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Abstract

The paper is concerned with the problem of testing a linear hypothesis

about regression function. We propose a new testing procedure based on

the Haar transform which is adaptive to unknown smoothness properties

of the underlying function. The results describe optimality properties of

this procedure under mild conditions on the model.

1 Introduction

Suppose we are given data (Xi, Yi), i = 1, . . . , n , with Xi ∈ IR1 , Yi ∈ IR1 , obeying the

regression equation

Yi = f(Xi) + ξi (1.1)

where f is an unknown regression function and ξi are zero mean random errors. Sta-

tistical analysis for such models may focus on the qualitative features of the underlying

function f . Particularly, no-response model corresponds to testing the simple zero hy-

pothesis that f is a constant function. Another typical example is connected to the

hypothesis of linearity. More generally one may consider a parametric type hypothesis
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about f . In this paper, we restrict ourselves to the case of the hypothesis of linearity.

Using the hypothesis testing framework, we test the null hypothesis H0 : f ‘is linear’,

that is, f(x) = a + bx for some constants a, b , versus the alternative H1 : f ‘is not

linear’.

The problem of testing a simple or parametrically specified hypothesis is one of

the classical in statistical inference, see e.g. Neyman (1937), Mann and Wald (1942),

Lehmann (1957). Let φ be a test i.e. a measurable function of the observations

Y1, . . . , Yn with two values 0, 1 . As usual, the event {φ = 0} is treated as accept-

ing the hypothesis and φ = 1 means that the hypothesis is rejected. The quality of

a test φ is described in terms of the corresponding error probabilities of the first and

second kinds. Let P f denote the distribution of the data Y1, . . . , Yn for a fixed model

function f , see (1.1). If f coincides with a linear function f0 , then the error probability

of the first kind at the point f0 is the probability under f0 to reject the hypothesis,

αf0(φ) = P f0(φ = 1).

Similarly one defines the error probability βf (φ) of the second kind. If the function f

is not linear, then

βf (φ) = P f (φ = 0).

Typically one aims to construct a test ϕ of the prescribed level α0 , that is, satisfying for a

given α0 > 0 the condition αf0(φ) ≤ α0 which also has a nontrivial power 1− βf (ϕ) >

0 against a possibly large class of alternatives f . A large number of proposals for

constructing such tests can be found in the literature. We refer to Hart (1997) where

the reader can find historical remarks and further references. Note meanwhile, that the

majority of results in this domain is concentrated either only on verifying the condition

αf0(φ) ≤ α0 or on studying asymptotic properties of the power function 1− βf (ϕ) for

a fixed or local alternative. The local alternative approach assumes that the hypothesis

is tested versus alternatives approaching the null hypothesis from a specific direction.

Many tests have been shown to have nontrivial asymptotic power against every such

local alternative, see e.g. Bierens (1982, 1990), Eubank and Spiegelman (1990), Andrews

(1997), Stute (1997) among others. However, it turns out that the finite sample power of

the proposed tests is not uniform with respect to the direction of the alternative: some

of directional alternatives can be detected easily, the others require a huge sample size.

Moreover, Burnashev (1979) and Ingster (1982) have shown that no test can be uniformly

powerful against all the local alternatives. This leads to considering the uniform power of

the test over a large class F of alternatives, so that βf (ϕ) ≤ β0 with some β0 < 1−α0

uniformly over f ∈ F . Following Ingster (1982, 1993), we consider the class F(ρ)
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consisting of smooth (in some sense) alternatives which are also separated from the set

of linear functions with the distance ρ , that is,

inf
a,b
‖f(·)− a− b · ‖ ≥ ρ, (1.2)

‖ · ‖ being the usual L2 -norm. Then the quality of a test ϕ of the level α0 can be

measured by a minimal separation distance ρ such that βf (φ) ≤ β0 for all f from F(ρ) .

A test φ∗ with the level α0 is optimal if it minimizes the corresponding value ρ . Under

this approach, the goal is both to evaluate the minimal possible separation distance ρ

and to describe the corresponding optimal tests.

It turns out that the structure of optimal tests and the corresponding separation

distance strongly depend on the smoothness class F we consider. Ingster (1982, 1993)

described the optimal rate of decay of the separation distance ρ to zero as the sample

size n tends to infinity for Hölder and Sobolev function classes, the case of Besov classes

is considered in Lepski and Spokoiny (1999) and Spokoiny (1998). Sharp optimal asymp-

totic results can be found in Ermakov (1990), Lepski and Tsybakov (1996), Ingster and

Suslina (1998).

Unfortunately all the mentioned procedures hardly apply in practice since the infor-

mation about smoothness properties of the underlying function f is typically lacking.

Some adaptive (data-driven) smooth tests are proposed in Eubank and Hart (1992),

Ledwina (1994), Fan (1996), Hart (1997) where the reader can found further references.

Spokoiny (1996, 1998) considered the problem of adaptive testing against a smooth alter-

native and constructed an adaptive test which is near optimal by a log log multiple for a

wide range of smoothness classes. Moreover, the test of Spokoiny (1996) is rate optimal

in the class of adaptive tests, that is, this log log factor is an unavoidable payment for the

adaptive property. The inconvenience for practical applications is that this procedure is

designed for an idealized ‘signal + white noise’ model and only the case of a simple null

is considered.

The aim of this paper is to develop an adaptive testing method which does not require

a regular design, allow to proceed with non-Gaussian errors with an unknown distribution

and with a non-simple null, and which is computationally simple and stable w.r.t. the

design non-regularity. The latter property is achieved by making use of the simplest

wavelet basis, namely the Haar transform. It is worth mentioning that the Haar basis

is not often used for estimating the regression function f from (1.1) because of its non-

regularity: the corresponding estimator is based on the piecewise constant approximation

of the underlying function and it is only rate suboptimal. Nevertheless, Ingster (1993)

has constructed a χ2 -test (also based on a piecewise constant approximation) which
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provides the optimal testing rate in the ‘signal + white noise’ framework. Here his

construction is extended to the case of testing the linear hypothesis for regression with

unknown smoothness properties and with a deterministic non-regular design.

Another remark concerns the assumption on the errors ξi . Assuming i.i.d. errors

with a known distribution, one can easily select a critical level for any test statistic using

the Monte-Carlo or other resampling technique. For practical applications, this approach

needs to be justified since the underlying error distribution is typically unknown. The

problem becomes even more complicated if a data-driven test basing on the maximum of

different test statistics is used. We establish some general results on the approximation of

quadratic forms of independent random variables by similar quadratic forms of Gaussian

random variables which help to justify the following recipe: if the critical level of the

considered test statistic is calculated for Gaussian errors, then it applies, at least asymp-

totically, as the sample size grows, for an arbitrary errors distribution with bounded 6

moments.

The paper is organized as follows. Section 2 contains the description of the proposed

testing procedure. The properties of this procedure are discussed in Section 3. The

proofs are postponed to Section 4. In the Appendix we collect some general results for

quadratic forms.

2 Testing procedure

We consider the univariate regression model

Yi = f(Xi) + ξi, i = 1, . . . , n, (2.1)

with additive homogeneous noise, that is, the errors ξi are independent identically dis-

tributed with zero mean and the variance σ2 : Eξi = 0 and Eξ2
i = σ2 . The design

points X1, . . . , Xn are assumed to be rescaled to the interval [0, 1] , that is, Xi ∈ [0, 1]

for all i = 1, . . . , n .

The proposed test makes use of the Haar transform. We first recall some useful facts

about the Haar decomposition and then explain the idea of the method.

2.1 Preliminaries

Hereafter we denote by I the multi-index I = (j, k) with j = 0, 1, 2, . . . and k =

0, 1, . . . , 2j − 1 , and let I be the set of all such multi-indices. We also set

Ij = {(j, k), k = 0, 1, . . . , 2j − 1}
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for the index set corresponding to j -th level. Let now the function ψ(t) be defined by

ψ(t) =





0 t < 0,

1 0 ≤ t < 1/2,

−1 1/2 ≤ t < 1,

0 t ≥ 1.

(2.2)

For every I = (j, k) , define the Haar basis function hI by

hI(t) = 2j/2ψ(2jt− k). (2.3)

Clearly the function hI is supported on the interval AI = [2−jk, 2−j(k + 1)[ . It is well

known that each measurable square integrable function f on [0, 1] can be decomposed

in the following way

f(t) = c0 +
∑

I∈I

cIhI(t) = c0 +
∞∑

j=0

∑

I∈Ij

cIhI(t). (2.4)

This means that the problem of recovering the function f can be transformed into

the problem of estimating the coefficients cI by given data. Since we have only n

observations, it makes no sense to estimate more (in order) than n coefficients. We

restrict therefore the total number of considered levels j . Let some j be fixed such that

2j+1 < n . We also introduce the rescaled basis functions ψI to provide
∑

i |ψI(Xi)|2 =

1 , that is,

ψI(Xi) = µ−1
I hI(Xi),

with µ2
I =

∑n
i=1 h2

I(Xi) . We suppose here that µI is strictly positive. Otherwise we set

ψI ≡ 0 . Next we replace the infinite decomposition (2.4) by the finite approximation
∑

I∈I(j) cIψI(t) where the index set I(j) contains all level sets I` with ` ≤ j . Taking

into account the structure of the null hypothesis, we complement the set of functions

(ψI , I ∈ I`), ` ≤ j , with two functions ψ0 ≡ n−1/2 and ψ1(t) = t
(∑n

i=1 X2
i

)−1/2 , that

is, we consider the set of indices

I(j) = {0, 1}+
j⋃

`=0

I`. (2.5)

The idea of the proposed procedure is to estimate all the coefficients (cI , I ∈ I(j)) from

the data Y1, . . . , Yn and then to test that all the coefficients cI for I 6= 0, 1 are zero.

