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s,Mohrenstr. 39, 10117 BerlinRunning title: Testing a hypothesis vs. an inhomogeneous alternative.Abstra
t. We study the problem of testing a simple hypothesis for a nonparametri
\signal + white noise" model. It is assumed under the null hypothesis that the \signal"is 
ompletely spe
i�ed, for example, that no signal is present. This hypothesis is testedagainst a 
omposite alternative of the following form: the underlying fun
tion (thesignal) is separated away from the null in the L2 -norm and in addition, it possessessome smoothness properties. We fo
us on the 
ase of a non-homogeneous alternativewhen the smoothness properties of the signal are measured in a Lp -norm with p < 2 .We 
onsider tests whose errors have probabilities whi
h do not ex
eed pres
ribed valuesand we measure the quality of testing by the minimal distan
e between the null andthe alternative set for whi
h su
h testing is still possible. We evaluate the optimal rateof de
ay of this distan
e to zero as the noise level tends to zero. Then a rate-optimaltest is proposed whi
h essentially uses a pointwise-adaptive estimation pro
edure.1. Introdu
tionThis study is motivated by two sour
es. First of all, we issue from the series of resultsby Y. Ingster (1982{1993) on the problem of testing a nonparametri
 hypothesis. Theyshowed an essential di�eren
e between estimation and testing in a nonparametri
 
on-text. In parti
ular, the minimax rate is di�erent in these two problems. The other sour
eis 
onne
ted with the re
ent progress in nonparametri
 estimation whi
h is now referredto as \spatially adaptive estimation". This dire
tion in nonparametri
s was initiatedin the pioneering paper by Nemirovski (1985) and followed by a series of arti
les by D.1991 Mathemati
s Subje
t Classi�
ation. 62G10; Se
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 alternative, pointwise adaptive estimation, signal dete
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2 LEPSKI, O.V. AND SPOKOINY, V.G.�Donoho, I. Johnstone, G. Kerkya
harian and D. Pi
ard on wavelet estimation. It wasshown that the 
lassi
al linear methods of nonparametri
 estimation do not provide theoptimal rate of 
onvergen
e when fun
tions with non-homogeneous smoothness proper-ties are 
onsidered. To be rate-optimal, a method of estimation has to be lo
ally adaptive(\spatially adaptive") and hen
e nonlinear. As an alternative to linear methods, a non-linear wavelet pro
edure was proposed whi
h turned out to be eÆ
ient for a wide rangeof 
riteria, see Donoho and Johnstone (1992, 1994), Kerkya
harian and Pi
ard (1993),Delyon and Juditski (1994), Donoho et al. (1995).Another \spatially adaptive" pro
edure was proposed in Lepski et al.(1994). This is akernel estimator with a variable data-driven bandwidth. It turned out that this estimatorretains most of the optimal properties possessed by the wavelet one. Lepski and Spokoiny(1995) enlarged on this result and proved that a slightly modi�ed version of the initialpro
edure is asymptoti
ally sharp-optimal for the problem of adaptive estimation at apoint. This paper presents one more appli
ation of the idea of pointwise adaption: weapply it to the problem of hypothesis testing.We are unable to des
ribe in details the histori
al ba
kground of this problem. Wemention only a few early pertinent results by Neyman (1937), Mann and Wald (1942),Huber (1956) among others. For more information see Ingster (1993). It was Ingster(1982) who initiated the study of the problem of testing a hypothesis from the modernminimax nonparametri
 point of view. True, some 
losely related 
onsiderations appearedin earlier papers by Burnashev (1979) and Ibragimov and Khasminskii (1977). Furtherprogress in this dire
tion was mostly due to the St.-Petersburg s
hool, see Ingster (1993)for the detailed des
ription of these results. We mention here only a few points whi
hare important for our further exposition.Typi
ally, a null hypothesis 
orresponds to our belief that the observed data are orga-nized in a relatively simple way, whi
h means that the stru
ture of the underlying modelis 
ompletely spe
i�ed. Therefore, when 
onsidering a goodness-of-�t problem of su
h asort, it is natural to measure the quality of any test by its sensitivity to perturbations or
ontaminations of this model. The optimal test has to be sensitive for as large a set ofalternatives as possible.Below, we 
onsider the \signal + noise" model when the observed pro
ess X is de-s
ribed by the sto
hasti
 di�erential equationdX(t) = f(t)dt+ "dW (t)where " is the noise level and W denotes a standard white noise pro
ess. The null
orresponds to the 
ase when the signal is identi
ally zero or, in the other words, no signalis present. The 
orresponding testing 
an be viewed as a problem of signal dete
tion.A set of alternatives 
an be naturally de�ned in the following way. Let f be \true".We say that this fun
tion belongs to the alternative set if it is separated away from the



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 3\null" in some integral Lr -norm:kfkr := �Z jf(t)jrdt�1=r � %: (1.1)The radius % 
hara
terizes the sensitivity of testing. For a small noise level " , wemay expe
t that % 
an be also small. Hen
e, it is assumed that % depends on " ,% = %" , and our aim is to des
ribe the optimal rate of de
ay %" ! 0 under whi
htesting with pres
ribed probabilities of errors is still possible. Note, however, that theassumption (1.1) is not suÆ
ient for a 
onsistent testing, see Ibragimov and Khasminskii(1977), Burnashev (1979) or Ingster (1982): with no assumption on the regularity ofthe signal, it is impossible to distinguish between this signal and a noise. Typi
ally,one additionally assumes that the underlying fun
tion f possesses some smoothnessproperties. A standard assumption here is that f belongs to some fun
tion 
lass F , forinstan
e, to some H�older or Sobolev ball. The re
ent works done by Donoho, Johnstone,Kerkya
harian and Pi
ard on wavelet methods in statisti
al inferen
e showed that theformalism of the more general Besov fun
tion 
lasses provides a useful te
hni
al tool fornonparametri
 statisti
al 
onsiderations. For a statisti
al analysis, the following fa
torsappear to be of the greatest importan
e: the smoothness degree s , the relation betweenthe norm power p , in whi
h we measure smoothness properties of the fun
tion f andthe norm power r , in whi
h we measure errors of estimation or the distan
e between thenull and the alternative set.For the problem of estimation, the 
ase p � r is 
lassi
al and here the linear methodsprovide the optimal rate of 
onvergen
e whi
h is equal to "2s=(2s+1) . If p < r , whi
h
orresponds to fun
tions with non-homogeneous smoothness properties, the minimax rateof estimation is the same, but it 
annot be a
ieved by any linear method, see Nemirovski(1985), Donoho and Johnstone (1992).The situation signi�
antly 
hanges for the problem of hypothesis testing. If p = r = 2 ,then the optimal rate of testing is "4s=(4s+1) , see Ingster (1982), whi
h is better than therate of estimation. For this 
ase not only the optimal rate is des
ribed, but also asymptot-i
ally optimal (up to an exa
t 
onstant) test pro
edures were 
onstru
ted, see Ermakov(1990) and Ingster (1993). The same rate is optimal for r � 2 and p � 2 , Ingster (1986).Another unexpe
ted feature of the testing problem is that for p = r > 2 the rate of test-ing depends on p . More pre
isely, see Ingster (1986), it is "2s=(2s+1�1=p) . However, the
ase of p < r , whi
h 
orresponds to a set of alternatives with inhomogeneous smoothnessproperties, was not studied. At the same time, just as in the estimation problem, it is ofessential importan
e both from the theoreti
al point of view and for appli
ations.Here we fo
us on the situation when r = 2 and p < 2 whi
h admits of relatively simpleand evident des
ription and the proofs are 
learer. The 
ases when p < r and r > 2 orwhen r > p � 2 and r < 2; p < 2 are more involved and lead to new phenomena. Any



