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A new variable bandwidth selector for kernel estimation is proposed.
The application of this bandwidth selector leads to kernel estimates that
achieve optimal rates of convergence over Besov classes. This implies that
the procedure adapts to spatially inhomogeneous smoothness. In particu-
lar, the estimates share optimality properties with wavelet estimates based
on thresholding of empirical wavelet coefficients.

1. Introduction. In nonparametric curve estimation the statistical anal-
ysis may focus on the inference of the qualitative structure of the analyzed
curve. Often, interesting features of the curve are connected with spatially
inhomogeneous smoothness. In this case, curve estimates that are spatially
adaptive are appropriate.

A variety of such procedures have been proposed in the literature. In
Breiman, Friedman, Olshen and Stone (1983) piecewise constant least
squares estimates are considered with a data adaptive choice of the pieces
(CART). More generally, Friedman and Silverman (1989), Friedman (1991)
and Luo and Wahba (1995) use variable knot splines (MARS). Knot points are
added, removed and allocated recursively using cross-validation techniques.
These methods have shown good performance in simulations and real data
examples. However, no asymptotic theory is available.

Mammen and van de Geer (1997) discuss penalized least squares curve
estimation for spatially inhomogeneous curves. They propose penalty terms
which allow more spatial inhomogeneity than the usual L2-norms of deriva-
tives of the curve. The estimates turn out to be variable knot splines [see also
Mammen (1991)]. Results on rates of convergence and a pointwise asymptotic
distribution theory are given.

Müller and Stadtmüller (1987), Staniswalis (1989) and Brockmann, Gasser
and Hermann (1993) propose kernel estimation with locally variable band-
width selectors. The calculation of local bandwidths is based on pilot estima-
tion of local smoothness characteristics. An asymptotic analysis is available
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here, however, only under additional smoothness conditions on the curve [for a
discussion of this point see also Gijbels and Mammen (1994)]. Spatially adap-
tive local polynomial regression estimates were introduced and discussed in
Fan and Gijbels (1995). For a comparison of wavelet estimates and local poly-
nomial regression estimates with variable bandwidth selector see Fan, Hall,
Martin and Patil (1993). In a series of papers Donoho, Johnstone, Kerkyachar-
ian and Picard have shown that wavelet analysis offers a powerful technology
for spatially adaptive curve estimation. Curve estimates based on threshold-
ing empirical wavelet coefficients are optimal for a wide range of loss functions
and smoothness classes [see Donoho, Johnstone, Kerkyacharian and Picard,
(1995), Kerkyacharian and Picard (1993) and Delyon and Juditsky (1994)].
In particular, they achieve optimal minmax rates over balls in smoothness
classes (e.g., Sobolev or Besov classes) with a norm that is weaker than the
loss function used (e.g., Lp′ -loss for functions with assumed bounded

∫
�f�k��p,

where p′>p). This shows spatial adaptivity of wavelet estimates because
such classes contain functions with spatially inhomogeneous smoothness. In
such classes optimal rates cannot be achieved by estimates that are linear
in the observations [e.g., kernel estimates with deterministic bandwidth, or-
thogonal series estimates, regression splines with equidistant knot points, see
Nemirovski (1985)]. The reason is that linear estimates cannot adapt to spa-
tial inhomogeneity. Spatial adaptivity of an estimate can also be character-
ized by pointwise properties. For wavelet estimates it has been shown that up
to a logarithmic factor they achieve the same risk as a variable knot spline
with optimally placed (deterministic) knot points. This holds for every func-
tion [see Donoho and Johnstone (1992, 1994)] and has been called ideal spatial
adaptation.

In this paper, a new variable bandwidth kernel estimate is proposed. The
bandwidth selector is based on a modification of a procedure for adaptive
estimation due to Lepski (1990). This estimate is a reasonable alternative
to wavelet estimates. Another curve estimate using the approach of Lepski
has been proposed in Goldenshluger and Nemirovski (1994); see also Golden-
shluger and Nemirovski (1996). Our estimate shares some decision theoretical
optimality properties with wavelet estimates. In particular, we prove that it
achieves optimal rates over the whole scale of Besov classes and Lp-losses
(see Theorems 3.1 and 3.2). This shows that this estimate adapts to spatial
inhomogeneity (like wavelet estimates). Furthermore, a result on ideal spatial
adaptation is given (see Theorem 3.3). All results are based on a general bound
for the pointwise risk of our estimate (see Proposition 3.4). This result can be
used to get the rates of our estimate also in other setups.

Our model and our procedure will be described in the next section. Section 3
contains our results. Performance of the estimate is illustrated by simulated
data sets in Section 4. The proofs are postponed to Section 5.

2. A data adaptive local bandwidth selector. In this paper we con-
sider the white noise model

dY�t� = f�t�dt+ σ dW�t�; 0 ≤ t ≤ 1;(2.1)
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whereW�t�, 0 ≤ t ≤ 1, is a Brownian motion and f is an unknown (regression)
function. Performance of estimates of f is studied for σ → 0. Model (2.1) gives
an asymptotic description for density estimation with i.i.d. observations and
for nonparametric regression with i.i.d. Gaussian errors and sample size of
order σ−2 [see Brown and Low (1996), Low (1992) and Nussbaum (1996)].
In particular, our results on rates of convergence can be shown to hold for
regression models under conditions on the tails of the error distribution.

