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2 LEPSKI, O.V. AND SPOKOINY, V.G.�Donoho, I. Johnstone, G. Kerkyaharian and D. Piard on wavelet estimation. It wasshown that the lassial linear methods of nonparametri estimation do not provide theoptimal rate of onvergene when funtions with non-homogeneous smoothness proper-ties are onsidered. To be rate-optimal, a method of estimation has to be loally adaptive(\spatially adaptive") and hene nonlinear. As an alternative to linear methods, a non-linear wavelet proedure was proposed whih turned out to be eÆient for a wide rangeof riteria, see Donoho and Johnstone (1992, 1994), Kerkyaharian and Piard (1993),Delyon and Juditski (1994), Donoho et al. (1995).Another \spatially adaptive" proedure was proposed in Lepski et al.(1994). This is akernel estimator with a variable data-driven bandwidth. It turned out that this estimatorretains most of the optimal properties possessed by the wavelet one. Lepski and Spokoiny(1995) enlarged on this result and proved that a slightly modi�ed version of the initialproedure is asymptotially sharp-optimal for the problem of adaptive estimation at apoint. This paper presents one more appliation of the idea of pointwise adaption: weapply it to the problem of hypothesis testing.We are unable to desribe in details the historial bakground of this problem. Wemention only a few early pertinent results by Neyman (1937), Mann and Wald (1942),Huber (1956) among others. For more information see Ingster (1993). It was Ingster(1982) who initiated the study of the problem of testing a hypothesis from the modernminimax nonparametri point of view. True, some losely related onsiderations appearedin earlier papers by Burnashev (1979) and Ibragimov and Khasminskii (1977). Furtherprogress in this diretion was mostly due to the St.-Petersburg shool, see Ingster (1993)for the detailed desription of these results. We mention here only a few points whihare important for our further exposition.Typially, a null hypothesis orresponds to our belief that the observed data are orga-nized in a relatively simple way, whih means that the struture of the underlying modelis ompletely spei�ed. Therefore, when onsidering a goodness-of-�t problem of suh asort, it is natural to measure the quality of any test by its sensitivity to perturbations orontaminations of this model. The optimal test has to be sensitive for as large a set ofalternatives as possible.Below, we onsider the \signal + noise" model when the observed proess X is de-sribed by the stohasti di�erential equationdX(t) = f(t)dt+ "dW (t)where " is the noise level and W denotes a standard white noise proess. The nullorresponds to the ase when the signal is identially zero or, in the other words, no signalis present. The orresponding testing an be viewed as a problem of signal detetion.A set of alternatives an be naturally de�ned in the following way. Let f be \true".We say that this funtion belongs to the alternative set if it is separated away from the



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 3\null" in some integral Lr -norm:kfkr := �Z jf(t)jrdt�1=r � %: (1.1)The radius % haraterizes the sensitivity of testing. For a small noise level " , wemay expet that % an be also small. Hene, it is assumed that % depends on " ,% = %" , and our aim is to desribe the optimal rate of deay %" ! 0 under whihtesting with presribed probabilities of errors is still possible. Note, however, that theassumption (1.1) is not suÆient for a onsistent testing, see Ibragimov and Khasminskii(1977), Burnashev (1979) or Ingster (1982): with no assumption on the regularity ofthe signal, it is impossible to distinguish between this signal and a noise. Typially,one additionally assumes that the underlying funtion f possesses some smoothnessproperties. A standard assumption here is that f belongs to some funtion lass F , forinstane, to some H�older or Sobolev ball. The reent works done by Donoho, Johnstone,Kerkyaharian and Piard on wavelet methods in statistial inferene showed that theformalism of the more general Besov funtion lasses provides a useful tehnial tool fornonparametri statistial onsiderations. For a statistial analysis, the following fatorsappear to be of the greatest importane: the smoothness degree s , the relation betweenthe norm power p , in whih we measure smoothness properties of the funtion f andthe norm power r , in whih we measure errors of estimation or the distane between thenull and the alternative set.For the problem of estimation, the ase p � r is lassial and here the linear methodsprovide the optimal rate of onvergene whih is equal to "2s=(2s+1) . If p < r , whihorresponds to funtions with non-homogeneous smoothness properties, the minimax rateof estimation is the same, but it annot be aieved by any linear method, see Nemirovski(1985), Donoho and Johnstone (1992).The situation signi�antly hanges for the problem of hypothesis testing. If p = r = 2 ,then the optimal rate of testing is "4s=(4s+1) , see Ingster (1982), whih is better than therate of estimation. For this ase not only the optimal rate is desribed, but also asymptot-ially optimal (up to an exat onstant) test proedures were onstruted, see Ermakov(1990) and Ingster (1993). The same rate is optimal for r � 2 and p � 2 , Ingster (1986).Another unexpeted feature of the testing problem is that for p = r > 2 the rate of test-ing depends on p . More preisely, see Ingster (1986), it is "2s=(2s+1�1=p) . However, thease of p < r , whih orresponds to a set of alternatives with inhomogeneous smoothnessproperties, was not studied. At the same time, just as in the estimation problem, it is ofessential importane both from the theoretial point of view and for appliations.Here we fous on the situation when r = 2 and p < 2 whih admits of relatively simpleand evident desription and the proofs are learer. The ases when p < r and r > 2 orwhen r > p � 2 and r < 2; p < 2 are more involved and lead to new phenomena. Any