For a function g , define ‖g‖n by

‖g‖2
n =

n∑

i=1

g2(Xi).
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Define also the column-vector θ∗(j) = (θ∗I , I ∈ I(j)) as a minimizer of the error of

approximating f by a linear combination of ψI , I ∈ I(j) :

θ∗(j) = arginf
θ(j)

‖f −
∑

I∈I(j)

θIψI‖2
n. (2.6)

This is a quadratic optimization problem with respect to the coefficients {θI , I ∈ I(j)} .

Therefore, the solution θ∗(j) always exists but it is probably non unique. To get an

explicit representation for θ∗(j) we introduce matrix notation.

First of all, we make an agreement to identify every function g with the vector

(g(Xi), i = 1, . . . , n)> in IRn where the symbol > means transposition. Particularly,

the model function f is identified with the vector (f(Xi), i = 1, . . . , n)> .

Denote by Nj the number of elements at each level j ≤ log2 n ,

Nj = #(Ij) = 2j

and let N(j) be the total number of elements in the set I(j) ,

N(j) = 2 +
j∑

`=0

N` = 1 + 2j+1. (2.7)

Introduce n×N(j) -matrix Ψ(j) = (ψi,I , i = 1, . . . , n, I ∈ I(j)) with entries

ψi,I = ψI(Xi), I ∈ I(j), i = 1, . . . , n. (2.8)

If I 6= 0, 1 , then clearly ψi,I = ±1/
√

MI for Xi ∈ AI and ψi,I = 0 otherwise. Here

MI is the number of design points in the interval AI and ψi,I = 0 if MI = 0 . Also

ψi,0 = n−1/2 and ψi,1 = Xi

(∑n
`=1 X2

`

)−1/2 . Now the approximation problem (2.6) can

be rewritten in the form

θ∗(j) = arginf
θ(j)

‖f − Ψ(j)θ(j)‖2
n.

The solution to this quadratic problem can be represented as

θ∗(j) =
(
Ψ(j)>Ψ(j)

)−1
Ψ(j)>f. (2.9)

Strictly speaking, this representation is valid only if the matrix Ψ(j)>Ψ(j) is not degener-

ate. In the general case, one may use the similar expression for θ∗(j) when understanding(
Ψ(j)>Ψ(j)

)−1 as a pseudo-inverse matrix.

If the function f is linear, that is, f(x) = θ0ψ0(x)+θ1ψ1(x) , we clearly get θ∗0 = θ0 ,

θ∗1 = θ1 and θ∗I = 0 for all I = (`, k) with ` ≥ 0 and k ≥ 0 . For a non-linear function

f , the sum
j∑

`=0

∑
I∈I`

|θ∗I |2 can be used to characterize the deviation of f from the space

of linear functions.
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Since the function f is observed with a noise, we cannot calculate directly the coef-

ficients θ∗I and we consider the least squares estimator θ̂(j) of the vector θ∗(j) which

is defined by minimization of the sum of residuals squared:

θ̂(j) = arginf
θ(j)

‖Y − Ψ(j)θ(j)‖2
n = arginf

{θI∈I(j)}

n∑

i=1


Yi −

∑

I∈I(j)

θIψI(Xi)




2

. (2.10)

Here Y means the column-vector with elements Yi, i = 1, . . . , n .

Define V (j) as the pseudo-inverse of Ψ(j)>Ψ(j) , V (j) =
(
Ψ(j)>Ψ(j)

)− . It is a

symmetric N(j)×N(j) matrix (by vI,I′ we denote its elements, I, I ′ ∈ I(j) ) and

θ̂(j) = V (j)Ψ(j)>Y . (2.11)

The proposed test can be based on the squared norm ‖θ̂(j)‖2 of the vector θ̂(j) for some

j . This idea goes back to Neyman (1937) ‘smooth’ test. Ingster (1982, 1993) suggested

the special choice of j depending on the smoothness properties of the function f which

allows for a rate optimal testing. Spokoiny (1996) extended the method of Ingster (1993)

to adaptive testing by considering all such tests for different j simultaneously. Here we

slightly modify that approach by considering the family of levelwise tests, that is, for

every level j , we construct a test statistic based only on the empirical Haar coefficients

θ̂I for I ∈ Ij , and the resulting test is defined as the maximum of all levelwise ones.

Let some number j(n) be fixed such that 2j(n)+1 < n and let, for every j ≤ j(n) ,

the estimate θ̂(j) be defined by (2.10). Denote by θ̂j the part of the vector θ̂(j)

corresponding to the level j ,

θ̂j = (θ̂I , I ∈ Ij).

We analyze every such vector separately for all j ≤ j(n) . Namely, for every j ≤ j(n) , we

use the statistic based on the sum ‖θ̂j‖2 =
∑

I∈Ij
|θ̂I |2 corresponding to j th resolution

level.

To define our test, we have to study the properties of such sums under the null

hypothesis, i.e. when the function f is linear: f(x) = θ0ψ0(x) + θ1ψ1(x) . We have

already mentioned that in this situation f = Ψ(j)θ∗ where θ∗0 = θ0 , θ∗1 = θ1 and all

remaining coefficients θ∗I vanish. Therefore, using the model equation Y = f + ξ , we

obtain

θ̂(j) = V (j)Ψ(j)>(f + ξ)

= V (j)Ψ(j)>Ψ(j)θ∗ + V (j)Ψ(j)>ξ

= θ∗ + V (j)Ψ(j)>ξ. (2.12)
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Obviously ζ(j) = V (j)Ψ(j)>ξ is a random vector in IRN(j) with zero mean. Moreover,

it holds for its covariance matrix

Eζ(j)ζ(j)> = V (j)Ψ(j)>Eξξ>Ψ(j)V (j)

= σ2V (j)Ψ(j)>Ψ(j)V (j) = σ2V (j). (2.13)

Due to (2.12), the subvector θ̂j of θ̂(j) coincides under the null with the corresponding

subvector ζj of the vector ζ(j) , and it holds under the null in view of (2.13)

Eθ̂j = Eζj = 0,

Eθ̂j θ̂
>
j = Eζjζ

>
j = σ2Vj

where Vj is the submatrix of V (j) corresponding to the index subset Ij : Vj = (vI,I′ I, I ′ ∈
Ij) . This particularly implies

E
∑

I∈Ij

|θ̂I |2 = E
∑

I∈Ij

|ζI |2 = σ2trVj

where trA denotes the trace of a matrix A . Moreover, for the case of Gaussian errors

ξi in (1.1), the estimates θ̂I are also Gaussian random variables, and it holds

Var


∑

I∈Ij

|θ̂I |2

 = E


∑

I∈Ij

|θ̂I |2 − σ2trVj




2

= E


∑

I∈Ij

|ζI |2 − σ2trVj




2

= 2σ4trV 2
j , (2.14)

see (2.13). This leads to the obvious idea to use the centered and standardized sum

Tj =
1√

2σ4trV 2
j


∑

I∈Ij

|θ̂I |2 − σ2trVj




as a test statistic. To define our testing procedure, we simply take the maximum of all

such statistics over the set of all considered Haar levels j .

2.2 Testing procedure

First we fix the finest considered resolution level j(n) which has to satisfy 2j(n)+1 < n

and n2−j(n) →∞ , for instance,

j(n) = [log2 n− log2 log2 n] . (2.15)

where [a] denotes the integer part of a . For each j ≤ j(n) , let θ̂(j) be defined by

(2.11). Denote by θ̂j the part of the vector θ̂(j) corresponding to the level j ,

θ̂j = (θ̂I , I ∈ Ij)
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and let Vj be the submatrix of the matrix V (j) =
(
Ψ(j)>Ψ(j)

)− corresponding to the

level j , i.e. Vj = (vI,I′ , I, I ′ ∈ Ij) . We consider χ2 -type statistics

Sj = ‖θ̂j‖2 =
∑

I∈Ij

θ̂2
I . (2.16)

and define test statistics Tj by centering and Studentization of Sj :

Tj =
1√

2σ̂4trV 2
j


∑

I∈Ij

|θ̂I |2 − σ̂2trVj


 (2.17)

where σ̂ is the estimate of the error standard deviation defined in the next subsection.

The proposed test rejects the null hypothesis, if at least one such statistic is significantly

large, that is,

φ∗ = 1 (T ∗ > λ) with T ∗ = max
j=0,...,j(n)

|Tj | (2.18)

where λ is a critical value. The choice of λ is discussed in Section 2.4.

2.3 Estimation of σ2

Recall that we assume a homogeneous additive noise in the model (1.1), that is, the

errors ξi are independent identically distributed random variables fulfilling Eξi = 0

and Eξ2
i = σ2 . The variance σ2 is typically unknown in practical applications but

this value is important for the definition of our test procedure. Below we discuss how it

can be estimated from the data Y1, . . . , Yn . We suppose for simplicity that the design

points are ordered in a way that X1 ≤ . . . ≤ Xn . There are several proposals for

variance estimation. One possibility is to estimate σ2 by the expression of the form
1

2(n−1)

∑n−1
i=1 (Yi+1 − Yi)2 , see Rice (1984). We follow the proposal from Gasser et al.

(1986) see also Hart (1997, Section 5.3) which provides an unbiased estimate of the

variance under the linear null hypothesis.