We will study kernel estimates f̂h with kernel K and bandwidth h:

f̂h�x� =
∫
Kh�x− t�dY�t�;(2.2)

where Kh�x� = h−1K�x/h�. We also write

fh�x� = Eff̂h�t� =
∫
Kh�x− t�f�t�dt;(2.3)

v2�h� = Var f̂h�t� = σ2h−1
∫
K2�u�du:(2.4)

We propose a local bandwidth selector ĥ�t�. It takes values in the geomet-
rical grid

Hσ = �h ∈ �σ2; h∗σ �x h = a−jh∗σ ; j = 0;1;2; : : :�:
Here a > 1 is an arbitrary constant. The upper bound h∗σ will be specified
below. We write Lσ for the number of elements of Hσ .

Now we define

ĥ�t� = sup�h ∈ Hσ x �f̂h�t� − f̂η�t�� ≤ ψ�h;η� for all η < h; η ∈ Hσ�;
where, for h > η,

ψ�h;η� = D1v�h�λ�h� + v�h;η�λ�η�;(2.5)

λ�h� = max
{

1;
√
D2 log�h∗σ/h�

}
:(2.6)

Here D1 and D2 are positive constants, v�h� is the standard deviation of f̂h�t�
[see (2.4)] and v�h;η�; is the standard deviation of the difference f̂h�t�−f̂η�t�,

v2�h;η� = σ2
∫
�Kh�u� −Kη�u��2 du

= σ2η−1
∫
�K�u� − �η/h�K�uh/η��2 du:

(2.7)

We propose the estimate

f̂�t� = f̂ĥ�t��t�:

A modification of f̂ based on piecewise constant choices of ĥ is discussed in
Lepski and Spokoiny (1994). The bandwidth ĥ�t� has a nice statistical in-
terpretation. It is the largest bandwidth h such that f̂h�t� does not differ
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“significantly” from kernel estimates with smaller bandwidth: one chooses a
resolution level such that no significant features are visible on a finer resolu-
tion level. For η < h the difference f̂h�t� − f̂η�t� is of stochastic order v�h;η�.
The additional logarithmic factor λ�η� has been added because the definition
of ĥσ�t� is based on an increasing number of comparisons of different band-
widths. This additional factor is essential for our results (see the remark at
the beginning of the proof of Proposition 3.4). Without this factor too small
bandwidths would be chosen.

Our approach has an essential difference from wavelet estimation tech-
niques based on thresholding of empicial wavelet coefficients. Empirical
wavelet coefficients are related to the values

Zj;σ�t� = f̂2−jh∗σ
�t� − f̂2−j−1h∗σ

�t�:

A kernel estimate analogue of the wavelet threshold estimates would look like

f̃�t� = f̂h∗σ �t� +
∑
j≥0

Zj;σ�t�I��Zj;σ�t�� ≥ Cj;σ�

with appropriate threshold values Cj;σ ; I denotes the indicator function. In
particular, in contrast to f̂, this method is based on comparison of neighboring
resolution levels and it may find that “significant” features are present in the
data for arbitrarily many resolution levels.

3. Near minimaxity and ideal spatial adaptation. We will study the
rate of convergence of the estimate f̂, defined in the last section, over balls
Bsp; q�M� in Besov spaces Bsp; q and show that our curve estimate achieves
optimal rates of convergence over these function classes. The following char-
acterization of a Besov ball will be used in the proofs of Theorems 3.1 and
3.2:

Bsp; q�M� =
{
fx �f�Bsp; q ≤M

}
;

where

�f�Bsp;q =





�f�p +
[∫ 1

0
h−sq� oscf�·; h��qp

dh

h

]1/q

; if q <∞;

�f�p + sup
0≤h≤1

h−s� oscf�·; h��p; if q = +∞:

Here �f�p is the Lp-norm �f�pp =
∫ 1

0 �f�p. Furthermore, for the definition of
the local oscillation oscf�x;h� of the function f, an arbitrary r ∈ N with r ≥ s
and a real u have to be chosen. The constant u has to fulfill

1 ≤ u ≤ +∞ if sp > 1;

1 ≤ u < +∞ if sp = 1;

1 ≤ u < p�1− sp�−1 if sp < 1:
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With this choice of r and u the local oscillation oscf�x;h� of f is defined as

oscf�x;h� =





inf sup
�y−x�≤h

�f�y� −P�y��; if u = +∞;

inf
[

1
2h

∫
�y−x�≤h

�f�y� −P�y��u dy
]1/u

; if u < +∞:
(3.1)

The infimum in (3.1) is taken over all polynomials of order r.
A proof that � · �Bsp; q is a norm of Bsp; q can be found in Triebel [(1992),

Section 3.5.1]. Other equivalent norms are discussed there, too.
For the kernel K we make the following assumptions for an integer k ≥ 1.

(K1). The kernel K has a compact support (say, �−1;1�); K is continuous
and fulfills

∫
K�u�du = 1 and it has k vanishing moments:

∫
uiK�u�du =

0, for 1 ≤ i ≤ k. For t < h and t > 1 − h the kernel Kh is replaced by
boundary kernels Kt

h (kernels with support �−t; h� or �−h;1−t�, respectively).
We assume that the functions hKt

h�·� are uniformly bounded, and that the
kernels Kt

h fulfill
∫
Kt
h�u�du = 0 and have k vanishing moments.

