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Abstract

We present a general approach to statistical problems with criteria based on
probabilities of large deviations. Our main idea, which originates from similarity in
the definitions of the large deviation principle and weak convergence, is to develop a
large deviation analogue of asymptotic decision theory. We introduce the concept of
the large deviation principle (LDP) for sequences of statistical experiments, which
parallels the concept of weak convergence of experiments, and prove that, in analogy
with Le Cam’s minimax theorem, the LDP provides an asymptotic lower bound for
the sequence of appropriately defined minimax risks. We also show that the bound is
tight and give a method of constructing decisions whose asymptotic risk is arbitrarily
close to the bound. The construction is further specified for hypothesis testing and
estimation problems.

We apply the results to a number of standard statistical models: an independent-
identically-distributed sample, regression, the change-point model and others. For
each model, we check the LDP; after that, considering first a hypothesis testing
problem and then an estimation problem, we calculate the asymptotic minimax risks

and indicate associated decisions.
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1 Introduction

The approach to statistical problems that bases its conclusions on the study of prob-
abilities of large deviations has been in use in statistical inference since the papers by
Chernoff, 1952 and Bahadur, 1960.

Chernoff, 1952 considering the problem of discriminating between two simple hypothe-
ses showed that, if the hypotheses are fixed, the error probabilities decrease exponentially
fast as the sample size tends to infinity; the corresponding optimal exponent is specified
by what is now known as Chernoff’s function.

Basu, 1956 and Bahadur, 1960 proposed a criterion for comparing statistical estima-
tors based on the view that the quality of an estimator is characterised by the probability
that the true value of the parameter is covered by the confidence interval of a given width
2¢ with centre at the estimate. If the width 2¢ is held fixed as the sample size grows
then the probabilities that the true value of the parameter is not covered are typically
exponentially small. The estimator giving the fastest decay is called now Bahadur effi-
cient. Later, Bahadur et al., 1980, for the model of independent identically distributed
observations showed that in the class of consistent estimators the optimal rate instead of
Chernoff’s function is specified by the Kullback-Leibler information.

The ideas of Chernoff and Bahadur have been developed in various directions. Ibrag-
imov and Radavichius, 1981, Kallenberg, 1981, Ibragimov and Khasminskii, 1981, Ra-
davichius, 1983 and Radavichius, 1991 studied the properties of maximum likelihood
estimators from the point of view of Bahadur’s criterion. Fu, 1982, Borovkov and Mogul-
skii, 1992b and Borovkov and Mogulskii, 1992a analysed the terms of the second and
higher order of asymptotic expansions of Bahadur risks. Kallenberg, 1983, Rao, 1963,
Wieand, 1976, and Ermakov, 1993 considered intermediate criteria for statistical estima-
tors when the width of the confidence interval goes to zero at certain rate. Sievers, 1978
and Rubin and Rukhin, 1983 evaluated Bahadur risks for particular statistical models.

Lately this direction in mathematical statistics has received a new impetus, mostly
in papers by Korostelev, 1993, Korostelev, 1995, see also Korostelev and Spokoiny, 1995,
Korostelev and Leonov, 1995, where the classical large deviation set-up is considered in
the minimax nonparametric framework.

Our aim here is to give a unified treatment of the statistical problems that use large
deviation considerations. The idea is to capitalise on analogies between large deviation
theory and weak convergence theory (see Lynch and Sethuraman, 1987; Vervaat, 1988;
Puhalskii, 1991) and develop a large deviation analogue of asymptotic decision theory,
Strasser, 1985. The approach of invoking the methods of weak convergence theory to

obtain results about large deviations has proved its worth in various set-ups, Puhalskii,
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1991, 1993, 1994a, 1994b, 1995a, 1995b, 1996. We show that it can successfully be applied

to statistical problems too.

We begin by defining in Section 2 the concept of the large deviation principle (LDP)
for a sequence of statistical experiments. Analogously to the concept of weak convergence
of statistical experiments, it is a short cut for saying that the distributions of suitably de-
fined likelihood processes satisfy the large deviation principle, Varadhan, 1966; Varadhan,
1984. We illustrate the general definition by considering a number of standard statisti-
cal models (the Gaussian shift model, the model of independent identically distributed
observations, the “signal + white noise” model, the regression model with Gaussian
and non—-Gaussian errors, with deterministic and random design, and the change—point
model). We next study properties of the LDP for statistical experiments and give a
sufficient condition for it which is analogous to the local asymptotic normality condition
by LeCam, 1960.

The classical minimax theorem by Le Cam states that if statistical experiments weakly
converge then the minimax risks are asymptotically bounded from below by the corre-
sponding risk for the limit model, see LeCam, 1972, LeCam, 1986, Strasser, 1985. In
Section 3, we show that, similarly, if a sequence of statistical experiments obeys the LDP,
then there is an asymptotic lower bound for appropriately defined minimax risks. The
problem of evaluating the bound is a minimax optimization problem. Further in Section
3, we study the question of sharpness of the lower bound. We show that it is sharp under
a strengthened version of the LDP. This allows us to define large deviation (LD) efficient
decisions as the ones that attain the lower bound. We give a method of obtaining nearly
LD efficient decisions, i.e., those whose LD asymptotic risk is arbitrarily close to the

lower bound.

Sections 4 and 5 deal with applications. Section 4 adapts the results of Section 3 to the
cases of hypothesis testing and estimation problems and presents explicit constructions
of nearly LD efficient decisions. In Section 5, we apply the machinery to the models
introduced in Section 2: we check the LDP, give conditions when the lower bounds are
attained, calculate them for hypothesis testing and estimation problems, and indicate

nearly LD efficient decisions. An appendix contains extensions and auxiliary results.

The results of the first four sections are new. The results that we obtain for the

models are partly new and partly cover or extend earlier results.
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2 The Large Deviation Principle for Statistical Experi-

ments

Let {€,,n > 1} be a sequence of statistical experiments &, = (Qn, Fpn; Py, 0 € ©) with
a parameter set ©, Strasser, 1985. In this section, we give the definition of the large
deviation principle for {€,,n > 1} and study its properties. We start with the case of

dominated experiments.

2.1 The Dominated Case

Let us assume that each experiment &, = (Q,,Fp; P9, 0 € O) is dominated by a
probability measure P,, ie., P, g < P, for all # € ©. We abbreviate this by writing
{&ny Py ,n > 1} . Denote

AP\ "
Ting = : 2.1
o= (G20)". eee. 1)

and let Z, o = (Z,9,0 € ©). We endow RS with the Tihonov (product) topology
and Borel o-field so that Z, ¢ is a random element of R?; L(Zy,0|P,) denotes the
distribution of Z, g on R? under P,. Roughly speaking, the large deviation principle
for {&,, P, ,n > 1} means that the sequence {L(Z,e|P,), n > 1} of distributions on
R? obeys the large deviation principle, so we recall some basic notions of large deviation
theory.

We use Varadhan’s original definitions of the rate function and the large deviation
principle (Varadhan, 1966; Varadhan, 1984). Let S be a Hausdorff topological space.
We say that a function I : § — [0,00] is a rate function on S if the sets I-1([0,a]) are
compact in S for all @ > 0. A sequence {Q,,n > 1} of probability measures on the Borel
o-field of S is said to obey the large deviation principle (LDP) with the rate function I
if

lim +1nQ,(G) > — inf I(x)

n—soo N zeG
for all open G C S and
— 1
lim —InQ,(F) < — inf I(x)

n—ooo N z€F
for all closed F' C S.
We also say that I is a probability rate function if inf,cg I(z) = 0. Obviously, if 1
appears in the LDP, it is a probability rate function.
Recall that the contraction principle states that continuous mappings preserve the
LDP, Varadhan, 1966; Varadhan, 1984.
Next, we say that the sequence {&,, P, ,n > 1} satisfies condition (U) if
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(U) lim Tim Ey"Z!g1(Zng > H)=0,0€0.

H—00 nooo

Here and below F, denotes an expectation with respect to P, and, by definition,
Ei/"¢ = (Baf)/, Pa/™(4) = (Pa(A))1".

Definition 2.1 We say that a sequence {&,, P, ,n > 1} of dominated statistical exper-
iments obeys the dominated large deviation principle (LDP) if

1. the sequence {L(Zneo|P,),n > 1} obeys the LDP with some (probability) rate

function I,
2. condition (U) holds.

A critical part of the definition is condition 1. Condition (U) plays a subordinate though
essential role. If we disregard condition (U), the definition is analogous to the definition of
weak convergence of dominated statistical experiments (Strasser, 1985) which states that
the likelihood ratios weakly converge. The role of condition (U) will become clear shortly:
it ensures the compatibility of this definition with a more general one which does not
depend on a choice of dominating measures and incorporates the nondominated case too.
In particular, condition (U) implies that the lower bound that we obtain in Section 3 for
the sequence of so called large deviation risks does not depend on dominating measures
either (see Remark 3.2 below). Note that an analogue of condition (U) in the theory of
weak convergence of statistical experiments is a consequence of weak convergence of the
likelihood ratios and does not have to be singled out.

In applications, rather than considering Z, g, it is more convenient to deal with log-

- . — dP, . = -
likelihood ratios =, ¢ defined as &, 9 = %ln dp’e. Let us introduce E, ¢ = (£, 9,0 € O)
) s n ) )

and denote by L(=,, o|P,) the distribution of =, g on R® under P,, where R® is supplied
with the Tihonov topology and Borel o-field. If the 5, g are well defined then, by the
contraction principle, the LDP for the sequence {L(Z, ¢|P,),n > 1} implies the LDP
for the sequence {£(Z, 0|P,),n > 1}.

Now we consider a number of statistical models which, on the one hand, show that the
LDP for the log-likelihood ratios arises quite naturally and, on the other hand, motivate
and illustrate theoretical developments below. We stop short of giving rigourous proofs

of the LDP for the models deferring this until Section 5.
Example 2.1 Gaussian Observations

Let us observe a sample of n independent real-valued random variables X, =
(X1ms- .-, Xnn) normally distributed with A'(6,1), 6 € © C R. For this model, ,, = R"
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and P,y = (N(6,1))", 6 € ©. We take P, as a dominating measure P,. Then the
corresponding log-likelihood ratios are of the form
1. dPyg 1

_ _ 1 2\ 1 2
ng—nln P (xn)_n;(axk,n 20)_0Yn 29,

where

1 n
Yo = Ekzlxk,n, n>1.

The sequence {L£ (Y,|P,),n > 1} obeys the LDP in R with rate function IV (y) =
y?/2,y € R (see, e.g., Freidlin and Wentzell, 1979). This yields by the contraction
principle the LDP for the log-likelihood ratios &, g.

Example 2.2 An Independent-Identically-Distributed Sample

Let X, = (Xip,...,Xpnn) be an independent-identically-distributed sample from a
distribution Py, 0 € ©, on the real line. We do not specify the nature of the parameter
set ©. For example, it can be a subset of a finite-dimensional space, a set of distributions
on R (or their probability density functions), etc. We assume that the family P is
dominated by a probability measure P, i.e., Py < P, 8 € ©. This model is described
by dominated experiments &, = (Qp, Fn; Pny, 0 € ©) with Q, = R", F, = B(R"),
P,g=Pg,0€0 and P, = P".
We have

n

_ 1 dP,y 1. dp, AP,
S0 = 0 ) = 0 T G () = [ G )

where

is an empirical distribution function.

Let Y be the space of cumulative distribution functions on R with the topology of
weak convergence of associated probability measures. By Sanov’s theorem (Sanov, 1957,
Deuschel and Stroock, 1989, 3.2.17), the sequence {L (F,|P,),n > 1} obeys the LDP in
Y with rate function I°(F) = K(F,P), F € Y, where K (F, P) denotes the Kullback-

Leibler information:

dF  dF
/d—P(x) In 0 (0) P(dr), i F < P,
K(F,P)=1¢ %

00, otherwise.
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Let us also denote, for € © and F € ),

P,
Co(F) = /R ln%(ac)F(dac).
If the density functions %(m) are bounded from above, bounded away from zero and

continuous in z for all # € O, then the (y(F') are continuous functions on ) and, since

En, = (o(Fn), the contraction principle yields the LDP for the sequence {Z, ¢,n > 1}.
Example 2.3 “Signal + White Noise”

We observe a real-valued stochastic process X,, = (X,,(¢), ¢ € [0, 1]) obeying the stochastic

differential equation

AX (1) = O(8)dt + —— dW (t), 0 <t < 1,
T

where W = (W(t),t € [0,1]) is a standard Wiener process and 6(-) is an unknown

function assumed to belong to some set © of real-valued continuous functions on [0, 1].

This model is described by statistical experiments &, = (Qy,, Fpn; Py, 6 € ©), where

Q, is C[0,1], the space of continuous functions on [0,1] with the uniform metric and

Borel o-field, and P, is the distribution of X,, on C[0,1] for §. We take P, = Py,

where P, o corresponds to the zero function 6(-) = 0. Then P,y < P, and, moreover,
by Girsanov’s formula, P,—almost surely,

1 1
Eng = %m djﬁf (X,) :/0 0(t)dX,(t) — %/0 0°(t)dt. (2.2)

Let Cp[0,1] be the subset of C[0,1] of the functions z(-) that are absolutely continuous

with respect to Lebesgue measure and equal 0 at 0. Then the sequence {L£ (X,|P,),n >
1} obeys the LDP in C]0, 1] with rate function

1
I (a() = %/0 (@(t))* dt, if z(-) € Col0,1],
0, otherwise,

#(t) denoting the derivative of z(-) at t (see, e.g., Freidlin and Wentzell, 1979).
Let us denote, for functions 6(-) € © and z(-) € Cy[0, 1],

1 1
o) = [ oast) =5 [ e

where the integral is understood as a Lebesgue—Stiltjes integral.

Again the log-likelihood ratio Z, 9 can formally be represented as Z, 9 = (5(X;).
Note however that the first integral in (2.2) is an Ito integral, so the latter equality as
well as the continuity property for (4 actually hold for functions 6(-) of special sort (e.g.,
piecewise constant or differentiable). For these functions, the contraction principle again

implies the LDP for {Z,, ,n > 1}. A general case is studied in Section 5.
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Example 2.4 Gaussian Regression

We consider the regression model

Xk,n = g(tk,n) + gk,na tk,n =—, k=1,...,n, (23)

where errors ¢ , are independent standard normal and 6(-) is an unknown real-valued
continuous function.

In this model, @, = R", © C C][0,1] and P,y is the distribution of X, =
(Xim,..., Xpp) for 0(-). As above, we take P, = P, o. Then

1. dP,y
Zng = —1In ’

n dP,

1]

(Xn)

1 < 1 &
- kzla(tk,n)Xk,n =5 ]; 0% (te.n)

1 n
— /9(t)dxn(t)—2i292(tk,n),
0 nk:l

where

[nt]
1
Xn(t):EZka, 0<t<1.
k=1

Let Y be the space of right-continuous with left-hand limits functions on [0, 1] with the
uniform metric (for measurability of X,,, see Billingsley, 1968, §8).

Since the Xy, are N(0,1)-distributed under P,, the sequence {L (X, |P,),n > 1}
obeys the LDP in ) with rate function IV (Mogulskii, 1976, Theorem 2).

Since the function 6(-) is continuous, we have, for large n, the approximate equality

n 1
1 D 0% (thn) & / 0% (t) dt
"= 0

and hence Z, 9 = (y(X,) with the same function (y as in the preceding example. If the
6 are differentiable, integration by parts shows that the =, y are continuous functions of
the X,,, and the LDP for {Z, ¢,n > 1} follows by the contraction principle. Again, a

general case is deferred until Section 5.
Example 2.5 Non—Gaussian Regression

We consider the same regression model (2.3) but now assume that independent identically
distributed errors ¢, have a distribution P with a positive probability density function
p(x) with respect to Lebesgue measure on the real line. An unknown regression function

6(-) is assumed to be continuous, so © C C[0, 1].
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As above, for a regression function 6(-), we denote by P, g the distribution of X, =
(Xin,-.s Xnn). We have, with P, = P,

En,0 = 1 n,6 (Xn) = — In p( k;n ( k,n))
4P n p(Xrn)

Introducing an empirical process F,, = Fy,(z,t), € R, t € [0,1], by

[nt]

1
== 1 Xpn <),
k=1

Hn,g_/o /Rl o) Fy(dz, dt). (2.4)

Let us define ) as the space of cumulative distribution functions F = F(z,t), z € R, t €
[0,1], on R x [0,1] with the weak topology. Let )y be the subset of ) of absolutely

3

we have that

continuous with respect to Lebesgue measure on R x [0, 1] functions F(z,t) with densities
pi(z) such that [pp(z)dz =1 for t €[0,1].

It is shown in Dembo and Zajic, 1995 (see also Theorem 1 in Puhalskii, 1996) that
the sequence {L(F,|P,),n > 1} obeys the LDP in ) with rate function I°%(F) given

T SE

Denote, for F € )y and 6 € O,

NP 0)
_/O/Rl o) F(dz, dt).

Then by (2.4), 2,9 = (p(Fy) and if the log’s in the integrals in the definition of the (g

z)dz dt, if F € Y,

otherwise.

are bounded and continuous, we have the LDP for {=, g,n > 1}.

Example 2.6 The Change—Point Model

Let us observe a sample X,, = (X1 ,..., Xy ) of real-valued random variables, where,
for some k;,, > 1, the observations X . ..., X}, » are independent identically distributed
with a distribution Py and the observations X, 41 5,..., X, are independent identically

distributed with a distribution P;. We assume that Py and P; are known and k, is
unknown. Let us also assume that k, = [n#], where § € © = [0,1]. For this model,
1, = R" and P, g stands for the distribution of X, for 0.

Let a probability measure P dominate Py and P; and

folr) = 2@, fil) = Y1), we R,
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be respective densities. Assume that fo(z) and fi(z) are positive and continuous. De-

noting P, = P™, we have

1. dp, 1 "
Zng = o In B (X §:mh T Y WA
z [nf]+1

so that defining an empirical process again by

[nt]
1
Fy(z,t) = - Z I(X;n <z), z€R,te]0,1],
i=1

we obtain the representation

En,gz/:/RlnfU( W (d, dt) + / /mf1 o (dz, dt).

Let a space Y be defined as for the preceding model and Yp be the set of those F' € Y
that are absolutely continuous with respect to the measure P(dz) x dt and admit densities
pi(z) such that [ppi(x)P(dz) =1,t € [0,1]. As above, the F,, obey the LDP with rate

function If;K of the form
1
/ /pt(x) Inp(z)P(dx) dt, if F € YVp,
0 R
otherwise.

Define next for F' € Vp

:fémm (mw(//Mﬁ F(ds, dt)

Then again 2, 9 = (9(Fy), and the LDP for {=, g, n > 1} holds, e.g., when log fo(z) and

log f1(z) are bounded and continuous.
Example 2.7 Regression with Random Design

We consider the model
Xien = 0(tkn) + &k, kE=1,...,n,

where real-valued errors ¢, and design points ?;, are independent with respective
distributions P and II dominated by Lebesgue measure. We denote the respective
densities by p(x) and 7 (¢). We also assume that the prior measure IT has a compact
support D, m(t) is continuous and positive on the support, p(z) is continuous and positive

on R, and an unknown regression function (-) is continuous.

