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Shape Analysis: Practical Setup

The problem is to find a similarity measure (metric) between shapes that is:

1. accurate enough, in that it distinguishes different types of motion (clustering), and

2. easy (and fast) to compute.

Our main application is to computer motion capture.
For each motion, we get a set of curves in SO(3), representing the rotation of joints
relative to a fixed origin (root).
Given two motions, we want to compute some kind of distance between them.
We use data from the Carnegie Melon University MoCap Database http://
mocap.cs.cmu.edu.
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Shape Analysis: Technical Setup

Shapes are viewed as unparametrized curves taking values, in our case, on a finite-dimensional Lie group G whose
Lie algebra is denoted by g.

We identify curves modulo reparametrization.

For technical reasons, we restrict to the space of immersions

Imm B {c : [0, 1] → G | c′ , 0}

The group D+ of orientation-preserving diffeomorphisms of [0, 1] acts on Imm by composition

c .ϕ B c ◦ϕ.

We denote S B Imm/D+.
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Shape Analysis: Technical Setup

Similarity between shapes is then measured by

dS([c], [c
′]) B inf

ϕ
dP(c, c

′.ϕ).

The (pseudo-)distance dP on parametrized curves must be reparametrization invariant.

The standard choice is obtained through a Riemannian metric on Imm. In the end one gets

dP(c, c
′) =

√∫ 1

0
‖q (t ) − q ′(t )‖2 dt

where

q (t ) B
(R−1
c(t )
)∗( Ûc(t ))√
| Ûc(t )|

is called the Square root velocity transform (SRVT) of the curve c.
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Shape Analysis: Technical Setup

Some observations about dP:

1. it is only a pseudometric.

2. it corresponds to the geodesic distance of a weak Riemannian metric on Imm, obtained as the pullback of the
usual L2 metric on curves in g under the SRVT.

3. it is reparametrization invariant.

Hence, the similarity measure for shapes is

dS([c], [c
′]) = inf

ϕ∈D+

(∫ 1

0




q − (q ′.ϕ)√ Ûϕ


2)1/2.
This optimization problem is often solved using dynamic programming.
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Signatures

Signatures, introduced by K.T. Chen (1957) and generalized by Lyons (1998) provide a “universal” representation of
paths in Òd .

Definition

Let x : [0, 1] → Òd , given a multi-index I = (i1, . . . , in) ∈ {1, . . . , d }
n define

S (x )I B

∫
· · ·

∫
0<s1<···<sn<1

Ûx i1(s1) · · · Ûx
in(sn) ds1 · · · dsn .

The full collection S (x ) B (S (x )I : I ) is called the signature of x .

Some examples:

S (x )i =

∫ 1

0
Ûx is ds = x i (1) − x i (0), S (x )i j =

∫ 1

0
(x i (s) − x i (0)) Ûx j (s) ds .
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Signatures

Some of its properties are:

1. It is reparametrization invariant, i.e. if ϕ ∈ D+ then S (x ◦ϕ) = S (x ).

2. Characterizes the path up to the removal of excursions.

3. It is invertible under certain assumptions.

Some observations:

1. This representation of the path is infinite dimensional, but it can be made finite-dimensional at the cost of losing
some information about the path.

2. There is some redundancy. However log-signature provides a fully compressed representation of x .

3. The first few levels have a clear geometrical interpretation.
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Signatures

In practice, we are only given discrete data, i.e. a sequence of samples (X1, . . . ,XN ).

We form a path x by linearly interpolating these values.a

In this case, the iterated integrals are actually explicit, so no need for numerical integration. In fact, if x (t ) = a + bt
then

S (x ) = exp⊗(b)

in the tensor algebraT (Òd ).

Since there is a fixed number of multi-indices having lenght less than some value, the size of the representation
does not depend on the number of samples N . The same holds for the log-signature.

aHowever, there exists a fully discrete approach recently introduced by Diehl, Ebrahimi-Fard and T.
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Signatures on Lie groups

Let G be a d -dimensional Lie group with Lie algebra g.

Definition

The Maurer–Cartan form of G is the g-valued 1-form

ωg (v ) B (R
−1
g )∗(v ), g ∈ G ,v ∈ TgG .

In particular, if X1, . . . ,Xd is a basis for g then ωg (v ) = ω1
g (v )X1 + · · · + ω

d
g (v )Xd .

Definition (Chen (1954))

Consider a curve α : [0, 1] → G . The signature S (α) is defined as the signature of the Òd -valued path x such that

Ûx (t ) = (ω1
α(t )( Ûα(t )), . . . ,ω

d
α(t )( Ûα(t ))).
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Signatures on Lie groups

It is known that S (x ) =Y (1) whereY solves
ÛY =Y ⊗ Ûx

inT (Òd ).

This allows for an interpretation of S (x ) as a (infinite dimensional) Lie group exponential.

α ∈ C ([0, 1],G ) C ([0, 1], g)

C ([0, 1],G) C ([0, 1],L(Òd ))

ω=δ r

Y

Evol

α ∈ C ([0, 1],G ) C ([0, 1], g)

G C ([0, 1],L(Òd ))

ω=δ r

S

evol
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Signatures on Lie groups: The case of SO(3)

In our setting, we have just a sample of the curve, that is, a sequence of rotation matrices A1, . . . ,AN ∈ SO(3).

We do “geodesic interpolation”, which corresponds to linear interpolation in this context.

Given A,B ∈ SO(3), define α : [0, 1] → SO(3) by

α(t ) B exp(t log(BAᵀ))A,

so that α(0) = A and α(1) = B .

For this choice,
ωα(t )( Ûα(t )) = log(BAᵀ).

Therefore, we have also an easy expression for the signature of α .
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Clustering: Comparing signatures

We need a way of comparing signatures. There are several choices:

1. using the metric inherited fromT (Òd ), i.e.

d (g , h) B ‖h − g ‖T (Òd ),

2. using an ad-hoc metric for signatures:

ρn(S (x ), S (y )) B ‖S (x ) ⊗ S (ỹ )‖,

3. compare log-signatures.

We also compare with currently used methods based on the SRVT, i.e. dynamic programming.
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Clustering
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Clustering
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Clustering: a concrete example

Now, let ca and cb correspond to “walking” and “jogging” animations.

We generate a geodesic interpolation c̄ between the curves, i.e. c(0, ·) = ca , c(1, ·) = cb and for s ∈ (0, 1) the
animation c(s, ·) is a mixture of both.

In practice, this is generated using the SRVT so in fact we are doing linear interpolation at the level of the Lie
algebra.

Signatures were computed using the iisignature Python package by J. Reizenstein and B. Graham.

We can then look at the behaviour of the different similarity measures when s varies.

Remark

Since the distance dS coincides with the geodesic distance, we will see a straight line for this metric.
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Clustering: a concrete example (cont.)
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Clustering: a concrete example (cont.)
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Clustering: a concrete example (cont.)
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Perspectives

Questions:

1. Pullback metric from signatures to curves.

2. Better understanding of the various metrics. Dependence on the underlying norm. Weighted norm with learned
wieghts.

3. Clarification of the geometrical interpretation of the signature.
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Thanks!
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