For simplicity, our notation will not take into account the modifications
at the boundary, in particular we will skip the superscript t in Kt

h. For the
case that the inequalities s ≤ 1/p and q < +∞ hold, we need the following
additional condition.

(K2). The kernel K can be decomposed as

K�u� = 2M�u� − 1
2
M

(
u

2

)
;

where M is a bounded function with compact support (say, �−1/2;+1/2�) and
with

∫
M�u�du = 1. Without any indication in the notation, modifications of

M are used again at the boundary. They are assumed to be uniformly bounded.

Note that (K2) implies
∫
K�u�du = 1 and

∫
uK�u�du = 0.

We will study maximal Lp′ -risks of f̂ over Bsp; q balls of bounded functions.
For fixed M> 0 and L > 0 we put

Rσ�f̂;Bsp; q; p′� = sup
f∈B�M;L�

Ef�f̂− f�p
′

p′;

where

B�M;L� =
{
Bsp; q�M�; if sp > 1;

Bsp; q�M� ∩ �fx �f� ≤ L�; if sp ≤ 1:
(3.2)

For sp ≤ 1 functions in Bsp; q�M� are not uniformly bounded. This is the reason
why the restriction �f� ≤ L has been added for this case.

For simplicity, our notation does not always indicate every dependence. For
instance, remember that f̂ depends on σ and the choice of D1, D2, a and
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h∗σ . Furthermore, it depends on the kernel K (and its number k of vanishing
moments).

We are now ready to state our main result.

Theorem 3.1. Suppose that for the parameters of the Besov class it holds
that 1 ≤ p;q ≤ +∞, 1 ≤ p′ < +∞, s > �1/p − 1/p′�+. The kernel K is
assumed to fulfill (K1) with k > �s�. Additionally, in the case that s ≤ 1/p and

q < +∞ hold, K is supposed to satisfy (K2). Furthermore, assume that ĥ�t� is
calculated with D1 > 0, D2 ≥ 2p′ and with h∗σ = σ2/�2s+1�. Then, for σ small

enough, the risks of f̂ satisfy

Rσ�f̂;Bsp; q; p′� ≤ const.





σp
′r; if sp >

p′ − p
2

;

[
σ

√
log

(
1
σ

)]p′r′
log

(
1
σ

)
; if sp = p

′ − p
2

;

[
σ

√
log

(
1
σ

)]p′r′
; if sp <

p′ − p
2

:

(3.3)

where

r = 2s
2s+ 1

;

r′ = s− 1/p+ 1/p′

s− 1/p+ 1/2

and const. depends only on the kernel K, the parameters s;p;L;M of the func-
tion class, the norm power p′ and the parameters D1;D2; a of the bandwidth
selector.

The exponent of σ in (3.3) gives the optimal rate. For sp 6= �p′ − p�/2 this
holds also for the logarithmic factor. Small choices of the class parameter p
correspond to Besov classes that contain functions with spatially inhomoge-
neous smoothness. Because our estimates achieve optimal (or nearly optimal)
rates in all Besov classes this shows that the estimates adapt well to spa-
tially inhomogeneous smoothness. For a discussion of minimax rates in Besov
spaces we refer to Donoho et al. (1995) and Delyon and Juditsky (1994).

For the interpretation of the exponents in (3.3) let us briefly remark that for
the case of sp ≤ �p′ − p�/2 we have r′ > 0. This follows from s−1/p+1/p′ > 0
and s − 1/p + 1/2 > 0. The first of these two inequalities follows from p′ >
p. For the proof of the second inequality we apply sp ≤ �p′ − p�/2 and our
condition s > �1/p− 1/p′�+ = �1/p− 1/p′� to obtain

p′

2
− 1 ≥ sp+ p

2
− 1 >

(
1
p
− 1
p′

)
p+ p

2
− 1 = p

p′

(
p′

2
− 1

)
:

Because of p′ > p this implies p′ > 2 and sp− 1+ p/2 > 0.
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The choice of h∗σ in Theorem 3.1 requires explicit knowledge of s. The next
theorem helps to understand the performance of f̂ in case of unknown degree
s of smoothness.

Theorem 3.2. Under the assumptions of Theorem 3.1 for a choice of h∗σ
with σ2/�2s+1� ≤ h∗σ ≤ 1 one gets for σ small enough

Rσ�f̂;Bsp; q; p′� ≤ const.





[
σ

√
log

(
1
σ

)]p′r
; if sp >

p′ − p
2

;

[
σ

√
log

(
1
σ

)]p′r′
log

(
1
σ

)
; if sp = p

′ − p
2

;

[
σ

√
log

(
1
σ

)]p′r′
; if sp <

p′ − p
2

:

(3.4)

Here r and r′ are defined as in Theorem 3.1.

By comparing the results of Theorems 3.1 and 3.2 we find that using h∗σ = 1
gives the optimal rate for sp ≤ �p′−p�/2 and an additional logarithmic factor
for sp > �p′ − p�/2.