11
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In this model, P, is the joint distribution of X, = (Xip,...,Xn,) and ¢, =
(tins- - tnn) for 6. Let F,, be the joint empirical distribution function of X,, and ¢, :

n

1 Z
Fn(AaB) :E 1(Xk7n GA’tkynEB)
k=1

for Borel sets A C R, B C D, and let ) be the space of distributions on R x D with the
weak topology. Set also P, = P, o= (P x II)"
With these definitions,

L 1l APy
b dp,

an_ (tk,n))
- _Zl an)

_ /D/Rlnpip_(x) ), (de, dt).

Let ); be the set of the cumulative distribution functions on R? that are absolutely

(X, tn)

continuous with respect to Lebesgue measure on R? and have support in R x D. Under
P, , the random pairs (X n,t; ) are independent identically distributed with the dis-
tribution P x II, and hence, by Sanov’s theorem, the LDP holds for the F;, with rate
function I°%(F) given by

7])(%” T T i
sy =y Jy o ptermgg e e HF €01

otherwise.

Here F'(dz,dt) = p(z,t)dzdt. The LDP for this model follows now in a manner similar
to the case of an independent-identically-distributed sample.

We end the subsection with a simple but useful remark. It is noticeable that the
definition of the LDP given above uses the same letter n both to subscript probability
measures and associated random elements, and denote a scaling parameter. One might
wonder whether this is not a loss of generality and how n should be chosen when consid-
ering particular models. The answer to the first question is in the negative and making
n play the two roles is a matter of convenience for economy of notation. Indeed, if we
have a sequence of probability measures {Q,,n > 1} with log @, having the right rate
b, — oo as m — oo, we can always reduce this case to the above “standard” set—up by
“relabeling” the measures, i.e., by introducing measures @), such that Qén = @, ; taking
b, as a new n then gives log Q! the rate n as required. This argument originating from
Varadhan, 1984 also answers the second question: n in our formalism has the meaning
of the right scale rather than “the natural parameter of the model”. Of course, the two

can coincide as in most of the examples we considered where n is a sample size, but not
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always as Example 2.3 shows. On the other hand, it is clear from the above that if we
want n to be “the natural parameter”, we can do this by introducing some b, — oo as

a scale.

2.2 Sufficient Conditions for the Dominated LDP

We now study properties of the LDP for statistical experiments and begin with a sufficient
condition for the LDP. The condition serves two purposes further: first, in particular
statistical models it can easier be checked than the definition of the LDP, second, this
condition comes in handy when constructing asymptotically optimal decisions, see Section
4. The idea behind the condition is similar to the one used in the condition of local
asymptotic normality by LeCam, 1960 for studying weak convergence of experiments, or,

more generally, in the condition of A—convergence by Shiryaev and Spokoiny, 1995.

Given a sequence of dominated statistical experiments {&,, P,,n > 1}, assume that
there exist statistics Y,, on (€,,F,) with values in a Hausdorff space ) such that the
sequence {L(Y,|P,),n > 1} obeys the LDP and the Y, are asymptotically sufficient
in the sense that 7,4 =~ 3¢(Y,) for some nonrandom functions 39 on ). In the above
examples the statistic Y;, is easily identified: it is the empirical mean (X, ,+...+X, ) /n
in the case of a sample from normal distribution in Example 2.1, the empirical distribution
function F}, in the case of an independent-identically-distributed sample in Example 2.2,
the observation process X, for the “signal + white noise” model, the empirical process

F,, for the regression model with non-Gaussian errors and the change-point model, etc.

If the functions 34 are continuous then, by the contraction principle, the LDP for the
sequence {L(Y,|P,),n > 1} implies the LDP for the sequence {L(3¢(Yn)|Pn),n > 1}
and hence for {L(Z, 9| P,). n > 1}. Unfortunately, by contrast with the theory of weak
convergence of experiments, in applications the functions 34 typically are not continuous.
For instance, the functions (4(y) = Inzgp(y) generally are not continuous in the above
examples for an independent-identically-distributed sample, the “signal 4+ white noise”
model, the regression models and the change-point model. To overcome this difficulty, we
need to introduce “regularisations” 39 5(y) of 39(y) that, on the one hand, are continuous

functions and, on the other hand, converge to 34(y) as § — 0.

Before stating the condition, let us review some more facts about large deviations
used in the sequel. Recall (Varadhan, 1966; Varadhan, 1984; Deuschel and Stroock,
1989; Bryc, 1990) that if a sequence of probability measures {@Q,,n > 1} on the Borel o—
field of a Hausdorff space S obeys the LDP with rate function I then, for all non-negative

13
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bounded continuous functions f on S,

i [ [ (@) Qutd)] = sup £ V(o). (25)
/ |

n—oo zES

where V(z) = exp(—I(z)). If S'is a metric, or, more generally, a Tihonov (i.e., completely
regular) space (Engelking, 1977; Kelley, 1957) then (2.5) also is sufficient for the LDP
(Puhalskii, 1993).

Moreover, the LDP implies (2.5) for unbounded continuous non-negative functions f
too under “the uniform exponential integrability condition” (Varadhan, 1984; Deuschel
and Stroock, 1989)

_ . 1/n B
lim  lim [/5 (f(x)" 1(f(z) > H)Qn(da:)] =0. (2.6)

H—o0o nooo

Also, if f is a lower semicontinuous non-negative function then

lim [ / (f(x))“c;n(dm] s s f@) V(). (2.7

n—00 €S

The function V(z) is further referred to as a deviability. Equivalently, a deviability is
defined as a function V : S — [0, 1] such that sup,.g V(z) = 1 and the inverse images
V~!([a,1]) are compact sets for all a > 0. Obviously, there is one-to-one correspondence
between probability rate functions and deviabilities. We say that {Q,,n > 1} large
deviation (LD) converges to V' and write @, My (n — oo) if (2.5) holds for all bounded
continuous non-negative functions f (Puhalskii, 1994a). Below we use the fact that, if
S is metric, then one can only require that the functions f be uniformly continuous
(analogously to weak convergence theory, Billingsley, 1968, Theorem 2.1). By the above,
if S'is a Tihonov space then @, L4 V(n — oo) ifand only if {Q, } obeys the LDP with I =
—1InV. All the spaces we consider below are Tihonov and we mostly use the formulation
of the LDP as LD convergence as more convenient in theoretical considerations.

Next, let S and S’ be Hausdorff spaces and V' a deviability on S. Denote
Oy(a)={z€S: V(z) >a}, a>0. (2.8)

As in Puhalskii, 1995b (cf. Schwartz, 1973), we say that a map ¢ : S — S’ is V-Luzin

measurable if it is continuous in restriction to each set ®y(a),a > 0. 2 Deviabilities

2The name is motivated by the following analogy with Luzin’s theorem in measure theory. Let us
extend V' to a set function on S by defining V(I') = sup, . V(z), I C S. Then V as a set function is an
analogue of probability (see Puhalskii, 1991, 1994, 1995a for a discussion), and, equivalently, a function
¢ is V -Luzin measurable if, for every £ > 0, there exists a set A C S with V/(S\A) < ¢ such that ¢ is
continuous in restriction to A. It is also interesting to note that one can prove an analogue of Egorov’s

theorem for sequences of Luzin measurable functions Puhalskii, 1991, 1995b.
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are preserved under Luzin measurable maps: for any V-Luzin measurable map ¢, the
function Vo ! on S’ defined by Vop !(z') = SUP,c,-1(yr) V(2), 7' € ', is a deviability
on S’ (see Deuschel and Stroock, 1989, 2.1.4, also the argument of Puhalskii, 1991,
Lemma 2.1 applies).

Also, we say that a function ¢ : S — S’ is V—-almost everywhere (V-a.e.) continuous
if it is continuous at every x € S with V(z) > 0. Obviously, each V—-a.e. continuous
function is V-Luzin measurable.

Some more notational conventions are in order. We denote by A(©) the family of all
finite subsets of ©®. Elements of R? are denoted by zg = (29,60 € ©), and elements of Rﬂxr,
where A € A(O), by zp = (29,60 € A). Maps mp and warx, where A € A(©), A’ € A(O)
and A C A’, are the natural projections of R? onto Rfl\_ and of Rfl\_l onto Rﬁ_, respectively:
(20,0 € ©) = (29,0 € A) and mpip(29,0 € A') = (29,0 € A). Since RY and R},
A € A(©), are supplied with the Tihonov topology, the projections are continuous.

We now state and prove the sufficient condition for the LDP. We assume in it that
the statistics Y, take values in a metric space which is enough for applications though

this restriction can be relaxed.

Lemma 2.1 Let {&,, P, ,n > 1} be a sequence of dominated experiments and Z, g, 0 €
©, be defined by (2.1).

Assume that the following condition holds:

(Y') there exist statistics Yy, : Qn, — Y with values in a metric space ) with the Borel
o-field, functions39: Y — Ry ,0€0,and3ps: Y — Ry, 0 €0,6 >0, such that

(Y.1) the sequence {L (Yp|Py,),n > 1} of distributions on Y LD converges to a deviability
V(y)yey;

(Y.2) for all 6 > 0, the functions 395 : Y — Ry , 6 € ©, are Borel measurable and

V—-a.e. continuous;

(Y:3)  lim Tm PY"(|Zng —305(Yn) >€) =0 for alle >0 and 0 € O;

=0 pooco

(Y.4) lim sup |30,5(y) —30(y)| =0 for alla >0 and 6 € O©.
=0 yedy (a)

Then L (Zyn0|Pn) L4 Vo (n — o0), where Vg = Vogél, 30 = (39, 0 € O).

Proof.Conditions (Y.2) and (Y.4) obviously imply that 30 : ¥ — RS is V-Luzin mea-
surable, hence Vg is a deviability on R?.
Let A € A(©). We first prove that

L(Zna|Pa) S Vi (n— o), (2.9)

15
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where Z, A = (Zpp,0 € A), VoA = Vog,Xl and 35 = (39,0 € A). Let f :
Rfl\_ — R4 be bounded and uniformly continuous. Since, by the definition of Vj,

SUP,, ¢ A f(za)Va(za) = Sup,cy f(Ga(y))V(y), we need to prove that

lim EN"™™(Zn,) = sup f(3a(y)V (). (2.10)

n—oo yey
Let 34,6 = (30,5,0 € A). Condition (Y.3) implies in view of the boundedness and uniform
continuity of f that

lim T B f"(Zna) = B " (a5(Ya))| = 0. (2.11)

-0 n—oo
Since the sequence {L£(Y,|P,),n > 1} LD converges to V and the map jxs: Y — R%}
is V -a.e. continuous, the sequence {L£(34 5(Ys)|Pn),n > 1} LD converges to Vo(34,5) 7",
Puhalskii, 1991, Theorem 2.2. Thus, since f is non-negative, bounded and continuous,

lim EY"™f"(57,6(Ya)) = sup f(31,6(4)V (¥). (2.12)

By (2.11) and (2.12), for (2.10) it remains to show that

lim sup f(54,6(y))V (y) = sup f(3a(y)V (y) (2.13)
—U yey yey

which is an easy consequence of condition (Y.4). Convergence (2.9) is proved. The
assertion of the lemma now follows by the Dawson—Gartner theorem on the projective
limits of large deviation systems (Dawson and Gértner, 1987, Theorem 3.3) if we note that
L(Zn.o|Py) is the projective limit of {L£(Z,A|P,),A € A(©)} and V) = Voory', A €
A©). O

Remark 2.1 Since R? is a Tihonov space, the lemma implies that, under conditions

(Y) and (U), the sequence {&,, P, ,n > 1} obeys the dominated LDP.

Remark 2.2 As we have seen, in applications it is more convenient to manipulate rate

functions and log-likelihood ratios given by

1. dp,
Eng =1nZp 9= —In—"

0 € 6.
nndPn’ <

Accordingly, it is useful to state condition (Y) in these terms. Assume that the =, ¢ are

well defined. It is easy to see that condition (Y) is implied by the following condition

(Y') there exist statistics Y, : Q, — Y with values in a metric space Y with the Borel
o—field, functions ¢p: Y —+ R, 0 €O, and (95: Y — R, 0 € ©, 6 >0, such that

(Y'.1) the sequence {L(Y,|P,), n > 1} of distributions on ) obeys the LDP with rate
function I(y), y € YV;
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(Y'.2) for all 6 > 0, the functions (95 : ¥ — R, 6 € ©, are Borel measurable and

continuous at each point y such that 1(y) < oo;

(Y'.3) lim lim P,}/"(|En,9 —Cp5(Yn)| >¢€) =0 foralle >0 and 6 € O;

=0 pnoco

(Y'.4) lim sup [(ps(y) —Co(y)| =0 for alla >0 and 6 € O,
6—0 /
ye@[(a)

where ®(a) ={y € YV : I(y) < a}.
Condition (U) takes the form

(U lim Tm EY/"exp(ng,)1(E,9 > H)=0,0€0.

H—00 nooo

By Lemma 2.1, conditions (Y') and (U') imply the dominated LDP.

2.3 The General Case

The above definition of the large deviation principle for statistical experiments covers only
the dominated case and depends on a choice of dominating measures. We present now
another definition which is free of these defects. It is motivated by Le Cam’s definition
of weak convergence of experiments, see, e.g., Strasser, 1985.

Let |A| denote the number of elements in A € A(©). For zp = (29,0 € A) € R}
and ze = (29,0 € ©) € R, we set [|za|a = max zg and ||zelle = max zg , respectively,
and define Sy = {2p € R} : ||za]a = 1} and Se = {20 € R : ||zelle = 1}. Not to
overburden notation, we sometimes omit the subscript A in || - ||s if there is no risk of
confusion.

Next, given a sequence of statistical experiments {&,,n > 1}, where &, =
(Q, Fn. Pryp,0 € ©), set, for A € A(O),

1
Pan = T > Pay,
0cA
Znya;/\ = <ﬁ> ) NS A7 (214)
n,
Znn = (Zppn, 0€AN).

The definitions immediately imply that, P, y—almost surely,
> Zngn = Al (2.15)
0eA

and

1< (1 Znall < AP, (2.16)

17
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Definition 2.2 A sequence {E,,n > 1} of statistical experiments obeys the large de-
viation principle (LDP) if, for each A € A(®), the sequence {L(Znpa|Ppn), n > 1} of

distributions on Rﬂ\r obeys the LDP with some rate function.

Remark 2.3 FEquivalently, {&,,n > 1} obeys the LDP if L(Zy A|Ppn.A) L4 Va, A €

A(©), where V is a deviability on R} .

We next study consequences of the definition and, particularly, prove that the def-
initions of the LDP for the dominated and general cases are consistent. We start by
giving another characterisation of the LDP. Let H, denote the set of all non-negative,
continuous and positively homogeneous functions on Rﬁ_: h € Hp if h(zp) >0, h is
continuous and h(Azpy) = Mh(zp) for all zy € Rﬁ‘r and A > 0. We say that a deviability
V5 has support in Sy if Vz(zp) =0 for zpy ¢ Sh .

Lemma 2.2 Let A € A(O). Then L(ZyA|Pyn) Ly if and only if VA has support
mn Sy and

lim E:L{j\lh"(zn,A) = sup h(za)Va(za) for every h € Hy .

n—oo ZAERf\i_
In particular, if L£(Znn|Ppa) L4 V then, for all 6 € A,
(R) SUP,, ¢ pA m9zAVa(za) = 1.

Proof.Let £ (Z, A|Pn.A) LS V. We have, using the equivalence of LD convergence and
the LDP on Rﬁ_, that, for € > 0,

lim P (1Zaall ~1/>€) > sup  Va(z).
n—00 Za:|[|lzall=1]>e

Inequalities (2.16) imply that the left-hand side equals zero. Since ¢ is arbitrary, V, has
support in S). The claimed limit follows by the definition of LD convergence since, by
(2.16), h(ZnA) = h(Zn A) P,a—almost surely, where h(zx) = h(z)[(2— || zall/A) A1V 0],
and the latter function is non-negative, bounded and continuous.

For the converse, pick a non-negative continuous bounded function f on Rﬁ. We
need to prove that

lim By} f"(Zna) = sup f(22)Va(za). (2.17)

n—00
ZAER¢

We define a function f by

. PR 0
oy MV = vy B S EYET

0, if |lzall =0,
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Note that f and f~ coincide on S, and, since V is supported by S, we can change
f to f on the right-hand side of (2.17). The continuity of f and the inequalities (2.16)

easily imply that the random variables f(Z, ) and f(Zy ) are uniformly bounded and

lim B2 f™(Znn) — Ex/N T (Znn)| = 0.

n— 00

Since fe Ha , taking h = fvin the conditions of the lemma, we get

lim Erll’/gfn(ZmA): sup  f(za)Va(za),

n—00
ZAERQ

concluding the proof of (2.17).

Property (R) follows by taking h(zp) = mgzpy. O

We now show that if A C A’ € A(O) then the deviability V is a sort of projection
of the deviability Vs, the property being inherited from corresponding probabilities.
Recall notations wpry and wp for the projections from Rﬂxr' onto Rﬂ\r and R? onto Rﬂ\r,

respectively, and let Iy, and II, stand for normalised projections:

aaza = maaza /| maazarlla, zar € RY [ [[marazarf|a > 0,
Iaze = maze/||Tazella, ze € RS, |mazolla > 0.

Also we adhere to the convention that supy = 0.

Lemma 2.3 Let AC A€ A(O). If £ (Zn Al Po,n) l_d> Vy and L (Zn,A’|Pn,A’) l—d> Vo
then the following conditions hold:

(C) sup h(za)Va(za) = sup  h(maraza)Var(zar), h € Hy;
ZnERY 2y ERY
(S) Va(za) =  sup  [[mavazal[aVar(za), 2a € RY,
2y €T 2a

— !
where HA,lAzA ={zp € Rﬂ\r : Hparpzar = 20}

Proof.Define

dPyp \ "
Zn,A;A’ = aP N .
n,\’

By (2.14),

TANLp A = Zip N AN/ P, y—almost surely,

and, since h € Hp , we have that
By XH" (Znn) = By (1B ) B pov ] = B GH (mr a o )

Applying Lemma 2.2 to the leftmost and rightmost sides we obtain (C).

19
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Now, (5), for a given z5 € Sj, can formally be obtained by substituting /h\(zA) =
1(zpn = ||zal|Za)||za]] into (C) and using the fact that V has support in Sy. However,
the function % is not continuous, so we approximate it with a sequence of continuous

functions hy € Hp,k > 1, as follows. Let

hi(za) = (I2all = kllza = Zallzall )

Since the hj are from H, , they satisfy (C). Also hi(za) | ?L\(ZA) as k — oo. jFrom
the fact that the hy(zp) are continuous and V, and V), are deviabilities, it is not
difficult to check by using Dini’s theorem (for a proof see, e.g., Lemmas A.1 and A4 in
Puhalskii, 1995b ) that one can take limit as k — oo in (C) for the hy, as required. O

Remark 2.4 Property (S) implies that (C) holds for non-continuous positively homo-

geneous non-negative functions too.

