hipjoint
femur femur
tibia / tibia
/ foot foot
< toes toe;\.,
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Shape analysis

For each joint recording we have a path in SO(3).

”

The goal is to cluster these recordings according to some labels, e.g. “walk”, “run”,
“jump”, etc. ..

Current methods use the SRVT and the elastic metric to do this.

These are computationally demanding (dynamic programming) and in the end we
throw away the solution to the optimization problem.
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Shape analysis  Signatures on Lie Groups

Let G be a d-dimensional Lie group with Lie algebra g.
The Maurer—Cartan form on G is the pushforward of left translation:
wg(v) = (Lg-1)sv, v ET,G.

It is a g-valued 1-form, i.e. a smooth section of (M X g) ® T*G. In other words, w,
maps T,G into g. In particular, it can be written as

w:X1®w1+-~-+Xd®wd

where w', ..., w? are suitable 1-forms on G and Xi, ..., Xy is a basis of g.
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Shape analysis  Signatures on Lie Groups

Chen defines the signature over the interval [s, t] of a smooth curve a: [0,1] — G as
the tensor series S(a)s+ with coefficients

(S(@ars 1y i= 1. (S@as iy @ &) = [ (S i) (60 .

When G = R this definition coincides with the previous one by observing that

w' =dx’, ie.
. .1 . d
we, () = d,e1+---+d/eq

with eq, ..., ey the canonical basis of R,
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Shape analysis  Signatures on Lie Groups
An example: let G = H3 be the Heisenberg group, that is,

1
H; =410 X, ¥, z€R
0

O = X
=< N

Its Lie algebra b3 is spanned by the matrices
010 000
X =10 0 O], Y=10 O 1|, Z =
000 000
with [X,Y]=Z,[X,Z]=[Y,Z]=0.
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Shape analysis  Signatures on Lie Groups

In this group, the Maurer—Cartan form is given by

0 dx dz-xdy
wg =0 O dy when g =
0 O 0

o o=
o — X
=< N

In particular

t t t
S(a)s,t:1+/ a, du e1+/ &, du e2+/ (& —aXa))du es +
S S S

-+ € T(R?)
where

1 af af
a=|0 1 af
0O 0 1
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Shape analysis  Signatures on Lie Groups

o
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Shape analysis  Signatures on Lie Groups
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Shape analysis  Signatures on Lie Groups

Gracias!
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