4 LEPSKI, O.V. AND SPOKOINY, V.G.�further dis
ussion of the problem of testing in a Lr -norm with r 6= 2 lies beyond thes
ope of this paper.In the next se
tion we formulate our problem and state the main results pertaining tothe optimal rate of testing. In Se
tion 3 we present tests whi
h a
hieve the optimal rateof testing. Next we mention some possible dire
tions for further developments and wepostpone the proofs until the last se
tion.2. The minimax rate of testingIn this se
tion we spe
ify the problem of hypothesis testing and state the main results.2.1. The modelSuppose that we are given the observations X(t); t 2 [0; 1℄ des
ribed by the sto
hasti
di�erential equation dX(t) = f(t)dt+ "dW (t); 0 � t � 1; (2.1)where W (t) is a Brownian motion and f is an unknown fun
tion.2.2. The null and the alternativeOur aim is to test the null hypothesis H0 that the regression fun
tion (signal) f isidenti
ally zero,H0 : f � 0:Under the alternative, we assume that f is separated away from the null in the L2 -norm and belongs to some smoothness 
lass F . Below, we assume that F is a Besovball Bsp;q(M) with Bsp;q = ff : kfkBsp;q �Mgwhere, see Triebel (1992),kfkBsp;q = 8>><>>: kfkp + � 1R0 h�sqkos
 f(�; h)kqp dhh �1=q ; if r <1;kfkp + sup0�h�1h�skos
 f(�; h)kp; if q = +1:Here kfkp is the Lp-norm, kfkpp = R 10 jf jp, and the lo
al os
illation os
 f(x; h) of f isde�ned as os
 f(x; h) = inf supjy�xj�h jf(y)� P (y)j:



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 5The in�mum here is taken over all polynomials of order m, whi
h is the maximal integersmaller than s , and the supremum with respe
t to x; y is restri
ted to the interval [0; 1℄ .The parameters s; p; q;M are su
h that p; q � 1 , s;M > 0 and sp > 1 .We arrive at a set of alternatives F(%") of the formH1 : F(%") = ff 2 Bsp;q(M); kfk � %"g:Here kfk means the usual L2 -norm, kfk2 = R 10 f2(t)dt .Remark 2.1. For an integer s , one may 
onsider instead of the Besov norm k � kBsp;q theSobolev seminorm k � kW sp withkfkW sp = �Z jf (s)(t)jpdt�1=pand f (s)(t) stands for the s -th generalized derivative of the fun
tion f .The values of s; p; q;M entering into the de�nition of the alternative set are assumed�xed and known. Note, however, that only s and p are important for the results and the
onstru
tion of the optimal tests. The problem of adaptive testing when the smoothnessparameters are unknown is brie
y dis
ussed in Se
tion 4.2.3. The problem of hypothesis testingA test �" is a rule to a

ept or to reje
t the null hypothesis by means of the observedpro
ess X(t); 0 � t � 1 , therefore, it is a measurable fun
tion of observations takingvalues in the two-point set f0; 1g . The value �" = 0 is treated as a

epting H0 , and�" = 1 means that the test reje
ts H0 .The quality of any test is measured by the probabilities of the 
orresponding errors.The probability �0(�") of error of the �rst kind is the probability under the null to reje
tthe hypothesis, �0(�") = P0(�" = 1)where P0 is the distribution on the spa
e of observations 
orresponding to H0 .The probability of error of the se
ond kind 
an be viewed as the probability to a

eptH0 if f belongs to the alternative set H1 . We denote it by �1(�"; %") taking intoa

ount that H1 is a 
omposite alternative:�1(�"; %") = supf2F(%")Pf (�" = 0)where Pf is the distribution 
orresponding to a parti
ular fun
tion f .We are studying the asymptoti
 behavior of these probabilities as the noise level "tends to zero. We are interested in des
ribing the fastest rate of de
ay to zero of su
h aradius %" for whi
h it is still possible to 
onstru
t a test �" su
h that at least for a small



6 LEPSKI, O.V. AND SPOKOINY, V.G.�level noise " the probabilities �0(�") and �1(�"; %") do not ex
eed some pres
ribedvalues �0 and �1 respe
tively.2.4. The main resultsIngster (1982{1993) studied the above problem for fun
tion 
lasses of the Sobolev typeand for p � 2 . The optimal rate %" in this 
ase is%" = " 4s4s+1 :Here we are 
on
entrating on the situation when p < 2 . As usual, we distinguish theresults obtained for the lower and upper bounds. The �rst of these, related to the lowerbound, des
ribes the rate for %" whi
h 
annot be improved by any test.Theorem 2.1. Let p � 2 , sp > 1 and%" = " 4s004s00+1 (2.2)where s00 = s� 12p + 14 :Then, for any sequen
e %0" with %0"=%" ! 0 as "! 0 and for any tests �"lim inf"!0 [�0(�") + �1(�"; %0")℄ � 1:The se
ond result for the upper bound 
laims that there exist tests ��" whi
h providethe rate of testing %" des
ribed in Theorem 2.1. Their stru
ture is explained in the nextse
tion.Theorem 2.2. Let s; p and %" be the same as in Theorem 2.1. For ea
h positive �0and �1 , there exist a 
onstant 
1 , depending on s; p; q;M , and tests ��" su
h thatlim"!0 �0(��") � �0 (2.3)and lim"!0 �1(��"; 
1%") � �1: (2.4)3. A test pro
edureIn this se
tion we explain the stru
ture of the tests ��" mentioned in Theorem 2.2. Westart with some preliminary dis
ussion.