In analogy with statistical decision theory, Strasser, 1985, we further call a family of
deviabilities {Vi,A € A(©)}, where V, is defined on R%}, conical if it satisfies (C). If,
in addition, Vi(zp) = 0 for all zy ¢ Sa, the family is called standard. The proof of
Lemma 2.3 shows that a family is standard if it meets ().

The next result is of particular importance for the minimax theorem below. It states
that every standard family of deviabilities admits an extension to a function on R?

which preserves the conical property.

Lemma 2.4 For every standard family of deviabilities {V,A € A(O)}, there exists a
function Vg on R? such that the following conditions hold:

(i) the function Vg is upper semicontinuous, assumes values in [0, 1],
SUD ¢ ¢ O Vo(ze) =1 and Vg(ze) =0 if zo ¢ So ;
(i1) for all A € A(O) and h € Hy,

sup h(za)Va(za) = sup h(maze)Ve(ze):
ZAERQ Z@ER?

(i) for all zn € R},

Va(za) = sup  [mazellaVel(ze),
Z@EHKIZA

where HXIZA ={z0 € R? : Hpazo = 20}
We relegate the proof to the appendix.

We conclude the section by showing consistency of the above definitions of the LDP

for statistical experiments.
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Lemma 2.5 Let {&,,P,,n > 1} be a sequence of dominated statistical experiments.
If it obeys the dominated LDP, then it obeys the LDP. More specifically, denoting by
Vo the deviability on R? that is the LD limit of L(Zpe|P,) as n — oo, we have that
L(Zp A |PpA) L4 Vi, A€ A(O), where

Va(z) = SUP, o ertlzy |maze||Vo(ze), if za € Sa,
0, otherwise .
Also, denoting by Vo the extension of the standard family {Va, A € A(O)} defined in
Lemma 2.4, we have that, for every A € A(O) and h € H(A),

sup h(mpze)Ve(ze) = sup h(mpaze)Vel(ze).
Z@ER? Z@ER?
Proof.
We first prove that, for all A € A(©) and h € Hy,
lim EYTh™(Zn) = sup h(maze)Ve(ze). (2.18)

k)
n—o0 Z@ER?

Since by (2.1) and (2.14),

Zno=Znpoa < d;’A> P,—almost surely , 6 € A,
n

and h is positively homogeneous, we have that

AP, A

1 1
B, R0 (B 0) = B (2 0)

= EY"h (17 Zn o). (2.19)

Now using the assumed LD convergence L(Z, o|P,) L Vo we want to prove that

lim EY"h"(tpZno) = sup h(rrze)Ve(ze), (2.20)

n—oo ZGERE
which by (2.19) would yield (2.18). The function h being non-negative and continuous
but not bounded, (2.20) would follow if the uniform exponential integrability condition
introduced in (2.6) holds:
lim Tim EY"h"(1pZye)1(h(ntrZne) > H) = 0. (2.21)

H—o0o nooo
It is here that we need condition (U). Let h* = sup,,cg, h(za) which is finite by the
continuity of h. Since h € H,, it follows that h(Z, ) < h*||Z,all, so, in view of
condition (U),
m BB (1p Zn o) 1(h(ma Zno) > H) < Tim Y EN"h*"Z7 1(h* Zy g > H)

n—oo n—oo feA

< Tm Y PV (h Zug > H) = 0as H - o,
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where the last convergence follows by Chebyshev’s inequality. So, (2.20) and hence (2.18)
have been proved.

Since by the definition of V4,

sup h(za)Va(za) = sup h(maze)Vel(ze), (2.22)
zAE€RY 20€RY

Lemma 2.2 implies that the proof of the first claim of the lemma is completed by checking
that 'V, is a deviability on Rﬁ‘_ .

Limit (2.21), in view of the LD convergence of L(Z, g|P,) to Ve, implies that (use
property (2.7))

lim sup |mazela 1(|maze|la > H)Ve(ze) = 0.
—00 Z@GR?

Therefore, for every £ > 0 there exists H. such that
€
{20 € R? s lmazelaVe(ze) > e} C {20 € R? : Vo(ze) > F}
£

so that the set on the left is compact. Since also ||[Taze||a > & when ||mazolaVe(ze) >
e, and II, is continuous on {zg € R? : |lmazella > €}, it follows that the set ITIx{zg €

R?: ||maze|[aVe(ze) > €} is compact. Since, for a >0,

oo 1
A B 0.
{za € RY : V(zp) 2 a} = () Ia {z@ € RY : |mazeaVe(ze) 2a<1— n+1>}7

n=1
we conclude that the sets {zp € Rfl\_ : Va(za) > a} are compact. Thus, we are left to
check that

sup Va(za) = 1. (2.23)
ZAERQ

By (2.18) with h(zp) = mpza, 0 € A,
sup mpzeVo(2g) = 1,
ZeER?
hence,

sup ||[mazellaVe(zg) =sup sup mpzeVel(zy) =1,
Z@GR? e Z@ER?

and (2.23) follows by the definition of V.
The second claim of the lemma follows by (2.22) and Lemma 2.4, The lemma is

proved. O

Remark 2.5 Equality (2.22) implies that projections Vy ,A € A(O), of Vo defined by

Va(za) = sup  Vol(ze)

zeengle

constitute a family of deviabilites with properties (C) and (R).
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3 A Minimax Theorem

We start the section by showing that, in analogy with the classical asymptotic theory
of statistical experiments (Strasser, 1985), the LDP for statistical experiments allows
us to obtain an asymptotic lower bound for appropriately defined risks which, in fact,
has been the purpose of introducing the concept of the LDP for sequences of statistical
experiments. We next prove that under additional conditions the bound is tight and
study the problem of constructing decisions attaining it.

We consider a sequence of statistical experiments {&,,n > 1}, where &, =
(Q, Fn; Pryg, 0 € ©), and assume that it obeys the LDP. The associated deviabilities
are denoted by Vi ,A € A(O), and Vg denotes the extension defined in Lemma 2.4.

We introduce some more notation common for statistical decision theory, see, e.g.,
Strasser, 1985. We denote by D a Hausdorff topological space with the Borel o—field
which we take as a decision space; Wy = (Wy(r),r € D), 6 € O, are, for each 6, non-
negative and lower semicontinuous functions on D which play the role of loss functions;
R, denotes the set of all measurable mappings p, : Q, — D, i.e., R, is the set of all
decision functions with values in D. We define the large deviation (LD) risk of a decision

Pn € Ry, in the experiment &, by
Ba(pn) = sup B, 5 W3 (pn). (3.1)
€

Obviously, this is an analogue of the risk in minimax decision theory, cf. Strasser, 1985.

Recall that a function f : U — R on a topological space U is level-compact if it is
bounded from below and the sets {u € U : f(u) < a} are compact for all @ < sup, ¢y f(u),
Strasser, 1985, Definition 6.3. Obviously, if U is Hausdorff, a level-compact function is
lower semicontinuous and the supremum of a family of level-compact functions is level-
compact. For the sequel, it is also worth mentioning that level-compact functions attain

infimums on closed sets.

Theorem 3.1 Let the sequence {E,,n > 1} obey the LDP. Assume that the functions
Wy, 0 € ©, are level-compact. Then

n—oo Pn€ERn
where

R* = sup inf supWy(r)zgVe(ze).
20€R® "€ 9co

In particular, if {&€,, Pp,n > 1} obeys the dominated LDP and Vg is the associated

deviability then the lower bound can be rewritten as

R* = sup inf sup Wy(r)zgVe(ze). (3.2)
20eR "EP 0€6

23



24 A .PUHALSKII AND V.SPOKOINY

If, moreover, conditions (Y') and (U) hold then

R* = sup inf supWy(r) 30(5)V (v).
yeY T€D gco

Proof Let A € A(O). We first prove that

lim inf supEn/anWe (pn) > sup inf sup Wy(r)zgVa(zp). (3.3)
n—oo  Pn geA 2 €RY r€D geA

Let {p,,n > 1} be an arbitrary sequence of decisions. We have, by the definition of Z,,
(see (2.14)),

lim supEn/9 Wi(pn) = lim SUPE Hn Wan(,on)zﬁ,a;A
n—oc  feA n—oo feA

) 1/n
lim WEn,A Z Wﬂn(pn)ZZ,G;A

v

v

lim  5,’} sup W' (pn) Zn i

n—o0

li—)_m ETIL//T\Z“)”(ZH,A)’
n oo

v

where

w(zp) = inf supWy(r)zg, 2a = (29,0 € A) € RY}.
r€D geA

Since the set A is finite and the functions Wy are level-compact, it is not difficult to see
that the function w(-) is lower semicontinuous (cf. Aubin, 1984, Proposition 1.7). So by
the LD convergence of L(Z, A|P, A) to Vi,

lim E /Aw (Zn,a) > sup w(za)Va(za)

n—00 ZA€R¢
implying (3.3).

Since the function w(-) belongs to H,, an application of Lemma 2.4(ii) yields

sup inf sup Wy(r)zgVa(za) = sup inf sup Wy(r)zyVe(ze),
ZAERA T€D geA Z@gRe r€D geA

so by (3.3)

lim inf supE/ Wy (prn) > sup inf sup Wy(r)zyVe(ze).
n—oo Pn ¢ 26 eR@ 7€D geA

Now the proof of the lower bound is completed by observing that, for every zg = (29,0 €
©) € RY,

sup inf sup Wy(r)zg = inf sup Wy(r)zy (3.4)
AEA(® )TGD =N r€D gco
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(for a proof see Lemma A.3 in the appendix or Aubin and Ekeland, 1984, Theorem 6,
Section 2, Chapter 6).
If {&€,,Py,n > 1} obeys the dominated LDP, then by Lemma 2.5
sup inf sup Wy(r)zyVe(ze) = sup inf sup Wy(r)zpVe(ze),
20€R® TEP A 20€R® €D g€
and representation (3.2) follows by (3.4). The last representaion for R* in the statement

of the theorem follows since by Lemma 2.1 Vg =V o 361 .
a

Remark 3.1 Note that the proof only uses what is known as a lower bound in the LDP.

Remark 3.2 Now we are in a position to explain why we consider condition (U) in
the definition of the dominated LDP to be important. Assume that {E,,n > 1} is a
dominated family with dominating measures P, such that, for a deviability Vo on Rf, we
have the LD convergence L(Zy o|Py) L Vo. The proof of Theorem 3.1 with Vg replaced
by Vo and V replaced by Voorm,' (which would not use condition (U)) would still give
the right-hand side of (3.2) as a lower bound. However these lower bounds can generally
be different for different sequences of dominating measures. The role of condition (U)
is to eliminate this possibility by making sure that equality (3.2) holds so that the lower

bounds do not depend on a choice of dominating measures.

In applications, as we will see, the assumption that the loss functions are level-compact
is normally met. However, in the appendix we give a variant of Theorem 3.1 for more
general loss functions. As in the classical theory, tackling this case requires considering
generalised decisions, cf. Strasser, 1985.

We now turn to the question of tightness of the above lower bound and start with
defining the concept of large deviation efficiency. Say that a sequence of decisions
{p,n > 1} is large deviation (LD) efficient if, for any other sequence of decisions
{on},

lim (R (py) — Ralpn)) < 0.

n—oo
Theorem 3.1 implies that to construct LD efficient decisions one can apply an approach
similar to the one used in the classical asymptotic decision theory. Indeed, by Theorem
3.1, if the Wy , 6 € O, are level-compact, then, for any sequence of decisions {p,, n > 1},

n—oo

Now if a sequence {p:, n > 1} is such that R,(p}) — R* as n — oo, it is obviously
LD efficient.
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Further, motivated by applications, we assume that the sequence {&,,n > 1} is
dominated and conditions (Y') and (U) hold. Then, by Theorem 3.1, the asymptotic

minimax risk can be written as

R* = sup inf sup Wy(r)s0(y)V (y). (3.5)
yeY €D gco

Representation (3.5) prompts considering for each y € ) the subproblem

(Q) Q*(y) = inf sup Woy(r)s0(y) -

Since the functions Wy are level-compact for each 6 € ©, it follows that, given y € ),
we can find r*(y) € D that delivers the infimum in (Q). The value r*(y) can be
viewed as “the best decision if the value of Y, is ”. Hence, provided the function
r*(y) : Y — D is Borel measurable, the decisions r*(Y},) are natural candidates for the
LD efficient decisions. Unfortunately, we cannot prove this without requiring that Q*(y)
be continuous (or upper semicontinuous) which usually is not fulfilled in applications.
The reason for the latter, as in condition (Y) above, is that the 34(y) typically are not
continuous as maps from ) into R, . Therefore, as in condition (Y), we invoke the idea
of regularisation. We require that there exist functions 3¢ 5(y) such that functions Q;(y)
defined by

(Qs) Q;(y) = inf sup Wy(r)zes(y), y €V,
reD I=te)

are continuous in y, on the one hand, and approximate Q*(y) for small §, on the other
hand. A rigourous formulation is given by condition (sup Y') which strengthens condition
(Y) to the effect that the requirements of (Y') hold uniformly in § € ©. This way
of handling the technical difficulties does not allow us, however, to get LD efficient
decisions: as the next theorem shows, in general we are only able to obtain decisions
whose asymptotic risk is arbitrarily close to the lower bound. Still we succeed in proving
that the lower bound of Theorem 3.1 is tight and LD efficient decisions exist. We next
state the condition. Recall that Z, y = (deg/dPn)l/n.

(supY') There exist statistics Yy, : 2, — ) with values in a metric space ) with the Borel
o-field, functions 39 : Y — R4, 6 € ©,and 395 : Y — Ry, 6 € ©,0 > 0, such that
(Y.1) the sequence {L (Yy|P,),n > 1} LD converges to a deviability V(y), y € J;

(supY.2) for the uniform topology on R?, the functions 305 = (39,0 € ©) : Y —

R?, 6 > 0, are Borel measurable and continuous V-a.e.;

(supY.3) lim Tm sup PY" (|Zng —305(Yn)| > ¢) = 0 for all ¢ > 0;

0—0 n—oo (€O
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(supY.4) limsup sup |39,6(y) —30(y)| =0 for all a > 0.
0=09c0 yedy (a)

In the next theorem, condition (supY’) is used together with condition (sup U) which
strengthens (U):
(sup U) lim Tim sup EY"Z"y1(Zng > H) = 0.

H—00 n—soo 9O ’
Theorem 3.2 Let a sequence of dominated experiments {E,, Py, n > 1} satisfy condi-
tions (supY’) and (supU) . Let the function Wy(r) be bounded in (6,r) and level-compact
in r for each @ € ©. Assume that there exist Borel functions rs(y) : Y — D such that
the infimum in (Qs) is attained at r5(y), and denote p, 5 =r;(Yy).

Then
lim T Ro(p, ) = lim lm Ra(p, ;) = R’

60 pn—oc —0 nooo
so that
lim inf R,(p,) = R"

n—0o0 pneRn
In particular, for some sequence py,,

lim R,(p,) = R".

n—o0

Proof.Since (supY) implies (Y), by Lemma 2.1, L(Z,0|P,) “4 Ve = Vojg', so by

Theorem 3.1, for each §,
lim Ry(p,s) = R

n— 00

The proof of the first set of equalities would be over if

lim lim R,(p,;) < R". (3.6)

0—0 n—oco

Let C be an upper bound for W: Wy(r) < C. Since
1
Ra(pn,g) = sup B Wi (pn5) = sup B Wi (,,5) 0.
0coe fcoO
we have that, for any H > 0,

Ru(p,,.5) < sup Ep/"W§(p,, 5)(Zno N H)" + Csup By Z7 g 1(Zy g > H).
60 6o

The second term on the right tends to 0 as n — oo and H — oo by condition (sup U),

so the required would follow by

lm  Tim  sup B W3 (p,5)(Zng A H)" < R". (3.7)
0—=0 n—ooo 0€O ’
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Since

| sup EN"W§ (pps)(Zng N H)™ — sup EN"W§ (b 5) (o5 (Ya) A H)"|
S S

< CsugE%/n(IZn,a —30,5(Yn)| A H)",
€

condition (sup Y.3) implies that

lim T |sup BY Wi (0, 5)(Zug NH)" —sup B Wi (p, 5) Gos (Ya) AH)" = 0. (3.8)
0=0 nooo #cO ’ 0e® ’

Next, using the definitions of Q; and p,, 5 and the inequality Wy(r) < C, we get

n
sup EN"W§ (b 5)Gos(Ya) NH)" < EXT <21€18(W0n(pn,é(y))ﬁﬂ,ﬁ(yn)) A CH)

= BY"(Qs(Ya) NCH)". (3.9)

The last two expectations in (3.9) are well defined since the assumptions of the theorem
imply that Q;(y) = supgece Wo(rs5(v))30,6(y) is a Borel function.

By the boundedness of Wy(r) and (sup Y.2), the function Q;(y) is V-a.e. continuous.
Since L (Yy|Fy) L4 V, we get

Jim By/™ (Qs(Ya) ACH)" = sup(Qs(y) ACH) V (y). (3.10)
Y

By (Q), (Qs) and the inequality Wy(r) < C, we have that

|sup(Qs(y) NCH)V(y) —sup(Q"(y) ACH) V(y)|
yey yey

< Csupsup(|3e,5(y) —30(y)| AH) V(y),
yeY €O

and (supY.4) easily implies that the right-hand side tends to 0 as 6 — 0. Thus,

lim sup (Q5(y) A CH) V(y) = sup (Q"(y) A CH) V(y)
—Vyey yey

<supQ*(y)V(y) = R, (3.11)
yey

where the last equality follows by (3.5) and (Q). Putting together (3.8)—(3.11) proves
(3.7) and hence (3.6).

The second claim of the theorem follows by (3.6) and a string of inequalities the first
of which is Theorem 3.1:

R* < lim infR,(p,) < lim inf Ry, (pn) < lim Rn(Pn,é)-

n—oo Pn n—oo Pn n—o00
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Remark 3.3 Obviously, rs(y) chosen so that

sup Wy(rs(y))30,6(y) > Qs(y) — €5,
9co

where €5 — 0 as 6 — 0, would work too.

Remark 3.4 If condition (supY’) holds with 39,5(y) = 30(y), then the rs(y) in the theo-

rem do not depend on § and the decisions py, = p, 5 are LD efficient.

Kelley, 1957) so that

Remark 3.5 As with condition (Y'), in applications it is more convenient to deal with a
logarithmic form of condition (supY'). Specifically, defining =, ¢ and ®’(a) as in Remark

2.2, let us introduce condition (supY’'):

(supY') there exist statistics Y, : Q, — Y with values in a metric space Y with the Borel
o—field, functions (p: Y — R, 0 € ©, and (p5:Y — R, 0 € ©,6 > 0, such that

(Y'.1) the sequence {L (Yy|P,),n > 1} obeys the LDP with rate function I(y), y € Y;

(supY'.2) for the uniform topology on R®, the functions (o5 = ((p5,0 € ©) : Y —

R®, 6§ > 0, are Borel measurable and continuous at each point y such that I(y) < oo;

(supY".3) lim lim sup P,}/"(\En’g —Co5(Yn)| >¢€) =0 for all e > 0;
6—0 n—oo HeO

(supY'.4) limsup sup [(ps(y) — Co(y)| =0 for all a > 0.
6—=09co yed’ (a)

Then condition (supY) is implied by condition (supY'). Similarly, condition (supU)

follows from the condition

(supU") lim lim sup E,ll/" exp(n=,9)1(En 9 > H) = 0.