4 LEPSKI, O.V. AND SPOKOINY, V.G.�further disussion of the problem of testing in a Lr -norm with r 6= 2 lies beyond thesope of this paper.In the next setion we formulate our problem and state the main results pertaining tothe optimal rate of testing. In Setion 3 we present tests whih ahieve the optimal rateof testing. Next we mention some possible diretions for further developments and wepostpone the proofs until the last setion.2. The minimax rate of testingIn this setion we speify the problem of hypothesis testing and state the main results.2.1. The modelSuppose that we are given the observations X(t); t 2 [0; 1℄ desribed by the stohastidi�erential equation dX(t) = f(t)dt+ "dW (t); 0 � t � 1; (2.1)where W (t) is a Brownian motion and f is an unknown funtion.2.2. The null and the alternativeOur aim is to test the null hypothesis H0 that the regression funtion (signal) f isidentially zero,H0 : f � 0:Under the alternative, we assume that f is separated away from the null in the L2 -norm and belongs to some smoothness lass F . Below, we assume that F is a Besovball Bsp;q(M) with Bsp;q = ff : kfkBsp;q �Mgwhere, see Triebel (1992),kfkBsp;q = 8>><>>: kfkp + � 1R0 h�sqkos f(�; h)kqp dhh �1=q ; if r <1;kfkp + sup0�h�1h�skos f(�; h)kp; if q = +1:Here kfkp is the Lp-norm, kfkpp = R 10 jf jp, and the loal osillation os f(x; h) of f isde�ned as os f(x; h) = inf supjy�xj�h jf(y)� P (y)j:



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 5The in�mum here is taken over all polynomials of order m, whih is the maximal integersmaller than s , and the supremum with respet to x; y is restrited to the interval [0; 1℄ .The parameters s; p; q;M are suh that p; q � 1 , s;M > 0 and sp > 1 .We arrive at a set of alternatives F(%") of the formH1 : F(%") = ff 2 Bsp;q(M); kfk � %"g:Here kfk means the usual L2 -norm, kfk2 = R 10 f2(t)dt .Remark 2.1. For an integer s , one may onsider instead of the Besov norm k � kBsp;q theSobolev seminorm k � kW sp withkfkW sp = �Z jf (s)(t)jpdt�1=pand f (s)(t) stands for the s -th generalized derivative of the funtion f .The values of s; p; q;M entering into the de�nition of the alternative set are assumed�xed and known. Note, however, that only s and p are important for the results and theonstrution of the optimal tests. The problem of adaptive testing when the smoothnessparameters are unknown is briey disussed in Setion 4.2.3. The problem of hypothesis testingA test �" is a rule to aept or to rejet the null hypothesis by means of the observedproess X(t); 0 � t � 1 , therefore, it is a measurable funtion of observations takingvalues in the two-point set f0; 1g . The value �" = 0 is treated as aepting H0 , and�" = 1 means that the test rejets H0 .The quality of any test is measured by the probabilities of the orresponding errors.The probability �0(�") of error of the �rst kind is the probability under the null to rejetthe hypothesis, �0(�") = P0(�" = 1)where P0 is the distribution on the spae of observations orresponding to H0 .The probability of error of the seond kind an be viewed as the probability to aeptH0 if f belongs to the alternative set H1 . We denote it by �1(�"; %") taking intoaount that H1 is a omposite alternative:�1(�"; %") = supf2F(%")Pf (�" = 0)where Pf is the distribution orresponding to a partiular funtion f .We are studying the asymptoti behavior of these probabilities as the noise level "tends to zero. We are interested in desribing the fastest rate of deay to zero of suh aradius %" for whih it is still possible to onstrut a test �" suh that at least for a small



6 LEPSKI, O.V. AND SPOKOINY, V.G.�level noise " the probabilities �0(�") and �1(�"; %") do not exeed some presribedvalues �0 and �1 respetively.2.4. The main resultsIngster (1982{1993) studied the above problem for funtion lasses of the Sobolev typeand for p � 2 . The optimal rate %" in this ase is%" = " 4s4s+1 :Here we are onentrating on the situation when p < 2 . As usual, we distinguish theresults obtained for the lower and upper bounds. The �rst of these, related to the lowerbound, desribes the rate for %" whih annot be improved by any test.Theorem 2.1. Let p � 2 , sp > 1 and%" = " 4s004s00+1 (2.2)where s00 = s� 12p + 14 :Then, for any sequene %0" with %0"=%" ! 0 as "! 0 and for any tests �"lim inf"!0 [�0(�") + �1(�"; %0")℄ � 1:The seond result for the upper bound laims that there exist tests ��" whih providethe rate of testing %" desribed in Theorem 2.1. Their struture is explained in the nextsetion.Theorem 2.2. Let s; p and %" be the same as in Theorem 2.1. For eah positive �0and �1 , there exist a onstant 1 , depending on s; p; q;M , and tests ��" suh thatlim"!0 �0(��") � �0 (2.3)and lim"!0 �1(��"; 1%") � �1: (2.4)3. A test proedureIn this setion we explain the struture of the tests ��" mentioned in Theorem 2.2. Westart with some preliminary disussion.



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 73.1. PreliminariesBelow we give some heuristi explanation of the results and the proposed test proedures.We shall onsider test statistis based on kernel smoothers. Let K be a kernel satis-fying standard onditions, see (K1) { (K5) below. Let us also �x a bandwidth valueh 2 [0; 1℄ (whih we speify later) and onsider a kernel estimatorefh(t) = 1h Z K �t� sh � dX(s); t 2 [0; 1℄:This an be deomposed in a standard way into a deterministi and a stohasti part,efh(t) = fh(t) + �h(t)where fh(t) = 1h Z K �t� sh � f(s)ds;�h(t) = "h Z K �t� sh � dW (s):It is natural to use the value Th = k efhk2 = Z 10 ef2h(t)dtfor testing the null hypothesis H0 : kfk = 0 against the alternative H1 : kfk � %" .Under the null, one has efh = �h andTh = T 0h = Z 10 �2h(t)dt:It is not diÆult to derive that ET 0h = "2kKk2h ;DT 0h = "4d2h ;where d = d(K) is some onstant depending only on the kernel K . Moreover, if�0h = T 0h �ET 0hqDT 0h ;then L ��0h j P0� w�! N (0; 1):This leads to the test of the form �h = 1(�h > ��0)where �h = Th �ET 0hqDT 0h ;