Define for i = 2, . . . , n− 1 pseudo-residuals

êi =
(Xi+1 −Xi)

(Xi+1 −Xi−1)
Yi−1 +

(Xi −Xi−1)
(Xi+1 −Xi−1)

Yi+1 − Yi = aiYi−1 + biYi+1 − Yi

which are the result of joining Yi+1 and Yi−1 by a straight line and taking the difference

between this line and Yi . A variance estimate based on these pseudo-residuals is

σ̂2 =
1

n− 2

n−1∑

i=2

ê2
i

a2
i + b2

i + 1
. (2.19)

It is easy to check that Eσ̂2 = σ2 if f is a linear function. Some other properties of

this estimates are listed in Lemmas 4.1, 4.2 and 4.9 below.
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2.4 Critical value λ

Here we discuss how to select the critical value λ to provide, at least asymptotically for

large n , the condition αf0(φ
∗) ≤ α0 for all linear functions f0 . We apply a Monte-

Carlo procedure by resampling from the no-response model (which is a particular case

of a linear model) with standard normal errors

Y ∗
i,m = ξ∗i,m, i = 1, . . . , n,

for m = 1, . . . , M , where the design points X1, . . . , Xn are the same as for the origi-

nal model (1.1), ξ∗1 , . . . , ξ
∗
n are i.i.d. standard normal random variables and M is the

considered number of Monte-Carlo samples.

For every Monte-Carlo sample Y ∗
1,m, . . . , Y ∗

n,m , we recalculate the test statistic T ∗m
from this sample using the previous procedure (including the step of variance estimation).

Finally we define the critical value λ as the α0 -level for the set {T ∗m, m = 1, . . . ,M} :

λ = min

{
t : M−1

M∑

m=1

1(T ∗m > t) ≤ α0

}
.

This value is obviously dependent of n and M but it converges with growing M to the

proper quantile λ∗ of the T ∗m ’s defined by

P (T ∗m > λ∗) = α0.

Letting M go to infinity, one can make λ arbitrary close to λ∗ . To simplify our

exposition, we do not distinguish between λ and λ∗ in what follows. One can easily see

that all the assertions remain valid if, for instance, M fulfills M ≥ n .

3 Main results

In this section we present the results describing asymptotic properties of the proposed

testing procedure. We first discuss the properties of the test under the null and then we

consider the power of the test.

3.1 Behavior under the null

Let φ∗ be the test introduced above. Our first result concerns the case of Gaussian errors

ξi in the model ( 1.1). In this situation, independently of the design, the nominal level

of the test φ∗ is close to α0 provided that the number M of Monte-Carlo samples is

sufficiently large.
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Theorem 3.1. Let observations Yi, Xi , i = 1, . . . , n, obey the regression model (1.1)

with a deterministic design X1, . . . , Xn and with i.i.d Gaussian errors ξi ∼ N(0, σ2) . If

the function f is linear, f(x) = a + bx , then the value αf (φ∗) = P f (φ∗ = 1) does not

depend on the coefficients a and b and

αf (φ∗) → α0 M →∞.

Our next result deals with a more general situation when the errors ξi are i.i.d. with

6 finite moments. In this case we need some mild regularity conditions on the design.

Let MI stand for the number of design points in AI = [2−jk, 2−j(k + 1)[ , that is,

MI = #{i : Xi ∈ AI} . Design regularity particularly means that each interval AI

contains enough design points Xi .

(D) (i) It holds for some positive constants C∗ and C∗ and all j ≤ j(n)

inf
I∈Ij

2jMI/n ≥ C∗ sup
I∈Ij

2jMI/n ≤ C∗; (3.1)

(ii) For some fixed constant CD and all j ≤ j(n)

2trV 2
j ≥ C2

D 2j ‖V (j)‖2
∞;

(iii) For some fixed constant CV and all j ≤ j(n) it holds ‖V (j)‖∞ ≤ CV ;

(iv) For some D > 0 and all i , it holds Xi+1 −Xi ≤ Dn−1 .

In conditions (ii) and (iii), the norm ‖A‖∞ of a positive symmetric matrix A is under-

stood as the maximal eigenvalue of this matrix.

It is easy to see that condition (D) is fulfilled with C∗ = C∗ = D = 1 , CD = 1+on(1)

and CV = 1+ on(1) for the case of the deterministic equidistant design provided that n

is a power of two. In this situation all the basis functions ψI with the exception of ψ1

are orthogonal to each other and, in particular, each Vj is the unit matrix.

Theorem 3.2. Let observations Yi, Xi , i = 1, . . . , n, obey the regression model (1.1)

with a deterministic design X1, . . . , Xn satisfying (D) and with i.i.d. errors ξi satisfying

Eξi = 0 , Eξ2
i = σ2 and E|ξ2

i −σ2|3 ≤ σ6C6 where C6 is a fixed constant. If the function

f is linear, f(x) = a + bx , then

αf (φ∗) ≡ P f (φ∗ = 1) ≤ α0 + δ1(n),

where δ1(n) depends on n , C6 and the constants C∗, C∗, CD, CV from condition (D)

only and δ1(n) → 0 as n →∞ .
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3.2 Sensitivity of the test

Now we state the results concerning the sensitivity of the proposed test φ∗ . The first

assertion presents sufficient conditions for detecting an alternative with a high probability.

Next we demonstrate how these conditions can be transferred into a more usual form

about the rate of testing against a smooth alternative.

Proposition 3.3. Let the design X1, . . . , Xn obey (D) and the errors ξ1, . . . , ξn fulfill

the conditions of Theorem 3.2. Let then the regression function f be two times continu-

ously differentiable and the second derivative f ′′ fulfill the condition:
∫ 1

0
|f ′′(x)|2 ≤ L2 (3.2)

with some constant L satisfying 8D3L2 ≤ σ2n3 . Let also θ∗j = (θ∗I , I ∈ Ij) be the

subvector of the vector θ∗(j) from (2.9) corresponding to j th resolution level and let Vj

be the corresponding covariance submatrix, j = 1, . . . , j(n) . If, for some j ≤ j(n) , it

holds

T ∗j ≡
‖θ∗j‖2

σ2
√

2trV 2
j

≥ 3(λ1/2
n + 1)2, (3.3)

with λn = max{λ, 2
√

log j(n)} , then

P (φ∗ = 0) ≤ δ(n) → 0, n →∞,

where δ(n) depends on n and the constants C6, C∗, C∗, CD, CV only.

We shall show, see Lemma 4.2 that, at least for sufficiently large n , it holds λ ≤
2
√

log j(n) (1 + on(1)) . Hence, the result of Proposition 3.3 means that the test φ∗

detects with a probability close to one any alternative for which at least one from the

corresponding values T ∗j exceeds 6
√

log j(n) (1 + on(1)) . Therefore, the error of the

second kind may occur with a significant probability only if

T ∗j ≤ 6
√

log j(n) (1 + on(1)) , 0 ≤ j ≤ j(n). (3.4)

It remains to understand what follows for the function f from these inequalities.

3.3 Power against a smooth alternative

To formulate the results on the power of the test against a smooth alternative, we have to

introduce some smoothness conditions on the function f . This can be done in different

ways. We choose one based on the accuracy of approximating this function by piecewise

polynomials of certain degree. Given j ≤ j(n) , denote by {AI , I ∈ Ij} the partition of
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the interval [0, 1] into intervals of length 2−j : if I = (j, k) , then AI = [k2−j , (k+1)2−j [ .

Next, for a natural number s , define Ps(j) as the set of piecewise polynomials of degree

s−1 on the partition {AI} i.e. every function g from Ps(j) coincides on each AI with

a polynomial a0 + a1x + . . . + as−1x
s−1 where the coefficients a0, . . . , as−1 may depend

on I . Now the condition that a function f has regularity s can be understood in the

sense that this function is approximated by functions from Ps(j) with the rate 2−js , or,

more precisely,

inf
g∈Ps(j)

[∫ 1

0
|f(t)− g(t)|2dt

]1/2

≤ Cs2−js

where a positive constant Cs depends on s only. Taking into account the structure

of the null hypothesis, for the special case with s = 1 , corresponding to the piecewise

constant (Haar) approximation, we add to the sets Ps(j) the linear functions, that is,

P1(j) is spanned by all piecewise constant functions with the pieces AI ∈ Ij and the

linear functions.

In our conditions we change the integral by summation over observation points. This

helps to present the results in a more readable form without changing the sense of required

conditions. It can be easily seen that if the design is regular, then the both forms are

equivalent up to a constant factor.

Let now a function f be fixed. Let also j0 be such that 2j0−1 ≥ s . Define for j ≥ j0

rs(j) = inf
g∈Ps(j−j0)

‖f − g‖n = inf
g∈Ps(j−j0)

[
n∑

i=1

|f(Xi)− g(Xi)|2
]1/2

. (3.5)

Theorem 3.4. Let condition (D) hold, the errors ξ1, . . . , ξn fulfill the conditions of

Theorem 3.2, and the regression function f obey (3.2) with a constant L satisfying

8D3L2 ≤ σ2n3 . There exist a constant κ depending on the values CV , CD, C∗, C∗ and

s only, such that if, for some j ≤ j(n) , the following inequality holds true:

inf
a,b
‖f − a− bψ1‖n ≥ κ

(
rs(j) + σ

√
2j/2λn

)
(3.6)

with ψ1(x) proportional to x , then

P f (φ∗ = 0) ≤ δ(n) → 0, n →∞,

where λn and δ(n) are shown in Proposition 3.3.

Remark 3.1. It is of interest to compare this result with the existing results on the

rate of hypothesis testing. For instance, it was shown in Ingster (1982, 1993) that if f

belongs to a Sobolev ball Ws(1) with

Ws(1) =
{

f :
∫ 1

0
|f (s)(x)|2dx ≤ 1

}
,
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f (s) being s th derivative of f , then the optimal separation rate between the simple null

f ≡ 0 and a smooth alternative from Ws(1) is n−2s/(4s+1) .

For our procedure, the following result is a straightforward corollary of Theorem 3.4

which for the sake of simplicity is formulated for the equidistant design only.

Corollary 3.5. Let the design X1, . . . , Xn be equidistant and let n be a power of two

(so that condition (D) holds automatically), the errors ξ1, . . . , ξn fulfill the conditions

of Theorem 3.2, and the underlying function f belong to a Sobolev ball Ws(1) and f ′′

fulfill (3.2) with a constant L satisfying 8L2 ≤ σ2n3 . Then there exists a constant

Cs > 0 depending on s only and such that, for n large enough, the inequality

inf
a,b

n−1‖f − a− bψ1‖2
n ≥ Cs(n/λn)−

2s
4s+1 (3.7)

implies

P (φ∗ = 0) ≤ δ(n) → 0.