H—© noco HcO

We further refer to the decisions p,, 5 as nearly LD efficient.

4 Asymptotic LD Risks and Efficient Decisions for Hypoth-

esis Testing and Estimation Problems

This section specifies the asymptotic minimax bound of Theorem 3.1 and (nearly) LD
efficient decisions for some typical statistical set-ups by considering hypothesis testing

and estimation with Bahadur—type criteria. We consider indicator loss functions, i.e.,

Wy(r) = 1(r € Ag), r € D,0 € O,
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where Ay are closed subsets of D. Then the LD risk of a decision p,, in the nth experiment
is

Ra(pn) = sup Py (pn & Ay).
0cO

For applications, it is convenient to introduce the logarithmic risk

1
Ry, (pn) = sup - In P p(pn & Ap). (4.1)
€

Accordingly, we consider the logarithm of the lower bound R*:

R™ = sup inf sup ({—Te(lo)),
geeRe reD 0€O:AgFr

where Ig(Cg) = —log Ve(ze) for z¢ = (exp((y),0 € ©), (o = ((y,0 € O).
Theorem 3.1 then yields the following result.

Theorem 4.1 Assume that the Ag,0 € ©, are compact. If the sequence {&,,n > 1}
obeys the LDP then

li inf R, > R".

ni)_rilo pnlan n(Pn) o
Let us assume now that the sequence {&,,n > 1} is dominated and conditions (Y') and
(U") hold. According to Remark 2.2 and Theorem 3.1, we then have that

R" =sup inf sup (Co(y) — I(y)). (4.2)
yey reD 0€O : AgFr

Similarly, subproblems (@) and (Qj) of Section 3 take the form

Q") Q" (y)=inf sup (oly), y€V,
T€D gcO: AgFr

and

(Q5) Q's(y) =1inf sup (os(y), yEV.
€D gcO: AgFr

Obviously,

R™ = sup(Q" (y) — I(y))-
yey

Let the infimum in (Q}) be attained at some point 7§(y) which is the case, e.g., if the
Ay .0 € O, are compact. We denote p! s =r5(Y;).
Combining Theorem 4.1 and Theorem 3.2, and taking into account Remarks 2.2 and

3.5, we obtain the following theorem.

Theorem 4.2 Assume that {E,, Py,n > 1} is a dominated sequence of statistical exper-

iments and the Ay, 0 € ©, are compact.
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1. If conditions (Y') and (U') hold then

lim inf R/ > R™.
n—oc Pn€Rn n(pn) B
2. Let the functions r, 6 > 0, which map Y into D, be Borel measurable. If condi-
tions (supY') and (supU’) hold then
lim lim Ry (pps) =lim lim R (p,5) = R"

=0 n—ooco =0 n—oo

so that
lim inf R!(p,) = R™.

n—0C pp ERn

4.1 Hypothesis Testing

Let ©¢p and ©; be non-intersecting subsets of the parameter set ©: ©y C 0,0, C
©,00N6; = . We want to test the hypothesis Hy : § € ©¢ versus the alternative
H,:0€ 0.

The decision space D consists of two points: D = {0,1}. We endow it with the
discrete topology and, for any decision (test) p, we treat the event {p = 0} (respectively,
{p = 1}) as accepting (respectively, rejecting) the null hypothesis.

An associated loss function Wy(r) is the indicator of the wrong choice:
Wy(r)=1(0¢06,), r=0,1, (4.3)

and the logarithmic risk R'(py,) of a decision p, in (4.1) takes the form

1 1
RT(p,) = max { sup —In P, g(pp, = 1), sup —In P, y(pp = 0)} . (4.4)
€0, T 0eo, 1

Denoting the corresponding asymptotic minimax risk R™* by T*, we have by (4.2) that

7 = sup i { sup @) — 1) sup (o) — 10) .- (45)
yey [AICN) 0€O;
For the sequel, it is more convenient to use another representation for 7% which is
T = sup  S(6,0"), (4.6)
0€B(,0'€O
where
S(0,0") = sup min {Co(y) — I(y),Co (y) — I(y)} - (4.7)
ye

Next, subproblem (Qf) for this case is

Ts(y) = min sup (ps(y), y€ Y.
r=0,1 0cO1_,
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It has the solution

Ty) =1 <sup Cosly) < sup 49,5(@/)) ,

96@0 0cO,
which leads us to tests of the form

Pos =1 (SUP Go.5(Yn) < sup CB,é(Yn)> : (4.8)
96@0 0cO,
In the case of two simple hypotheses 6y and 6, the tests reduce to a regularisation of

the Neyman-Pearson test:

P = 1 (Con6(Yn) < Cor6(Ya)) -
Applying Theorem 4.2, we get the following theorem.

Theorem 4.3 Let ©g and ©1 be non-intersecting subsets of ©. If a sequence of dom-
inated experiments {E,, Pn, n > 1} satisfies conditions (Y') and (U') then

li inf RI(p,) > T

TL%O pnlan " (pn) B
If conditions (supY') and (sup U') hold then

lim inf RI(p,) =T",

n—00 ppERp

and the tests ,025 are nearly LD efficient:

lim lim RI(pl;)=1lim lim RI(pl,) =T"
0—0 n—o00 ’ d—0 n—oo '

4.2 Parameter Estimation

Let © be a subset of a normed space B with norm |-||. We are interested in estimating

a parameter 6 under the Bahadur—type loss function
Wo(r) = 1(llr — 6l > ¢) (4.9)

for a given positive ¢. The logarithmic risk of an estimator p,, is

1

R} (pn) = sup —In Py g(|pn — 0] > c). (4.10)
fco 1

We assume that the decision space D is either a compact subset of B with the induced
topology or a closed convex subset of B with the weak topology; in the latter case, B is
assumed to be a reflexive Banach space. For both cases, the functions Wy,0 € O, are
level-compact on D.
In this set-up, we denote the asymptotic minimax risk R from (4.2) by E*:
E*=sup inf  sup  (Go(y) —I(y)), (4.11)
yeY T€D 9o :|jr—0|>c

and the corresponding subproblem (Qf) is
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(Es) Es(y) =inf  sup  (ps(y), y €Y.
€D geo:|r—0|>c

We next describe solutions to (Ej). Consider a real-valued function f(6),0 € O, and let

Ah)={60€0O: f(6)>h}, heR, (4.12)
r(h) = inf sup |jr —0||, h € R, (4.13)
T€D gec A(h)

he =inf(h : r(h) < ¢).

We assume that h. < oo (e.g., f(f) is bounded). Note that, for both definitions of D,
the infimum in (4.13) is attained since the functions r — ||r — ]| from D to R, are

level-compact for all § € © .

Lemma 4.1 The set D, = {r € D : supgcap,) llr — 0| < ¢} is nonempty and consists
of all rc € D at which inf,epsuppee|r—g||>c f(0) is attained. Also the latter infimum

equals he .

Proof.Since the function (r,h) — supge 4(n) |[r—0|| is decreasing in h and level-compact
in r € D, the function r(h) is decreasing and right-continuous. Hence, r(h.) < ¢
and, since inf.ep supge 4(n,) ||r — 0| = r(he) and the infimum is attained, the set D,
is nonempty.
Now let r. € D.. By definition, ||r.— 0| < c for all § € © such that f(6) > h.. Hence,
sup f(0) < he. (4.14)
0€O:||re—0]>c
On the other hand, if h < h., then r(h) > ¢ which implies that, for every r € D,
Supge () Ir — 0|| > c or, equivalently, there exists 6 such that f(0) > h and |[r — 0| > c
so that infrep supgce,|r—g|>c f(0) > h. Since h is arbitrarily close to h., we conclude
that

inf sup  f(O)>h
€D geco:|jr—0||>c ‘

which by (4.14) proves that inf,ep supgee;(jr—g|>c f(0) = he and r, delivers the infimum.
Finally, if r ¢ D, then supge o) 7 — 0| > ¢, i.e., there exists 6 such that [|r — 6| > ¢
and f(0) > h. which yields the inequality supgce,r—g|>c f(0) > he. O

Remark 4.1 Informally, r(h) is the smallest radius of the balls that contain all the 6
with f(0) > h, and h, is the lowest level h for which there exists a ball of radius ¢ with
this property. The lemma, particularly, states that h. is the infimum over all the balls of
radius ¢ of the largest values of f(0) outside the balls. For a one-dimensional parameter
0, the construction in the lemma chooses the largest level set of the function f contained

in an interval of length 2c, and the r. are the centres of the intervals.
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Let r.(f) denote an element of the set D, in the lemma and, taking f(0) = (p,5(v) ,
let rfc(y) = rc(Co,s(y)). We assume that the functions rfc(y) : 'Y — D are Borel

measurable. We can then define the estimators

s = T5e(Yn)- (4.15)

Motivated by Remark 4.1, we call these estimators interval-median.

A version of Theorem 4.2 for this case is the next theorem.

Theorem 4.4 Assume that either B is a normed space and D is its compact subset with
the induced topology, or B is a reflexive Banach space and D is its closed convex subset
with the weak topology. Let © C B.
If a sequence of dominated experiments {En, Py, n > 1} satisfies conditions (Y') and
(U'") then

lim inf RZ(p,) > E*.

n—oo Pn€ERn

If conditions (supY’) and (supU'’) hold then

lim inf REZ(p,) = E*,

n—0C pp ERR

and the interval-median estimators p¥ s = vl (Y,,) are nearly LD efficient:

lim lim RE(pn(;)—hm lim RY (pn(;) E*.

=0 nooo =0 nooo

Remark 4.2 If B is a separable reflexive Banach space then the Borel o—fields for the
strong and weak topologies coincide, hence the condition of measurability of rfc does not

depend on which topology on B has been chosen.

4.3 Estimation of Linear Functionals

Let © be a subset of a vector space and L(-) a linear functional on the vector space.
Consider the problem of estimating L(f). We take D = R, the real line. As above, we

consider Bahadur—type criteria: the loss function is
Wy(r) = 1(jr — L(0)| > ¢), 0 € ©,r € R,
where ¢ > 0 is fixed, and the risk of an estimator p, is given by

R} (pn) = sup L 10 Py (1pn — LO)] > o). (4.16)
€

The asymptotic minimax lower bound R assumes the form

F* =sup inf sup — (Co(y) — 1(y)), (4.17)
yeY €D gco:|r—L(6)|>c

and subproblem (Q) becomes
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(Fs) Fy(y) = inf sup Cos(y), yEV.
€D geo:|r—L(6)|>c

Associated solutions 7(y) can be constructed along the same lines as for the parameter-
estimation problem. Specifically, fixing y and 4§, let us denote f(0) = (p,5(y) and let, for
h € R and A(h) from (4.12), denote by Lo A(h) the image of A(h) on the real line for
the mapping L:

LoA(h) ={L(0):0€ A(h)}.

Let B(h) be the smallest closed interval in R containing Lo A(h). Set further, denoting
by d(B(h)) the length of B(h),

her = inf{h: d(B(h)) < 2c}.

Finally, consider the intervals B, of the length 2c¢ that contain B(h. ) (note that
d(B(he,r)) < 2¢), and let D, be the set of the centres of all such intervals. The

argument of the proof of Lemma 4.1 yields the following lemma.

Lemma 4.2 The set D is nonempty and consists of all rc;, € D at which

inf,ep SUPgeo:r—1(0)>c f(0) is attained. Also the latter infimum equals he, .

To emphasise dependence on f, let us denote the elements of D, by r.r(f). By the
lemma, rgc(y) =1r.1(Co,s(y)) solves (F5). Assuming that the rf;:c(y) are Borel functions

from Y into R, we introduce estimators p’ ; of L(6) by

phs =rer(Cos(Yn)), (4.18)
and call them also interval-median. Applying Theorem 4.2 we get the following result.

Theorem 4.5 If a sequence of dominated experiments {&,, P,, n > 1} satisfies condi-
tions (Y') and (U') then
lim  inf Rg(pn) > F*.

n—oo PnERn

If conditions (supY') and (sup U') hold then

lim inf RI(p,) = F*,

n—00 pp€Rn

and the interval-median estimators pié =1¢1(Co,6(Yn)) are nearly LD efficient:

lim Tim RI(pf5) =1lim lim RF(pl;) = F*.
0—0 n—o00 ’ 0—0 n—oo ’

We conclude the section by giving a more explicit representation for F™*.
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Lemma 4.3 Under the above notation and conditions,

F* = sup 56,6,
0,0 : |L(0—0')[>2¢

where S(0,0') is defined by (4.7):

S(0,6') = sup min {(g(y) — 1(y),Cor (y) — I(y)} -

Proof.We fix y € Y with I(y) < oo, set f(6) = (yp(y) and define h. as above. We show
that

hc,L = sup min {f(e)a f(@’)} .
0,0’ : |L(6—0")]>2c

By (4.17) and Lemma 4.2, this implies the claim.

Since d(B(h)) < 2c for h > he,1,, we have that if 0, 0" € © are such that |L(6—6')| > 2¢
then min(f(0), f(¢')) < hc . Conversely, if h < h. 1, then d(B(h)) > 2c, hence there exist
6,0 € © such that L(# —6') > 2¢ and f(0) > h, f(0') > h which, by the arbitrariness of
h < he,r, ends the proof. O

Remark 4.3 The latter case of functional estimation includes the case of the estimation
of a one—dimensional parameter 6 if we take L(0) = 0, so the result of Lemma 4.3 can

be used for evaluating E* from (4.11) too.
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5 Statistical Applications

In this section, we go back to the statistical models introduced in Section 2 and apply to
them the general results of Sections 3 and 4. We first verify the LDP for the models by
checking conditions (Y') and (U’). This is done under weaker assumptions than in Section
2. After that we give conditions that imply (supY’) and (supU’). Next, considering
certain hypothesis testing and estimation problems for the models, we calculate the
asymptotic minimax risks and indicate (nearly) LD efficient decisions.

Each of the subsections below uses its own notation. We mention it if different
subsections reuse certain symbols for the same objects. For the reader’s convenience, we
repeat the main points of the analysis of the models in Section 2 and recall the models
themselves. Also we implicitly assume that the functions we choose as estimators are

properly measurable.

5.1 Gaussian Observations

We observe a sample of n independent real-valued random variables X, =
(X1, Xnn) normally distributed with A'(6,1), 6 € © C R. For this model, Q,, = R"
and P, g = (N(0,1))", 6 € ©. We take P, as a dominating measure P,. Then

1 dPy,,. 1 1o o n
Elnﬁ(X)_n;(GXk 50%), X =(X1,..., Xn) € R".

Thus, it is natural to take
1 n
Yo = ﬁkzlxk n>1

so that
- 1. dP,p
Eng = - In dP,;
Then {£ (Y,|P,),n > 1} obeys the LDP in R with rate function I'V(y) = y?/2,y € R
(see, e.g., Freidlin and Wentzell, 1979). This checks condition (Y'.1).

We next take

(X,) = 6Y, — %92.

1
Coly) = Co(y) = Oy — 5 0 (5.1)
Conditions (Y'.2)—(Y"'.4) are then obvious. Condition (U’) follows by Chebyshev’s in-
equality since

El/n exp(nZn,9)1(Eng > H) < e~ EL/m exp(2nE,9) — e Hef”,

By Remark 2.2, the sequence {&, ,n > 1} obeys the LDP. Moreover, condition (supY’)
trivially holds. If, in addition, © is bounded, it readily follows that condition (sup U’) is

met as well.
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We now turn to hypothesis testing and estimation problems and begin with calculat-
ing, for 6,0 € ©, the value of the function S(6,6") from (4.7).

Lemma 5.1 For all 6,6' € ©,

AV
56,6 := Sug min{Ca(y) — 1Y (y), o (y) — IN(y)} - _%'
ye

Proof.By (5.1) and the definition of IV, (p(y) — I(y) = —(y — 6)?/2, so

N _ =02 (-0 __(0-0)
S(G,H)-zlelgmln{— 5 T g }—— g

5.1.1 Testing 6§ =0 versus |6 > 2c

Assume that © contains 0 as an internal point. We test the simple hypothesis Hy : § = 0
versus the two-sided alternative H; : || > 2¢ with some ¢ > 0 such that the interval

[—2¢,2c] is contained in ©. The logarithmic risk of a test p, is given by (see (4.4))

1 1
RT(p,) = max{ = InP,o(pn =1),— sup InP,4(p, =0) ¢ .
n ™ 16)>2¢
Now, using (4.6) with ©g = {0} and ©1 = {6 € © : || > 2¢} and Lemma 5.1, we readily

get

02

T = sup S(0,0') = ——.
071> 2 2

Next, by Theorem 4.3 and Remark 3.4, LD efficient tests pg can be taken in the form

pl =1 ( sup Cp(Yn) > Cg(Yn)> =1 ( sup (Y, — 9—2) > 0) = 1(|Yn| > ¢).

10>2¢ 10>2¢ 2

Applying Theorem 4.3 and Remark 3.4, we arrive at the following result.

Proposition 5.1 Let [—2¢,2c] C ©. Then

2
lim inf B} (p) >~

n—oo  Pn

If © is bounded then
lim inf RY(p,) = —%,

n—00 pPn
and the tests pl are LD efficient:

. T, T C2
lim R, (pn) = CE

n—o0
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5.1.2 Parameter Estimation

Now we consider the problem of estimating the parameter 8. We take the real line as a
decision space D. Recall (see (4.10)) that, for a given ¢ > 0, the risk of an estimator
pn is defined by

1
Rf(pn) = sup — lnPn,€(|pn - 0‘ > C).
geo 1

In view of Remark 4.3, the asymptotic minimax risk E* is given by Lemma 4.3:

E* = sup 5(0,0").
0,0'cO:10—-0'|>2c

Lemma 5.1 implies that if ® contains an interval of the length greater than 2c¢, then

E* = —c?/2. An application of Theorem 4.4 and Remark 3.4 yields the following result.

Proposition 5.2 Let © contain an interval of the length greater than 2c. Then
2
lim iner]LE(pn) > o

n—oo Pn

If © is bounded then
lim inf R”(p,) = ——

n—oc pn 2’
and the interval-median estimators pZ =r.(Co(Yy)) (see Section 4.2) are LD efficient:

02

lim RY(pF) = <

n—00 2°

Remark 5.1 It is easy to see that the estimator pZ = r.(¢,(Yy)) coincides with Y, if
Y,—c€ 0O and Y, +c € O. Direct calculations show that the estimators p, =Y, are
also LD efficient, i.e., lim, RE(p,) = —c?/2. The latter estimator is of simpler structure
and does not depend on either ¢ or ©. However, the pﬁ seem to perform better at points
outside or close to the boundary of ©. In particular, if Y, ¢ © then p, ¢ © whereas, for

O convez, p¥ always belongs to O.