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 73.1. PreliminariesBelow we give some heuristi
 explanation of the results and the proposed test pro
edures.We shall 
onsider test statisti
s based on kernel smoothers. Let K be a kernel satis-fying standard 
onditions, see (K1) { (K5) below. Let us also �x a bandwidth valueh 2 [0; 1℄ (whi
h we spe
ify later) and 
onsider a kernel estimatorefh(t) = 1h Z K �t� sh � dX(s); t 2 [0; 1℄:This 
an be de
omposed in a standard way into a deterministi
 and a sto
hasti
 part,efh(t) = fh(t) + �h(t)where fh(t) = 1h Z K �t� sh � f(s)ds;�h(t) = "h Z K �t� sh � dW (s):It is natural to use the value Th = k efhk2 = Z 10 ef2h(t)dtfor testing the null hypothesis H0 : kfk = 0 against the alternative H1 : kfk � %" .Under the null, one has efh = �h andTh = T 0h = Z 10 �2h(t)dt:It is not diÆ
ult to derive that ET 0h = "2kKk2h ;DT 0h = "4d2h ;where d = d(K) is some 
onstant depending only on the kernel K . Moreover, if�0h = T 0h �ET 0hqDT 0h ;then L ��0h j P0� w�! N (0; 1):This leads to the test of the form �h = 1(�h > ��0)where �h = Th �ET 0hqDT 0h ;



8 LEPSKI, O.V. AND SPOKOINY, V.G.�and �� is the (1� �0) -quantile of the standard normal law.Under the alternative, for some f 2 H1 , we haveTh = Z 10 (fh(t) + �h(t))2dt = kfhk2 + T 0h + 
ross term:It is easy to show that the \
ross term" is relatively small. Hen
e,�h � �0h + kfhk2(d"2h�1=2)�1where \� " means asymptoti
 equivalen
e. But kfhk2 � kfk2=2� kf � fhk2 and there-fore, the test �h dete
ts a signal f from the alternative set ifkfk2 � C("2ph+ kf � fhk2) (3.1)for some suÆ
iently large C .The value kf�fhk 
an be estimated by using of the smoothness 
ondition f 2 Bsp;q . Ifp � 2 , then, see Triebel (1992), kf � fhk � O(hs) . In this 
ase, minimization over h in(3.1) leads to the bandwidth 
hoi
e of h = O(" 44s+1 ) and (3.1) is met for kfk � C1" 4s4s+1with some C1 > 0 . Note that a value of h = O(" 22s+1 ) , whi
h is typi
al for the estimationproblem, leads to the rate of testing " 2s2s+1 . This rate is usual for estimation but it isrelatively poor for testing.If p < 2 , then the estimate kf � fhk � O(hs) is no longer true. The 
onditionf 2 Bsp;q ensures only that kf �fhkp = O(hs) . To get a bound for the L2 -norm, we 
anapply the embedding theorem for Besov 
lasses, see Triebel (1992): kf � fhk � O(hs0)where s0 = s � 1=p + 1=2 . This approa
h obviously leads to the bandwidth 
hoi
eh0 = O(" 44s0+1 ) and to the 
orresponding rate of testing " 4s04s0+1 . Sin
e s00 > s0 , it is worsethan the optimal rate shown in Theorem 2.2. The situation here is similar to that is metfor the estimation problem. Tests of type �h are analogous to linear methods in theestimation theory. It is known Nemirovski (1985), Donoho and Johnstone (1992), thatfor p < 2 linear methods, 
an only a
hieve the rate with "2s0=(2s0+1) instead of "2s=2s+1 .An improvement 
an be a

omplished by nonlinear methods possessing some \spatiallyadaptive" properties, see Donoho et al. (1995) or Lepski et al. (1994). Below, this ideais extended onto the problem of hypothesis testing. Following Lepski et al. (1994), weapply a nonlinear pointwise-adaptive pro
edure whi
h 
an be regarded as the des
ribedabove kernel method with a variable data-driven bandwidth. In essen
e, this methodallows to 
ontrol the di�eren
es jfh(t)� fh=2(t)j for di�erent h from a diadi
 geometri
grid. If su
h a di�eren
e is for some h and some t 2 [0; 1℄ so large , that it 
annot beexplained by the noise 
i
tuation, then we dete
t the signal. Otherwise we have a boundof the form jfh(t)� fh=2(t)j � �h with some �h whi
h allows to estimatekfh � fh=2k2 � kfh � fh=2kppkfh � fh=2k2�p1 � Chsp�2�ph :Our 
al
ulatons are based exa
tly on this idea.