Indeed, under the equidistant design, it holds rs(j) ≤ Cn1/22−js for every function

f from Ws(1) with a fixed constant C depending on s only. Now the right hand-side

of (3.7) arises via minimization of the sum Cn1/22−js +
√

2j/2λn with respect to j .

By comparison with the mentioned result of Ingster (1982) we observe that the pro-

posed method leads to a near optimal separation rate up to a log-log multiple in the class

of all tests. Moreover, Spokoiny (1996) has shown (for the ‘signal + white noise’ model)

that this separation rate is optimal in the class of all adaptive tests. The latter result al-

lows for a straightforward extension to Gaussian regression using the general asymptotic

equivalence result, Brown and Low (1996). The additional smoothness condition (3.2)

with L2 ≤ σ2n3/8 is required for ensuring a good quality of the pilot estimate of the

unknown variance. This assumption is not restrictive since the constant L may rapidly

grow with n . In particular, the low bound results from Ingster (1993) and Spokoiny

(1996) allow for a straightforward extension under this constraint. Therefore the pro-

posed test is rate optimal among all adaptive tests (at least for the case of the equidistant

design).

Remark 3.2. The constant κ shown in Theorem 3.4 depends on the constants C∗ and

C∗ in a way that it increases when C∗ approaches zero or C∗ grows. This particularly

helps to understand what happens in the case when the design is not regular and, for

instance, if there exist some intervals I with a small MI . It was already mentioned that

the procedure applies in this situation as well and the error probability of the first kind

is about α0 at least for n sufficiently large and for Gaussian errors ξi . Concerning the

error probability of the second kind, design irregularity decreases the sensitivity of our
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procedure in the following sense: there exist smooth alternatives with probably large L2 -

norm which are not detected. This may occur e.g. in the situation when f is deviated

from the best linear approximation only in the domain with very few design points inside.

4 Proofs

In this section we first prove Theorems 3.1 and 3.4 for the case of Gaussian errors ξi and

then discuss the extension to the general case. The proofs utilize some general results on

quadratic forms of Gaussian and non-Gaussian random variables which are themselves of

certain interest and can be read independently of the rest. For the reference convenience,

the mentioned results are collected in the Appendix.

4.1 Proof of Theorem 3.1

It suffices to check that the distribution of the test statistic T ∗ based on the Monte-Carlo

sample Y ∗
1 , . . . , Y ∗

n is the same as for the original sample Y1, . . . , Yn . The difference

between these two samples is only in the linear trend (which can be nontrivial for the

original sample but does not appear in the Monte-Carlo one) and in the noise variance

(we resample with the error variance 1 instead of σ2 ). Note however that the linear trend

in the regression function makes no influence on the considered test statistics Tj . Indeed,

the numerator of this statistic is defined as the centered sum over Ij of the the empirical

Haar coefficients θ̂I squared, so that the linear trend is removed automatically from the

test statistics, see the proof of Theorem 3.4 for more details. Similarly, the estimate σ̂2

of the noise variance σ2 is based on the pseudo-residuals êi which are defined in a way

that the linear trend in the regression function is canceled out, see Lemma 4.1.

Further, for the case of zero trend, the both numerator and denominator of each Tj

is some quadratic forms of the errors ξi which can be represented as ξi = σξ̃i with i.i.d.

standard normal variables ξ̃i , i = 1, . . . , n . This yields, see (2.19), that the distribution

of each test statistic Tj does not depend on σ . The same is obviously true for the

maximum T ∗ and the assertion follows.

4.2 Properties of the estimate σ̂2

Here we discuss the properties of the estimate σ̂2 of the noise variance σ2 . We present

two results. The first one describes the properties under the null, and the second one

applies under a smooth alternative as well. The results are stated under the Gaussian

errors ξi . For the extension, see Section 4.6.
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Lemma 4.1. Let the regression function f be linear. Then Eσ̂2 = σ2

E
(
σ̂2 − σ2

)2 ≤ 7σ4/(n− 2) .

Proof. Let f be a linear function. Then, with the coefficients ai = (Xi+1 −Xi)/(Xi+1 −Xi−1) ,

bi = (Xi −Xi−1)/(Xi+1 −Xi−1) , it easily holds

aif(Xi−1) + bif(Xi+1)− f(Xi) = 0.

Now the model equation (1.1) implies

σ̂2 =
1

n− 2

n−1∑

i=2

|ηi|2

with

ηi =
aiξi−1 + biξi+1 − ξi√

a2
i + b2

i + 1
.

To estimate the difference |σ̂2 − σ2| , we apply Proposition 5.1 from the Appendix. Let

η denote the vector (η2, . . . , ηn−1)> . Obviously Eη = 0 . Define Σ = Eηη> . Observe

first that

1
n− 2

trΣ =
1

n− 2

n−1∑

i=2

σ2(a2
i + b2

i + 1)
(a2

i + b2
i + 1)

= σ2

which implies the equality Eσ̂2 = σ2 by Proposition 5.1.

Next, it is easy to check that 2 max{a2
i , b

2
i } ≤ a2

i + b2
i + 1 . Now, it obviously holds:

Eη2
i = σ2,

|Eηiηi+1| ≤
√

Eη2
i Eη2

i+1 = σ2,

|Eηi−1ηi+1| =
σ2bi−1ai+1√

(a2
i−1 + b2

i−1 + 1)(a2
i+1 + b2

i+1 + 1)
≤ σ2/2,

Eηiηi′ = 0, |i′ − i| > 2,

This allows to bound trΣ2 as follows:

1
(n− 2)2

trΣ2 =
1

(n− 2)2

n−1∑

i=2

n−1∑

j=2

(Eηiηj)2

=
1

(n− 2)2

n−1∑

i=2

[
(Eηi−1ηi)2 + (Eη2

i )
2 + (Eηiηi+1)2 + (Eηiηi−2)2 + (Eηiηi+2)2

]

≤ σ4

(n− 2)2

n−1∑

i=2

(1 + 1 + 1 + 1/4 + 1/4) =
7σ4

2(n− 2)

which implies the second assertion of the lemma by Proposition 5.1.
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Next we show that σ̂2 estimate the true value σ2 at the rate n−1/2 under a mild

assumption on the regression function f and the design X1, . . . , Xn . We again assume

that the design points are renumbered to provide X1 ≤ X2 ≤ . . . ≤ Xn .

Lemma 4.2. Let the design X1, . . . , Xn fulfill Xi+1 −Xi ≤ Dn−1 with some constant

D . Let next the regression function f from (1.1) fulfills the condition
∫ 1

0
|f ′′(x)|2dx ≤ L2

for some L ≥ 0 satisfying 8L2D3n−3 ≤ σ2 . Then

E(σ̂2 − σ2)2 ≤ 9σ4(n− 2)−1.

Proof. The definition of the coefficients ai and bi , see Section 2.3, provides for any

linear function `(x) the identity ai`(Xi−1) + bi`(Xi+1)− `(Xi) = 0 . The application of

`(x) = f ′(Xi)(x−Xi) yields

|aif(Xi−1) + bif(Xi+1)− f(Xi)|
≤ ai

∣∣f(Xi−1)− f(Xi)− f ′(Xi)(Xi−1 −Xi)
∣∣ + bi

∣∣f(Xi+1)− f(Xi)− f ′(Xi)(Xi+1 −Xi)
∣∣ .

Let f(Xi−1)−f(Xi) = (Xi−1−Xi)f ′(u) for some u ∈ [Xi−1 , Xi] . Then, by the Cauchy-

Schwarz inequality and the condition Xi −Xi−1 ≤ Dn−1 ,

∣∣f(Xi−1)− f(Xi)− f ′(Xi)(Xi−1 −Xi)
∣∣ ≤ (Xi −Xi−1)

∣∣∣∣
∫ Xi

u
f ′′(s)ds

∣∣∣∣

≤ (Xi −Xi−1)
∫ Xi

Xi−1

|f ′′(x)|dx ≤ (Xi −Xi−1)3/2

(∫ Xi

Xi−1

|f ′′(x)|2dx

)1/2

≤ (Dn−1)3/2Li

with L2
i =

∫ Xi

Xi−1
|f ′′(x)|2dx , and similarly for |f(Xi+1)− f(Xi)− f ′(Xi)(Xi+1 −Xi)| .

These two bounds imply

|aif(Xi−1) + bif(Xi+1)− f(Xi)| ≤ (aiLi + biLi+1)(Dn−1)3/2. (4.1)

Next, define

ηi =
aiξi−1 + biξi+1 − ξi√

a2
i + b2

i + 1
, ∆i =

aif(Xi−1) + bif(Xi+1)− f(Xi)√
a2

i + b2
i + 1

.

Then

σ̂2 =
1

n− 2

n−1∑

i=2

|∆i + ηi|2 .

To estimate the difference σ̂2 − σ2 , we apply Proposition 5.2 from the Appendix. Let

η = (η2, . . . , ηn−1)> . We know, see the proof of Lemma 4.1, that Eη = 0 and the matrix

Σ = Eηη> fulfills
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1
n− 2

trΣ = σ2,
1

(n− 2)2
trΣ2 ≤ 7σ4

2(n− 2)
.