5.2 An Independent-Identically-Distributed Sample

We observe an independent-identically-distributed sample X,, = (X1p,..., Xy, ) from a
distribution Py, 6 € O, on the real line. We assume that the family P = {FPy,0 € O} is
dominated by a probability measure P, i.e., Py < P, 8 € ©. This model is described
by dominated experiments &, = (Qn, Fn; Pryg, 0 € ©) with Q, = R", F, = B(R"),
P,o=P}, 0€0O,and P, =P".

Assume that the family P satisfies the following regularity conditions:

(R.1) the densities dPy/dP(z),0 € ©, are continuous and positive functions of x € R;
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dP
We have that

1, dPuy .o 1 dPp [ dp
Zo0= 2 LX) = 30 S SR X) = [ e o),

(R.2) /R <@($)>7P(dac) < oo, €O, forall~yeR.

where

are empirical distribution functions.

We take the latter as statistics Y}, in condition (Y'). The underlying space ) is the
space of cumulative distribution functions on R which we denote by F and endow with the
topology of weak convergence of associated probability measures. By Sanov’s theorem
(Sanov, 1957, Deuschel and Stroock, 1989, 3.2.17), the sequence {L (Y,|FP,),n > 1}
obeys the LDP with rate function I°(F) = K(F,P), F € F, where K(F,P) is the
Kullback-Leibler information:

[ 5@ G P, it F <P

K(FP)={ 4 4~ dP (5.3)

00, otherwise.

This checks condition (Y'.1). The verification of the rest of condition (Y') is more
intricate than in the previous example.

Denote for § € ©, x € R and 6 > 0,

Lo) = 0y

dP
Ly 5(x) Lo(z) A6~V (—=671)

and let
Co,5(F) = / Los(z)F(dz), Fe€ZF.
R

By (R.1), the functions (y s are continuous on F, so (Y'.2) holds.
We check (Y'.3). Condition (R.2) implies that, for all v > 0,

tim [ fexp (v La(a) = Las(e)]) - 1] P(dz) = . (5.4)

Then, for v > 0,e > 0, with the use of Chebyshev’s inequality,
P (Z = Gos(Fa)| > €) < PU7 ( [ 1Lols) = Las(a)| Fi(ds) > )
R
< exp(—2)BY/" exp (w7 [ \Lale) — Losto)] Fald) )
R

= expl=7e) [ exp (v|Ea(o) = Lasla)) P(da),
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By (5.4), it then follows that

lim Tm PY"(|En9 — Co5(Fn)| > €) < exp(—ye).

0—0 n—oox

Since 7 is arbitrary, (Y'.3) follows.
We next check (Y'.4) with

/Lg(x)F(dx), if I9(F) < oo,
GF) =< # (5.5)
0, otherwise.

To begin, we show that the (4 are well defined. Since the functions zlnz — z 4+ 1 and

expz — 1 are convex conjugates (Rockafellar, 1970), by the Young-Fenchel inequality
(Rockafellar, 1970, Krasnoselskii and Rutickii, 1961), for F < P,

/ dr
R

L,g(x)ﬁ(a:)

P(dz) < /R fexp (| Lo (2)]) — 1] P(da)

+ /R (%(a:) In j—i(x) — ;l_i(x) 4 1) P(dz)
< 1e [ () P

In view of (R.2), this proves that the (s are well defined.
Now, for F with I¥(F) < oo, we have, for v > 0, using the Young-Fenchel inequality

again,

¥Co,s(F) — Co(F)]

IN

/R Y| Los(x) — Lo(x)| F(dn)
/R lexp (7| Lo.5(x) — Lo(x)]) — 1] P(dz)

4 /R <3—£($) 1n3—£(x) _ %(x) + 1) P(dz)

- /R lexp (v Lo4(2) — Lo(x)]) — 1] P(da) + I (F).

IN

Hence, by (5.4)
a

lim  sup |[Gps(F) — (o(F)| < —,
) ¥

020 Fed! s(a
and letting v — oo, we arrive at (Y'.4). Remark 2.2 then implies that the LDP holds for
{L(EnelPn),n > 1}

It remains to check (U’). Using once again Chebyshev’s inequality, we obtain, for
H>0,

EY" exp(nZp0)1(Bng > H) < exp(—H)EL™ exp(2nE,,.9)

— es(-1) [ (%(z))gmdm,
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and the required follows by condition (R.2).
Conditions (Y') and (U’) have been checked, and thus the LDP holds.

Remark 5.2 It is possible to do without condition (R.1). Then the functions Lg; =
(Los(z),z € R),0 > 0,0 € O, should be chosen bounded, continuous and so that (5.4)

holds. The existence of such functions follows from (R.2).

To check (supY') and (sup U’), we assume that stronger versions of conditions (R.1) and
(R.2) hold:

(sup R.1) the functions dPy/dP(z), 0 € ©, are positive and equicontinuous at each r €
R;

dPy 7
(sup R.2) sup/ —(z) | P(dr) < o for all v € R.
oco Jr \ dP

Defining (y, (p,5, Ly and Ly ; as above, we have, by (sup R.2), that for all v > 0

timsup [ (exp (1 Lo(e) ~ Lns(a)) ~ 1] P(dz) = 0.

The latter equality enables us to check conditions (supY’.3) and (supY’.4) in the same
way as conditions (Y”.3) and (Y'.4). Condition (sup U’) is also checked analogously to
condition (U'), with the use of (sup R.2). Condition (Y'.1) has already been checked.

It remains to check (supY’.2). We show that the functions ({ps(F),0 € ©) are
continuous in F' for the uniform topology on Rg which obviously implies (supY’.2).
Since the weak topology on F is metrisable, it is enough to check sequential continuity.
Let F(") weakly converge to F as n — oo. Then the definition of the Ly 5 and (sup R.1)
imply that the Ly s(z),0 € O, for d fixed, are uniformly bounded and equicontinuous at
each z € R so that (see, e.g., Billingsley, 1968, Problem 8, §2)

sup -0

0co

[ Bos@F® o) = [ Los(o)Fas)
R

R

checking (sup Y’.2). Conditions (supY’) and (supU’) have been checked.
We now proceed to considering concrete statistical problems for the model. For this

we need the following result by Chernoff, 1952, see also Kullback, 1959.

Lemma 5.2 Let P be the space of probability measures on a Polish space E with the
Borel o—field, and let measures P, Q € P be dominated by a measure u and have respective
densities p(x) and q(x). Then

P;relg) max {K(F,P),K(F,Q)} = C(P,Q),
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where K (F, P) is the Kullback-Leibler information (5.3) and C(P, Q) is Chernoff’s func-
tion:

C(P,Q) = — inf In /E P(2) ¢ () pu(d).

v€[0,1]

We next apply Lemma 5.2 to calculating the function S(6,6’) from (4.7).

Lemma 5.3 For 0.6' € ©,

S(0,0') = sup min {(y(F) — I°(F), (p (F) = I°(F)} = =C(Py, Pp).
€F
Proof.Let I°(F) < co. Then F <« P and, since the densities dPy/dP(z), 6 € O, are

positive, we also have that F' < Py and P-almost surely

dF _ dF dPy
dP ~ dp, dP’
Therefore, by the definitions of ¢y and I°,
dPy dF
FY—I%(F)= | m—2(z)F(dz) — [ In—F(d
() ~ I°(F) /Rndpm (@)~ [ G F)
dF

and the result follows by Lemma 5.2. O
We now give an application to hypothesis testing problems. Consider the tests from

(4.8):
s =1 <SUP Co,0(Fn) < sup (g s(F, )) :

0€0q 0cO,
As above, the risk RI(p,) of a test p, is defined by (4.4). By (4.6) and Lemma 5.3,

T = — inf C(Py, Py
96@3,110’661 (P, Py),

8o Theorem 4.3 yields the following.

Proposition 5.3 Let ©1 and ©y be non-intersecting subsets of ©.
If conditions (R.1) and (R.2) hold then

lim inf RT f  C(Py,Py).
n%o 1/91 n(Pn)_ Beeé,ne’e@l (6 0)

If conditions (sup R.1) and (sup R.2) hold then

li fR inf C(Py. Py
Jim inf Ry (pn) = = inf | C(Fy, By),

and the tests pTTm are nearly LD efficient, i.e.,

lim lim RT(pn5)—llm lim RT (pn(;)

=0 nooco =0 nooo

— inf C(Py, Py ).
9eeé,n9'e®1 (P, Fyr)

In a similar manner one can tackle estimation problems for 6 or linear functionals of 6.
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5.3 “Signal + White Noise”

We observe a real-valued stochastic process X,, = (X, (t),t € [0, 1]) obeying the stochas-
tic differential equation

AXn(8) = (1) dt + % AW (1), 0<t <1, (5.6)

where W = (W(t),t € [0,1]) is a standard Wiener process and 6(-) is an unknown
continuous function.

This model is described by statistical experiments &, = (0, Fpn; Py, § € ©), where
Q, = C[0,1], the space of continuous functions on [0, 1] with the uniform metric, ® C
C[0,1] and P, g is the distribution of X,, on C[0, 1] for §. We take P,, = P, o, where P, g
corresponds to the zero function #(-) = 0. Then P, y < P, and, moreover, by Girsanov’s

formula, P,—almost surely,

1 dP
Eng=—In "9 /9 £)d X ( ——/ 02 (¢) (5.7)
n

So, to check condition (Y'), we take Y, = X,, and Y = C[0,1].
Let Cy[0,1] be the subset of C[0,1] of the functions z(-) that are absolutely con-

tinuous with respect to Lebesgue measure and equal to 0 at 0. Since the sequence
{L(Xyp|Py),n > 1} obeys the LDP in C[0, 1] with rate function

L[ Gy ita0) e apo
M) =4 2Jy C B 0% 2 (5.8)
00, otherwise,

where 2(t) denotes the derivative of z(-) € C[0,1] at ¢ (see, e.g., Freidlin and Wentzell,
1979), condition (Y”'.1) holds.
We next take

1 1
osta() = [ Ot date) =5 [ 02 at, o) € Cl0.1) (.9
where
[1/6]
05(t) = > 0(kd)1(t € [kd, (k +1)d)), t € [0,1], (5.10)
k=0

the first integral on the right of (5.9) being understood as a finite sum.
By the continuity of 6(-),

lim [ (0(t) — 65(t))* dt = 0. (5.11)
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The (g5 are obviously continuous in z(-) € C[0,1], so (Y’.2) holds. Next, by (5.7) and
(5.9), we have, for ¢ > 0 and y > 0, in view of Chebyshev’s inequality,
> 6)
2

<2 o (3 [ 00 - 05007 at)

1
PY/™(|Zn0 — Co.5(Xn)| > &) < PU™ ( /U (6(t) — ag(t))i AW (¢)

NG

and by (5.11)

lim lim PT}/"(|EH’9 — Co,5(Xn)| > €) < 2exp(—ve)

0—0 n—oo

which proves (Y’.3) by the arbitrariness of +.
For condition (Y'.4), we take

1 i _1 12 if IV (z(- o0
/[]G(t):zz(t)dt 2/00(t)dt, £ IV (@()) < oo,

0, otherwise.

Colz(+) =

The ¢y are well defined, since, by the Cauchy-Schwarz inequality and (5.8), if z(-) is

absolutely continuous then

1 1 1/2
i 2 W (o ()12
/00@:) (t>|dts(/0 a<t>dt) 21" (@()))

Moreover, if I (z(-)) < oo then

Co.5(z () — Co(z("))]

IN

1
/0 165(t) — 0(1) ()] dt
1 1/2

([ 0~ 0(t>)2dt)1/2 (f 1(¢(t))2dt) |

1/2

1
sup )ICe,a(x(-)) — Cole())] < (20)"/7 </0 (05(t) — 9(t))2dt> :

:1:(-)€<I>'IW (a

IN

SO

and the latter goes to 0 as § — 0 by (5.11). Condition (Y') has been verified.
It remains to check (U’'). Using the model equation (5.6), (5.7) and Chebyshev’s

inequality once again, we have that

E}/” exp(nZ,,9)1(En g > H) < exp(—H)E%/” exp(2n=, g)

1
= exp(—H ) exp </ 92(t)dt> —0 as H — oc.
0

Conditions (Y') and (U’) have been checked.
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Remark 5.3 The condition of continuity of the functions 6(-) can be weakened to the

condition )
/ 62(t) dt < oo.
0
The functions 05 should then be chosen as step functions for which (5.11) holds.
For conditions (supY’) and (supU’), we require that the functions 6(-) belong to a

compact in C[0,1]. More specifically, for fixed g € (0,1], M > 0 and K > 0, we

introduce the Holder class
S(8, M) =1{0(-) : |0(t) — 0(s)| < M|t — s|°, for all s, € [0,1]}, (5.12)

define Xk (8, M) to be the subset of X(8, M) of functions § such that supcjo7|6(¢)] <
K and assume that © C X g (5, M). By the Arzela—Ascoli theorem, the set X (8, M)
is compact in C[0, 1]. Also

1
sup /92(t)dt<oo (5.13)
0()esk (8,M) Jo
and )
im  sup /(0(t)—05(t))2dt:0. (5.14)
=09 )exk(8,M) Jo

Now conditions (supY”’.3) and (supY’.4) are checked as conditions (Y'.3) and (Y'.4),
respectively, with the use of (5.14) in place of (5.11). Condition (supY’.2) follows
by the uniform boundedness of functions from Y g (5, M) which implies that z(-) —
(Co.5(2(-)).0 € Sk (B, M)) is a continuous map from C[0,1] into RS with the uniform
topology.

Finally, condition (supU’) follows in analogy with condition (U’) with the use of
(5.13). This completes verification of conditions (supY”’) and (sup U").

We now calculate the function S(6,6') for the model.

Lemma 5.4 For all 6.6 € C[0,1],

S(6.0) = sup min{Cy(z(")) — I (z(")). Cor (2()) — I (2()}

z(-)eC[0,1]

1
_ _%/0 8(t) — 6'(1)]dt.

Proof.Since by the definitions of I and ¢y, for z(-) with IV (z(-)) < o0,

1
Gole() = 1" (@) = =3 [ (@) —0(0)) ar.
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we get, by the inequality max(a?,b%) > (a — b)?/4,

Y=— in maxlli:— 2113'5—'2
s0.0) =~ it wax {5 [ a0 -oPag [ 150 -0t}
<1 1 o(t) — 0'(t))%dt

<3 | b -g@ra
On the other hand, for z(-) with z(t) = [0(¢) + 0'(¢)]/2, we have that

1 1 1
3 | B0 —owra =5 [0 - 00k = [ 00— 00k

and the required follows. O
Now we apply these formulae and the general results from Section 4 to two statistical

problems concerning the value of the function 6(-) at an internal point ¢g of [0,1].

5.3.1 Testing 6(typ) =0 versus [0(tg)| > 2¢

Given ¢ > 0, denote ©g={0 € O : 0(tg) =0}, ©1 ={0 € O : |0(ty)| > 2c} and define
the risk RI(p,) of a test p, by (4.4). Introduce

t* = (¢/M)YP. (5.15)

Proposition 5.4 Let ¢,3, M, K and ty be such that [ty —t*,to +t*] C [0,1] and K >
2c.
If ® =3%(8,M) then

. . T 26202 c\1/8
dm - inf Ry (pn) 2 B+ 1)(28+1) (H) '

If ©® = Xk (8, M) then

M

lim inf RL (p,) = —

2/2%¢? ( c )1//3
n=oco pn (B+1)(26+1) ’

and the tests pl 5 from (4.8) are mearly LD efficient, i.e.,

lim Iim RI(p’ ) =1lim lim RI(pl,)=—
350 1 oo n(pn,é) 320 1o n(pn,é) (ﬁ+1)(2ﬁ+1)

2/3%¢? ( c )1/ﬂ
7 .
Proof.By Theorem 4.3, we need only to calculate T from (4.6). Denote

0" (t) = [c — Mlt — to|*]", (5.16)

where at = max(a,0). If § € Oy and €' € ©1 then the inequality |0(tg) — 0'(to)| > 2¢
and the Hélder constraints (5.12) imply that |0(t) — 6'(¢)| > 2[c — M|t — to|®]T = 20%(¢t) ,
and hence

1 1
/(9(t)—9’(t))2dt2/ 4(6° (1)) 2.
0 0
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This yields, by Lemma 5.4,

ne Lo e t*c_ By2
S(0,0) < 84/0 (67 (£))? dt = /0( MP)2dt

232 c? c\1/B
B+12B+1) (_> '

M
On the other hand, evidently, ¢ — 6* € Oy, ¢+ 0* € ©; and S(c — 0*,c + 6*) =
1
—1 [(6*(t))* dt so that
0

M

T*= sup S(0,0")=—

232 ¢? ( c )1/5
0€00,0'cO, (B+1)(28+1)

5.3.2 Estimating 6(t()

Treating 6(fy) as a linear functional of 6(-), we define the risk of an estimator p, of
0(to) by

1
RE(Pn) = sup — lnpn,9(|Pn —0(to)| > ¢).
fco 1

Proposition 5.5 Let ¢, 8, M, K and ty be such that [to—t*, to+t*] C [0,1] and K > c.
If ® =3%(8,M) then

. . o 26202 c\1/8
Jm - inf Ry (pn) 2 B+ 1)(28+1) (H) '

If © = Xk (B, M) then

. . F _
A It B (o) =~ G 25+ 1)

2/3%¢? (ﬁ)l/ﬁ’

and the interval-median estimators pfﬁ from (4.18) are nearly LD efficient, i.e.,

lim lim Rf(pfﬁ) = lim lim Rf(ﬂi&) = -

232 ¢? c\1/B
-0 nooco =0 nooo (B+1)(28+1) (M) )

Proof.By Theorem 4.5 and Lemma 4.3,

lim inf R (p,) > F* = sup 5(0,0").
n—oo Pn 0,0 :10(to)—0'(to)|>2c

Repeating the above calculation for the testing problem, we obtain with 6*(¢) from (5.16)

* __ * ®\ 26202 c\1/8
= S0 -0 = ~rreeey Gr)
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Remark 5.4 The latter problem has been studied by Korostelev, 1993, who suggests

different upper estimators, namely, the kernel estimators
o= [ Klto - 04Xt

with the kernel K(t) = (6 4+ 1)/(2¢B8) (M/c)'/? [c — M|t — to|]*. These estimators have

proved to be asymptotically efficient in the sense that RL(p,) — F* as n — oo.

5.4 Gaussian Regression

We consider the regression model
k
Xk,n = G(tk,n) + fk,n, ten = E, k=1,...,n, (5.17)

where errors &, are independent standard normal and 6(-) is an unknown continuous
function.

In this model, Q, = R", © C C0,1] and P,y is the distribution of X, =
(Xin,..., Xpp) for 0(-). As above, we take P, = P, o. Then

1. dP,y
= = —In——(X
n.6 n " dP, (Xn)

1 — 1 &
E kz_le(tk,n)Xk,n - % ]; 92(tk,n)

1 n
/U (1) X, (1) — 5= 3 0% (1), (5.18)
k=1

where

[nt]
1
Xn(t):EZka, 0<t<1.
k=1

This prompts taking the process X, = (X, (t), t € [0,1]) as a statistic Y}, in condition
(Y'). We define Y to be the space of right-continuous with left-hand limits functions on
[0,1] with the uniform metric.

