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Goals

1. Motivation

2. Moments and cumulants

3. Free Wick polynomials
4. If time permits:

4.1 Modification of products

4.2 Relation to power series
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Classical Wick polynomials: A probabilist’s approach

Definition

Let X be a r.v. with ÅX n < ∞ for all n > 0.
Recursive definition:

W ′n(x ) = nWn−1(x ), ÅWn(X ) = 0.

For example:W1(x ) = x − ÅX , W2(x ) = x
2 − 2xÅX + 2(ÅX )2 − ÅX 2, . . .

Definition (Multivariate Wick polynomials)

∂

∂xi
Wn(x1, . . . , xn) =Wn−1(x1, . . . , xi−1, xi+1, . . . , xn), ÅWn(X1, . . . ,Xn) = 0.

3/27 Free Wick polynomials



Classical Wick polynomials: A naïve physics approach

Let F ◦ B ÃΩ ⊕ H ⊕ H ◦2 ⊕ · · · be the symmetric Fock space over H .

For each f ∈ H we have (bosonic) annihilation and creation operators a(f ), a†(f ) on F ◦ such that

a(f )Ω = 0, a†(f )Ω = f

and

a(f )(f1 ◦ · · · ◦ fn) =
n∑
j=1

〈f , fj 〉f1 ◦ · · · ◦ fj−1 ◦ fj+1 ◦ · · · ◦ fn,

a†(f )(f1 ◦ · · · ◦ fn) = f ◦ f1 ◦ · · · ◦ fn .

They satisfy the (canonical) commutation relation

a(f )a†(g ) − a†(g )a(f ) = 〈f , g 〉1.
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Classical Wick polynomials: A naïve physics approach

The normal order operator N puts creation operators to the left of annihilation operators.

For example N(a†(f )a(g )) = a†(f )a(g ) and N(a(f )a†(g )) = a†(g )a(f ), etc.

The (unnormalized) position operators p(f ) B a(f ) + a†(f ) satisfy N(p(f )) = p(f ) and

p(f )p(g ) = a(f )a(g ) + a(f )a†(g ) + a†(f )a(g ) + a†(f )a†(g )

= a(f )a(g ) + a†(g )a(f ) + a†(f )a(g ) + a†(f )a†(g ) + 〈f , g 〉1
= N(p(f )p(g )) + 〈f , g 〉1,

i.e. N(p(f )p(g )) = p(f )p(g ) − 〈f , g 〉1.

Denoting X = p(f ),Y = p(g ) and Å(b) B 〈bΩ,Ω〉 we see that N(XY ) = XY − Å(XY ) =W2(X ,Y ).

By definition Å[N(p(f1) · · · p(fn))] = 0.
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Classical Wick polynomials: Link to Dyson–Schwinger

Suppose we have a measure of the form µ(dx ) = e−S (x ) dx and set I [f ] =
∫
f dµ.

Integrating by parts we get, for any nice function f , the Dyson-Schwinger equation

I [∂i f − (∂iS )f ] = 0.

The measure µ is characterized by the values I [f ], for nice f , usually polynomials are enough.

For a 1-D Gaussian weight the equation is simply I (f ′ − xf ) = 0 which entails I (x 2n) = (n − 1)!! and zero else.

This ultimately means that Z [J ] B Ix (eJx ) = e
1
2J

2
, or I [eJx−

1
2J

2
] = 1. Observe also that (J − d

dJ )Z [J ] = 0.

Actually, the Dyson-Schwinger equaition implies that I (Hn+1) = −I (H ′n − xHn) = 0, so that re-expanding x n in
the Hn basis:

I (x n) =
n∑
k=0

αk I (Hk ) = α0
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Classical Wick polynomials: Link to Dyson–Schwinger

More generally, for a multidimensional Gaussian weight S (x ) = 1
2gi j x

ix j a similar argument gives that

I (x j x i1 · · · x in) =
n∑
k=1

g i jk I (x i1 · · · x̂ ik · · · x in).