The inequality 2 max{a2
i , b

2
i } ≤ 1 + a2

i + b2
i and (4.1) provide

‖∆‖2 =
n−1∑

i=2

∆2
i ≤ D3n−3

n−1∑

i=2

(aiLi + biLi+1)2

a2
i + b2

i + 1

≤ D3n−3
n−1∑

i=2

(L2
i + L2

i+1) ≤ 2D3n−3

∫ 1

0
|f ′′(x)|2dx ≤ 2D3n−3L2

The application of Proposition 5.2 from the Appendix with c = ∆/(n − 2)1/2 and

ε = η/(n− 2)1/2 yields

E
(
σ̂2 − σ2

)2 = E
(‖c + ε‖2 − trV

)2 ≤ ‖c‖4 + 4‖c‖2
√

trV 2 + 2trV 2.

where V = (n − 2)−1Σ . This along with the inequalities trV 2 ≤ 7/2σ4/(n − 2) and

4‖c‖2 ≤ 8L2D3n−3(n− 2)−1 ≤ σ2(n− 2)−1 imply the required assertion.

4.3 Critical value λ

Here we present an upper bound for the critical value λ defined in Section 2.4.

Lemma 4.3. Let Nj = 2j denote the number of elements in the set Ij . It holds

trVj ≤
√

2trV 2
j

√
Nj/2.

Proof. Clearly

trV 2
j =

∑

I∈Ij

∑

I′∈Ij

v2
I,I′ ≥

∑

I∈Ij

v2
I,I .

Next, the Cauchy-Schwarz inequality implies

N−1
j trVj = N−1

j

∑

I∈Ij

vI,I ≤

N−1

j

∑

I∈Ij

v2
I,I




1/2

and the assertion follows.

Lemma 4.4. Let λ be the critical value of the test selected by the testing procedure. If

design X1, . . . , Xn fulfills (D) , then, for n sufficiently large,

λ ≤ 2
√

log j(n) (1 + on(1)) .
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Proof. Recall that the critical value λ corresponds to the 1−α0 -quantile of the distribu-

tion of the test statistic T ∗ = maxj≤j(n) Tj under the no-response model f(x) ≡ 0 and

under the assumption of standard normal errors ξi , i = 1, . . . , n . In such a situation, the

subvector θ̂j of θ̂(j) coincides with the Gaussian vector ζj ∼ N(0, Vj) , see Section 2.1,

and hence the corresponding statistic Tj can be represented in the form

Tj =
‖ζj‖2 − σ̂2trVj

σ̂2
√

2trV 2
j

.

and it suffices to show that

P

(
max

j≤j(n)
Tj > 2

√
log j(n)

(
1 + δ1(n)

)) ≤ δ2(n)

with two numeric sequences δ1(n) → 0 and δ2(n) → 0 .

Now, for every z ≥ 1 and a ∈ (0, 1) ,

{
Tj >

z + 1
a

}
=




‖ζj‖2 − σ̂2trVj

σ2
√

2trV 2
j

>
(z + 1)σ̂2

aσ2





⊆



‖ζj‖2 − σ2trVj

σ2
√

2trV 2
j

> z



 ∪





(σ2 − σ̂2)trVj

σ2
√

2trV 2
j

> 1



 ∪

{
σ̂2

σ2
< a

}
.

This clearly yields in view of Lemma 4.3

P

(
max

j≤j(n)
Tj >

z + 1
a

)

≤ P

(
σ̂2

σ2
< a

)
+ P


 σ̂2

σ2
− 1 < − 1√

Nj(n)/2


 +

j(n)∑

j=0

P


‖ζj‖2 − σ2trVj

σ2
√

2trV 2
j

> z


 .

We apply this bound with z = 1 + vn and a = 1 − v−1
n where vn = 2

√
log j(n) . By

(D.iii) , in view of ‖Vj‖∞ ≤ ‖V (j)‖∞ , it holds
√

2trV 2
j ≥ CD2j/2‖Vj‖∞ . Now an

application of Proposition 5.1 from the Appendix with γ = vn allows to bound

P


‖ζj‖2 − σ2trVj

σ2
√

2trV 2
j

> vn + 1


 ≤ e−(vn+1)2/4 + e

−vn

√
2trV 2

j /(6‖Vj‖∞) ≤ e−(vn+1)2/4 + e−vnCD2j/2/6.

Lemma 4.1 and the Chebyshev inequality provide

P

(
σ̂2

σ2
< 1− v−1

n

)
+ P


 σ̂2

σ2
− 1 >

1√
Nj(n)/2




≤ v2
nσ−4E

(
σ̂2 − σ2

)2 +
Nj(n)E

(
σ̂2 − σ2

)2

2σ4
≤ 7v2

n

2(n− 2)
+

7Nj(n)

4(n− 2)
= δ3(n) → 0,
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since, by definition of j(n) , it holds n/Nj(n) →∞ . Therefore, with some fixed constant

C ,

P

(
T ∗ >

2 + vn

1− v−1
n

)
≤ δ3(n) +

j(n)∑

j=0

e−v2
n/4−vn/2 +

j(n)∑

j=0

e−vnCD2j/2/6

≤ δ3(n) + 1+j(n)
j(n) e−vn/2 + Ce−vnCD/6 → 0, n →∞.

4.4 Proof of Proposition 3.3 for Gaussian errors ξi

Recall that the vector θ̂j is defined as the subvector of θ̂(j) =
(
Ψ(j)>Ψ(j)

)−1
Ψ(j)>Y ,

j ≤ j(n) . The model equation (1.1) yields

θ̂(j) =
(
Ψ(j)>Ψ(j)

)−1
Ψ(j)>(f + ξ) = θ∗(j) + ζ(j)

with θ∗(j) = V (j)Ψ(j)>f and ζ(j) = V (j)Ψ(j)>ξ where V (j) =
(
Ψ(j)>Ψ(j)

)−1 .

Hence θ̂j = θ∗j + ζj where θ∗j (resp. ζj ) is the subvector of θ∗(j) (resp. of ζ(j) )

corresponding to the j th resolution level. This particularly implies that ζj is a zero

mean random vector with the covariance matrix σ2Vj where Vj is the submatrix of the

matrix V (j) =
(
Ψ(j)>Ψ(j)

)−1 . Moreover, if the errors ξi in (1.1) are Gaussian, then

ζj is a Gaussian random vector with parameters (0, σ2Vj) for each j ≤ j(n) .

Let, for some j ≤ j(n) , it holds

T ∗j =
‖θ∗j‖2

σ2
√

2trV 2
j

≥ 3(λ1/2
n + 1)2 (4.2)

with λn = max{λ, 2
√

log j(n)} . We shall show that under this condition

P f (Tj < λ) ≤ δ(n) → 0, n →∞, (4.3)

which obviously implies the assertion.

Define Sj =
√

2trV 2
j . Observe first that in view of λ ≤ λn

P (Tj < λ) ≤ P
(‖θ∗j + ζj‖2 − σ̂2trVj < λnσ̂2Sj

)

≤ P
(‖θ∗j + ζj‖2 − σ2trVj < λnσ2Sj + (σ̂2 − σ2) (λnSj + trVj)

)

≤ P
(
‖θ∗j + ζj‖2 − σ2trVj − ‖θ∗j‖2 < (λn + λ1/2

n )σ2Sj − ‖θ∗j‖2
)

+P
(
(σ̂2 − σ2) (λnSj + trVj) > σ2λ1/2

n Sj

)
.

By Lemma 4.3 trVj/Sj ≤
√

Nj/2 ≤
√

Nj(n)/2 for all j ≤ j(n) . Further, by Lemma 4.2

P

(
∣∣σ̂2 − σ2

∣∣ >
σ2λ

1/2
n Sj

λnSj + trVj

)
≤ (λnSj + trVj)

2

σ4λnS2
j

E
(
σ̂2 − σ2

)2 ≤
9(λn +

√
Nj(n)/2)2

λn(n− 2)
= δ4(n), n →∞
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since n/Nj(n) = n2−j(n) →∞ .

Next, for every positive u , the inequality ‖θ‖ ≥ 3u implies ‖θ‖2−2u‖θ‖−3u2 ≥ 0 .

Coupled with (4.2), this ensures with u = 3−1/2(λ1/2
n + 1)σS

1/2
j that

‖θ∗j‖2 ≥
√

4/3‖θ∗j‖(λ1/2
n + 1)σS

1/2
j + (λ1/2

n + 1)2σ2Sj

≥ ‖θ∗j‖(λ1/2
n + 1)σS

1/2
j + (λn + 2λ1/2

n + 1)σ2Sj .

Now, the use of Proposition 5.2 from the Appendix with γ = λ
1/2
n + 1 and c = θj and

of (D.iii) yields

P (Tj < λ) ≤ P
(
‖θ∗j + ζj‖2 − σ2trVj − ‖θ∗j‖2 < −(λ1/2

n + 1)‖θ∗j‖σS
1/2
j − (λ1/2

n + 1)σ2Sj

)
+ δ4(n)

≤ 2e−λn/4 + e−λ
1/2
n σ2Sj/(6‖Vj‖∞) + δ4(n)

≤ 2e−λn/4 + e−λ
1/2
n CD2j/2/6 + δ4(n) → 0, n →∞,

as required.

4.5 Proof of Theorem 3.4 for Gaussian errors

For the proof, we use the result of Proposition 3.3. Namely we show that the condition

(3.6) of the theorem with κ large enough contradict to the constraint

T ∗j ≤ tn, j ≤ j(n), (4.4)

with tn = 3
(
1 + λ

1/2
n

)2
and λn = max{λ, 2

√
log j(n)} .

We begin by reduction of the problem of testing a linear hypothesis to the problem

with a simple null hypothesis. Define coefficients θ0, θ1 by

(θ0, θ1) = arginf
(a,b)

‖f − a− bψ1‖n

and set

f0 = f − θ0 − θ1ψ1.

Note that for all j ≥ 0 , the vectors θ∗(j) = V (j)Ψ(j)>f and θ(j) = V (j)Ψ(j)>f0 have

the same components except the first two. Obviously the smoothness properties of f

and f0 also coincide and

inf
a,b
‖f − a− bψ1‖n = inf

a,b
‖f0 − a− bψ1‖n

Recall also, that the linear trend in the regression function has no influence on our

variance estimator σ̂2 . Hence, replacing f by f0 changes nothing in the test behaviour
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and we may suppose from the beginning that the projection of f on the space of the

linear functions vanish.