Since the Xy, are N'(0,1)-distributed under P,, the sequence {L (X, |P,),n > 1}
obeys the LDP with I from (5.8), Mogulskii, 1976. This checks condition (Y".1).

Next, we define (g s5(z(-)) as in Subsection 5.3, i.e.,

1 1
ste() = [ Osaatt) =5 [ (0t al) €9, (5.19)

where

[1/0]
05(t) = > _ 0(kd)1(t € k6, (k +1)d)), t € [0,1].
k=0

49



50 A .PUHALSKII AND V.SPOKOINY

Note that the (y ;5 are measurable with respect to the Borel o—field on ) and continuous
at z(-) with I (z(-)) = oo since they are continuous at continuous functions and

I (2(+)) = oo when z(-) is not absolutely continuous. This checks condition (Y”.2).

Now, by (5.18) and (5.19),
> 8/4)

/ (600) — 05(0) dX, (1) > 5/2) .

0

1 n
PY™(|Bng — Co5(Xn)| > ) <1 <‘/U 02(t) dt — 1 > 6°(k/n)
k=1

n

+ pl/m (

The first term on the right is zero for all n large enough by the continuity of 6(-). The

second is not greater than

2 F e (m /0 (00— 05(0) an(t)>

< 2¢77/ % exp <§ > (6(k/n)) — %(k/n)?) :

k=1

Since the 6(-) are continuous and the 6;(-) are step functions,
. 1
i (000k/m) = 85(k/m))* = [ (610) = 65(0)"

and the latter goes to 0 as § — 0. Since 7 is arbitrary, condition (Y”.3) follows.
Conditions (Y'.4) and (U') are checked as for the “signal + white noise” model (with

the same choice of (p).

Remark 5.5 As in the “signal + white noise” model, instead of continuity of 6(-), we

could require that it be square integrable on [0,1].

To get nearly LD efficient decisions, we assume that the 6(-) belong to the class X g (5, M)
defined above. Conditions (supY’.2), (supY’.3), (supY’.4) and (supU’) are checked as

for the “signal + white noise” model if we in addition take into account that

1
lim sup / (0([nt] + 1/n) — 6(t))* dt = 0.
"m0 6()eSk (8,M) 0

Condition (sup Y'.2) is obvious.
Since here we have the same functions IV (z) and (y(z) as for the “signal + white

noise” model, the statistical problems of Subsection 5.3 are solved in the same way.

5.5 Non-Gaussian Regression

We consider the regression model (5.17) but now assume that independent identically

distributed errors £, have a distribution P on the real line with a probability density
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function p(z) with respect to Lebesgue measure. An unknown regression function 6(-)
is again assumed to be continuous, so © C C[0,1].
Next, we assume that the density p(z) obeys the following condition, cf. conditions

(R.1) and (R.2) for the model of an independent-identically-distributed sample:

(P) the density p(x) is positive and continuous, and the function

H,(5) = [ 9@ (o —s)do
R
s bounded over s from bounded domains for all v € R.

As above, for a regression function 6(-), we denote by P, 4 the distribution of X, =
(X1ns---,Xnn). We have, with P, = P, ¢,

1. dP, 1 & Xin — 0(k
Z00= - ln 9(x,) =+ lnp( k, (/n)).
n

n dP, = P(Xkn)

As in the case of an independent-identically-distributed sample, this representation sug-
gests taking for Y, an empirical process F,, = F,(z,t), z € R, t € [0,1], defined by

F,(z,0) =0 and
[nt]

1
F,(z,t) = gZl(Xk,n <z), 0<t<l. (5.20)
k=1

= [ W P@=0) p
un,g_/o/Rl o)l do). (5.21)

We define ) as the space of cumulative distribution functions F' = F(z,t), z € R, t €
[0,1], on R x [0,1] with the weak topology. Let ), be the subset of } of absolutely

Then

continuous with respect to Lebesgue measure on R x [0, 1] functions F(z,t) with densities
pi(z) satisfying the condition [ p(z)dz =1, t € [0,1]. As it follows from Dembo and
Zajic, 1995 or Puhalskii, 1996[Theorem 1], the sequence {L(F,|P,),n > 1} obeys the
LDP in Y with rate function I°K(F) given by

I°K(F) = /o1 /Rln 11);((5))

This checks (Y'.1).
To define (y ;(F'), introduce the functions

plz —0(t))
p(z)
Los(z,t) = Lo(z,t)V(=6"")A6~", z € R, te[0,1]

pi(x) dx dt, if F € ),

otherwise.

Ly(z,t) = In

’

o1
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The functions Ly 5 are bounded, continuous and, in view of (P), satisfy the relations

1
lim/ /R[exp (Y |Lo(, ) — Lo s, 8)]) — 1] pla) dadt = 0, >0, (5.22)

=0 Jo
b (5 20) - 0y (o D)) st v0 a2

Co.6(F / /LB(S (z,t) F(dz,dt). (5.24)

Then condition (Y”.2) holds by the definition of the topology on Y and choice of the Ly s.
For condition (Y'.3), write, for v > 0, using Chebyshev’s inequality, and (5.20), (5.21)
and (5.24),

and, for every v >0,

1
5 [ Lol
n—oo 0 R

as 0 — 0. We set

1 -
— lnPn(|:n,0 - CG,&(Fn)‘ > 8)

l1npn (/1/ |Lo(z,t) — Lo.s(z,t)| Fy(dz,dt) > g>

S

< et Zln / exp (7| Lo, k/n) — Lo s(z, k/n)]) pl) da.

Limit (5.23) yields

— — 1
lim lim _lnPn(‘En,G - CG,&(Fn)‘ > 5) < —ne

6—0 n—oo M

which proves (Y”.3) since « is arbitrary.

For condition (Y'.4), we take

//Lgxt (dz,dt), if IK(F) <

otherwise.

The (9 are well defined since, by the Young-Fenchel inequality, if F(z,t) =
fof y)dy ds then

//|L9 ) d:cdt<//exp |Lo(z,t)]) — 1] p(x) dz dt
//(pt 1 P )) ((x))+1> o) di di

2 _ 1 gy SK
§1+/0 /Rp (#)(p( — 0(t))) " da dt + 15K (F)

which is finite when I°%(F) < oo by condition (P).



ON LD EFFICIENCY IN STATISTICAL INFERENCE

Next, once again by the Young-Fenchel inequality, we have, for v > 0,
1
Weaa ) = B < [ [ 31Las(w,0) = Lota,t)| Flda,di
0o JR

1
< /o /R[exp (v|Los(x,t) — Lo(x,t)|) — 1] p(z) dz dt + I°E(F),

so by (5.22)

lim  sup  [{ps(F) —¢o(F)| <
6—0 Fe(I)’ISK(a)

=2

which proves (Y'.4) since v is arbitrary.

Condition (U') is checked as in the case of an independent-identically-distributed
sample with the use of condition (P).

We now check conditions (supY”’) and (supU’). For this, we assume that the 6()
are again from the set X (8, M) defined in Subsection 5.3. Then limits (5.22) and
(5.23) hold uniformly over 6 € X (8, M) which allows us to check (supY”.3), (supY'.4)
and (sup U’) analogously to (Y'.3), (Y'.4) and (U’), respectively. Condition (supY’.2)
follows from the fact that the Ly s(z,t),0 € X (8, M), are equicontinuous at each (z, 1)
and uniformly bounded, so the ((p;,0 € ©): Y — R? are continuous for the uniform
topology on R?.

We now calculate the function S(6,6'), 6,0" € ©. This is carried out with the use of
a generalisation of Chernoff’s result in Lemma 5.2 which we state and prove next. Let E
be a Polish space with the Borel o-field £ and P(E), the space of probability measures
on (E,£). As above, for F,P € P(E), we denote by K(F,P) the Kullback-Leibler
information:

dF
/Elog ﬁ(x)F(dx), it F <P,

o, otherwise.

K(F,P) =

Recall that K(F, P), for P fixed, is convex and is a rate function in F' for the weak
topology on P(FE), Deuschel and Stroock, 1989, 3.2.17.

If the role of E is taken over by E x [0,1] with the product topology, then given a
probability Borel measure v on [0, 1], we denote by P, (E x [0, 1]) the subset of P(E x [0, 1])
of measures F' such that F(E x [0,t]) = v([0,¢]),t € [0,1].

Our version of Chernoff’s result is the following lemma.

Lemma 5.5 Let E be a Polish space. Let probability measures P,Q € P(E x [0,1]) be
dominated by the product measure u X v, where y and v are Borel measures on E and
[0, 1], respectively, with v([0,1]) =1.

Then

inf K(F.P).K(F
Fepul(réx[o’mmax{ (F,P),K(F,Q)}
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:—imL[n{ém<m2%)<m>ww»

v€[0,1

where py(x) and q,(z) are the respective densities of P and Q relatively to p X v.

Proof.Obviously,
max {K(F, P), K(F,Q)} = Sl[lp}(VK(F, P)+ (1 -7)K(F,Q)). (5.25)
~v€0,1
Let P(E x [0,1]) be endowed with the weak topology. Since K(F,P) is convex and
is a rate function in F, we deduce that the function yK(F,P) + (1 — v)K(F,Q), v €
0,1, F € P,(E x [0,1]), meets the conditions of a minimax theorem (see, e.g., Aubin
and Ekeland, 1984, Theorem 7, Section 2, Chapter 6). Hence,

inf sup (yK(F,P)+(1—7)K(F,
rep B o S0P OKEP) + (1= 1K(F.Q)

= su inf K(F,P)+ (1 —~v)K(F, . 5.26
s OK(EP)+ (1= K(F.Q) (5.26)

The latter infimum can equivalently be taken over F' dominated by P and (), and hence

by p x v. Denote by f;(z) the density of F' with respect to u x v. Since, by the definition
of P,(E x [0,1]),

F(E x [0 //Jt (dt) = v([0,2)), t € [0,1],

we have that
/ fi(z =1 v—almost everywhere. (5.27)

Next, by the definition of the Kullback—Leibler information,

VK (F,P) + (1 — 1) K(F,Q) = //10 = 7( S @ ) v, (529

where 0/0 = 0,0log 0 = 0. Since the function z logac ,z > 0, is convex, an application of

Jensen’s unequality and (5.27) gives that v—almost everywhere in ¢ € [0, 1]

_fl@) e S — 1o .
.émm<wva)W“2 log [ #l(@)al ™ (o) uldo).

On the other hand, taking

1
ﬁmzp(m”u(émm%”u<m0 (5.20)

we get equality above. Since the measure F' with the density defined by (5.29) belongs
to P,(E x [0,1]), we obtain by (5.28) that

rep, B0 PEEP) + (1= 1K(F Q)

=~ [ ros[ [ st o)t wiar

which, by (5.25) and (5.26), concludes the proof. O
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Remark 5.6 Chernoff’s result follows when v is a Dirac measure.
Now we apply Lemma 5.5 to evaluating the function S(6,6’).

Lemma 5.6 For all 6,6' € ©,

1
S(6,0') = inf / logHV(H’(t)—H(t))dt.
v€[0,1] Jo

Proof.We have, for F € Yy with I°5(F) < oo,

Co(F) = I°F(F) = =K (F, Py),
where Py(dz,dt) = p(x — 0(t)) dz dt, and the claim follows by (4.7) and Lemma 5.5 with
E = R,u(dr) =dz,v(dt) =dt,P =Py and Q =Py . O
The latter result enables us to calculate asymptotic minimax risks for various statis-
tical problems. To compare with the Gaussian case, let us consider the same statistical
problems as in Subsection 5.4 dealing with the value of 6(ty) for a given to. Sets X(3, M)
and Y (B, M) are defined as above.

5.5.1 Testing 6(ty) =0 versus [0(tg)| > 2c

Given ¢ >0, let ©g={0€0O: 0(tg) =0}, ©1 ={0 € O: |0(ty)| > 2c} and define the
risk RI(p,) of a test p, by (4.4). Recall that #* was defined in (5.15).

Proposition 5.6 Let ¢,8, M, K and ty be such that [ty —t*,to +t*] C [0,1] and K >
2c. Let the measure P satisfy condition (P) and the function H.(s) monotonously
decrease in s >0 for each v € [0,1].

If ® =3(8,M) then

t*
lim inf RI(p,) > inf 2/ log H.,(2(c — M%) dt.
n—oo Pn Y€1 Jo

If ©® =Xk (8, M) then

t*
. . T . B 8
nll)rgo 1prifRn (pn) _vél[%f,l}2/0 log Hy(2(c — Mt")) dt,

and the tests ,05,5 from (4.8) are nearly LD efficient, i.e.,

lim lim Rj(p,,) =lim lim R} (p, ;)
60 pn—oc ’ -0 nooco ’

t*
= inf 2/ log H.,(2(c — M%) dt.
mf 2] g H.,(2( )
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Proof.By Theorem 4.3 we need only to evaluate T* from (4.6). A straightforward

calculation using Lemma 5.6 and the monotonicity of H,(s) shows that

1
T := sup S(0,0") = inf 2/ log H., (26" (t)) dt,
0€00, 0" cO; v€[0,1]  Jo

where 0*(t) = [c — M|t — tg|?]T. The claim follows. O

5.5.2 Estimating 6(¢¢)

For the problem of estimating (o), the risk of an estimator p, is defined by

R (pu) = sup ~ In P, 0(lpn = 6(t0)| > ¢).
oco 1

Proposition 5.7 Let the conditions of Proposition 5.6 hold.
If © =%(B, M) then

t*
lim infRY(p,) > inf 2/ log H,(2(c — Mt%)) dt.
n—oc Pn ’YE[U,H 0

If © = Xk (B, M) then

t*
li fRI (p,) = inf 2 [ logH,(2(c— Mt%))dt
i i (pn) i /U og Hy(2(c ) dt,

and the interval-median estimators 955 from (4.18) are nearly LD efficient, i.e.,

lim lim RF(pn 5) = lim lim RF(pn 5)

=0 pooco =0 nosoo

t*
= inf 2/ log H.,(2(c — M%) dt.
e~/ g 7(( ))

Proof.By Theorem 4.5 and Remark 4.3 it suffices to calculate the asymptotic minimax

risk given by Lemma 4.3:

F* = sup 5(0,0"
0,0'€O :|0(to)—0'(to)|>2c

which is done as for the “signal 4+ white noise” model. O
Remark 5.7 The latter problem of estimating 0(to) has been considered by Korostelev

and Spokoiny, 1995 under the assumption that Inp(z) is concave upwards, and by Ko-

rostelev and Leonov, 1995 who study the double asymptotics as n — oo and then ¢ — 0.
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5.6 The Change—Point Model

Let us observe a sample X, = (X1 ,..., X, ) of real-valued random variables, where,
for some k,, > 1, the observations X p,..., X}, » are independent identically distributed
with a distribution Py and the observations X, 11,,..., X, are independent identically

distributed with a distribution P;. We assume that Py and P, are known and k, is
unknown. Let us also assume that k, = [n#], where § € ® = [0,1]. For this model,
1, = R" and P, g denotes the distribution of X,, for 6.

Let a probability measure P dominate Py and P;, and

folw) = S2@), fita) = S a), zeR

be respective densities. We assume that fo(z) and fi(z) are positive and continuous and

/fo P(dz) < oo, /f1 P(dz) < oo for all v € R. (5.30)

Introducing P, = P™, we have

[”9 n
S0 = 5 In 20 (X,) Zlnfo DEEID BT IE
i=[nb]+1
so that defining an empirical process by
1 [nt]
Fo(z.t) = - ; I(X;n <z), z€R,te]0,1],

we obtain the representation

Hg:/;/Rlnfg( W (dz, dt) + //mf1 Fy(dz, dt).

We define statistics Y, and a space ) as for the non-Gaussian-regression model. Let
Vp consist of the functions F' € )Y that are absolutely continuous with respect to the
measure P(dz) x dt with densities p;(x) such that [, p;(z)P(dz) =1,t>0. As for the

non-Gaussian-regression model, condition (Y'.1) holds with

1
/ / pe(x) Inp(z)P(dx) dt, if F € Yp,
o Jr

otherwise.

We next take, for F(-,-) € ),

Co,5(F //L05 )95 (0 — t) F(dz, dt) //Lus )g9s(t — 0) F(dz,dt),

o7
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where

Lis(z) = Inpi(z) A6~V (=d7"), i=0,1,
g5(t) = 0V (1/2+67%t) A1

The functions L; s and g; are bounded, continuous and

lim [ [exp (y|Inp;(z) — L; 5(z)|) — 1] P(dz) =0, i = 0,1, v > 0. (5.31)

=0 JR

The (p 5 are easily seen to be continuous, so (Y”.2) holds.

For (Y'.3), write, by Chebyshev’s inequality, for v > 0, >0 and n > § 2,

Pl/n(|~n0—<95 ‘>6)
< Pl/n </ / |In fo(z) — Lo,s(x)|Fn(dz, dt) 4+ 25 > %)
Pl/n </ / 'In fi(z) — Ly 5(x)| Fn(dz, dt) 4+ 26 > %)

< exp(—7e/2) exp(2y0) [Eexp(y|In fo(X1,n) — Lo,s(X1,n)])
+Eexp(’y| In fl(Xl,n) - L1,6(X1,n)‘)] )

SO

im PY™(|12,0 — Cos5(Fn)| > €)

n—oo

< exp(—e/2) exp(279) ( [ explal tn fo(o)  Las(e)) Pl
+ [ explaltn i) - L1,5<x)>P<dx>) |

and, by (5.31), this goes to 2exp(—vye/2) as § — 0. Since + is arbitrary, condition (Y'.3)
is checked.
To check (Y'.4), we take

0
//lnfg( F(dz,dt) //lnf1 F(dz,dt), if IpK(F)<oo,
0JR
0 otherwise.

The facts that the (y are well defined and (Y”.4) holds are proved as for the non-Gaussian-
regression model with the use of (5.30). Condition (U’) also is easily checked.

Remark 5.8 The continuity condition on fo(x) and fi(x) can be omitted. One should
then choose the L; s bounded, continuous and satisfying (5.51).
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Next, the argument used for (Y') and (U’) checks also conditions (supY’) and (sup U’)
(the verification of (sup Y”.2) uses the fact that the function gs(t —6) is equicontinuous
for 6 € [0,1] at each ¢ € [0,1]).

The next step is evaluating S(6,6') for 6,0 € [0,1].

Lemma 5.7 For all 6,6 € [0,1],
S(0,0") = |0 —0'| C(Pp. P1).