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 9Some more information about the di�eren
e between the 
ases of p � 2 and p < 2 
anbe extra
ted from the stru
ture of the least favorable prior distributions for the problemof dete
ting a random signal. Ingster (1982, 1986) showed that for p � 2 su
h a randomsignal is wiggling and uniformly small with the altitude of order "(2s+1)=(4s+1) whi
h isessentially smaller than the noise level. Note that the Lp -norm of this signal for anyp � 1 is of the same order and depends on p very weakly.By inspe
ting the proof of Theorem 2.1 one 
an see that for p < 2 , the stru
ture ofthe least favorable priors is entirely di�erent. Namely, the 
orresponding random signalis almost everywhere zero with N = "�2=(2s+1�1=p) peaks. Su
h a stru
ture is 
ausedby the extremal problem of maximizing over the given Besov 
lass the Lp -norm of afun
tion when the L2 -norm is �xed. In parti
ular, the ratio kfkp=kfk2 for su
h signalstends to in�nity as " tends to zero. This explains why the rate of testing depends onp and justi�es the using of the notion of an alternative with inhomogeneous smoothnessproperties.3.2. A data-driven bandwidth sele
torFor the 
onstru
tion of tests we need in splitting the observed data X(�) from (2.1) intotwo independent parts. For a model with dis
rete time, the usual way of doing this isin splitting the observations into even and odd points. For the 
ontinuous-time model(2.1), the following method 
an be used. Let W 0 be a white Gaussian noise independentof W . De�ne two pro
esses eX and ~~X byeX(t) = X(t) + "W 0(t);~~X(t) = X(t)� "W 0(t):Obviously, eX and ~~X obey the equationsd eX(t) = f(t)dt+ "p2 dfW (t);d ~~X(t) = f(t)dt+ "p2 d ~~W (t);where fW (t) = 2�1=2[W (t) +W 0(t)℄;~~W (t) = 2�1=2[W (t)�W 0(t)℄;are two independent white Gaussian noises. We treat eX and ~~X as two independentdata sets. One part provided by eX will be used for a pointwise bandwidth sele
tionand the other one, for 
onstru
ting the kernel-type test statisti
s with the plugged-inbandwidth. This splitting pro
edure obviously leads to some loss of eÆ
ien
y whi
h ismanifested by an in
rease in the noise level (by p2 ) for the pro
ess ~~X . This fa
tor p2
an be viewed as a payment for the pointwise adaptation.



10 LEPSKI, O.V. AND SPOKOINY, V.G.�Now we introdu
e a family of kernel estimators with a kernel K satisfying usualregularity 
onditions. Let m = bs
 , the largest possible integer smaller than s . Let nowK(u) be a fun
tion de�ned on the real axis su
h that(K1) it is symmetri
, K(u) = K(�u) , u 2 R1 ;(K2) it is 
ompa
tly supported i.e. K(u) = 0 for juj > b for some b > 0 ;(K3) it is 
ontinuous;(K4) R K(u)du = 1 ;(K5) R K(u)uidu = 0; i = 1; : : : ;m .In what follows, we omit the integration limit if the integration is taken over the wholereal line.Denote, for given h > 0 and t 2 [0; 1℄ ,efh(t) = 1h Z K � t� sh � d eX(s);~~fh(t) = 1h Z K � t� sh � d ~~X(s):Remark 3.1. These de�nitions should be 
orre
ted near the end points t = 0 and t = 1whi
h might be done in a standard way by repla
ing the kernel near these points by spe
ialboundary one-sided kernels. Therefore, we a
tually need three kernels: one (symmetri
)for appli
ation inside the interval (0; 1) ; another one (right-sided with a support of theform [0; b℄ ) for applying near the point 0; and the third one (left-sided with a supportof the form [�b; 0℄ ), near 1. All the three kernels should satisfy the above-mentioned
onditions (K1) through (K5) . For more details see, for instan
e, Lepski et al.(1994).To simplify the exposition, we retain the notation K for the boundary 
orre
ted kernel.Now we des
ribe a pointwise bandwidth sele
tor introdu
ed in Lepski et al.(1994),see also Lepski and Spokoiny (1995). We begin by introdu
ing a set H . Our pointwisebandwidth takes its values in this set. Denoteh� = " 44s00+1 = " 22s+1�1=p (3.2)and set H = fh = h�2�k; k = 0; 1; 2; : : : ; h � "2g:In parti
ular, h� is the largest 
onsidered bandwidth value. We also apply h� to de�nethe boundary 
orre
ted kernel: the symmetri
 kernel K is to be repla
ed by the right-sided kernel in the interval [0; bh�℄ and by the left-sided kernel in [1� bh�; 1℄ .Given �; h from H with � < h and 
 = �=h , set�2(�; h) = 2"2� Z jK(u)� 
K(u
)j2du (3.3)



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 11and  (�; h) = �(�; h)p2 ln(h�=�):Denote also C(K) = sup0�
�1Z jK(u)� 
K(u
)j2duand  (h) = "p2C(K)ph pmaxf2 ln(h�=h); 1g: (3.4)Note that the values C(K);  (�; h) and  (h) depend on t via the boundary 
orre
tedkernel K .Given t 2 [0; 1℄ , de�ne the pointwise data-driven bandwidth bh(t) bybh(t) = maxnh 2 H : j ~~f�(t)� ~~fh(t)j �  (�; h) + 2 (h); 8� 2 H; � < ho :3.3. A testFirst we de�ne an estimator bf(t) whi
h is the kernel estimator efh(t) with the plugged-inbandwidth bh , bf(t) = efbh(t)(t); t 2 [0; 1℄:Denote for h 2 H B(h) = 2"2kKk2h ;where kKk2 = R K2(u)du and introdu
e statisti
s T" ,T" = "�2ph� Z 10 h bf2(t)�B(bh(t))i dt: (3.5)Below we will show that under the null the T" 's are asymptoti
ally normal N (0; d2)with some d > 0 and in parti
ular, lim"!0 E0T 2" = d2: (3.6)The test ��" is based exa
tly on these statisti
s T" : we reje
t the null hypothesis if T"is large enough. More pre
isely, ��" = 1(T"=d > ��0)where �� is de�ned for � 2 (0; 1) by �(��) = 1� � , � being the Lapla
e fun
tion.Remark 3.2. It follows from (3.6) that the value d is determined only by the behaviorof the test statisti
 T" under the null hypothesis. Therefore, for numeri
al 
al
ulationsit is not ne
essary to derive this value issuing from its theoreti
al expression; it 
an be
al
ulated by the Monte-Carlo method for model (2.1) with f � 0 .