But, since we have that I (Hn) = 0 we can again re-expand any monomial in the Hn basis and recover the above
formula from our knowledge of Hn .

In our annihilation–creator operator example:

〈p(f1)p(f2)Ω,Ω〉 = 〈f1, f2〉
〈p(f1)p(f2)p(f3)p(f4)Ω,Ω〉 = 〈f1, f2〉〈f3, f4〉 + 〈f1, f3〉〈f2, f4〉 + 〈f1, f4〉〈f2, f3〉
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Classical Wick polynomials: Hopf-algebraic approach

Definition

A noncommutative probability space is a tuple (A,ϕ) where A is an associative algebra and ϕ : A→ k is unital,
i.e. ϕ(1A) = 1.

OnT (A) B
⊕

n>0A
⊗n define ∆ : T (A) → T (A) ⊗T (A) by

∆�(a1 · · · an) B
∑
S⊆[n]

aS ⊗ a[n]\S .

This induces a product onT (A)∗:
µ � ν B (µ ⊗ ν)∆�.
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Classical Wick polynomials: Hopf-algebraic approach

Define φ : T (A) → k by φ(a1 · · · an) B ϕ(a1 ·A · · · ·A an) and extend toT (A) B k 1 ⊕T (A) by φ(1) = 1.

There is c : T (A) → k with c(1) = 0 such that φ = exp�(c). In particular

φ(a1 · · · an) =
∑
π∈P (n)

∏
B∈π

c(aB).

Definition

Since φ is invertible, we setW B (id ⊗ φ−1)∆�.

Theorem

The mapW : T (A) → T (A) is the unique linear map such that ∂a ◦W =W ◦ ∂a and φ ◦W = ε. Its inverse is
given byW −1 = (id ⊗ φ)∆�.

Observe also that trivially ε ◦W −1 = φ = exp�(c).
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Moments and cumulants

We have other notions of independence: freeness, boolean idependence, monotone independence, etc. . .

Each is characterised by a set of cumulants: κ, β , ρ resp.

On the double tensor algebraT (T (A)) consider

∆(a1 · · · an) B
∑
S⊆[n]

aS ⊗ aJ S1
| · · · |aJ S

k
.

This splits as

∆≺(a1 · · · an) B
∑

1∈S⊆[n]

aS ⊗ aJ S1
| · · · |aJ S

k
,

∆�(a1 · · · an) B
∑

1<S⊆[n]

aS ⊗ aJ S1
| · · · |aJ S

k
.
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Moments and cumulants

Therefore, the convolution product µ ∗ ν B (µ ⊗ ν)∆ also splits:

µ ≺ ν B (µ ⊗ ν)∆≺, µ � ν B (µ ⊗ ν)∆�.

Consider Φ : T (T (A)) → k the unique character extension of φ.

Theorem (Ebrahimi-Fard,Patras; 2014, 2017)

The cumulants κ, β , ρ are the unique infinitesimal characters ofT (T (A)) such that

Φ = ε + κ ≺ Φ
= ε + Φ � β

and Φ = exp∗(ρ).
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Moments and cumulants: Some known results

Theorem (Speicher; 1997)

ϕ(a1 ·A · · · ·A an) =
∑

π∈NC (n)

∏
B∈π

κ(aB).

Theorem (Speicher, Woroudi; 1997)

ϕ(a1 ·A · · · ·A an) =
∑

π∈I nt (n)

∏
B∈π

β (aB).

Theorem (Hasebe, Saigo; 2011)

ϕ(a1 ·A · · · ·A an) =
∑

(π,λ)∈M (n)

1

|π |!

∏
B∈π

ρ(aB)
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Moments and cumulants

We write
Φ = E≺(κ) = E�(β ) = exp∗(ρ).

Every character has an inverse for ∗. For Φ we have

Φ−1 = E�(−κ) = E≺(−β ) = exp∗(−ρ).