Proof.In a manner similar to the case of non—Gaussian regression, we have, for any

F € Yp,I3K(F) < 0o with F(dz,dt) = p(z) P(dz) dt,

Go(F) - / /R M) ) Pde) d
//1 pul@ P(dz) dt = —K(F,Py),

where Py(dz,dt) = (fo(z)1(t < 0) + fi(z)1(t > 0)) P(dz) dt. The claim follows by (4.7),
Lemma 5.5 with E = R, u(dz) = P(dz), v(dt) = dt, P = Py and Q = Py and the

definition of Chernoff’s function in Lemma 5.2. O

We apply this result and the general theorems from Section 4 to the problem of
estimating the parameter 6. The risk of an estimator p, is defined in a standard way:

1
RE(pn) = sup —=InP,g(|pn — 0] > ¢). (5.32)
oefo,1]

Proposition 5.8 For each ¢ <1/2,

lim inf RE (p,) = —2¢C(Py, P1).

n—o0o Pn

If 95,5 are the interval-median estimators from (4.18) then

lim lim RF(pn 5) = lim lim RF(pn 5) = —2cC(Py, P).

=0 nooo =0 nooo

Proof.We apply Theorem 4.5. One needs only to calculate the minimax risk F*. Using
Lemmas 4.3 and 5.7, we obtain
F* = sup S5(0,0") = —2cC(Py, P).
0,0':10—0'|>2c
O

Remark 5.9 The same result has been obtained by Korostelev, 1995 who uses another
kind of an upper estimator. The construction is based on considering the concave hull of
a sample path of the likelihood process. By Lemma 4.2 this estimator is a particular case

of the interval-median estimators piﬁ.
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5.7 Regression with Random Design

We consider the model
Xk,n = g(tk,n) + Sk,na k=1,...,n, (533)

where real-valued errors &, are independent with a common distribution P having a
density p(z) that obeys condition (P) of Subsection 5.5, and design points tj , are real-
valued independent random variables with a common distribution II and are independent

of the & ,. We impose a standard condition on the design measure II.

(IT) The measure 11 is compactly supported and has a positive density with respect to

Lebesgue measure on the support.

We denote the support by D. An unknown regression function 6(-) is assumed to be
continuous. In this model, P,y is the joint distribution of X, = (X1,,...,X,,) and
tn = (tipy---,tny) for 6.

Let us take for Y, the joint empirical distribution function F,, of X,, and ¢, :

1 n
Fo(A,B) =~ ; 1(Xgpn € Aty € B) (5.34)
for Borel sets A C R, B C D. We take Y to be the space of distributions on R x D with
the weak topology. Let also P, = P, o = (P x II)"
With these definitions,

1. dP,y

Eug = —n

—=n,l — dP

(Xn,tn)

. an - (tk,n))
_Zl Xk n)

/D /Rln p_(ix))Fn(dx, dt).

Let YV, be the subset of the set ) of the cumulative distribution functions on R? that
are absolutely continuous with respect to Lebesgue measure on R? and have support in
R x D.

Under P, , the random pairs (X} ,t ) are independent identically distributed with
the distribution P x IT, and hence, by Sanov’s theorem, the LDP holds for the F,, with
rate function I°°(F) defined by

7p($’t) T T i
sy = J, J I plagag e de e WP €0

otherwise.
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Here F(dz,dt) = p(x,t)dzdt. This checks (Y'.1).
Set next, for F' € ),

Co(F) = //ln F(dz,dt), if ISS(F) < oo,

otherwise,
Cos(F) = //

With this notation, the rest of condition (Y') and condition (U’) are checked in analogy

))] A6V (=071 F(dz, dt).

with the case of non-Gaussian regression. This proves the LDP for the model.

For conditions (supY’) and (supU’), we again assume that 6 € X (8, M), where
the set Y (8, M) was defined above. The conditions are then checked as for the non-
Gaussian-regression model.

Now we calculate the function S(6,6') from (4.7). Recall that the function H(s)

was defined in condition (P).

Lemma 5.8 Under conditions (P) and (II),

S(0,0') = inf log/ H,( 0(t))m(t) dt.
~v€10,1]

Proof.Given F € ) with I°9(F) < oo, we easily get

CB(F) - ISS(F) = _K(FaFG)a
where Py(dz,dt) = p(x — 0(t))n(t) dz dt, and the claim follows by (4.7) and Lemma 5.2
with E = R x D, u(dz,dt) = dxdt,P = Py and Q = Pp. O
Now we consider the same two statistical problems as in Subsection 5.5 and compare

the results for the cases of random and deterministic design.

5.7.1 Testing 6(tp) =0 versus [0(tg)| > 2c

Given ty € D and c¢ > 0, consider the hypothesis testing problem: 6(ty) = 0 versus
|0(to)| > 2c. The risk RI(p,) of a test p,, as well as the sets X(8, M) and Yo(8, M),

and t* are defined as above.

Proposition 5.9 Let D = [0,1]. Let ¢,8,M,K and ty be such that [ty — t*, ty +
t*] C [0,1] and K > 2c. Let conditions (P) and (II) hold and the function H,(s)
monotonously decrease in s > 0 for each v € [0,1].
If ©® =3(B,M) then

lim inf R} (p,) > T*,

n—oo Pn
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where

to+t*
T = inf log (1 +/t [H7(2(c— Mt — /%)) — 1} () dt) .

v€[0,1] o—t*
If © =Xk (B, M) then
lim inf R (p,) = T*,

n—o0o Pn

and the tests PZ,(S from (4.8) are nearly LD efficient, i.e.,

lim lim R, (pgﬁ) =lim lim R, (p:,a(;) =T

=0 nooo =0 nooco

Proof.Theorem 4.3 reduces the proof to calculating T* from (4.6). Using the result of
Lemma 5.8 and proceeding in analogy with the case of deterministic design, we conclude

that

T = S(c—6%c+6%)
to—t* to+t* 1

= inf log /w(t)dt+ / Ho(2(c — Mt — to|*))m(t) dt + / n(t) dt
el 0 to—t* to+t*

Now the claim follows by the equality [, m pr(t)dt=1. O

5.7.2 Estimating 6(¢¢)

As above, when estimating 6(tg), we define the risk of an estimator p, by

Ry (pn) =  sup llfllt’n 6(lpn — 0(t0)| > c).
0c i (B,M) T

Proposition 5.10 Let the conditions of Proposition 5.9 hold.
If © =%(B, M) then
lim inf R} (p,) > F*,

n—oo Pn

where

F* = inf log ( /tt0+t [H7(2(c — M|t —to]?)) - 1} m(t) dt) .

’)’E[Ol} o—t*
If © = Xk (B, M) then
lim inf RY (p,) = F*,

n—0o pPn

and the interval-median estimators pnﬁ from (4.18) are nearly LD efficient, i.e.,

lim lim RF(pm;)—hm lim RY (pm;) F*.

=0 nosoo =0 pnooco

Proof.By Theorem 4.5 it suffices to calculate the asymptotic minimax risk F* from

Lemma 4.3 which is done in analogy with the proof of Proposition 5.9. O
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Remark 5.10 If we consider the uniform random design on [0,1], i.e., take w(t) = 1,
Jensen’s inequality easily implies that its asymptotic minimaz risks are not greater than
the corresponding risks for regression with deterministic design (see Subsection 5.5). This

fact also follows from comparing Lemma 5.2 and Lemma 5.5.

Remark 5.11 The problem of estimating 6(ty) for the uniform random design has been
considered by Korostelev, 1995 who studies the double asymptotics as n — oo and then

c— 0.
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A Appendix

A.1 Proof of Lemma 2.4

Let {V), A € A(©)} be a standard family of deviabilities so that for all A C A’ € A(O)

and zp € Sy,

Va(za) = sup  ||maazar[aVar(zar) . (1.1)

-1
ZA/EHA,AZA

We define

inf VA (I , € Se.
VG(ZG):{ infyc 40 [mazelly Va(llaze), ze € Se (1.2)

0, otherwise,

where we set Va(ITyze) = 1 and ||[maze| ' Va(TIaze) = oo when ||mpze[s = 0.

The functions ||[mazel|y ' Va(TIaze), A € A(O), are easily seen to be upper semicon-
tinuous on Sg, so (Ve(ze),ze € R?) is upper semicontinuous as the infimum of a family
of upper semicontinuous functions. Moreover, since, for every zg € Sg and ¢ > 0, there
exists A € A(O) such that ||maze|la > 1 — ¢, and since V(IIpze) < 1, we conclude
that Vg(ze) < 1. Since (i7) obviously follows by (7i7), we are left to prove (7i7) and the
equality

sup Ve(ze) = 1. (1.3)

ze€Se
We begin with (7i7). Let us fix A and z) assuming that zy € Sy . Definition (1.2) implies
that

Va(za) > sup  [ImazellaVel(ze),
Z@GHXIZA

so we need to prove that

Va(za) < sup lmazollaVe(zo) . (1.4)

Z@GHXIZA

We, first, note that (1.2) and (1.1) imply that

Vol(ze) = inf ||WA’Z®||X/1VA/(HA/Z@), zg € So . (1.5)
N eA(O)
A'DA

Indeed, by (1.1), if A C A’ € A(O) and zg € Se is such that ||Trzel|a > 0 then
Va(Maze) > [|maallazel[aVar (Tarze)
and hence, since mypIlyize = maze/||marzo A,

Hﬂ'A/Z@HX,lVA/ (HAIZ@) S ||7TAZ@||X1VA(HAZ@)
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which, in view of (1.2), proves (1.5).
Next, we obviously can assume that a := V(zpx) > 0. For A" D AN € A(O),

introduce the sets
AA’ = {ZA’ S SA’ : HA’AZA’ = ZA and ||7TA’AZA’HAVA’(ZA’) = a}. (16)

We show that A,/ is nonempty. Since V/(zp/) < 1, the supremum on the right of (1.1)
can equivalently be taken over the set IT}, za N {|[marazas[[a > a/2}. This set is closed
since the projection ITjs, is continuous in restriction to the set {zar : ||[Tarazar||a > a/2}.
Since Vs is a deviability, it attains supremums on closed sets, so the supremum on the
right of (1.1) is attained which is equivalent to A, being nonempty. Next, A,/ is closed
and hence compact since Vs is upper semicontinuous and, by (1.1) and the definition of
a, [[marazar[aVar(zar) = a if and only if ||maazar|[a Vs (2a7) > a.
Now we introduce for each A’ € A(©), A’ DA,

AAI = {Z@ S [0, 1]9 : HA/Z@ S AA/ and ||7TA’Z®||A’ > a},

These sets are easily seen to be nonempty (e.g., if zyr € Apr then z9 = (24,60 € O),
defined by (29,0 € A') = z5» and 29 = 0,60 € A’, belongs to A,/) and compact for the
Tihonov topology on [0,1]® (the latter holds because IT5/ is continuous in restriction to
the set {zo : ||[marzo||ar > a} and Aps is closed).

We next show that, for every elements A’ and A” of A(©) containing A, the sets
Ay and A,r have a nonempty intersection. Indeed, let A" = A’ UA” and zg € [0,1]°
be such that zg € Apm and ||mamzel =1 (such a zg obviously exists). We prove that
zo € Apn and zg € Apr.

Denote zpym = Hpamzg, zpr = lprze, the latter being well defined since the defini-
tions of Apm and Apn imply that |[mpze||s > a. First, note that

arpzar = Hpaze = Hpampazpym = 2, (1.7)
where the last equality follows by the fact that zy» € Apm. This and (1.1) yield, in view
Of the equality HA/NA/ZAIH = ZA/,

Va(za) [marazarllaVar(zar), (1.8)

VA’(ZA’) 2 Hﬂ'AluA/zA///HA/VA///(ZA/H), (].9)

Vv

Next, by the definitions of zx» and 2y,

HWA’”AZA”’HA = HWA’AZA’HA . HWA”’A’ZA’”HA’

so that, by (1.8) and (1.9),

VA(ZA) 2 HWA’AZA’HA . ||7TA”’A’zA”’HA’VA”’(ZA’”) = Hﬂ-A’”AzA’”HAVA’”(ZA”’)-
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Since zpm € Apm , we actually have equality here and hence in (1.8) and (1.9). The first
of them and (1.7) prove that zys € Ap/. Equalities in (1.8) and (1.9) together imply,
since VAIH(ZA/N) < 1 and HWA’AZA’HA < 1 that HWA’”A’ZA”’HA’ > VA/(ZAI) > VA(ZA) = a;

since also ||mpamzel||am =1, we get

||7TA/z@||A/ = HWA”’Z@HA”’ . ||7TA///A/zA///HA/ 2 a.

This concludes the proof of the inclusion zg € Aa/. The inclusion zg € Apr is proved
by the same argument.

Thus, finite intersections of the compacts A, A’ D A, are nonempty, hence
Nar>aAp # 0. Pick 2g from this intersection and let Zg = z0/|/z0lle. We prove
that

HA%o = 24 (1.10)
and
Vo(Zo) = [[maZolly Valza) (1.11)

which yields (1.4) since Zzg € So. Let A’ € A(O) with A C A’. Since [Ty:Zg = 2o €
Ay, it follows by the definition of Ay that MpaZe = HaallnZe = 2a checking (1.10),

also R
~ ~ TTAZO || A —~
Va(za) = a = [[maallyZe|[a Vi (TTaZe) = lmaZella — H Va (TTarZe),
| 7arZe || Ar
SO

ImaZelly ' Valza) = ImarZelly! Var (o Ze).-
In view of (1.5), this implies (1.11), and (1.4) follows. Assertion (7i7) has been proved.
Finally, according to (%),
1= sup Va(za) = sup |mazelaVe(ze) < sup Ve(zo)
ZAESA 20€Se ze0€Se

proving (1.3). O
Remark A.1 Equality (1.5) shows that Vg can equivalently be defined as

Vo(ze) = Aeli{r(le) Va(Ixze), ze € Se,

where the limit is with respect to the partial ordering by inclusion: A < A" if A C A'.

A.2 A Minimax Theorem for Non-Level-Compact Loss Functions

This subsection contains a minimax theorem for generalised risks and non-level-compact
loss functions. We assume the setting described at the beginning of Section 3 and start
by introducing an extension of the space of decisions, cf. Strasser, 1985.

Denote by C4 (D) the set of all non-negative bounded continuous functions on D, and

let B(D) be the set of all functionals b: C, (D) — Ry with the following properties:
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(1) b(0) =0,b(1) = 1, where 0 (respectively, 1) denotes the element of C, (D) identically
equal to 0 (respectively, 1);

(2) b(f) <blg) if f <g, f,9 € CL(D);
(3) b(Af) = Ab(f), f € CL(D), A € Ry;
(4) o(f +9) <b(f) +b(9). f,9 € CL(D).

Also let B1(D) be the subset of those b € B(D) for which, in addition,

(5) b(f vV g) =0b(f) Vb(g), f,g€C(D),

where f V g denotes the maximum of f and g.

We endow B(D) with the weak topology which is the topology induced by the Tihonov
(product) topology on Rfj(D), i.e., a net {b,,0 € 3} of elements of B(D), where ¥ is a
directed set, converges to b € B(D) if limyeyx b, (f) = b(f) for all f € C, (D). Obviously,
B(D) is closed in Rfj(D).

We extend the domain of the functionals b to the set C, (D) of lower semicontinuous

non-negative functions on D by letting

b(g) = sup{b(f) : f<g,f €Ci(D)}, g€ C (D). (1.12)

It is easily seen that the map b — b(g) is lower semicontinuous on B(D) for each g €
¢, (D).

Next, let us denote by B, the set of all random elements on (€2, F,) with values in
B(D). We call the elements of B, generalised decision functions (or generalised decisions).
Given loss functions Wy,0 € ©, which are lower semicontinuous by definition, and a
generalised decision 3, € B, , we define §,(Wj') according to (1.12), and define the LD
risk By, () of a generalised decision 3, € B,, in the experiment &, = (2, Fp; Pn g, 0 € O)
by

Ba(fn) = $up (5 5u (W), (1.13)

Theorem A.1 Let {&,,n > 1} satisfy the LDP. Then

lim inf B,(f.) > B,

n—oo Bn€Bn

where

B*= sup inf supb(Wpy)zyVe(ze).
20€R® beB1(D) gco

For a proof, we need to study properties of B(D) and B;(D).
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Lemma A.1 Let fi, fo,...,fx € C+(D) and {b,,n > 1} be a sequence of elements of
B(D). Then there exists b € By(D) such that b(f;) is an accumulation point of the
sequence {bi/n(fi”),n >1} fori=1,... k.

Proof.Let ||-|| denote the uniform norm on C (D). Define C; 1 (D) as the subset of C; (D)
of functions f with ||f|| < 1. Introduce the functionals b,(f) = }Z/n(f”),f € Ci+(D).
Then the set B = {b,,n > 1} is contained in the set [0,1]°+(P), By Tihonov’s theorem,
[0,1]¢+(P) with the product topology is compact, and hence B is relatively compact. Let
b denote some its accumulation point. We extend b to a functional on C+(D) by letting
bAf) = Ab(f),A >0, f € C1,+(D). Since b, € B(D), it is easy to see that b € B(D).
Also, since the topology on B(D) is the restriction of the product topology on Rfj(D),
it follows that b is an accumulation point of {b,,n > 1}, where the b, are extended
to functionals on C4 (D) by letting b, (Af) = Aby(f), X > 0, f € C14+(D). This implies,
by the definition of the by, that b(f;) is an accumulation point of {b}l "(fM),n > 1} for
i=1,... .k

We end the proof by showing that be B, (D). Let f,g € C+(D). Then, since b is an
accumulation point of {b,,n > 1}, it follows that b(f), b(g) and b(f V g) are respective
accumulation points of {b,(f),n > 1}, {bn(g),n > 1} and {b,(f V g),n > 1}. Hence,
by the definition of the b,, for a subsequence (n'), we have that b:/nl(f”l) — b(f),
b (g"') = blg) and b2™ ((f V g)"') = b(f V g). By properties (2) and (4) of B(D),

nl

bl (F") Vb (") < BTV ) < 2 |0 VBT (g
and we conclude that b(f V g) = b(f) Vb(g). O
Lemma A.2 The set B1(D) is compact.

Proof.An argument similar to the one used in Lemma A.1 shows that the set of function-
als {(b(f),f € C1.4+(D)),b € By(D)} is closed in [0,1]°:+(P) and hence compact which
obviously is equivalent to the compactness of B;(D). O

The next lemma is motivated by and extends Aubin, 1984, Proposition 8.2.

Lemma A.3 Let T be an arbitrary set and U a topological space. Assume that a real—

valued function g(t,u),t € T,u € U, has the properties:
(a) g(t,u) is level-compact in u € U for every t € T,
(b) for every ty,to € T, there exists tg € T such that g(ts,u) > g(t1,u) V g(ta,u) for all

u€eU.

Then

sup inf ¢(¢t,u) = inf supg(t,u).
tejpueUg(, ) ueUtejpg(, )
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Remark A.2 Condition (a) holds when g(t,u) is lower semicontinuous in u and U is a

compact topological space.

Remark A.3 If T is a directed set, condition (b) holds when g(t,u) is increasing in t
for all u, i.e., g(t1,u) < g(ta,u), u € U, for t1 < to (the latter inequality is with respect
to the order on T).