8 LEPSKI, O.V. AND SPOKOINY, V.G.�and �� is the (1� �0) -quantile of the standard normal law.Under the alternative, for some f 2 H1 , we haveTh = Z 10 (fh(t) + �h(t))2dt = kfhk2 + T 0h + ross term:It is easy to show that the \ross term" is relatively small. Hene,�h � �0h + kfhk2(d"2h�1=2)�1where \� " means asymptoti equivalene. But kfhk2 � kfk2=2� kf � fhk2 and there-fore, the test �h detets a signal f from the alternative set ifkfk2 � C("2ph+ kf � fhk2) (3.1)for some suÆiently large C .The value kf�fhk an be estimated by using of the smoothness ondition f 2 Bsp;q . Ifp � 2 , then, see Triebel (1992), kf � fhk � O(hs) . In this ase, minimization over h in(3.1) leads to the bandwidth hoie of h = O(" 44s+1 ) and (3.1) is met for kfk � C1" 4s4s+1with some C1 > 0 . Note that a value of h = O(" 22s+1 ) , whih is typial for the estimationproblem, leads to the rate of testing " 2s2s+1 . This rate is usual for estimation but it isrelatively poor for testing.If p < 2 , then the estimate kf � fhk � O(hs) is no longer true. The onditionf 2 Bsp;q ensures only that kf �fhkp = O(hs) . To get a bound for the L2 -norm, we anapply the embedding theorem for Besov lasses, see Triebel (1992): kf � fhk � O(hs0)where s0 = s � 1=p + 1=2 . This approah obviously leads to the bandwidth hoieh0 = O(" 44s0+1 ) and to the orresponding rate of testing " 4s04s0+1 . Sine s00 > s0 , it is worsethan the optimal rate shown in Theorem 2.2. The situation here is similar to that is metfor the estimation problem. Tests of type �h are analogous to linear methods in theestimation theory. It is known Nemirovski (1985), Donoho and Johnstone (1992), thatfor p < 2 linear methods, an only ahieve the rate with "2s0=(2s0+1) instead of "2s=2s+1 .An improvement an be aomplished by nonlinear methods possessing some \spatiallyadaptive" properties, see Donoho et al. (1995) or Lepski et al. (1994). Below, this ideais extended onto the problem of hypothesis testing. Following Lepski et al. (1994), weapply a nonlinear pointwise-adaptive proedure whih an be regarded as the desribedabove kernel method with a variable data-driven bandwidth. In essene, this methodallows to ontrol the di�erenes jfh(t)� fh=2(t)j for di�erent h from a diadi geometrigrid. If suh a di�erene is for some h and some t 2 [0; 1℄ so large , that it annot beexplained by the noise ituation, then we detet the signal. Otherwise we have a boundof the form jfh(t)� fh=2(t)j � �h with some �h whih allows to estimatekfh � fh=2k2 � kfh � fh=2kppkfh � fh=2k2�p1 � Chsp�2�ph :Our alulatons are based exatly on this idea.



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 9Some more information about the di�erene between the ases of p � 2 and p < 2 anbe extrated from the struture of the least favorable prior distributions for the problemof deteting a random signal. Ingster (1982, 1986) showed that for p � 2 suh a randomsignal is wiggling and uniformly small with the altitude of order "(2s+1)=(4s+1) whih isessentially smaller than the noise level. Note that the Lp -norm of this signal for anyp � 1 is of the same order and depends on p very weakly.By inspeting the proof of Theorem 2.1 one an see that for p < 2 , the struture ofthe least favorable priors is entirely di�erent. Namely, the orresponding random signalis almost everywhere zero with N = "�2=(2s+1�1=p) peaks. Suh a struture is ausedby the extremal problem of maximizing over the given Besov lass the Lp -norm of afuntion when the L2 -norm is �xed. In partiular, the ratio kfkp=kfk2 for suh signalstends to in�nity as " tends to zero. This explains why the rate of testing depends onp and justi�es the using of the notion of an alternative with inhomogeneous smoothnessproperties.3.2. A data-driven bandwidth seletorFor the onstrution of tests we need in splitting the observed data X(�) from (2.1) intotwo independent parts. For a model with disrete time, the usual way of doing this isin splitting the observations into even and odd points. For the ontinuous-time model(2.1), the following method an be used. Let W 0 be a white Gaussian noise independentof W . De�ne two proesses eX and ~~X byeX(t) = X(t) + "W 0(t);~~X(t) = X(t)� "W 0(t):Obviously, eX and ~~X obey the equationsd eX(t) = f(t)dt+ "p2 dfW (t);d ~~X(t) = f(t)dt+ "p2 d ~~W (t);where fW (t) = 2�1=2[W (t) +W 0(t)℄;~~W (t) = 2�1=2[W (t)�W 0(t)℄;are two independent white Gaussian noises. We treat eX and ~~X as two independentdata sets. One part provided by eX will be used for a pointwise bandwidth seletionand the other one, for onstruting the kernel-type test statistis with the plugged-inbandwidth. This splitting proedure obviously leads to some loss of eÆieny whih ismanifested by an inrease in the noise level (by p2 ) for the proess ~~X . This fator p2an be viewed as a payment for the pointwise adaptation.