Now we state a property of f̂ that was called ideal spatial adaptation in
Donoho and Johnstone (1994). We fix some point t ∈ �0;1� and study the
pointwise risk rσ�t; f� = Ef�f̂�t� − f�t��2 (here p′ = 2). We would like to
compare this risk with inf E�f̂h�t� − f�t��2, where the infimum runs over all
(deterministic) bandwidths h with σ2 < h < 1. Note that

E�f̂h�t� − f�t��2 = �fh�t� − f�t��2 + Var f̂h�t� = �fh�t� − f�t��2 + σ2�K�22h−1:

Denote

rideal�t; f� = inf
aσ2≤h≤1

[
sup

0≤η≤h
�fη�t� − f�t��2 + σ2�K�22h−1

]
:

The first term sup0≤η≤h�fη�t�−f�t��2 reflects the local smoothness of f in the
interval �t−h; t+h�. The second term is the variance of f̂h�t�. The minimizing
“ideal” bandwidth hideal provides a trade-off between these two terms, but it
depends on unknown characteristics of the function f. It is known from Lepski
(1990) and Brown and Low (1992) that in pointwise estimation one has to pay
an additional logarithmic factor for not knowing smoothness properties of f.
In the present context this means that no estimate achieves the risk of order
rideal�t; f� adaptively (uniformly over large enough function classes). This loss
of efficiency can be viewed as payment for estimation of unknown smoothness
parameters of f. The loss can be quantified by an increased noise level:

radapt�t; f� = inf
aσ2≤h≤1

[
sup

0≤η≤h
�fη�t� − f�t��2 + σ2 log�1/σ��K�22h−1

]
:

Obviously, radapt�t; f� ≤ rideal�t; f� log�1/σ�.
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Theorem 3.3. Suppose that the kernel K fulfills (K1) with k ≥ 1, and ĥ�t�
is calculated with D1 > 0; D2 ≥ 4 and h∗σ = 1. Then one has, for each L > 0
uniformly in f ∈ F �L� = �fx supx∈�0;1� f�x�−inf x∈�0;1� f�x� ≤ L� and t ∈ �0;1�
for σ small enough,

Ef�f̂�t� − f�t��2 ≤ Cradapt�t; f�;(3.5)

where the constant C depends only on p′, a, D1, D2 and the kernel K.

It can be shown that for every estimate that fulfills (3.5) [where radapt�t; f�
is defined with a kernel K satisfying the conditions of Theorem 3.2], the state-
ment (3.4) of Theorem 3.2 also holds (with p′ = 2). This means that every
estimate which is locally adaptive at each point t in the sense of (3.5) is au-
tomatically globally (spatially) adaptive and nearly minimax over the wide
scale of Besov classes in the sense of Theorem 3.2. In the context of adaptive
estimation the rate radapt is optimal [see Lepski and Spokoiny (1996)]. For
further discussions of adaptive estimation see also Lepski (1991, 1992).

For the proof of our three theorems we will make use of the following
proposition. There an upper bound is given for pointwise risks rσ�t; f� =
Ef�f̂�t� − f�t��p

′
. Like Theorem 3.3 the proposition relates the pointwise risk

of f̂ to the pointwise risk of a kernel estimate with deterministic bandwidth
hσ�t; f�. By application of this proposition the proofs of Theorems 3.1 and 3.2
are reduced to approximation theoretical considerations. The proposition can
be used to treat function classes other than Besov classes.

Proposition 3.4. Let the kernel K obey (K1) with k ≥ 1. For an L > 0,
let ĥ�t� be calculated with D1 > 0, D2 ≥ 2p′ and Hσ2 ≤ h∗σ ≤ 1, where
H = exp�2L2/�D2

1D2��. Then there exists a constant C (depending on p′, a,
D1, D2 and the kernel K) such that the following inequality holds uniformly
in f ∈ F �L� and t ∈ �0;1�:

Ef�f̂�t� − f�t��p
′ ≤ C�v�hσ�t; f��λ�hσ�t; f���p

′
:(3.6)

Here hσ�t; f� is the following local (deterministic) bandwidth:

hσ�t; f�
= sup

{
h ∈ Hσ x �fη�t� − f�t�� ≤ D1v�h�λ�h� for all η ∈ Hσ ; η ≤ h�:

(3.7)

The quantities v2�h�, ψ�h;η�, λ�h� and v2�h;η� have been defined in (2.4),
(2.5), (2.6) or (2.7), respectively. The set F �L� has been introduced in Theo-
rem 3.3.

The bandwidth hσ�t; f� is well defined by (3.7). The supremum on the right-
hand side of (3.7) is taken over a nonempty set. This follows from the following
two inequalities (3.8) and (3.9). Using f ∈ F �L� and that K has support
�−1;1�, we get

�fη�t� − f�t�� ≤ L�K�1 ≤
√

2L�K�2:(3.8)
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From h∗σ ≥Hσ2 and the definition of H it follows that

v�σ2�λ�σ2� =
√
D2 log�h∗σ/σ2��K�2 ≥

√
D2 logH�K�2 =

√
2L�K�2:(3.9)

Our results hold for some modifications of f̂�t�. In particular, one could
replace ψ�h;η� by

ψ�h;η� = ψMOD�η� = D3
σ√
η

√
1+ ln

(
h∗σ
η

)
:(3.10)

It can be shown that Theorems 3.1, 3.2 and 3.3 continue to hold for this mod-
ification of f̂�t� if (in Theorems 3.1 and 3.2) D3 has been chosen larger than
2�1 + �4p′ + 6�1/2�K��. For this modification of f̂, simulations are presented
in the next section.