About this new function f we know that

‖f‖n = inf
a,b
‖f − a− bψ1‖n ≥ κ

(
rs(j) + σ

√
2j/2λn

)
,

inf
g∈Ps(j−j0)

‖f − g‖n = rs(j), (4.5)

for some 0 ≤ j ≤ j(n) .

Next we rewrite the constraints from (4.4) in term of the vectors ‖θ∗j‖ , j ≤ j(n) .

Recall that θ∗j is the subvector of θ∗(j) corresponding to j th level, and Vj is the

corresponding submatrix of V (j) .

Let L(j) stand for the linear space generated by functions ψI , I ∈ I(j) . We denote

also by Π(j)f the projection of f onto the space L(j) with respect to the norm ‖ · ‖n ,

Π(j)f = arginf
h∈L(j)

‖f − h‖n.

Particularly, Π(0)f denotes the projection of f onto the space of linear functions (and

hence, Π(0)f = 0 ) and, by definition of θ∗(j) ,

Π(j)f =
∑

I∈I(j)

θ∗IψI (4.6)

where the θ∗I ’s denote the coefficients of the vector θ∗(j) .

Lemma 4.5. For each 1 ≤ j ≤ j(n) ,

‖Π(j)f‖n ≤ ‖Π(j − 1)f‖n + ‖θ∗j‖.

Proof. Since L(j − 1) ⊆ L(j) , then

Π(j − 1)f = Π(j − 1)Π(j)f.

When denoting f(j) = Π(j)f , one has Π(j − 1)f = Π(j − 1)f(j) and we have to show

that

‖Π(j − 1)f(j)‖n ≥ ‖f(j)‖n − ‖θ∗j‖.

In view of (4.6)

f(j) =
∑

I∈I(j)

θ∗IψI .

Denote by fj the part of this sum corresponding to the last level Ij in I(j) ,

fj =
∑

I∈Ij

θ∗IψI .
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By construction, the functions ψI , I ∈ Ij , are ortonormal w.r.t. to the Euclidean norm

‖ · ‖n and particularly

‖fj‖2
n =

∑

I∈Ij

|θ∗I |2 = ‖θ∗j‖2.

Next, obviously f(j)− fj ∈ L(j − 1) , and by definition of Π(j) ,

‖f(j)−Π(j − 1)f(j)‖n ≤ ‖f(j)− (f(j)− fj)‖n = ‖fj‖n = ‖θ∗j‖

and the assertion follows by the triangle inequality.

Lemma 4.6. Given j ≤ j(n) , let (4.4) hold true for all ` ≤ j . Then

‖Π(j)f‖2
n ≤ κ1σ

2CV 2j/2tn (4.7)

with κ1 = 21/2(21/4 − 1)−2 .

Proof. Recursive application of Lemma 4.5 gives

‖Π(j)f‖n ≤ ‖θ∗1‖+ . . . + ‖θ∗j−1‖.

Here we have used that Π(0)f = 0 . Now (4.4) and (D.iii) yield in view of trV 2
` ≤

2`‖V`‖2 ≤ 2`‖V (`)‖2

‖θ∗`‖2 ≤ σ2tn

√
2trV 2

` ≤ σ2tn

√
C2

V 2`+1

and thus,

‖Π(j)f‖n ≤
j∑

`=1

σ
(
2`/2tnCV

)1/2
= σ(CV tn)1/2

j∑

`=1

2`/4

and the assertion follows by simple algebra.

Let now j0 fulfill 2j0 > s and Ps(j − j0) denote the space of piecewise polynomials

with piece length 2−(j−j0) . Let now some j ≤ j(n) be fixed and let g ∈ Ps(j − j0) be

such that

‖f − g‖n = rs(j).

Lemma 4.7. There is a constant κ2 > 0 depending on C∗, C∗ and s only and such

that for each j with j0 ≤ j ≤ j(n)

‖f‖n ≤ κ2 {‖Π(j)f‖n + rs(j)} .
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Proof. Let g ∈ Ps(j − j0) be such that ‖f − g‖n ≤ rs(j) . Then

‖f‖n ≤ ‖g‖n + rs(j)

and, since Π(j) is a projector,

‖Π(j)f‖n = ‖Π(j)g + Π(j)(f − g)‖n ≥ ‖Π(j)g‖n − ‖Π(j)(f − g)‖n ≥ ‖Π(j)g‖n − rs(j)

and the assertion follows from

‖g‖2
n ≤ κ3‖Π(j)g‖2

n.

Recall that g is a piecewise polynomial function on the partition AI , I ∈ Ij−j0 and

Π(j)g projects g (that is a polynomial within each interval AI of length 2−(j−j0) ) on the

space containing all the piecewise constant functions with piece length 2−j . Therefore,

it suffices to prove that for each piece AI and every polynomial P (x) = a0 + a1x+ . . .+

as−1x
s−1 , it holds

∑

AI

P 2
j (Xi) ≥ κ3

∑

AI

P 2(Xi)

where Pj is the projection of P on the space of piecewise constant functions on AI with

the piece length 2−j and the constant κ3 depends on C∗, C∗ and s only. The similar

fact with integration instead of summation over the design points in AI has been stated

in Ingster (1993) and we present here only a sketch of the proof for our situation.

The key idea of the proof can be formulated as a separate statement.

Lemma 4.8. Let P (x) be a polynomial of degree s − 1 and let m be an integer with

m > s . Define Ak = [(k− 1)/m, k/m) for k = 1, . . . ,m . Then for every measure µ on

[0, 1] with 0 < C∗ ≤ µ(Ak) ≤ C∗ > 0 for all k ≤ m ,

m∑

k=1

[∫

Ak

P (x)µ(dx)
]2

≥ κ3

∫ 1

0
P 2(x)µ(dx).

with a positive number κ3 depending on C∗, C∗ and s only.

Proof. Let a = (a0, . . . , as−1) be the vector of coefficients of P . Without loss of gener-

ality, we may assume that ‖a‖∞ = maxj=0,...,s−1{|aj |} = 1 . Otherwise normalize P by

‖a‖∞ . Obviously, the both ‖a‖µ,1 and ‖a‖µ,2 defined by

‖a‖2
µ,1 =

m∑

k=1

(∫

Ak

P (x)µ(dx)
)2

,

‖a‖2
µ,2 =

∫ 1

0
P 2(x)µ(dx),
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are some Euclidean norms in the space IRs . Next, ‖a‖µ,2 = 0 is impossible under

‖a‖∞ = 1 and the same applies for ‖a‖µ,1 , since P (x) has at most s−1 roots and µ is

supported on m > s disjoint intervals. Note also that ‖a‖µ,1 and ‖a‖µ,2 are continuous

functionals of a and µ and the space Mm(C∗, C∗) of measures µ on [0, 1] satisfying

the condition of the lemma is compact in the weak topology. Hence,

sup
a : ‖a‖∞=1

sup
µ∈Mm(C∗,C∗)

‖a‖µ,2

‖a‖µ,1
= κ3 < ∞

as required.

Application of this result to each interval AI , I ∈ Ij−j0 yields the desirable assertion.

The results of Lemmas 4.6 through 4.7 yield the inequality

‖f‖n ≤ κ2

(
rs(j) + σ

√
κ1CV 2j/2λn

)

which contradicts to the constraints ‖f‖n ≥ κ
(
rs(j) + σ

√
2j/2λn

)
with a sufficiently

large κ , and the theorem is proved.

4.6 Proof of Theorem 3.2

Now we disregard the assumption that the errors ξi in (1.1) are normally distributed

and assume only that they have 6 finite moments. We outline the proof of Theorem 3.2

only. Proposition 3.3 can be considered similarly. The result of Theorem 3.4 for the

non-Gaussian errors follows from Proposition 3.3.

Lemma 4.9. Let the errors ξi in (1.1) be i.i.d. and satisfy Eξi = 0 , ξ2
i = σ2 and

E
∣∣ξ2

i − σ2
∣∣3 ≤ C6σ

6 . Define s2
4 = 2σ−4 maxi=1,...,n E(ξ2

i − σ2)2 . If the regression func-

tion f is linear then

E(σ̂2 − σ2)2 ≤ (s4 + 1/2)σ4/(n− 2).

Proof. Similarly to the Gaussian case discussed in Section 4.2, it suffices to consider the

case of the no-response model with the vanishing regression function. In this case, the

variance estimate σ̂2 is a quadratic form of the errors ξi which can be represented as

follows:

σ̂2 =
1

n− 2

n−1∑

i=2

(aiξi−1 + biξi+1 − ξi)2

a2
i + b2

i + 1
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where ai = (Xi+1 −Xi)/(Xi+1 −Xi−1) , bi = (Xi −Xi−1)/(Xi+1 −Xi−1) , i = 1, . . . , n .