10 LEPSKI, O.V. AND SPOKOINY, V.G.�Now we introdue a family of kernel estimators with a kernel K satisfying usualregularity onditions. Let m = bs , the largest possible integer smaller than s . Let nowK(u) be a funtion de�ned on the real axis suh that(K1) it is symmetri, K(u) = K(�u) , u 2 R1 ;(K2) it is ompatly supported i.e. K(u) = 0 for juj > b for some b > 0 ;(K3) it is ontinuous;(K4) R K(u)du = 1 ;(K5) R K(u)uidu = 0; i = 1; : : : ;m .In what follows, we omit the integration limit if the integration is taken over the wholereal line.Denote, for given h > 0 and t 2 [0; 1℄ ,efh(t) = 1h Z K � t� sh � d eX(s);~~fh(t) = 1h Z K � t� sh � d ~~X(s):Remark 3.1. These de�nitions should be orreted near the end points t = 0 and t = 1whih might be done in a standard way by replaing the kernel near these points by speialboundary one-sided kernels. Therefore, we atually need three kernels: one (symmetri)for appliation inside the interval (0; 1) ; another one (right-sided with a support of theform [0; b℄ ) for applying near the point 0; and the third one (left-sided with a supportof the form [�b; 0℄ ), near 1. All the three kernels should satisfy the above-mentionedonditions (K1) through (K5) . For more details see, for instane, Lepski et al.(1994).To simplify the exposition, we retain the notation K for the boundary orreted kernel.Now we desribe a pointwise bandwidth seletor introdued in Lepski et al.(1994),see also Lepski and Spokoiny (1995). We begin by introduing a set H . Our pointwisebandwidth takes its values in this set. Denoteh� = " 44s00+1 = " 22s+1�1=p (3.2)and set H = fh = h�2�k; k = 0; 1; 2; : : : ; h � "2g:In partiular, h� is the largest onsidered bandwidth value. We also apply h� to de�nethe boundary orreted kernel: the symmetri kernel K is to be replaed by the right-sided kernel in the interval [0; bh�℄ and by the left-sided kernel in [1� bh�; 1℄ .Given �; h from H with � < h and  = �=h , set�2(�; h) = 2"2� Z jK(u)� K(u)j2du (3.3)



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 11and  (�; h) = �(�; h)p2 ln(h�=�):Denote also C(K) = sup0��1Z jK(u)� K(u)j2duand  (h) = "p2C(K)ph pmaxf2 ln(h�=h); 1g: (3.4)Note that the values C(K);  (�; h) and  (h) depend on t via the boundary orretedkernel K .Given t 2 [0; 1℄ , de�ne the pointwise data-driven bandwidth bh(t) bybh(t) = maxnh 2 H : j ~~f�(t)� ~~fh(t)j �  (�; h) + 2 (h); 8� 2 H; � < ho :3.3. A testFirst we de�ne an estimator bf(t) whih is the kernel estimator efh(t) with the plugged-inbandwidth bh , bf(t) = efbh(t)(t); t 2 [0; 1℄:Denote for h 2 H B(h) = 2"2kKk2h ;where kKk2 = R K2(u)du and introdue statistis T" ,T" = "�2ph� Z 10 h bf2(t)�B(bh(t))i dt: (3.5)Below we will show that under the null the T" 's are asymptotially normal N (0; d2)with some d > 0 and in partiular, lim"!0 E0T 2" = d2: (3.6)The test ��" is based exatly on these statistis T" : we rejet the null hypothesis if T"is large enough. More preisely, ��" = 1(T"=d > ��0)where �� is de�ned for � 2 (0; 1) by �(��) = 1� � , � being the Laplae funtion.Remark 3.2. It follows from (3.6) that the value d is determined only by the behaviorof the test statisti T" under the null hypothesis. Therefore, for numerial alulationsit is not neessary to derive this value issuing from its theoretial expression; it an bealulated by the Monte-Carlo method for model (2.1) with f � 0 .



12 LEPSKI, O.V. AND SPOKOINY, V.G.�4. Some further developments4.1. Other nonparametri modelsIn this study we restrit ourselves to the \ideal" (and onvenient from the tehnialpoint of view) \signal + white noise" model. We would expet that the main resultsremain valid for more realisti statistial models suh as the probability density model,the regression model et. (perhaps under additional assumptions). We indiate here therelevant results by Ingster (1984a, 1984b, 1986, 1993) on minimax hypothesis testingfor the density and spetral density models and the results by Brown and Low (1996),Nussbaum (1996) on the asymptoti equivalene between the regression (resp. density)model and the \signal + white noise" model.4.2. Parametri versus nonparametri �tsThis study fouses on the simple null hypothesis. Note, however, that a parametri nullhypothesis with unknown values of parameters is more typial in pratial appliations.This means that the null hypothesis H0 is of the form f 2 ff�; � 2 �g where � is anopen subset of the Eulidean spae Rk . The alternative is again smooth and separatedaway from this parametri family ff�g :inf�2� kf � f�k � %":But suh a testing problem an be redued to the above onsidered one with a simplenull using the following method. First a pilot parametri estimator e� of the parameter� is onstruted; this an be typially done " -onsistently. Then the orresponding\parametri" estimator fe� an be subtrated from the observed data and we arrive atthe situation with the simple null hypothesis. The ruial point here is that the rate ofparametri estimation is higher than that of nonparametri testing. An example of suhalulations an be found in H�ardle and Mammen (1993).4.3. Adaptive testingOne aspet of the problem of hypothesis testing in the nonparametri set-up is of speialimportane for pratial appliations, namely, that the struture of the proposed testdepend ritially on the smoothness parameters s; p whose prior knowledge is typiallylaking. In our proedure, the value of the largest applied bandwidth h� depends on sand p . An inspetion of the proof shows that a whong hoie of this value leads to anessentially worse rate of testing. This fat raises an important issue suh as `Can thisparameter be seleted in an adaptive (data-based) way without any loss of sensitivity?'A reent result Spokoiny (1996) shows that an adaptive testing is indeed possible with aloss of power by a negligible log log-fator.