12 LEPSKI, O.V. AND SPOKOINY, V.G.�4. Some further developments4.1. Other nonparametri
 modelsIn this study we restri
t ourselves to the \ideal" (and 
onvenient from the te
hni
alpoint of view) \signal + white noise" model. We would expe
t that the main resultsremain valid for more realisti
 statisti
al models su
h as the probability density model,the regression model et
. (perhaps under additional assumptions). We indi
ate here therelevant results by Ingster (1984a, 1984b, 1986, 1993) on minimax hypothesis testingfor the density and spe
tral density models and the results by Brown and Low (1996),Nussbaum (1996) on the asymptoti
 equivalen
e between the regression (resp. density)model and the \signal + white noise" model.4.2. Parametri
 versus nonparametri
 �tsThis study fo
uses on the simple null hypothesis. Note, however, that a parametri
 nullhypothesis with unknown values of parameters is more typi
al in pra
ti
al appli
ations.This means that the null hypothesis H0 is of the form f 2 ff�; � 2 �g where � is anopen subset of the Eu
lidean spa
e Rk . The alternative is again smooth and separatedaway from this parametri
 family ff�g :inf�2� kf � f�k � %":But su
h a testing problem 
an be redu
ed to the above 
onsidered one with a simplenull using the following method. First a pilot parametri
 estimator e� of the parameter� is 
onstru
ted; this 
an be typi
ally done " -
onsistently. Then the 
orresponding\parametri
" estimator fe� 
an be subtra
ted from the observed data and we arrive atthe situation with the simple null hypothesis. The 
ru
ial point here is that the rate ofparametri
 estimation is higher than that of nonparametri
 testing. An example of su
h
al
ulations 
an be found in H�ardle and Mammen (1993).4.3. Adaptive testingOne aspe
t of the problem of hypothesis testing in the nonparametri
 set-up is of spe
ialimportan
e for pra
ti
al appli
ations, namely, that the stru
ture of the proposed testdepend 
riti
ally on the smoothness parameters s; p whose prior knowledge is typi
allyla
king. In our pro
edure, the value of the largest applied bandwidth h� depends on sand p . An inspe
tion of the proof shows that a whong 
hoi
e of this value leads to anessentially worse rate of testing. This fa
t raises an important issue su
h as `Can thisparameter be sele
ted in an adaptive (data-based) way without any loss of sensitivity?'A re
ent result Spokoiny (1996) shows that an adaptive testing is indeed possible with aloss of power by a negligible log log-fa
tor.



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 135. Proof of Theorem 2.1 and 2.25.1. Proof of Theorem 2.1We follow Ingster (1993). Let %" be the same as in Theorem 2.1 and suppose that %0" issu
h that 
" = %0"=%" ! 0 . We show that for any tests �"lim inf"!0 ��0(�") + �1(�"; %0")� � 1: (5.1)The idea of the method is standard: in essen
e, the minimax problem is repla
ed by aBayes one. Let �" be (prior) measures on the alternative set F(%0") = ff 2 Bsp;q(M) :kfk � %0"g . Denote by P�" the 
orresponding Bayes measure for model (2.1), P�" =R Pf�"(df) . Let also Z�" = dP�"=dP0;where the measure P0 
orresponds to the null hypothesis. It is well known that (5.1)follows from Z�" w�! 1; (5.2)see, for instan
e, Ingster (1993, II, p.171). He also showed in the same pla
e that it isnot ne
essary for the priors �" to be supported on F(%0") , it is suÆ
ient that�"(F(%0"))! 1: (5.3)For the 
onstru
tion of the priors �" satisfying (5.2) and (5.3) we use the method de-s
ribed in Ingster (1993, Se
tion 4.3). Let G be a smooth fun
tion supported on [�1; 1℄ .Assume also that a parameter h is small enough; we spe
ify its 
hoi
e later. Denote byI the partition of the interval [�1; 1℄ into intervals of length 2h with N being theirnumber. Without loss of generality we assume thatNh = 1: (5.4)Denote by tI the 
enter of an interval I from I and introdu
e the family of fun
tions'I(�) , I 2 I , on [�1; 1℄ with'I(t) = 1phkGkG� t� tIh �where kGk2 = R G2(t)dt . It is easy to see that these fun
tions form an orthonormal setof fun
tions on [�1; 1℄ .Consider now the random signalf(t) = "
"XI2I �I'I(t)



14 LEPSKI, O.V. AND SPOKOINY, V.G.�where 
" = %0"=%" , �I , I 2 I , are independent identi
ally distributed random variableswith values in the three-point set f�1; 0; 1g having the distributionP (�I = 0) = 1�ph; P (�I = �1) = ph=2; I 2 I: (5.5)Let a prior measure �" 
orrespond to the distribution of su
h random signal f . Ingster(1993, II, p.176) established (5.2) for su
h priors with arbitrary h = h" ! 0 as " ! 0 .To prove (5.3) we need to spe
ify the 
hoi
e of h . Let us takeh = h" = " 22s+1�1=p : (5.6)We use the following te
hni
al assertion.Lemma 5.1. For any s; p; q;M satisfying the 
onditions of the theorem and any set(�I ; I 2 I) one has kfkpBsp;q � C(G)
p"phXI2I j�I j: (5.7)Proof. We present only a sket
h of the proof for the Sobolev seminorm kfkW sp = �R jf (s)(t)jpdt�1=pwhere f (s)(t) means the s -th generalized derivative of the fun
tion f . The arbitraryBesov norm 
an be handled in a similar way using a standard te
hnique of the approxi-mation theory, see Triebel (1992). Obviously,Z jf (s)(t)jpdt = ("
"kGk�1h�1=2)pXI2I j�I jp Z jh�sG(s)(h�1�)jp == C(G)("
")ph�sp�p=2+1XI2I j�I j (5.8)where C(G) = kGk�p R jG(s)(�)jp . This, 
oupled with (5.6), yields the assertion.Lemma 5.2. Let �I , I 2 I , be independent identi
ally distributed random variableswith distribution (5.5). Then phXI2I j�I j P�! 1:Proof. This statement is simply the law of large numbers for a sample of independentrandom variables with the distribution (5.5); for more details see Ingster (1993, Se
tion4.3).Sin
e 
" ! 0 , the above lemmas guarantee that, with a high probability, the fun
tionf lies in the ball Bsp;q(M) . Now, similarlykfk2 = ("
")2XI2I j�I j2 � ("
")2h�1=2 = 
2"%2" = %02"whi
h 
ompletes the proof of (5.3).