In fact, characters onT (T (A)) form a group denoted by G .

Observe that ∆ : T (A) → T (A) ⊗T (T (A)), i.e. we have a coaction.

Thus, the character group G acts on End(T (A)).
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Wick polynomials

Definition

By analogy, defineW : T (A) → T (A) by
W B (id ⊗ Φ−1)∆.

Examples:

W (a) = a − φ(a)1
W (ab) = ab − aφ(b) − bφ(a) + (2φ(a)φ(b) − φ(a · b))1
W (abc) = abc −ϕ(c)ab −ϕ(b)ac −ϕ(a)bc

− [φ(b · c) − 2φ(b)φ(c)]a + φ(a)φ(c)b − [φ(a · b) − 2φ(a)φ(b)]c
− [φ(a · b · c) − 2φ(a)φ(b · c) − 2φ(c)φ(a · b) − φ(b)φ(a · c)
+ 5φ(a)φ(b)φ(c)]1
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Wick polynomials

By definition
Φ ◦W = (Φ ⊗ Φ−1)∆ = ε

that is, Φ(W (a1 . . . an)) = 0 for any a1, . . . , an ∈ A.

It’s easy to check thatW is invertible withW −1 = (id ⊗ Φ)∆ and so Φ = ε ◦W −1.

In particular
a1 · · · an =

∑
S⊆[n]

W (as)Φ(aJ S1
) · · ·Φ(aJ S

k
).

Theorem (Anshelevich, 2004)

W (a1 · · · an) =
∑
S⊆[n]

aS
∑

π∈Int([n]\S )
π∪S∈NC (n)

(−1)|π |
∏
B∈π

κ(aB).
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Wick polynomials

Theorem

The Wick polynomials satisfy the recursion

W (a1 · · · an) = a1W (a2 · · · an) −
n−1∑
j=0

W (aj+1 · · · an)κ(a1 · · · aj ).

Proof.

W = (id ⊗ Φ−1)∆

= id ≺ Φ−1 + id � Φ−1

= id ≺ Φ−1 − id � (Φ−1 � κ)

= id ≺ Φ−1 −W � κ . �
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Wick polynomials

Now consider the full Fock space F = ÃΩ ⊕ H ⊕ H ⊗2 ⊕ · · · .

We have annihilation and creator operators

a(f )(f1 ⊗ · · · ⊗ fn) = 〈f , f1〉f2 ⊗ · · · ⊗ fn, a∗(f )(f1 ⊗ · · · ⊗ fn) = f ⊗ f1 ⊗ · · · ⊗ fn .

This time they satisfy a(f )a∗(g ) = 〈f , g 〉1.

Set as before p(f ) = (a(f ) + a∗(f )). We have

〈p(f1)p(f2)Ω,Ω〉 = 〈f1, f2〉
〈p(f1)p(f2)p(f3)p(f4)Ω,Ω〉 = 〈f1, f2〉〈f3, f4〉 + 〈f1, f4〉〈f2, f3〉.

We get a free version of Wick’s theorem (Effros, Poppa; 2003).
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Wick polynomials

Theorem

The Wick polynomials can be expressed in terms of boolean cumulants

W = (id − id � β ) ≺ Φ−1

Proof.

Previous theorem plus the fact that κ = Φ � β ≺ Φ−1. �

Definition

The Boolean Wick map is defined by
W ′ B id − id � β .

Therefore

W ′(a1 · · · an) = a1 · · · an −
n∑
j=1

aj+1 · · · anβ (a1 · · · aj ).
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Wick polynomials

Theorem

Boolean Wick polynomials are centered

Proof.

Φ ◦W ′ = Φ − Φ � β = ε �

Theorem

We have

a1 · · · an =W
′(a1 · · · an) +

n−1∑
j=1

Φ(a1 · · · aj )W
′(aj+1 · · · an).