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 135. Proof of Theorem 2.1 and 2.25.1. Proof of Theorem 2.1We follow Ingster (1993). Let %" be the same as in Theorem 2.1 and suppose that %0" issuh that " = %0"=%" ! 0 . We show that for any tests �"lim inf"!0 ��0(�") + �1(�"; %0")� � 1: (5.1)The idea of the method is standard: in essene, the minimax problem is replaed by aBayes one. Let �" be (prior) measures on the alternative set F(%0") = ff 2 Bsp;q(M) :kfk � %0"g . Denote by P�" the orresponding Bayes measure for model (2.1), P�" =R Pf�"(df) . Let also Z�" = dP�"=dP0;where the measure P0 orresponds to the null hypothesis. It is well known that (5.1)follows from Z�" w�! 1; (5.2)see, for instane, Ingster (1993, II, p.171). He also showed in the same plae that it isnot neessary for the priors �" to be supported on F(%0") , it is suÆient that�"(F(%0"))! 1: (5.3)For the onstrution of the priors �" satisfying (5.2) and (5.3) we use the method de-sribed in Ingster (1993, Setion 4.3). Let G be a smooth funtion supported on [�1; 1℄ .Assume also that a parameter h is small enough; we speify its hoie later. Denote byI the partition of the interval [�1; 1℄ into intervals of length 2h with N being theirnumber. Without loss of generality we assume thatNh = 1: (5.4)Denote by tI the enter of an interval I from I and introdue the family of funtions'I(�) , I 2 I , on [�1; 1℄ with'I(t) = 1phkGkG� t� tIh �where kGk2 = R G2(t)dt . It is easy to see that these funtions form an orthonormal setof funtions on [�1; 1℄ .Consider now the random signalf(t) = ""XI2I �I'I(t)



14 LEPSKI, O.V. AND SPOKOINY, V.G.�where " = %0"=%" , �I , I 2 I , are independent identially distributed random variableswith values in the three-point set f�1; 0; 1g having the distributionP (�I = 0) = 1�ph; P (�I = �1) = ph=2; I 2 I: (5.5)Let a prior measure �" orrespond to the distribution of suh random signal f . Ingster(1993, II, p.176) established (5.2) for suh priors with arbitrary h = h" ! 0 as " ! 0 .To prove (5.3) we need to speify the hoie of h . Let us takeh = h" = " 22s+1�1=p : (5.6)We use the following tehnial assertion.Lemma 5.1. For any s; p; q;M satisfying the onditions of the theorem and any set(�I ; I 2 I) one has kfkpBsp;q � C(G)p"phXI2I j�I j: (5.7)Proof. We present only a sketh of the proof for the Sobolev seminorm kfkW sp = �R jf (s)(t)jpdt�1=pwhere f (s)(t) means the s -th generalized derivative of the funtion f . The arbitraryBesov norm an be handled in a similar way using a standard tehnique of the approxi-mation theory, see Triebel (1992). Obviously,Z jf (s)(t)jpdt = (""kGk�1h�1=2)pXI2I j�I jp Z jh�sG(s)(h�1�)jp == C(G)("")ph�sp�p=2+1XI2I j�I j (5.8)where C(G) = kGk�p R jG(s)(�)jp . This, oupled with (5.6), yields the assertion.Lemma 5.2. Let �I , I 2 I , be independent identially distributed random variableswith distribution (5.5). Then phXI2I j�I j P�! 1:Proof. This statement is simply the law of large numbers for a sample of independentrandom variables with the distribution (5.5); for more details see Ingster (1993, Setion4.3).Sine " ! 0 , the above lemmas guarantee that, with a high probability, the funtionf lies in the ball Bsp;q(M) . Now, similarlykfk2 = ("")2XI2I j�I j2 � ("")2h�1=2 = 2"%2" = %02"whih ompletes the proof of (5.3).



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 155.2. Proof of Theorem 2.2We begin by deomposing the test statistis T" from (3.5) using the standard deompo-sition of the kernel estimator efh(t) into a deterministi and a stohasti term. Namely,for eah h > 0 and any t 2 [0; 1℄ , we haveefh(t) = fh(t) + �h(t); (5.9)where fh(t) = 1h Z K � t� sh � f(s)ds;�h(t) = "p2h Z K � t� sh � dfW (s):A similar deomposition holds true for ~~fh with ~~W in plae of fW .Now we note that, by (3.2) and (2.2),"2=ph� = %2":Next, obviously j efh(t)j2 = jfh(t)j2 + 2fh(t)�h(t) + j�h(t)j2; (5.10)and, in view of (3.5),T" = %�2" Z 10 hj efbh(t)(t)j2 �B(bh(t))i dt = %�2" [bS + 2"℄ +R"where bS = Z 10 f2bh(t)(t)dt; (5.11)" = Z 10 fbh(t)(t)�bh(t)(t)dt; (5.12)R" = ph�"2 Z 10 "�2bh(t)(t)� 2"2kKk2bh(t) # dt == 2kKk2ph� Z 10 bh(t)�1 h�2bh(t)(t)� 1i dt (5.13)with �h(t) = ph"p2kKk�h(t) = 1kKkph Z K � t� sh � dfW (s): (5.14)The idea of the proof is as follows. To show (2.3) we note that under the null the termsbS and " vanish and it remains to hek that R" is asymptotially normal with zeromean and a �nite variane d2 .