Proof.We proceed analogously to Aubin, 1984. Pick a > sup;er infycrr g(¢, u). We need
to prove that

a > inf sup g(t, u). (1.14)
uel e

Let Ty = {t € T': sup,cyg(t,u) > a}. If Ty is empty, the proof is over. So we assume
that Ty # 0. By the choice of «, the sets Ay = {u € U : g(t,u) < a} are nonempty
for all t € T, and they are, moreover, compact for all ¢ € Ty, since the g(¢,u),u € U,
are level-compact. Condition (b) implies that, whatever t1,to € T, there exists t3 € T
such that Ay A, D As, # 0, which shows that finite intersections of the compacts
Ay, t € Tp, are nonempty, and hence (o, At # (). The latter is equivalent to
> inf sup g(t, u).

Since by the definition of T, a > supeq\qy 9(t, u), u € U, (1.14) is proved. O

Proof of Theorem A.1 We need to prove that, for an arbitrary sequence §,,n > 1,
of generalised decisions,

lim By (6,) > B*. (1.15)

n—oo

The argument is similar to the one in the proof of Theorem 3.1. Let fy(r),0 € O, be some
non-negative, bounded and continuous in r € D functions. Fix a nonempty A € A(O).
We have, by the definition of Z, A (see (2.14)),

lim supEi’/Hnﬁn(fgl) = lim SUPE;{/T\L/Bn(fgl)ZZ,H;A
n—oc fcA n—oo el
. 1/n
> lim | —Ean > Bulfi)Znga
n—oo | [Al geA -
> lim Ei/,? sup B (f9')Zn p.n
n—o00 0eA
> lim B Vul(Znn), (1.16)
n—oo
where
un(zp) = inf supb!/"(f§)zg, zp = (2,0 € A) € R}, (1.17)

beB(D) geA
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Note that the wu,(zp),n = 1,2,..., are upper semicontinuous (recall that A is finite)
and hence measurable so that the expectations on the rightmost side of (1.16) are well

defined.

Let us introduce

u(zp) = inf supb(fg)zg, za € RE, 1.18
(za) peinl, sup (fo)zo, zr € RY (1.18)
and prove that
lim wun(za(n)) > u(za), 2a € Rj\_, (1.19)
n—o0

for each sequence zj(n) — za.
Let b, € B(D) be such that

lim w,(2a(n)) = lim supby™(f7)z(n). (1.20)
n—oo n—oo feA
By Lemma A.1 and since A is finite, there exists b € By (D) such that b(fj) is an accu-

mulation point of {b}/"(fg), n > 1} for all @ € A. Therefore, we have, for a subsequence

(n'),

limby™ (/') = b(fs), 0 €A,

nl

limsup i/ (/5 )zo(n') = Lim  sup bY/™ (f7)zg(n).
n' e n—oo feA

Since A is finite and z5(n') — zp, we conclude that

lim  supbY/™(f5)zg(n) = supb(fy)zo
n—oc A geA

which, in view of (1.20) and (1.18), proves (1.19).
By (1.19) and the LD convergence of {L (Zy A
Varadhan, 1984; Chaganty, 1993; Puhalskii, 1995a)

P, A).n > 1} to V,, we have (see

lim B,/ Vul(Znn) > sup u(za)Va(za). (1.21)

n— 00 ZAERQ\_

Since by (1.18) u € H,, property (i7) of Vg in Lemma 2.4 yields

sup u(zpa)Va(za) = sup u(maze)Ve(ze).
ZA€R¢ Z@ER?

Relations (1.16) and (1.21) imply then that

: 1
lim sup En,/;lﬁn(ff?) > sup u(mazg)Vel(ze),
n—oc fcA Z@€R$
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so, by the definition of the function w in (1.18),

lim supE}L/gnﬁn(fgl)z sup inf supb(fy)zgVe(ze).
n—oo fcA ZegRgbeBl(D)aeA

Hence, since A € A(©) and f,(f) are increasing in f from C4 (D), it follows that

lim supE,;',(W§) > sup  sup _inf_supb(fy)zVe(ze),
n—soc O 20€RY A A(O) bEB1(D) gcA
fe€Cw
where Cy = {fo = (f9,0 € ©) € C.(D)® : fy < Wy,0 € ©}. Thus, (1.15) and the

theorem would follow if, for every zg = (29,0 € O) € R?,

sup inf supb(fg)zg = inf supb(Wy)zy. 1.22
ACA(O) b€B1(D) gcA (o) beB1(D) geo (Wo) ( )
fe€Cw

Fixing ze, introduce, for A € A(0), fo € C+(D)®,b € B{(D),

9((A, fe),b) = sup b(fp)z-

0eA
We check that g((A, fo),b) satisfies the conditions of Lemma A.3. Supply the set A(O) x
Cw with the natural order: (A, fo) < (A, fg) if A C A" and fy < fy,0 € O©. It is easily
seen that A(©) x Cyy is a directed set and g((A, fe),b) is increasing in (A, fo) for each
b. Also, since A is finite, the definition of the topology on B(D) implies that g((A, fo), b)
is continuous in b for each (A, fo). Therefore, since B (D) is compact by Lemma A.2,
g((A, fo),b) is level-compact in b. Thus, by Lemma A.3,
(A,f@)es}éll(p@)xcw b€113r§9) 9((A, fe),b) = belgri{D) (A,f@):}atl(p@)xcw 9((A, fe).b).

Recalling the definition of g and using the fact that by (1.12)

b(Wy) = sup{b(fs) : fo < Wy, fo €Cs(D)}, 0€O,

we get (1.22). O
It is interesting to relate Theorem A.1 with Theorem 3.1. Let us associate with each
r € D an element b, of By(D) defined by

br(f) = f(r), f € Cy(D). (1.23)

Then b,, € B, when p, € B,,. Therefore, in view of extension (1.12) and definitions
(3.1) and (1.13), By(b,,) < Rp(pn), so

lim inf R,(p,) > lim inf B,(b,,) > lim inf B,(B,).

n—oc Pn€Rn n—oc Pn€ERn n—oo Bn€Bn

Similarly, R* > B* so that Theorem 3.1 follows from Theorem A.1 if B* = R*. The

next lemma establishes conditions for the latter.
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Lemma A.4 If the loss functions Wy are such that
Wy =sup{fo: fo < Wy, fg € C+(D), fy are level-compact },0 € ©,
then R* = B*.

Remark A.4 The conditions of the lemma hold when the Wy are level-compact and
D is locally compact (cf. Strasser, 1985, Theorem 6.4). So, if D s locally compact,
Theorem A.1 implies Theorem 3.1.

The proof is preceded by two lemmas. We first derive a maxitive analogue of the partition

of the unity (cf. Strasser, 1985, Lemma 6.6).

Lemma A.5 Let fy,...,fr € C4(D). For every e > 0, there exist hy,...,hy, € C1(D)
with the following properties:

10 maxi<;j<m h]‘(’r‘) =1,r €D,

20 max; <<k | fi(r1) — fi(r2)| < e for all vy and ro such that hj(ri) >0 and hj(rz) > 0 for

some j=1,...,m.

Proof.The argument is similar to that in Strasser, 1985. Assume first that ¥ = 1 and

sup,¢p fi1(r) = 1. Choose m such that 3/m < € and define, for z > 0,
gi(@)=(z—-(G-2)"TA@G+1-2)" Al 1<j<m.

Let
hj(r) = gj(mfi(r)), 1 <j<m,r €D.

It is readily seen, since gj(z) = 1 when j —1 < 2 < j and 0 < fi(r) < 1, that
maxi<j<m hj(r) = 1,7 € D.

Next, since, given j = 1,...,m, we have g;j(z) = 0 when z ¢ [(—2)T, j+ 1], it follows
that if hj(r1) > 0 and hj(r2) > 0, then [mfi(r1) — mfi(re)| <3, ie., |fi(r1) — fi(re)] <
3/m < ¢ as required.

Now, if sup,cp fi(r) = a > 0, then the h; chosen as above for fi/a and e/a satisfy
1% and 2°.

Finally, if £ > 1, choose, for each i = 1,...,k, functions h; ;, 1 < j < m;, that satisfy
19 and 2°. Then the functions

k

i (1) = Hhiyji(’r)? 1 <j; <mj,r €D,
i=1

meet the required for all 4 with m =m;y...my;. O
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Denote by T the set of non-negative (upper semicontinuous) functions of finite sup-
port (¢(r),r € D) such that sup,cp t(r) = 1. Define By(D) as the set of those b € B (D)
that can be represented as b(f) = sup,cp f(7)t(r), f € C4+ (D), for some (t(r),r € D) € Ty.

The next lemma parallels Strasser, 1985, Theorem 42.5.

Lemma A.6 The set Bo(D) is dense in B1(D) for the weak topology.

Proof.We proceed as in the proof of Strasser, 1985, Theorem 42.5. Fix b € B{(D) and
fis--+y fr € C4(D). We have to check that for any ¢ > 0 there exists be B, (D) such

that [b(f;) — b(f;)] <e, 1< i <k

Let functions hj, 1 < j < m, be as in Lemma A.5. Obviously we can assume that

they are not identically equal to 0. For each j = 1,...,m, choose r; such that h;(r;) > 0.

By the definition of the h;, we have that, on the one hand,
|fz'(7“)hj(7‘) — fi(Tj)hj(T)‘ <eg, 1 <1< k‘,’l“ €D,
and, on the other hand,
. — . . <i< )
fi(r) 1r§r;a§}§n fi(r)hj(r), 1 <i<k,reD

Hence,

fi(r) — max fi(r;)h;(r)| < max [fi(r)h;(r) — fi(r;)h;(r)] <e,

1<j<m 1<j<m
1<i<k,reD.
Properties (1), (3) and (4) of B(D) then yield
6(fi) = b( max fi(rj)h;)| <e, 1<i <k
1<j<m

Now, since b € B{(D) and by property (3) again,

b( max fi(’)"j)hj) = maxXx fi(rj)b(hj), 1 S 1 S k.

1<j<m 1<j<m
Define
i) = maxy.=r; b(hy), ifr= ’I“-j for some j =1,...,m,
0, otherwise,
and let

b(f) = sup f(r)i(r), f € C4(D).

reD
By properties (1) and (5) of B1(D) and the choice of the h;,

fggt(r) = ax b(hy) =b( max h;) =b(1) =1,

(1.24)

(1.25)

73



74 A .PUHALSKII AND V.SPOKOINY

so (t(r)) € T1.

Also by the definitions of ¢(r) and b, the right-hand side of (1.25) equals b(f;), and
(1.25) and (1.24) yield the required. O

Proof of Lemma A.4 Since R* > B*, we prove the opposite inequality. Let fy,0 €
©, belong to C4 (D), be level-compact and fy < Wy, 6 € O. By the definition of B*,

B*> sup inf supb(fy)zsVel(ze), A € A(O). (1.26)
20€ RO PEB1(D) geA

By Lemma A.6 and the definition of By(D), for z¢ € RY, A € A(O),

inf supb(fg)zg = inf supb(fy)zy

beB1(D) geA beB2(D) A
= inf supsupt(r)fy(r)zg = inf sup fy(r)zy.
(t(r)€T1 reD heA (r)o(r) T€D geA (r)

Since the fy are level-compact, an application of Lemma A.3 shows, in analogy with the
end of the proof of Theorem A.1, that the supremum of the latter quantity over the fy
and A € A(O) equals inf,cp supycg Wiy(r)zp which by (1.26) proves that B* > R*. O



ON LD EFFICIENCY IN STATISTICAL INFERENCE

References

AUBIN, J.-P. (1984). L’Analyse non Linéaire et ses Motivations Economiques. Masson.
AUBIN, J.-P. AND EKELAND, 1. (1984). Applied Nonlinear Analysis. Wiley.

BAHADUR, R. (1960). On the asymptotic efficiency of tests and estimators. Sankhya,
22:229-252.

BAHADUR, R., ZABELL, S., AND GUPTA, J. (1980). Large deviations, tests, and esti-
mates. In Asymptotic theory of statistical tests and estimation, pages 33—64. Aca-

demic Press.
BAsu, D. (1956). On the concept of asymptotic efficiency. Sankhya, 17:193 —196.
BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley.

BOROVKOV, A. AND MOGULSKII, A. (1992a). Large deviations and statistical invariance
principle. Theory Prob. Appl., 37:11-18.

BOROVKOV, A. AND MOGULSKII, A. (1992b). Large deviations and testing of statistical
hypotheses. Proc. Inst. Math. Russian Acad. Sci., Siberian Division, 19. English
transl.: Siber. Adv. Math. , V. 2, 1992 N.3,4. V. 3 ,1993 N.1,2.

Bryc, W. (1990). Large deviations by the asymptotic value method. In Pinsky, M. A.,
editor, Diffusion processes and related problems in analysis, volume 1, pages 447-472.

Birkhauser.

CHAGANTY, N. (1993). Large deviations for joint distributions and statistical applica-
tions. Technical Report TR93-2, Department of Mathematics and Statistics, Old
Dominion University, Norfolk, VA.

CHERNOFF, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Ann. Math. Statist., 23:497-507.

DAWSON, D. AND GARTNER, J. (1987). Large deviations from the McKean—Vlasov limit
for weakly interacting diffusions. Stochast. Stochast. Rep., 20:247-308.

DEMBO, A. AND ZAJic, T. (1995). Large deviations: from empirical mean and measure

to partial sums processes. Stochast. Proc. Appl., 57:191-224.
DEUSCHEL, J. AND STROOCK, D. (1989). Large Deviations. Academic Press.

ENGELKING, R. (1977). General Topology. PWN.



76 A .PUHALSKII AND V.SPOKOINY

ErMAKOV, M. (1993). Large deviations of empirical measures and hypothesis testing.
Zap. Nauchn. Semin. LOMI RAN, 207:37-60.

FREIDLIN, M. AND WENTZELL, D. (1979). Random Perturbations of Dynamical Systems.

Nauka. in Russian; English translation: Springer, 1984.

Fu, J. (1982). Large sample point estimation: a large deviation theory approach. Ann.
Statist., 10:762-771.

IBrRAGIMOV, I. AND KHASMINSKII, R. (1981). Statistical Estimation: Asymptotic The-

ory. Springer. New York, etc.

IBRAGIMOV, I. AND RADAVICHIUS, M. (1981). Probability of large deviations for the
maximum likelihood estimator. Sov. Math. Dokl., 23(2):403-406.

KALLENBERG, W. (1981). Bahadur deficiency of likelihood ratio tests in exponential
families. J. Multivariate Anal., 11:506 — 53.

KALLENBERG, W. (1983). Intermediate efficiency, theory and examples. Ann. Statist.,
11:170-182.

KELLEY, J. (1957). General Topology. van Nostrand.

KOROSTELEV, A. (1993). Minimaxity criterion in nonparametric regression based on

large deviations probabilities. Ann. Statist. to appear.

KOROSTELEV, A. (1995). Minimax large deviations risk in change-point problems.

Stochastic Process and Their Appl. submitted.

KOROSTELEV, A. AND LEONOV, S. (1995). Minimax Bahadur efficiency for small con-

fidence intervals. Discussion paper 37, SFB 373, Humboldt University, Berlin.

KOROSTELEV, A. AND SPOKOINY, V. (1995). Exact asymptotics of minimax Bahadur

risk in Lipschitz regression. Statistics. to appear.

KRASNOSELSKII, M. AND RuTickIl, Y. (1961). Convez functions and Orlicz spaces.
Noordhoff.

KULLBACK, S. (1959). Information Theory and Statistics. Wiley, New York.

LECAM, L. (1960). Locally asymptotically normal families of distributions. Univ. Calif.
Publ. Statist., 3:27-98.

LECAM, L. (1972). Limits of experiments. Proc. 6th Berkeley Symp. Math. Stat. Prob.,
1:245-261.



ON LD EFFICIENCY IN STATISTICAL INFERENCE

LECAM, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag,
New York etc.

LYNCH, J. AND SETHURAMAN, J. (1987). Large deviations for processes with indepen-
dent increments. Ann. Prob., 15(2):610-627.

MoaGuLskil, A. A. (1976). Large deviations for trajectories of multidimensional random
walks. Theory Prob. Appl., 21(2):300-315.

PunALsKII, A. (1991). On functional principle of large deviations. In Sazonov, V. and

Shervashidze, T., editors, New Trends in Probability and Statistics, volume 1, pages
198-218. VSP/Moks’las.

PunALSKII, A. (1993). On the theory of large deviations. Theory Prob. Appl., 38(3):490—
497.

PunALskIl, A. (1994a). Large deviations of semimartingales via convergence of the

predictable characteristics. Stochast. Stochast. Rep., 49:27-85.

PunALSKII, A. (1994b). The method of stochastic exponentials for large deviations.
Stochast. Proc. Appl., 54:45-70.

PunALsKIl, A. (1995a). Large deviation analysis of the single server queue. Queueing
Systems, 21:5-66.

PunALskil, A. (1995b). Large deviations of semimartingales: a maxingale problem

approach. I. Limits as solutions to a maxingale problem. (submitted).

PuHALSKII, A. (1996). Large deviations of the statistical empirical process. In Frontiers
in Pure and Applied Probability II, pages 163—170. TVP. Proceed. of the Russian—

Finnish symposium, 1993.

RADAvVICHIUS, M. (1983). On the probability of large deviations of maximum likelihood
estimators. Sov. Math. Dokl., 27(1):127-131.

RADAvicHIUS, M. (1991). From asymptotic efficiency in minimax sense to Bahadur
efficiency. In Sazonov, V. and Shervashidze, T., editors, New Trends in Probab. and
Statist., volume 1, pages 629-635. VSP /Moks’las.

RAo, C. (1963). Criteria of estimation in large samples. Sankhya, 25:189-206.

ROCKAFELLAR, R. (1970). Convez Analysis. Princeton University Press.

7



78 A .PUHALSKII AND V.SPOKOINY

RUBIN, H. AND RUKHIN, A. (1983). Convergence rates of large deviations probabilities
for point estimators. Statistics and Probability Letters, 1:197-202.

SANov, I. (1957). On the probability of large deviations of random variables. Mat.
Sbornik, 42. (in Russian) ; English translation: Selected Translations in Mathemat-
ical Statistics and Probability, 1961, v. 1, pp. 213-244.

SCHWARTZ, L. (1973). Radon Measures on Arbitrary Topological Spaces and Cylindrical

Measures. Oxford University Press.

SHIRYAEV, A. AND SPOKOINY, V. (1995). Statistical Ezperiments and Decisions:

Asymptotic Theory. Springer. (in printing).

SIEVERS, G. (1978). Estimates of location: a large deviations comparison. Ann. Statist.,
6:610 — 618.

STRASSER, H. (1985). Mathematical Theory of Statistics: Statistical Ezperiments and
Asymptotic Decision Theory. de Gruyter.

VARADHAN, S. (1966). Asymptotic probabilities and differential equations. Comm. Pure
Appl. Math., 19(3):261-286.

VARADHAN, S. (1984). Large Deviations and Applications. STAM.

VERVAAT, W. (1988). Narrow and vague convergence of set functions. Statist. & Probab.
Lett., 6(5):295298.

WIEAND, H. (1976). A condition under which the Pitman and Bahadur approaches to
efficiency coincide. Ann. Statist., 4:1003-1011.