Simple algebra yields

(n− 2)(σ̂2 − σ2)

=
n∑

i=1

a2
i (ξ

2
i−1 − σ2) + b2

i (ξ
2
i+1 − σ2) + (ξ2

i − σ2)
a2

i + b2
i + 1

+ 2
n−1∑

i=2

aibiξi−1ξi+1 − aiξi−1ξi − biξiξi+1

a2
i + b2

i + 1

=
n−1∑

i=2

(
a2

i+1

a2
i+1 + b2

i+1 + 1
+

1
a2

i + b2
i + 1

+
b2
i−1

a2
i−1 + b2

i−1 + 1

)
(ξ2

i − σ2)

+ 2
n−1∑

i=2

aibi

a2
i + b2

i + 1
ξi−1ξi+1 − 2

n−1∑

i=2

(
ai

a2
i + b2

i + 1
+

bi−1

a2
i−1 + b2

i−1 + 1

)
ξi−1ξi

=
n∑

i=1

αii(ξ2
i − σ2) +

∑

i 6=j

αijξiξj

where aj = bj = 0 for j = 0, 1, n, n + 1 and αij are some coefficients. This clearly

implies Eσ̂2 = σ2 . It is also easy to see that

(n− 2)2E(σ̂2 − σ2)2 = σ4
n∑

i=1

n∑

j=1

α2
ij + σ4(s4 − 3)

n∑

i=1

α2
ii

where s4 = σ−4E(ξ2
i − σ2)2 . One can easily check that the matrix A with the entries

αij fulfills

σ4trA>A = σ4
n∑

i=1

n∑

j=1

α2
ij = trΣ2

with the matrix Σ defined in Lemma 4.1 and hence, σ4trA>A ≤ (7/2)σ4(n− 2) . Since
∑n

i=1 αii = n− 2 and αii ≤ 2 for all i , we derive

1
n− 2

n∑

i=1

α2
ii ≤

maxi=1,...,n αii

n− 2

n∑

i=1

αii ≤ 2

and

E(σ̂2 − σ2)2 ≤ 7σ4

2(n− 2)
+ (s4 − 3)σ4 2

n− 2
≤ (s4 + 1/2)σ4

n− 2
.

In the same way one can extend the result of Lemma 4.2 to the non-Gaussian case:

σ̂2 estimates the true variance σ2 at the rate n−1/2 provided that f is sufficiently

smooth.

Now we turn to Theorem 3.2. It obviously suffices to show that the distribution of

the test statistic T ∗ can be approximated by a similar distribution corresponding to the

case of Gaussian errors. Then the result follows from Theorem 3.1.
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As in the proof of Theorem 3.1, the general case can be reduced to the no-response

model with the vanishing regression function. Further, since the difference σ̂2 − σ2 is of

order n−1/2 , it suffices to consider the expressions T ′j , j ≤ j(n) , defined by

T ′j =
1√

2σ4trV 2
j


∑

I∈Ij

|θ̂I |2 − σ2trVj


 =

Sj − σ2trVj√
2σ4trV 2

j

where θ̂I are elements of the vector θ̂(j) , cf. the proof of Lemma 4.4. Under the no-

response hypothesis, this vector admits the representation: θ̂(j) = W (j)ξ with W (j) =(
Ψ(j)>Ψ(j)

)−1
Ψ(j)> , see (2.12). If Ej denotes the projector from I(j) onto Ij keeping

the coordinates xI with I ∈ Ij , then θ̂j = Ej θ̂(j) = EjW (j)ξ and

Sj = ‖θ̂j‖2 = ξ>W (j)>E>
j EjW (j)ξ = ξ>Ajξ

with Aj = W (j)>E>
j EjW (j) , so that Sj is a quadratic form of the errors ξi . We also

know that Vj = EjW (j)W (j)>E>
j , and ESj = σ2trAj = σ2trVj . The form Aj in its

turn can be represented as a sum of a diagonal form T
(1)
j and a quadratic form T

(2)
j

with vanishing diagonal terms. We first show that the contribution of diagonal terms is

negligible and then apply Corollary 5.8 to the T
(2)
j ’s.

Let oi denote the i -th basis vector in IRn . Then the i -th diagonal element aii of

Aj is equal to o>i Ajoi :

aii = o>i Ajoi = o>i Ψ(j)
(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
Ψ(j)>oi.

Clearly
∥∥∥∥
(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
∥∥∥∥
∞
≤

∥∥∥∥
(
Ψ(j)>Ψ(j)

)−2
∥∥∥∥
∞

= ‖Vj‖2
∞.

Next, for every Haar level ` ≤ j , there exists only one index I ∈ I` such that ψI(Xi) 6= 0 .

More precisely, for this index I , it holds ψI(Xi) = ±1/
√

MI where MI is the number of

design points in the interval AI corresponding to the index I . Condition (D.i) implies

MI ≥ C∗n2−` for every I ∈ I` . Also ψ0(Xi) = n−1/2 and ψ1(Xi) = Xi

(∑n
i′=1 X2

i′
)−1/2 .

Hence, the definition of the matrix Ψ(j) and condition (D.i) provide

|Ψ(j)>oi| ≤ n−1/2 +

(
n∑

i′=1

X2
i′

)−1/2

+
j∑

`=0

√
2`

nC∗
< 3C

−1/2
∗ 2j/2n−1/2. (4.8)

Therefore,

aii ≤ |Ψ(j)>oi|2
∥∥∥∥
(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
∥∥∥∥
∞
≤ 9C−1

∗ 2jn−1‖V (j)‖2
∞.
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Define G2
j = 2σ4trA2

j . Note

trA2
j = trW (j)>E>

j EjW (j)W (j)>E>
j EjW (j)

= trEjW (j)W (j)>E>
j EjW (j)W (j)>E>

j = trV 2
j

so that T
(1)
j = G−1

j

∑n
i=1 aii(ξ2

i − σ2) . Condition (D.ii) implies trA2
j ≥ CD2j‖V (j)‖2∞ .

Since, by (D.iii) , ‖V (j)‖∞ ≤ CV , it holds for every δ > 0 ,

P

(
max

j=0,...,j(n)
T

(1)
j > δ

)
≤

j(n)∑

j=0

P
(
T

(1)
j > δ

)

≤ δ−2

j(n)∑

j=0

E
∣∣∣T (1)

j

∣∣∣
2

≤ δ−2

j(n)∑

j=0

G−2
j σ4s4

n∑

i=1

a2
ii

≤ δ−2

j(n)∑

j=0

2−1C−1
D 2−js4‖V (j)‖−2

∞ n
(
9C−1

∗ 2jn−1‖V (j)‖2
∞

)2

≤ Cδ−2n−12j(n)+1 → 0, n →∞.

Next we consider T
(2)
j which is obtained from T ′j by removing the diagonal terms.

This quadratic form can be approximated (in distribution) by a similar one with Gaussian

errors ξ̃i at a reasonable rate provided that the corresponding value CA , defined as n

times the ratio of the maximal diagonal element of the matrix σ4A2
j to G2

j = 2σ4trA2
j ,

see (5.5) and Remark 5.1 in the Appendix, remains bounded.

The i -th diagonal element di of A2
j is equal to o>i A2

joi :

di = o>i A2
joi

= o>i

{
Ψ(j)

(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
Ψ(j)>

}2

oi

= o>i Ψ(j)
(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
Ψ(j)oi.

Clearly
∥∥∥∥
(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
∥∥∥∥
∞
≤

∥∥∥
(
Ψ(j)>Ψ(j)

)∥∥∥
−3

∞
=

∥∥V (j)3
∥∥
∞ .

The use of (4.8) provides

di ≤ |Ψ(j)>oi|2
∥∥∥∥
(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
E>

j Ej

(
Ψ(j)>Ψ(j)

)−1
∥∥∥∥
∞

≤ 9C−1
∗ 2jn−1‖V (j)‖3

∞
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and similarly to the above

CA := max
i=1,...,n

nG−2σ4
n∑

`=1

a2
i` ≤

9C−1∗ ‖V (j)‖3∞2j

2CD2j‖V (j)‖2∞
≤ 9C−1∗ CV

2CD

that is, the value CA is bounded by a fixed constant depending on design regularity only.

By Corollary 5.8, the joint distribution of T
(2)
j , j ≤ j(n) , and the distribution of

their maximum, can be approximated by the distribution of similar quadratic forms of

Gaussian r.v.’s which implies the required assertion.

5 Appendix

Here we briefly discuss some general properties of quadratic forms of random variables.

We first consider the case when the underlying random variables are Gaussian and estab-

lish an exponential bound for deviations of such forms over certain level. Next we show

how an arbitrary quadratic form of independent random variables can be approximated

(in distribution) by a similar quadratic form of Gaussian random variables.

5.1 Deviation probabilities for quadratic forms of Gaussian random

variables

Let ε1, . . . , εN be Gaussian random variables with zero mean and the covariance N ×N

matrix V , i.e. V = Eεε> where ε denotes the vector ε = (ε1, . . . , εN )> .

We first present the following general results about quadratic forms of Gaussian ran-

dom variables.

Proposition 5.1. Let ε1, . . . , εN be Gaussian random variables with zero mean and the

covariance matrix V := Eεε> . Then

E‖ε‖2 := E
(
ε2
1 + . . . + Eε2

N

)
= trV,

E
(‖ε‖2 − trV

)2 = 2trV 2.

Moreover, with S2
V = 2trV 2 , it holds for any z ≥ 0

P
(± (‖ε‖2 − σ2trV

)
> zσ2SV

) ≤ e−z2/4 + e−zSV /(6‖V ‖∞). (5.1)

Proof. Normalizing by σ2 allows to reduce the general case to the situation with σ2

equal to 1, thus we assume for the rest of the proof that σ2 = 1 .

Let V = U>ΛU be a diagonal representation of V with a diagonal matrix Λ =

diag{λ1, . . . , λN} and an ortonormal matrix U . It is well known that ζ = Λ−1/2Uε

is a standard Gaussian vector and ‖ε‖2 = ζ>Λζ . Also it holds trV = λ1 + . . . + λN ,
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trV 2 = λ2
1 + . . .+λ2

N and ‖V ‖∞ = max{λ1, . . . , λN} . Hence, the expression ‖ε‖2− trV

can be rewritten as follows:

‖ε‖2 − trV = ξ>U>ΛUξ − trV = ξ̃>Λξ̃ − trΛ = λ1(ξ̃2
1 − 1) + . . . + λN (ξ̃2

N − 1),

where ξ̃ = Uξ . Since U is orthonormal, and ξ is standard Gaussian, the vector ξ̃ = Uξ

is also standard normal, i.e. the ξ̃i ’s are i.i.d. N(0, 1) -distributed.