From a previous computationW ′ =W ≺ Φ, that is

W ′(a1 · · · an) =
∑

1∈S⊆[n]

W (aS )Φ(aJ S1
) · · ·Φ(aJ S

k
).
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Wick polynomials: Two-state cumulants

Assume we have a second state ψ : A→ k .

Definition

Two-state cumulants are defined implicitly by

ϕ(a1 ·A · · · ·A an) =
∑

π∈NC (n)

∏
B∈Outer(π)

Rϕ,ψ(aB)
∏

B∈Inner(π)

κψ(aB).

Theorem (Ebrahimi-Fard, Patras; 2018)

Rϕ,ψ is the unique infinitesimal character ofT (T (A)) such that

Φ = ε + Φ � (Ψ−1 � Rϕ,ψ ≺ Ψ).
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Wick polynomials

Directly,
Rϕ,ψ = Ψ � βϕ ≺ Ψ−1.

In particular,

Rϕ,ϕ = Φ � βϕ ≺ Φ−1 = κϕ,
Rϕ,ε = βϕ .

Definition

The conditionally-free Wick polynomials are defined as

W c BW ≺ (Φ ∗ Ψ−1).

This means
W c =

(
id − id � ΘΨ(R

ϕ,ψ)

)
≺ Ψ−1

where ΘΨ(µ) B Ψ−1 � µ ≺ Ψ.
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The q -deformation

Back to the Fock space interpretation, we actually have a whole family parametrized by q ∈ (−1, 1). The bosonic
(i.e. symmetric) corresponds to q = 1, the free case corresponds to q = 0.

The next interesting case is the fermionic setting q = −1.

For any q ∈ (−1, 1), the associated annihilation and creation operators are

a(f )(f1 ⊗ · · · ⊗ fn) =
n∑
j=1

q j−1〈f , fj 〉f1 ⊗ · · · ⊗ f̂j ⊗ · · · ⊗ fn

a∗(f )(f1 ⊗ · · · ⊗ fn) = f ⊗ f1 ⊗ · · · ⊗ fn .

satisfying the q -commutator relation

[a(f ), a∗(g )]q B a(f )a∗(g ) − qa∗(g )a(f ) = 〈f , g 〉1.

22/27 Free Wick polynomials



Thank you!
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The q -deformation: Modification of products

SinceW is invertible, one can induce a product onT (A) by

x • y =W (W −1(x )W −1(y ))

Proposition

The • product admits the closed-form expression: for x = a1 · · · an , y = an+1 · · · an+m

x • y =
∑

S⊆[n+m]

aSΦ(aJ S1
) · · ·Φ(aJ S

k
).
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Power series

The relations between moments and cumulants can also be encoded by power series.

In the classical case, one uses exponential generating functions:∑
n>0

mn
λn

n !
= exp

(∑
k>0

ck
λk

k !

)
.

In the noncommutative setting, these are replaced by ordinary generating functions.

Let
M (w ) B 1 +

∑
α

ϕ(aα)wα , R (w ) B
∑
α

κ(aα)wα , η(w ) B
∑
α

β (aα)wα .

Considering a new set of variables zi = wiM (w ) we have

M (w ) = 1 + R (z ), M (w ) = 1 + η(w )M (w ).
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Power series

It turns out that the Hopf-algebraic language above describes two operations on power series.

Let G p and G c denote the group of invertible power series and formal diffeomorphisms, resp.

For f , g ∈ G p define
f g (w ) B g (w )f (z ), zi = wig (w ).

Also let
(f x g )(w ) B f (z ), zi = wig (w ).

Given F : T (A) → k let Λ(F ) ∈ k [[w ]] be given by

Λ(F )(w ) = F (1) +
∑
α

F (aα)wα .
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Power series

Theorem

Λ(F ∗G ) = Λ(F )Λ(G )

Theorem

Λ(F ≺ G ) = Λ(F )x Λ(G ).

Theorem

Λ(F � G ) = Λ(F )y Λ(G ).
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