16 LEPSKI, O.V. AND SPOKOINY, V.G.�Let now f be an arbitrary funtion from Bsp;q(M) . First we hek that the \stohas-ti" term R" is bounded in probability uniformly in f 2 Bsp;q(M) ; more preisely, for asmall enough " and a large enough z1 ,supf2Bsp;q(M)Pf (R" > z1) � �1=2: (5.15)The next step is to show that the ross term " is relatively small; for eah Æ > 0P (2" > Æ(bS + %2")) = o"(1): (5.16)(Here and in what follows o"(1) denotes any sequene depending on " only and vanishingas "! 0 . If there is no risk of onfusion, we also omit the index f in Pf ).Note then that for eah h 2 H and any tf2h(t) � 12f2(t)� jf(t)� fh(t)j2; (5.17)hene, by (5.11) bS � 1=2Z 10 f2(t)dt� Z 10 jf(t)� fbh(t)(t)j2dt: (5.18)Denote Q" = %�2" Z 10 jf(t)� fbh(t)(t)j2dt:We shall prove later that Q" is bounded in probability in the same sense as R" :supf2Bsp;q(M)Pf (Q" > z2) � �1=2 (5.19)if " is small enough and z2 is suÆiently large. Now we are showing how statement(2.4) of the theorem follows from (5.15), (5.19) and (5.16). In fat, making use of (5.16)and (5.18), one has for Æ � 1=3 and any f 2 Bsp;q(M)P (T" > z) = P (%�2" (bS + 2") +R" > z) �� P (%�2" bS(1� Æ) � Æ +R" > z)� o"(1) �� P (%�2" kfk2=3� 23Q" +R" > z + 1=3) � o"(1):Let z = d��0 and suppose that z1 and z2 are the same as in (5.15) and (5.19) respe-tively. If f is suh that kfk2 > 3%2"(z + 1=3 + z1 + 2z2=3) , thenP (�� = 1) = P (T" > z) � 1� P (R" > z1)� P (Q" > z2)� o"(1) � 1� �1 � o"(1)as required in (2.4).Therefore, to prove the theorem it suÆes to show the asymptoti normality of R"under the null hypothesis and to hek (5.15), (5.19) and (5.16). We begin by estimatingR" . Denote by eG and ~~G the � -algebras generated by the random proesses fW and~~W respetively. Sine fW and ~~W are independent, these algebras are also independent.



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 17By de�nition, for eah h 2 H and any t 2 [0; 1℄ , the random variables efh(t) are eG -measurable, but ~~fh(t) are ~~G -measurable, and so are bh(t) . Therefore, the proesses efh(�)and bh(�) are independent. It is onvenient to denote by bE the onditional expetationw.r.t. the � -algebra ~~G , or, in the other words, the onditional expetation given bh(�) .Clearly ER2" = E( bER2") . To estimate bER2" we apply representation (5.13) and makeuse of some simple properties of the random variables �h(t) from (5.14) olleted in thenext lemma.Lemma 5.3. Let �h(t) be de�ned by (5.14). Then(i) The random variables �h(t) are standard normal and, in partiular,E�h(t) = 0 , E�2h(t) = 1 .(ii) If �; h 2 H and jt� sj > b(�+ h) , then the random variables ��(s) and �h(t) areindependent and, in partiular,E ��(s)�h(t) = 0;E(�2� (s)� 1)(�2h(t)� 1) = 0:(iii) If � < h , then for any s; tjE��(s)�h(t)j � C1(K)p�=h;jE(�2� (s)� 1)(�2h(t)� 1)j � C2(K) �=h;where C1(K) and C2(K) are some absolute onstants depending only on the kernelK .Proof. The �rst statement follows diretly from (5.14). The seond one holds beausethe supports of the funtions K((t � u)=h) and K((s� u)=�) do not interset for s; twith js� tj > b(� + h) , and beause the white noise fW has independent inrements .Next, it follows diretly from (5.14) thatjE��(s)�h(t)j = 1p�hkKk2 ����Z K �s� u� �K � t� uh � du���� �� kKk1kKk2 p�=h Z ����K �s� u� ����� du� � C1(K)p�=hwhere kKk1 = supu jK(u)j and C1(K) = kKk1kKk1kKk�2 with kKk1 = R jK(u)jdu .This implies the �rst statement in (iii). Now, sine ��(s); �h(t) are standard normal,straightforward alulations provideE(�2� (s)� 1)(�2h(t)� 1) = 2jE��(s)�h(t)j2:Thus the seond assertion in (iii) follows.Denote V"(t) = ph�bh(t) (�2bh(t) � 1): (5.20)



18 LEPSKI, O.V. AND SPOKOINY, V.G.�Sine bh(t) takes values in H , one may also use the following representationV"(t) = ph� Xh2Hh�1(�2h � 1)1(bh(t) = h):Now, applying (ii) and (iii) of Lemma 5.3, we obtainj bE V"(t)V"(s)j == h� ������Xh2HX�2H(�h)�1E(�2� (s)� 1)(�2h(t)� 1)1(bh(t) = h;bh(s) = �)������ �� 2C2(K)h� Xh2H X�2H;�<h h�21(jt� sj � b(� + h))1(bh(t) = h;bh(s) = �) �� 2C2(K)h� Xh2Hh�21(jt� sj � 2bh)1(bh(s) � h):Hene bER2" = bE�Z 10 V"(t)dt�2 == Z 10 Z 10 bEV"(t)V"(s)dt ds �� 2C2(K)h� Xh2Hh�2 Z 10 Z 10 1(jt� sj � 2bh)1(bh(s) � h)dt ds == 8bC2(K)Xh2Hh�=hZ 10 1(bh(s) � h)ds: (5.21)This immediately givesE R2" � 8bC2(K)Xh2H h�=hZ 10 P (bh(s) � h)ds: (5.22)Note, that the above alulations are valid for any arbitrary funtion f . Now we analyzethe last sum supposing that f � 0 . In this ase the estimators ~~fh(t) onsist only of thestohasti term oiniding in distribution with �h(t) . Hene, by de�nition of bh(t) weobtain for eah h1 2 HP (bh(t) � h1) � Xh2H;h�2h1 X�2H;�<hP (j��(t)� �h(t)j >  (�; h)):The di�erene j��(t)� �h(t)j is a Gaussian random variable with the variane �2(�; h) ,see (3.3), andP (j��(t)� �h(t)j >  (�; h)) = P �j�j > 2pln(h�=�)� � 2 expf�2 ln(h�=�)g= 2(�=h�)2: (5.23)