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 155.2. Proof of Theorem 2.2We begin by de
omposing the test statisti
s T" from (3.5) using the standard de
ompo-sition of the kernel estimator efh(t) into a deterministi
 and a sto
hasti
 term. Namely,for ea
h h > 0 and any t 2 [0; 1℄ , we haveefh(t) = fh(t) + �h(t); (5.9)where fh(t) = 1h Z K � t� sh � f(s)ds;�h(t) = "p2h Z K � t� sh � dfW (s):A similar de
omposition holds true for ~~fh with ~~W in pla
e of fW .Now we note that, by (3.2) and (2.2),"2=ph� = %2":Next, obviously j efh(t)j2 = jfh(t)j2 + 2fh(t)�h(t) + j�h(t)j2; (5.10)and, in view of (3.5),T" = %�2" Z 10 hj efbh(t)(t)j2 �B(bh(t))i dt = %�2" [bS + 2
"℄ +R"where bS = Z 10 f2bh(t)(t)dt; (5.11)
" = Z 10 fbh(t)(t)�bh(t)(t)dt; (5.12)R" = ph�"2 Z 10 "�2bh(t)(t)� 2"2kKk2bh(t) # dt == 2kKk2ph� Z 10 bh(t)�1 h�2bh(t)(t)� 1i dt (5.13)with �h(t) = ph"p2kKk�h(t) = 1kKkph Z K � t� sh � dfW (s): (5.14)The idea of the proof is as follows. To show (2.3) we note that under the null the termsbS and 
" vanish and it remains to 
he
k that R" is asymptoti
ally normal with zeromean and a �nite varian
e d2 .



16 LEPSKI, O.V. AND SPOKOINY, V.G.�Let now f be an arbitrary fun
tion from Bsp;q(M) . First we 
he
k that the \sto
has-ti
" term R" is bounded in probability uniformly in f 2 Bsp;q(M) ; more pre
isely, for asmall enough " and a large enough z1 ,supf2Bsp;q(M)Pf (R" > z1) � �1=2: (5.15)The next step is to show that the 
ross term 
" is relatively small; for ea
h Æ > 0P (2
" > Æ(bS + %2")) = o"(1): (5.16)(Here and in what follows o"(1) denotes any sequen
e depending on " only and vanishingas "! 0 . If there is no risk of 
onfusion, we also omit the index f in Pf ).Note then that for ea
h h 2 H and any tf2h(t) � 12f2(t)� jf(t)� fh(t)j2; (5.17)hen
e, by (5.11) bS � 1=2Z 10 f2(t)dt� Z 10 jf(t)� fbh(t)(t)j2dt: (5.18)Denote Q" = %�2" Z 10 jf(t)� fbh(t)(t)j2dt:We shall prove later that Q" is bounded in probability in the same sense as R" :supf2Bsp;q(M)Pf (Q" > z2) � �1=2 (5.19)if " is small enough and z2 is suÆ
iently large. Now we are showing how statement(2.4) of the theorem follows from (5.15), (5.19) and (5.16). In fa
t, making use of (5.16)and (5.18), one has for Æ � 1=3 and any f 2 Bsp;q(M)P (T" > z) = P (%�2" (bS + 2
") +R" > z) �� P (%�2" bS(1� Æ) � Æ +R" > z)� o"(1) �� P (%�2" kfk2=3� 23Q" +R" > z + 1=3) � o"(1):Let z = d��0 and suppose that z1 and z2 are the same as in (5.15) and (5.19) respe
-tively. If f is su
h that kfk2 > 3%2"(z + 1=3 + z1 + 2z2=3) , thenP (�� = 1) = P (T" > z) � 1� P (R" > z1)� P (Q" > z2)� o"(1) � 1� �1 � o"(1)as required in (2.4).Therefore, to prove the theorem it suÆ
es to show the asymptoti
 normality of R"under the null hypothesis and to 
he
k (5.15), (5.19) and (5.16). We begin by estimatingR" . Denote by eG and ~~G the � -algebras generated by the random pro
esses fW and~~W respe
tively. Sin
e fW and ~~W are independent, these algebras are also independent.



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 17By de�nition, for ea
h h 2 H and any t 2 [0; 1℄ , the random variables efh(t) are eG -measurable, but ~~fh(t) are ~~G -measurable, and so are bh(t) . Therefore, the pro
esses efh(�)and bh(�) are independent. It is 
onvenient to denote by bE the 
onditional expe
tationw.r.t. the � -algebra ~~G , or, in the other words, the 
onditional expe
tation given bh(�) .Clearly ER2" = E( bER2") . To estimate bER2" we apply representation (5.13) and makeuse of some simple properties of the random variables �h(t) from (5.14) 
olle
ted in thenext lemma.Lemma 5.3. Let �h(t) be de�ned by (5.14). Then(i) The random variables �h(t) are standard normal and, in parti
ular,E�h(t) = 0 , E�2h(t) = 1 .(ii) If �; h 2 H and jt� sj > b(�+ h) , then the random variables ��(s) and �h(t) areindependent and, in parti
ular,E ��(s)�h(t) = 0;E(�2� (s)� 1)(�2h(t)� 1) = 0:(iii) If � < h , then for any s; tjE��(s)�h(t)j � C1(K)p�=h;jE(�2� (s)� 1)(�2h(t)� 1)j � C2(K) �=h;where C1(K) and C2(K) are some absolute 
onstants depending only on the kernelK .Proof. The �rst statement follows dire
tly from (5.14). The se
ond one holds be
ausethe supports of the fun
tions K((t � u)=h) and K((s� u)=�) do not interse
t for s; twith js� tj > b(� + h) , and be
ause the white noise fW has independent in
rements .Next, it follows dire
tly from (5.14) thatjE��(s)�h(t)j = 1p�hkKk2 ����Z K �s� u� �K � t� uh � du���� �� kKk1kKk2 p�=h Z ����K �s� u� ����� du� � C1(K)p�=hwhere kKk1 = supu jK(u)j and C1(K) = kKk1kKk1kKk�2 with kKk1 = R jK(u)jdu .This implies the �rst statement in (iii). Now, sin
e ��(s); �h(t) are standard normal,straightforward 
al
ulations provideE(�2� (s)� 1)(�2h(t)� 1) = 2jE��(s)�h(t)j2:Thus the se
ond assertion in (iii) follows.Denote V"(t) = ph�bh(t) (�2bh(t) � 1): (5.20)