4. Some simulated data sets. For the illustration of the performance of
our estimate we have carried out some simulations in a regression setup. We
have simulated the examples in Donoho and Johnstone (1994). Simulations
of other estimates for these examples can be found in Goldenshluger and Ne-
mirovski (1994), Luo and Wahba (1995) and Fan and Gijbels (1995). Figure 1
shows the regression functions with Gaussian noise (sample size 2048, error
variance 1). In all four cases the signal-to-noise level is 7. In the estimation we
have used the biweight kernel K�u� = �1 − u2�2+. We have used no boundary
kernels. As ψ we have chosen ψ�h;η� = ψMOD�η�, see (3.10). In this setup the
bandwidth ĥ�t� is defined as

ĥ�t� = sup
{
h ∈ H x �f̂h�t� − f̂η�t�� ≤ D3

s√
nη

√
1+ ln

(
h∗σ
η

)

for all η < h; η ∈ H

}
;

where n is the sample size, s2 is the variance of the data and (with a = 1:02
and h∗σ = 0:4)

H = �h ∈ �0:001;0:4�x h = �1:02�−j0:4; j = 0;1;2; : : :�:

The estimate f̂h has been chosen as a Nadaraya–Watson estimate. Constants
D3 = 1, D3 = 1:5 and D3 = 2 have been used. The data sets have been gener-
ated 101 times. Figure 2 shows the kernel estimate f̂ with median integrated
squared error for D3 = 1:5. The estimates look similiar to the curve estimates
in Donoho and Johnstone (1994), Goldenshluger and Nemirovski (1994), Luo
and Wahba (1995) and Fan and Gijbels (1995). ForD3 = 1 the estimates have a
rougher shape, for D3 = 2 they are smoother. Some further investigations are
needed here. In particular this concerns the choice of constants, other modifi-
cations of ĥσ�t� and applications to other smoothers (than Nadaraya–Watson
estimates).
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Fig. 1. Four functions [see Donoho and Johnstone (1992)] with Gaussian white noise, σ = 1; with
f rescaled to have signal-to-noise ratio 7y sample size n = 2048.

5. Proofs. The proofs of Theorems 3.1, 3.2 and 3.3 rely on Proposition
3.4. We start with the proof of the proposition.

Proof of Proposition 3.4. Let us fix L > 0, f ∈ F �L� and t ∈ �0;1� and
let hσ�t; f� be defined by (3.7). For simplification, any dependence on f will
not be indicated in the notation. For example, we write hσ�t� = hσ�t; f� and
rσ�t� = rσ�t; f�.

The proof of the proposition is based on the following idea. We distinguish
the following two cases:

ĥ�t� ≥ hσ�t� and ĥ�t� < hσ�t�:

We denote the corresponding events by Aσ�t� = �ĥ�t� ≥ hσ�t�� and Ac
σ�t� =

�ĥ�t� < hσ�t��. For the pointwise risk we get

rσ�t� = Ef�f̂�t� − f�t��p
′

≤ r+σ �t� + r−σ �t�;
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Fig. 2. Kernel estimates of the four functions in Figure 1y local bandwidth ĥ with ψ�h;η� =
ψMOD�η�; D3 = 1:5; a = 1:02 and h∗σ = 0:4.

where

r+σ �t� = Ef�f̂�t� − f�t��p
′I�Aσ�t��;

r−σ �t� = Ef�f̂�t� − f�t��p
′I�Ac

σ�t��:

We will show

r+σ �t� ≤ const.�v�hσ�t��λ�hσ�t���p
′
;(5.1)

r−σ �t� ≤ const.�σ2/h∗σ�p
′/2;(5.2)

where const. depends on p′, a, D1, D2 and the kernel K. The proof of (5.1)
is rather simple. It uses that, by definition of ĥ�t�, on the event Aσ�t� we
can bound the difference between f̂�t� and f̂hσ �t��t�, [see (5.3)] [because of
ĥ�t� ≥ hσ�t�]. The estimate f̂hσ �t��t� is a kernel estimate with deterministic
bandwidth. Its asympotic behavior is well understood. The proof of (5.2) is
based on upper estimates of Ef�f̂�t� − f�t��p

′I�ĥ�t� = h� for h < hσ�t� in
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Hσ . The event �ĥ�t� = h� can be bounded by unions of events Bσ�t; h;η� =
��f̂h�t�−f̂η�t�� > ψ�h;η�� with η < h. At this point we need that the probabil-
ity of the events Bσ�t; h;η� decreases exponentially with η→ 0. This decrease
is guaranteed by the logarithmic factor λ�η� in the definition of ĥ�t�. It will
allow us to bound the probability of �ĥ�t� = h� by the sum of probabilities of
the events Bσ�t; h;η�.