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 19Here � denotes a standard normal random variable. Making use of the de�nition of theset H as a dyadi series, we onlude thatP (bh(t) � h1) � Xh2H;h�2h1 X�2H;�<h 2(�=h�)2 � 2(2h1=h�)2:By (5.22) this yields ER2" � 64bC2(K)Xh2H(h=h�) � 128bC2(K): (5.24)Note that this bound is suÆient to prove (5.15) with f � 0 . But we need to prove theasymptoti normality of R" under H0 . Let V"(t) be given by (5.20). De�ne the proessU"(u) by U"(u) = ph�V"(uh�); 0 � u � 1=h�:With this notation we obtain from (5.13)R" = 2kKk2ph� Z 1=h�0 U"(u)du: (5.25)It is easy to see that the proess U"(u) is stationary under H0 in the interval u 2[b; 1h� � b℄ beause this holds true for the proesses �h(�) and bh(�) . Non-stationarity inthe subintervals [0; b℄ and [ 1h� � b; 1h� ℄ is aused by the orretion of the kernel at theend points. Next, statement (ii) of Lemma 5.3 shows that the proess U" is mixing and�nite-dependent, whih means that U"(u) and U"(u0) are independent if ju� u0j > 2b .Moreover, an easy analysis proves that the distribution of U" does not depend on " .These fats along with (5.24) allow us to apply the entral limit theorem to the integralof U" over the interval from b to 1h� � b , see e.g. Ibragimov and Linnik (1965, SetionXVIII.7). This learly leads to an asymptoti normality of R" , ompare (5.25).We turn now to studying the behavior of the term R" for an arbitrary funtion f 2Bsp;q . In ontrast with the above ase, the proess bh(t) is not stationary anymore, beauseit desribes loal smoothness properties of the funtion f whih, generally speaking, varyfrom point to point. The same is true for the above de�ned proesses V" and U" . Butestimate (5.22) remains valid and we show that it leads to (5.15). Namely we are verifyingthat supf2Bsp;q(M)ER2" � C 0 (5.26)with some onstant C 0 depending possibly on the parameters s; p; q;M . This yields(5.15) by the Chebyshev inequality. For this purpose we introdue a useful pointwiseharateristi of the funtion f whih reets the loal smoothness properties of thisfuntion in a small viinity of eah point. This notion in a slightly modi�ed form wasused in Lepski et al.(1994) and Lepski and Spokoiny (1995).



20 LEPSKI, O.V. AND SPOKOINY, V.G.�Given t 2 [0; 1℄ and h > 0 , let�f (h; t) = max�2H;��h jf(t)� f�(t)j:Also set hf (t) = maxfh 2 H : �f (h; t) �  (h)g; (5.27) (h) being de�ned in (3.4). Obviously (2h) �  (h)=p3and de�nition (5.27) yieldsjf(t)� fh(t)j �  (hf (t)); 8h 2 H; h � hf (t); (5.28)jf(t)� f2hf (t)(t)j >  (2hf (t)) >  (hf (t))=p3; if hf (t) < h�: (5.29)Now we note thatP (bh(t) � h) � 1(hf (t) � h) + P (bh(t) � h; h < hf (t)): (5.30)The seond term in the left side an be easily estimated.Lemma 5.4. For eah t 2 [0; 1℄P (bh(t) � h; h < hf (t)) � 2(h=h�)2:Proof. Let us �x some t 2 [0; 1℄ and set h1 = hf (t) . By the de�nition of bh(t)P (bh(t) � h; h < h1) �� Xh2H; h�h1 X�2H; �<hP (j ~~f�(t)� ~~fh(t)j >  (�; h) + 2 (h)):Now, deomposition (5.9) and properties (5.28) and (5.23) implyP �j ~~f�(t)� ~~fh(t)j >  (�; h) + 2 (h)� �� P (j��(t)� �h(t)j+ jf(t)� f�(t)j+ jf(t)� fh(t)j >  (�; h) + 2 (h)) �� P (j��(t)� �h(t)j >  (�; h))� (�=h�)2:We end up by the same arguments as in the proof of (5.24).Using this lemma we getXh2Hh�=hZ 10 P (bh(t) � h; h < hf (t))dt � Xh2H 2h=h� � 4:In view of (5.22) and (5.30), statement (5.26) an now be redued tosupf2Bsp;q(M)Rf � C 00