18 LEPSKI, O.V. AND SPOKOINY, V.G.�Sin
e bh(t) takes values in H , one may also use the following representationV"(t) = ph� Xh2Hh�1(�2h � 1)1(bh(t) = h):Now, applying (ii) and (iii) of Lemma 5.3, we obtainj bE V"(t)V"(s)j == h� ������Xh2HX�2H(�h)�1E(�2� (s)� 1)(�2h(t)� 1)1(bh(t) = h;bh(s) = �)������ �� 2C2(K)h� Xh2H X�2H;�<h h�21(jt� sj � b(� + h))1(bh(t) = h;bh(s) = �) �� 2C2(K)h� Xh2Hh�21(jt� sj � 2bh)1(bh(s) � h):Hen
e bER2" = bE�Z 10 V"(t)dt�2 == Z 10 Z 10 bEV"(t)V"(s)dt ds �� 2C2(K)h� Xh2Hh�2 Z 10 Z 10 1(jt� sj � 2bh)1(bh(s) � h)dt ds == 8bC2(K)Xh2Hh�=hZ 10 1(bh(s) � h)ds: (5.21)This immediately givesE R2" � 8bC2(K)Xh2H h�=hZ 10 P (bh(s) � h)ds: (5.22)Note, that the above 
al
ulations are valid for any arbitrary fun
tion f . Now we analyzethe last sum supposing that f � 0 . In this 
ase the estimators ~~fh(t) 
onsist only of thesto
hasti
 term 
oin
iding in distribution with �h(t) . Hen
e, by de�nition of bh(t) weobtain for ea
h h1 2 HP (bh(t) � h1) � Xh2H;h�2h1 X�2H;�<hP (j��(t)� �h(t)j >  (�; h)):The di�eren
e j��(t)� �h(t)j is a Gaussian random variable with the varian
e �2(�; h) ,see (3.3), andP (j��(t)� �h(t)j >  (�; h)) = P �j�j > 2pln(h�=�)� � 2 expf�2 ln(h�=�)g= 2(�=h�)2: (5.23)



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 19Here � denotes a standard normal random variable. Making use of the de�nition of theset H as a dyadi
 series, we 
on
lude thatP (bh(t) � h1) � Xh2H;h�2h1 X�2H;�<h 2(�=h�)2 � 2(2h1=h�)2:By (5.22) this yields ER2" � 64bC2(K)Xh2H(h=h�) � 128bC2(K): (5.24)Note that this bound is suÆ
ient to prove (5.15) with f � 0 . But we need to prove theasymptoti
 normality of R" under H0 . Let V"(t) be given by (5.20). De�ne the pro
essU"(u) by U"(u) = ph�V"(uh�); 0 � u � 1=h�:With this notation we obtain from (5.13)R" = 2kKk2ph� Z 1=h�0 U"(u)du: (5.25)It is easy to see that the pro
ess U"(u) is stationary under H0 in the interval u 2[b; 1h� � b℄ be
ause this holds true for the pro
esses �h(�) and bh(�) . Non-stationarity inthe subintervals [0; b℄ and [ 1h� � b; 1h� ℄ is 
aused by the 
orre
tion of the kernel at theend points. Next, statement (ii) of Lemma 5.3 shows that the pro
ess U" is mixing and�nite-dependent, whi
h means that U"(u) and U"(u0) are independent if ju� u0j > 2b .Moreover, an easy analysis proves that the distribution of U" does not depend on " .These fa
ts along with (5.24) allow us to apply the 
entral limit theorem to the integralof U" over the interval from b to 1h� � b , see e.g. Ibragimov and Linnik (1965, Se
tionXVIII.7). This 
learly leads to an asymptoti
 normality of R" , 
ompare (5.25).We turn now to studying the behavior of the term R" for an arbitrary fun
tion f 2Bsp;q . In 
ontrast with the above 
ase, the pro
ess bh(t) is not stationary anymore, be
auseit des
ribes lo
al smoothness properties of the fun
tion f whi
h, generally speaking, varyfrom point to point. The same is true for the above de�ned pro
esses V" and U" . Butestimate (5.22) remains valid and we show that it leads to (5.15). Namely we are verifyingthat supf2Bsp;q(M)ER2" � C 0 (5.26)with some 
onstant C 0 depending possibly on the parameters s; p; q;M . This yields(5.15) by the Chebyshev inequality. For this purpose we introdu
e a useful pointwise
hara
teristi
 of the fun
tion f whi
h re
e
ts the lo
al smoothness properties of thisfun
tion in a small vi
inity of ea
h point. This notion in a slightly modi�ed form wasused in Lepski et al.(1994) and Lepski and Spokoiny (1995).



20 LEPSKI, O.V. AND SPOKOINY, V.G.�Given t 2 [0; 1℄ and h > 0 , let�f (h; t) = max�2H;��h jf(t)� f�(t)j:Also set hf (t) = maxfh 2 H : �f (h; t) �  (h)g; (5.27) (h) being de�ned in (3.4). Obviously (2h) �  (h)=p3and de�nition (5.27) yieldsjf(t)� fh(t)j �  (hf (t)); 8h 2 H; h � hf (t); (5.28)jf(t)� f2hf (t)(t)j >  (2hf (t)) >  (hf (t))=p3; if hf (t) < h�: (5.29)Now we note thatP (bh(t) � h) � 1(hf (t) � h) + P (bh(t) � h; h < hf (t)): (5.30)The se
ond term in the left side 
an be easily estimated.Lemma 5.4. For ea
h t 2 [0; 1℄P (bh(t) � h; h < hf (t)) � 2(h=h�)2:Proof. Let us �x some t 2 [0; 1℄ and set h1 = hf (t) . By the de�nition of bh(t)P (bh(t) � h; h < h1) �� Xh2H; h�h1 X�2H; �<hP (j ~~f�(t)� ~~fh(t)j >  (�; h) + 2 (h)):Now, de
omposition (5.9) and properties (5.28) and (5.23) implyP �j ~~f�(t)� ~~fh(t)j >  (�; h) + 2 (h)� �� P (j��(t)� �h(t)j+ jf(t)� f�(t)j+ jf(t)� fh(t)j >  (�; h) + 2 (h)) �� P (j��(t)� �h(t)j >  (�; h))� (�=h�)2:We end up by the same arguments as in the proof of (5.24).Using this lemma we getXh2Hh�=hZ 10 P (bh(t) � h; h < hf (t))dt � Xh2H 2h=h� � 4:In view of (5.22) and (5.30), statement (5.26) 
an now be redu
ed tosupf2Bsp;q(M)Rf � C 00