Proof of (5.1). First note that the definitions of hσ�t� and of Aσ�t� imply

�f̂�t� − f̂hσ �t��t��I�Aσ�t�� ≤ ψ∗�hσ�t��;(5.3)

�f�t� − fhσ �t��t�� ≤ D1v�hσ�t��λ�hσ�t��;(5.4)

where

ψ∗�h� = sup�ψ�h′; h�x h′ ∈ Hσ ; h
′ > h�:

Using the bound ψ∗�h� ≤ 2�D+1�v�h�λ�h� and the fact that f̂hσ �t��t�−fhσ �t��t�
has a normal distribution with mean 0 and variance v2�hσ�t�� we get, from
(5.3) and (5.4),

r+σ �t� = Ef�f̂�t� − f�t��p
′I�Aσ�t��

≤ const.
{
Ef�f̂�t� − f̂hσ �t��t��

p′I�Aσ�t�� +Ef�f̂hσ �t��t� − fhσ �t��t��
p′

+Ef�fhσ �t��t� − f�t��
p′}

≤ const.′�v�hσ�t��λ�hσ�t���p
′
:

The constants const. and const.′ depend only on D1 and p′.

Proof of (5.2). Write for h;η ∈ Hσ with h > η,

Bσ�t; h;η� = ��f̂h�t� − f̂η�t�� > ψ�h;η��:

With this notation we get from the definition of ĥ�t� that, for each h ∈ Hσ ,

�ĥ�t� = ha−1� ⊆
⋃

η∈Hσ �h�
Bσ�t; h;η�;

where Hσ�h� is the set �η ∈ Hσ x η < h�. Using

Ac
σ ⊆

⋃

h∈Hσ �ahσ �

⋃

η∈Hσ �h�
Bσ�t; h;η�;

we get

r−σ ≤
∑

h∈Hσ �ahσ �t��
Ef�f̂h�t� − f�t��p

′I�ĥ�t� = h�

≤
∑

h∈Hσ �ahσ �t��

∑

η∈Hσ �h�
Ef�f̂h�t� − f�t��p

′I�Bσ�t; h;η��:

Now the definition of hσ�t� yields for any h ≤ hσ�t� that

�fh�t� − f�t�� ≤ Dv�hσ�t��λ�hσ�t�� ≤ Dv�h�λ�h�:(5.5)
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Using (5.5) we get, for η < h ≤ hσ ,

Bσ�t; h;η� ⊆ �2D1v�h�λ�h� + v�h;η��ξ�t; h;η�� > ψ�h;η��
⊆ ��ξ�t; h;η�� > λ�η��;

where ξ�t; h;η� = v−1�h;η���f̂η�t� − f̂h�t�� − �fη�t� − fh�t��� is a Gaussian
variable with mean 0 and variance 1. This gives

r−σ ≤
∑

h∈Hσ �ahσ �t��

∑

η∈Hσ �h�
Ef�f̂h�t� − f�t��p

′I
(
�ξ�t; h;η�� > λ�η�

)
:

Again applying (5.5) we get

r−σ ≤
∑

h∈Hσ �ahσ �t��

∑

η∈Hσ �h�
Ef

[
Dv�hσ�λ�hσ� + v�h��ξ�t; h��

]p′

× I
(
�ξ�t; h;η�� > λ�η�

)
;

(5.6)

where ξ�t; h� = v−1�h��f̂h�t�−fh�t�� is another Gaussian variable with mean
0 and variance 1. We now apply the following lemma.

Lemma 5.1. Let ξ and ξ′ be standard Gaussian random variables. Then,
for any constants b ≥ 0 and c ≥ 1,

E�b+ �ξ′��p′I��ξ� > c� ≤ const.�b+ c�p′ exp�−c2/2�;
where const. depends only on p′.

Proof. Denote % = Eξ′ξ. Then one can decompose ξ′ into ξ′ = %ξ +√
1− %2ξ⊥, where ξ⊥ has the standard normal distribution and is indepen-

dent of ξ. The lemma follows from the following inequality:

E�b+ �ξ′��p′I��ξ� > c� ≤ E
(
b+ �%ξ� +

√
1− %2�ξ⊥�

)p′I��ξ� > c�
≤ const. E

[
�1− %2�p′/2 + �b+ �%ξ��p′

]
I��ξ� > c�

≤ const.�b+ c�p′ exp�−c2/2�: 2

By application of this lemma we get, from (5.6) (because of D2 ≥ 2p′),

r−σ ≤ const.
∑

h∈Hσ �ahσ �t��

∑

η∈Hσ �h�
v�h�p′ �D1λ�hσ�t��v�hσ�t��/v�h� + λ�η��p

′

× exp�−λ2�η�/2�
≤ const.′σp

′ ∑

h∈Hσ �ahσ �t��
h−p

′/2 ∑

η∈Hσ �h�
�η/h∗σ�p

′ �log�h∗σ/η��p
′/2

≤ const.′′σp
′ ∑

h∈Hσ �ahσ �t��
h−p

′/2�h/h∗σ�p
′ �log�h∗σ/h��p

′/2

≤ const.′′′σp
′
h∗σ
−p′/2;



942 O. V. LEPSKI, E. MAMMEN AND V. G. SPOKOINY

where const.′′′ depends only on D1, p′, the grid factor a and the kernel K.
This shows (5.2). 2

Proof of Theorem 3.1. Choose f ∈ B�M;L� [see (3.2)]. Because we con-
sider risks over classes of uniformly bounded functions, hσ�t; f� > σ2 is well
defined for σ small enough. Proposition 3.4 implies, for the risk Rσ�f� =
Ef

∫ 1
0 �f̂�t� − f�t��p

′
dt,

Rσ�f� =
∫ 1

0
rσ�t; f�dt ≤ const.