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 21where Rf = Xh2Hh�=hZ 10 1(hf (t) � h)dt:Note that for eah t Xh2H; h�hf (t) h�=h � 2h�=hf (t);so that we obtainRf = Z 10 0� Xh2H; h�hf (t) h�=h1A dt � 2Z 10 (h�=hf (t))dt:By de�nition (3.4) we have h�=h �  2(h)= 2(h�) and it suÆes to prove thatsupf2Bsp;q(M)R0f � C 000with R0f = Z 10 ���� (hf (t)) (h�) ����2 dt:By (5.29)R0f � 1 + Xh2H; h<h� Z 10 ����  (h) (h�) ����2 1(hf (t) = h)dt �� 1 + Xh2H; h<h�  �2(h�)j (h)j2�p Z 10 3p=2�pf (2h; t)1(hf (t) = h)dt �� 1 + 3p=2 �2(h�) Xh2H; h<h� j (h)j2�p Z 10 �pf (2h; t)dt:The properties of the Besov lass Bsp;q(M) imply the following bound, see Lepski etal.(1994, formula (5.9)), supf2Bsp;q(M) Z 10 �pf (h; t)dt � Lhspwith some onstant L = L(s; p; q;M) . This givesR0f � 1 + 3p=2 �2(h�) Xh2H; h<h� j (h)j2�p L(2h)sp �� 1 + 3p=22spL"2=h� Xh2H; h<h� "2�phsp�1+p=2 ln(h�=h):Sine sp� 1 + p=2 > 0 for sp > 1=2 , the latter expression is estimated as follows:R0f � 1 + onst: "�ph��1h�sp�1+p=2;by substituting h� from (3.2) we getR0f � 1 + onst: "1=(2s+1�1=p) = 1 + o"(1)



22 LEPSKI, O.V. AND SPOKOINY, V.G.�whih ompletes the proof of (5.26) and hene of (5.15).Now we verify (5.19) by means of the same method as the one applied above forestimating R" . Let t 2 [0; 1℄ and let hf (t) be de�ned by (5.27). We onsider separatelythe ases when bh(t) � hf and bh(t) > hf (t) .For the sake of simpliity we write below bh and hf instead of bh(t) and hf (t) respe-tively. Also set h+ = 2hf = 2hf (t) . The de�nition of hf yieldsjf(t)� fbh(t)j21(bh � hf ) � �2f (hf ; t)1(bh � hf ) � j (hf )j2�p�pf (hf ; t): (5.31)Next, for the inverse ase of bh > hf we apply deomposition (5.9) and the de�nition ofbh getting jf(t)� fbh(t)j21(bh > hf ) == jf(t)� fhf (t) + efhf (t)� efbh(t)� (�hf (t)� �bh(t))j21(bh > hf ) �� j (hf ) +  (hf ;bh) +  (bh) + j�hf (t)� �bh(t)jj21(bh > hf ):Now, for bh > hf ,  (hf ;bh) �  (hf ); (bh) �  (hf ):Sine �h(�) and bh(�) are independent, we havebE j�hf (t)� �bh(t)j2 = �2(hf ;bh) �  2(hf ;bh) �  2(hf ):Hene jf(t)� fbh(t)j21(bh > hf ) � E �3 (hf ) + j�hf (t)� �bh(t)j�2 �� 18 2(hf ) + 2Ej�hf (t)� �bh(t)j2 � 20 2(hf ):The event fbh > hfg implies that hf < h� and, by (5.29), 2(hf ) � 3 2(h+) � 3j (h+)j2�pj�f (h+; t)jp:This inequality along with (5.31) allows us to onlude thatEjf(t)� fbh(t)j2 � onst: hj (hf )j2�p�pf (hf ; t) + j (h+)j2�pj�f (h+; t)jpi �� onst:Xh2H j (h)j2�p�pf (h; t)and thus that E Q" = %�2" Z 10 Ejf(t)� fbh(t)j2dt �� onst: %�2" Xh2H j (h)j2�p Z 10 �pf (h; t)dt �� onst: %�2" Xh2H j (h)j2�phsp:



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 23Similarly to the above,onst: %�2" Xh2H j (hf )j2�phsp � onst: %�2" j (h�)j2�ph�sp =onst:("2=ph�)�1("=ph�)2�ph�sp = onst:The last inequality obviously yields (5.19) and it remains to hek (5.16). We proeed inthe same way as we did when estimating R". We have" = Xh2HZ 10 fh(t)�h(t)1(bh(t) = h)dt == "p2kKkXh2Hh�1=2 Z 10 fh(t)�h(t)1(bh(t) = h)dt:One more making use of Lemma 5.3 we obtainbE 2" = 2"2kKk2 Xh2HX�2H(h�)�1=2 �Z 10 Z 10 fh(t)f�(s)E[�h(t)��(s)℄1(bh(t) = h; bh(s) = �)dt ds �� 4C1(K)"2kKk2 Xh2H X�2H; ��hh�1 �Z 10 Z 10 fh(t)f�(s)1(jt� sj � 2bh)1(bh(t) = h; bh(s) = �)dt ds: (5.32)The elementary inequality ab � (a2 + b2)=2 leads toZ 10 Z 10 fh(t)f�(s)1(jt � sj � 2bh)1(bh(t) = h)1(bh(s) = �)dt ds �� 12 Z 10 Z 10 f2h(t)1(jt� sj � 2bh)1(bh(t) = h) dt ds +12 Z 10 Z 10 f2� (s)1(jt� sj � 2bh)1(bh(s) = �)dt ds �� 2bhZ 10 f2h(t)1(bh(t) = h) dt+ 2bhZ 10 f2� (s)1(bh(s) = �)ds:By (5.32) we arrive easily atbE 2" � 4C1(K)kKk2"22r �Xh2H X�2H; ��h �Z 10 f2h(t)1(bh(t) = h) dt+ Z 10 f2� (s)1(bh(s) = �)ds� �� 4C1(K)kKk2"22r#HXh2HZ 10 f2h(t)1(bh(t) = h) dt �� onst: "2 bS#H



24 LEPSKI, O.V. AND SPOKOINY, V.G.�where #H is the number of points in the grid H . Clearly #H � 2 ln "�1 and we getfor any Æ > 0 , P (" > Æ(bS + %2")) � P (" > 2Æ%"pbS) �� bE 2"4Æ2 bS%2" � onst: "2 ln "�1Æ2%2" ! 0; "! 0:The theorem is proved.
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