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 21where Rf = Xh2Hh�=hZ 10 1(hf (t) � h)dt:Note that for ea
h t Xh2H; h�hf (t) h�=h � 2h�=hf (t);so that we obtainRf = Z 10 0� Xh2H; h�hf (t) h�=h1A dt � 2Z 10 (h�=hf (t))dt:By de�nition (3.4) we have h�=h �  2(h)= 2(h�) and it suÆ
es to prove thatsupf2Bsp;q(M)R0f � C 000with R0f = Z 10 ���� (hf (t)) (h�) ����2 dt:By (5.29)R0f � 1 + Xh2H; h<h� Z 10 ����  (h) (h�) ����2 1(hf (t) = h)dt �� 1 + Xh2H; h<h�  �2(h�)j (h)j2�p Z 10 3p=2�pf (2h; t)1(hf (t) = h)dt �� 1 + 3p=2 �2(h�) Xh2H; h<h� j (h)j2�p Z 10 �pf (2h; t)dt:The properties of the Besov 
lass Bsp;q(M) imply the following bound, see Lepski etal.(1994, formula (5.9)), supf2Bsp;q(M) Z 10 �pf (h; t)dt � Lhspwith some 
onstant L = L(s; p; q;M) . This givesR0f � 1 + 3p=2 �2(h�) Xh2H; h<h� j (h)j2�p L(2h)sp �� 1 + 3p=22spL"2=h� Xh2H; h<h� "2�phsp�1+p=2 ln(h�=h):Sin
e sp� 1 + p=2 > 0 for sp > 1=2 , the latter expression is estimated as follows:R0f � 1 + 
onst: "�ph��1h�sp�1+p=2;by substituting h� from (3.2) we getR0f � 1 + 
onst: "1=(2s+1�1=p) = 1 + o"(1)



22 LEPSKI, O.V. AND SPOKOINY, V.G.�whi
h 
ompletes the proof of (5.26) and hen
e of (5.15).Now we verify (5.19) by means of the same method as the one applied above forestimating R" . Let t 2 [0; 1℄ and let hf (t) be de�ned by (5.27). We 
onsider separatelythe 
ases when bh(t) � hf and bh(t) > hf (t) .For the sake of simpli
ity we write below bh and hf instead of bh(t) and hf (t) respe
-tively. Also set h+ = 2hf = 2hf (t) . The de�nition of hf yieldsjf(t)� fbh(t)j21(bh � hf ) � �2f (hf ; t)1(bh � hf ) � j (hf )j2�p�pf (hf ; t): (5.31)Next, for the inverse 
ase of bh > hf we apply de
omposition (5.9) and the de�nition ofbh getting jf(t)� fbh(t)j21(bh > hf ) == jf(t)� fhf (t) + efhf (t)� efbh(t)� (�hf (t)� �bh(t))j21(bh > hf ) �� j (hf ) +  (hf ;bh) +  (bh) + j�hf (t)� �bh(t)jj21(bh > hf ):Now, for bh > hf ,  (hf ;bh) �  (hf ); (bh) �  (hf ):Sin
e �h(�) and bh(�) are independent, we havebE j�hf (t)� �bh(t)j2 = �2(hf ;bh) �  2(hf ;bh) �  2(hf ):Hen
e jf(t)� fbh(t)j21(bh > hf ) � E �3 (hf ) + j�hf (t)� �bh(t)j�2 �� 18 2(hf ) + 2Ej�hf (t)� �bh(t)j2 � 20 2(hf ):The event fbh > hfg implies that hf < h� and, by (5.29), 2(hf ) � 3 2(h+) � 3j (h+)j2�pj�f (h+; t)jp:This inequality along with (5.31) allows us to 
on
lude thatEjf(t)� fbh(t)j2 � 
onst: hj (hf )j2�p�pf (hf ; t) + j (h+)j2�pj�f (h+; t)jpi �� 
onst:Xh2H j (h)j2�p�pf (h; t)and thus that E Q" = %�2" Z 10 Ejf(t)� fbh(t)j2dt �� 
onst: %�2" Xh2H j (h)j2�p Z 10 �pf (h; t)dt �� 
onst: %�2" Xh2H j (h)j2�phsp:



TESTING A HYPOTHESIS VS. AN INHOMOGENEOUS ALTERNATIVE 23Similarly to the above,
onst: %�2" Xh2H j (hf )j2�phsp � 
onst: %�2" j (h�)j2�ph�sp =
onst:("2=ph�)�1("=ph�)2�ph�sp = 
onst:The last inequality obviously yields (5.19) and it remains to 
he
k (5.16). We pro
eed inthe same way as we did when estimating R". We have
" = Xh2HZ 10 fh(t)�h(t)1(bh(t) = h)dt == "p2kKkXh2Hh�1=2 Z 10 fh(t)�h(t)1(bh(t) = h)dt:On
e more making use of Lemma 5.3 we obtainbE 
2" = 2"2kKk2 Xh2HX�2H(h�)�1=2 �Z 10 Z 10 fh(t)f�(s)E[�h(t)��(s)℄1(bh(t) = h; bh(s) = �)dt ds �� 4C1(K)"2kKk2 Xh2H X�2H; ��hh�1 �Z 10 Z 10 fh(t)f�(s)1(jt� sj � 2bh)1(bh(t) = h; bh(s) = �)dt ds: (5.32)The elementary inequality ab � (a2 + b2)=2 leads toZ 10 Z 10 fh(t)f�(s)1(jt � sj � 2bh)1(bh(t) = h)1(bh(s) = �)dt ds �� 12 Z 10 Z 10 f2h(t)1(jt� sj � 2bh)1(bh(t) = h) dt ds +12 Z 10 Z 10 f2� (s)1(jt� sj � 2bh)1(bh(s) = �)dt ds �� 2bhZ 10 f2h(t)1(bh(t) = h) dt+ 2bhZ 10 f2� (s)1(bh(s) = �)ds:By (5.32) we arrive easily atbE 
2" � 4C1(K)kKk2"22r �Xh2H X�2H; ��h �Z 10 f2h(t)1(bh(t) = h) dt+ Z 10 f2� (s)1(bh(s) = �)ds� �� 4C1(K)kKk2"22r#HXh2HZ 10 f2h(t)1(bh(t) = h) dt �� 
onst: "2 bS#H
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" > Æ(bS + %2")) � P (
" > 2Æ%"pbS) �� bE 
2"4Æ2 bS%2" � 
onst: "2 ln "�1Æ2%2" ! 0; "! 0:The theorem is proved.
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