∫ 1

0
�φσ�hσ�t; f���p

′
dt;

where

φσ�h� = v�h�λ�h� = σ�K�h−1/2 max
{

1;
√
D2 log�h∗σ/h�

}
:

This can be written as

Rσ�f� ≤ const.
[∫
φσ�h∗σ�p

′I�hσ�t; f� = h∗σ�dt+
∑
h∈Hσ

∫
Sh

φσ�h�p
′
dt

]
;

where Sh = �tx hσ�t; f� = ha−1�. On Sh it holds that

1h�t� ≥ Dφσ�h�;(5.7)

where 1h�t� = supη≤h �fη�t� − f�t��. This follows from the definition (3.7) of
hσ�t; f� and the monotonicity of 1h�t� and φσ�h� in h. Now, using (5.7), one
gets, for each number p�h� ∈ �0; p′�,

Rσ�f� ≤ const.
[
φσ�h∗σ�p

′ +
∑
h∈Hσ

φσ�h�p
′−p�h�

∫
�1h�t��p�h� dt

]

= const.
[
φσ�h∗σ�p

′ +
∑
h∈Hσ

φσ�h�p
′−p�h��1h�

p�h�
p�h�

]
:

(5.8)

We will show that

sup
f∈B�M;L�

sup
0≤h≤1

h−s�1h�p < +∞;(5.9)

sup
f∈B�M;L�

sup
0≤h≤1

h−s
′�1h�p′ < +∞ if sp ≤ p

′ − p
2

;(5.10)

where s′ is defined as s′ = s− 1/p+ 1/p′.
Before we come to the proof of (5.9) and (5.10), let us show that both these

statements imply Theorem 3.1.
We now define a function p�h�. We distinguish between the following four

cases:

(i) p ≥ p′;
(ii) p′ > p and sp > �p′ − p�/2;

(iii) sp = �p′ − p�/2;
(iv) sp < �p′ − p�/�2�.
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For the case of p ≥ p′ we set p�h� ≡ p′. By (5.9) one gets �1h�p′ ≤ �1h�p ≤
const.hs. Equation (5.8) gives

Rσ�f� ≤ const.
[
φσ�h∗σ�p

′ +
∑
h∈Hσ

hsp
′
]
≤ const.

[
φσ�h∗σ�p

′ + h∗σsp
′]
:

By substituting h∗σ = σ2/�2s+1� one obtains the statement of the theorem for
this case.

For the case of p′ > p and sp > �p′ − p�/2 we put p�h� ≡ p. Then one gets

Rσ�f� ≤ const.
[
φσ�h∗σ�p

′ +
∑
h∈Hσ

hspφσ�h�p
′−p
]
:

The definition of the grid Hσ allows us to bound the last sum by

�σ�K��p′−p
∞∑
i=0

(
h∗σa

−i)sp−�p′−p�/2(2p′max�1; i log a�
)�p′−p�/2

≤ const.σp
′−ph∗σ

sp−�p′−p�/2

and hence

Rσ�f� ≤ const.
[
φσ�h∗σ�p

′ + σp′−ph∗σsp−�p
′−p�/2

]
:

As above, the choice h∗σ = σ2/�2s+1� leads to the bound const.σ2sp′/�2s+1� of
Theorem 3.1.

Next we consider the case that sp = �p′ − p�/2. Here we again take p�h� ≡
p and estimate roughly φσ�h� by σh−1/2

√
log�1/σ�. This gives, by (5.8) and

(5.9),

Rσ�f� ≤ const.
[
φσ�h∗σ�p

′ +
∑
h∈Hσ

hspφσ�h�p
′−p
]

≤ const.
[
φσ�h∗σ�p

′ +
(
σ
√

log�1/σ�
)p′−p ∑

h∈Hσ

hsp−�p
′−p�/2

]

= const.
[
φσ�h∗σ�p

′ +Lσ
(
σ
√

log�1/σ�
)p′−p]

;

where Lσ is the number of elements in Hσ . This yields the assertion, since
Lσ ≤ �log σ−2�/ log a holds and since the equality sp = �p′ − p�/2 implies
r′p′ = p′ − p.

It remains to consider the case sp < �p′ − p�/2. Here we set

p�h� =
{
p; if h > h1�σ�;
p′; if h < h1�σ�;

where

h1�σ� =
[
σ
√

log�1/σ�
]1/�s−1/p+1/2�

:
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For sp ≤ �p′ − p�/2 we have that s − 1/p + 1/2 > 0 (see the remark after
Theorem 3.1). Therefore the definition of h1�σ� makes sense.

With this choice we get, from (5.8), (5.9) and (5.10),

Rσ�f� ≤ const. �φσ�h∗σ�p
′ +R1 +R2�;

where

R1 =
∑

h≥h1�σ�
h∈Hσ

�1h�
p�h�
p�h� �φσ�h��p

′−p�h� ≤ const.
∑

h≥h1�σ�
h∈Hσ

hsp�φσ�h��p
′−p;

R2 =
∑

h<h1�σ�
h∈Hσ

�1h�
p�h�
p�h� �φσ�h��p

′−p�h� ≤ const.
∑

h<h1�σ�
h∈Hσ

hs
′p′ :

The sum R2 is a geometric series and can be bounded by

const.h1�σ�s
′p′ = const.

[
σ
√

log�1/σ�
]p′�s−1/p+1/p′�/�s−1/p+1/2�

= const.
[
σ
√

log�1/σ�
]p′r′

;

which is exactly of the same order as the right-hand side of (3.3) [for sp <
�p′ − p�/2].

It remains to consider the term R1. Using the definition of φσ�h� we get

R1 ≤ const.
[
σ
√

log�1/σ�
]p′−p ∑

h>h1�σ�
h∈Hσ

hsp−�p
′−p�/2:

For the case of sp− �p′ − p�/2 < 0 this gives

R1 ≤ const.
[
σ
√

log�1/σ�
]p′−p

h1�σ�sp−�p
′−p�/2

= const.
[
σ
√

log�1/σ�
]p′�s−1/p+1/p′�/�s−1/p+1/2�

= const.
[
σ
√

log�1/σ�
]p′r′

:

We come now to the proofs of (5.9) and (5.10).

Proof of (5.9). For sp > 1 the definition (3.1) of local oscillations with
u = +∞ implies that for 0 ≤ t ≤ 1 and for each ε > 0 there exists a polynomial
Pt;h of degree k with

sup
�x−t�≤h

�f�x� −Pt;h�x�� ≤ oscf�t; h� + ε:

This implies

sup
�x−t�≤h

�f�x� − f�t� −Pt; h�x� +Pt; h�t�� ≤ 2 oscf�t; h� + 2ε:
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Since K has k vanishing moments, we obtain 1h�t� ≤ const. oscf�t; h�. This
shows (5.9).

For sp ≤ 1 and q = +∞ we apply the definition (3.1) of local oscillations
with u = 1. Arguing similarly to above we obtain

�fh�t� − fh/2�t�� ≤ const. oscf�t; h�:
Because of �fη − f�p→ 0 (for η→ 0) it holds that

�fh − f�p ≤
∑
i≥0

�f2−ih − f2−i−1h�p:

Now h−s� oscf�t; h��p ≤ const. provides

�fh − f�p ≤ hs
∑
i≥0

const. 2−is ≤ const.hs:

This shows (5.9).
For sp ≤ 1 and q < +∞ we recall that K can be decomposed as

K�x� = 2M�x� − 1
2
M

(
x

2

)
:

Now

fh�x� − f�x� =
∫
M�t��2f�x+ ht� − f�x+ 2ht� − f�x��dt

≤ const.
∫
�t�≤1
�2f�x+ ht� − f�x+ 2ht� − f�x��dt:

Equation (5.9) follows by application of Theorem 3.5.3 in Triebel (1992) and
by using the embedding Bsp;q ⊂ Bsp;∞. 2

Proof of (5.10). For p′ ≥ p the Besov space Bs
′
p′; q can be embedded into

Bsp; q for all q ≥ 1 [see Triebel (1992)]. This means that

sup
f∈Bsp;q�M�

�f�Bs′
p′ ;q
< +∞:

Note also that s′p′ < 1, s′p′ = 1 or s′p′ > 1, if and only if sp < 1, sp = 1
and sp > 1, respectively. Thus, (5.10) can be shown by the same arguments as
(5.9). 2

Proof of Theorem 3.2. We proceed similarly to the proof of Theorem 3.1.
The first part of this proof is independent of the choice of h∗σ and the bound
(5.8) remains valid. If sp ≤ �p′ − p�/2 holds, the risk Rσ�f� can be treated as
in the proof of Theorem 3.1. For the case of sp > �p′ −p�/2 another definition
of p�h� will be used for estimating Rσ�f�. The following choice will do:

p�h� =





0; if h >
[
σ
√

log�1/σ�
]2/�2s+1�

;

min�p;p′�; if h ≤
[
σ
√

log�1/σ�
]2/�2s+1�

:

2
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Proof of Theorem 3.3. Let t ∈ �0;1�, let f be fixed and let hσ = hσ�t; f�
be defined by (3.7). We get from Proposition 3.4 with h∗σ = 1 that

rσ�t; f� = Ef�f̂�t� − f�t��2 ≤ const: σ2�K�2h−1
σ log h−1

σ

≤ const:
(
σ2 log σ−1)�K�2h−1

σ :
(5.11)

Now we have to show that radapt�t; f� ≥ const:�σ2 log σ−1��K�2h−1
σ . Recall that

radapt�t; f� = inf
aσ2≤h≤1

�12
h�t� +

(
σ2 log σ−1)�K�2h−1�;

where 1h�t� = supη≤h �fη�t� − f�t��. Suppose that the infimum is attained at
h0. We now treat the cases of h0 ≥ ahσ and h0 < ahσ separately. Note that
1h�t� is monotonely increasing in h. Consider first the case with h0 ≥ ahσ .
Then we have immediately from (5.11) that rσ�t; f� ≤ const: radapt�t; f�.

If h0 < ahσ , then the definition (3.7) of hσ gives 12
ahσ
�t� > D2

1σ
2�ahσ�−1 ×

log�ahσ�−1. Because of (5.11) this implies

radapt�t; f� ≥ 12
h0
�t� ≥ 12

ahσ
�t� > D2

1σ
2

ahσ
log�ahσ�−1 ≥ const: rσ�t; f�:

This is the statement of Theorem 3.3. 2
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