For the proof of (5.1) we apply the exponential Chebyschev-inequality and utilize

independence of the ξ̃i ’s: for an arbitrary positive number µ ∈ (
0, 1/(2‖V ‖∞)

)

P

(
N∑

i=1

λi(ξ̃2
i − 1) > zSV

)
≤ exp {−µ z SV }E exp

{
µ

N∑

i=1

λi(ξ̃2
i − 1)

}

= exp

{
−µ zSV −

N∑

i=1

[
µλi +

1
2

log(1− 2µλi)
]}

.(5.2)

We now use the inequalities

− log(1− u) ≤ u +
u2

2
+

u3

3
+

u4

4
+

u5

5
+

u6

6(1− u)
≤ u + u2, ∀u ∈ [0, 2/3],

− log(1− u) ≤ u + u2/2 ≤ u + u2, ∀u ∈ [−2/3, 0].

This implies for µ ≤ 1/(3‖V ‖∞) and all i :

−µλi − 0.5 log(1− 2µ λi) ≤ 2µ2λ2
i

and

−µzSV −
N∑

i=1

(
µλi +

1
2

log(1− 2µλi)
)
≤ −µzSV −

N∑

i=1

2µ2λ2
i = −µzSV + µ2S2

V . (5.3)

If z ≤ 2SV /(3‖V ‖∞) then select µ = z/(2SV ). Under this choice the condition µ ≤
1/(3‖V ‖∞) is fulfilled and

−µzSV + µ2S2
V = −z2/4.

For z > 2SV /(3‖V ‖∞) we pick µ = 1/(3‖V ‖∞) , what provides

−µzSV + µ2S2
V = − zSV

3‖V ‖∞ +
S2

V

(3‖V ‖∞)2
= − SV

3‖V ‖∞

(
z − SV

3‖V ‖∞

)
≤ − zSV

6‖V ‖∞ .

Now (5.2) and (5.3) imply

P
(‖ε‖2 − σ2trV > zσ2SV

) ≤ max
{

e−z2/4, e−zSV /(6‖V ‖∞)
}
≤ e−z2/4 + e−zSV /(6‖V ‖∞).

Since all the above calculations remain valid for negative λi , the same bound holds for

− (‖ε‖2 − σ2trV
)

and (5.1) follows.
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Further, for a deterministic vector c = (c1, . . . , cN )> from IRN , we consider quadratic

forms of type

‖c + ε‖2 = |c1 + ε1|2 + . . . + |cN + εN |2.

Proposition 5.2. Let ε1, . . . , εN be Gaussian random variables with zero mean and the

covariance matrix V . Then it holds for any vector c = (c1, . . . , cN )> in IRN

E‖c + ε‖2 = ‖c‖2 + trV,

Var ‖c + ε‖2 := E
(‖c + ε‖2 − ‖c‖2 − trV

)2 = 4c>V c + 2trV 2,

E
(‖c + ε‖2 − trV

)2 = ‖c‖4 + 4c>V c + 2trV 2 ≤ ‖c‖4 + 4‖c‖2
√

trV 2 + 2trV 2.

Moreover, with S2
V = 2trV 2 , for every positive γ

P
(
±(‖c + ε‖2 − ‖c‖2 − trV ) > γ‖c‖S1/2

V + γSV

)
≤ 2e−γ2/4 + e−γSV /(6‖V ‖∞).

Proof. With vector notation, the studied quadratic form can be rewritten as ‖c + ε‖2 =

(c + ε)>(c + ε) . Now, since Eεi = 0 , it holds

E‖c + ε‖2 = E
(
‖c‖2 + 2c>ε + ‖ε‖2

)
= ‖c‖2 + E‖ε‖2 = ‖c‖2 + trV.

Next,

Var ‖c + ε‖2 = E
(‖c + ε‖2 −E‖c + ε‖2

)2

= E
(
2c>ε + ‖ε‖2 − trV

)2

= 4E|c>ε|2 + 4Ec>ε
(‖ε‖2 − trV

)
+ E

(‖ε‖2 − trV
)2

.

The Gaussian vector ε ∼ N(0, V ) fulfills

E ε
(‖ε‖2 − trV

)
= 0, and E|c>ε|2 = c>(Eεε>)c = c>V c

so that in view of Proposition 5.1 Var ‖c + ε‖2 = 4c>V c + 2trV 2 as required. Similarly

one obtains

E
(‖c + ε‖2 − trV

)2 = ‖c‖4 + 4c>V c + 2trV 2

and by the Cauchy-Schwarz inequality c>V c ≤ ‖c‖2
√

trV 2 .

Note that the scalar product c>ε is a linear combination of the Gaussian zero mean

random variables and it is therefore Gaussian as well with Ec>ε = 0 and E|c>ε|2 =

c>V c . This yields for every γ ≥ 0

P
(
c>ε > γ

√
c>V c

)
≤ e−γ2/2.
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The condition ‖V ‖∞ ≤
√

trV 2/2 provides c>V c ≤ ‖c‖2‖V ‖∞ ≤ ‖c‖2
√

trV 2/2 . Com-

bining this inequality with the previous one implies

P
(
2c>ε > γ‖c‖S1/2

V

)
≤ e−γ2/4.

Next, by Proposition 5.1

P
(‖ε‖2 − trV > γSV

) ≤ e−γ2/4 + e−γSV /(6‖V ‖∞).

Summing up the above estimates yields

P
(
‖c + ε‖2 − trV > ‖c‖2 + γ‖c‖S1/2

V + γSV

)
= P

(
2c>ε + ‖ε‖2 − trV > γ‖c‖S1/2

V + γSV

)

≤ P
(
2c>ε > γ‖c‖S1/2

V

)
+ P

(‖ε‖2 − trV > γSV

)

≤ 2e−γ2/4 + e−γSV /(6‖V ‖∞)

as required. The expression −(‖c + ε‖2 − trV ) can be considered similarly.

The next technical result bounds the density of a standardized quadratic form Q =
∑N

i=1

∑N
j=1 aijεiεj = ε>Aε with a symmetric matrix A and i.i.d. standard normal εi ’s.

Lemma 5.3. Let Q =
∑N

i=1

∑N
j=1 aijεiεj with independent standard normal r.v.’s εi

and with the coefficients aij satisfying
∑

i

∑
j a2

ij = 1 . For every x0 > 0 there exists

C(x0) > 0 such that the density p(x) of Q fulfills p(x) ≤ C(x0) for all x ≥ x0 .

Moreover, if ‖A2‖∞ ≤ 1/6 , then p(x) is uniformly bounded by an absolute constant

C0 .

Proof. Change-of-basis arguments allow to reduce the assertion to the case of a diagonal

quadratic form Q =
∑N

i=1 λiε
2
i with

∑
i λ

2
i = 1 . We consider in details only the case

when ‖A2‖∞ = maxi λ
2
i ≤ 1/6 .

The characteristic function f(t) of S obviously fulfills

f(t) := EeıtS =
N∏

i=1

(1− 2ıλit)−1/2 and |f(t)| =
N∏

i=1

(1 + 4λ2
i t

2)−1/4

where ı =
√−1 . The conditions λ2

i ≤ 1/6 and
∑

i λ
2
i = 1 ensure that all the λi ’s can

be distributed into three groups, say Π1 , Π2 and Π3 such that
∑

i∈Πj
λ2

i ≥ 1/6 for

j = 1, 2, 3 . Then

|f(t)|−4 =
N∏

i=1

(1 + 4λ2
i t

2) ≥
3∏

j=1


1 +

∑

i∈Πj

4λ2
i t

2


 ≥ (1 + 2t2/3)3

and the assertion follows in view of

p(x) = (2π)−1

∫ ∞

−∞
e−ıtxf(t)dt ≤ (2π)−1

∫ ∞

−∞
|f(t)|dt ≤ (2π)−1

∫ ∞

−∞
(1 + 2t2/3)−3/4dt < ∞.
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5.2 Gaussian approximation for quadratic forms

In what follows we consider quadratic forms
∑n

i=1

∑n
`=1 ai`ξiξ` of independent but not

necessarily normal random variables ξ1, . . . , ξn with vanishing diagonal coefficients, i.e.

aii = 0 . We aim to show that, under moment conditions on ξi ’s and mild assumptions

on the coefficients of the quadratic form, the asymptotic distribution of this quadratic

form only weakly depends on the particular distribution of ξi ’s and, as a consequence,

it can be approximated by a distribution of a similar quadratic form of Gaussian r.v.’s

with the same first and second moments.

Let A = (ai` , i, ` = 1, . . . , n) be a n × n symmetric matrix with aii = 0 for all

i , and let ξ1, . . . , ξn be independent zero mean r.v.’s with Eξ4
i < ∞ for all i . Define

σ2
i = Eξ2

i . We study some properties of the quadratic form
∑n

i=1

∑n
`=1 ai`ξiξ` .

Lemma 5.4. It holds

E
n∑

i=1

n∑

`=1

ai`ξiξ` =
n∑

i=1

aiiσ
2
i = 0,

E

{
n∑

i=1

n∑

`=1

ai`ξiξ`

}2

= 2
n∑

i=1

n∑

`=1

a2
i`σ

2
i σ

2
` . (5.4)

Proof. Obvious. Here it is only important that the diagonal elements aii vanish.

Let ξ̃1, . . . , ξ̃n be a sequence of independent Gaussian r.v.’s with Eξ̃i = Eξi = 0 and

Eξ̃2
i = Eξ2

i = σ2
i , i = 1, . . . , n . Denote

A(ξ1, . . . , ξn) =
n∑

i=1

n∑

`=1

ai`ξiξ` and A(ξ̃1, . . . , ξ̃n) =
n∑

i=1

n∑

`=1

ai`ξ̃iξ̃` .

Clearly EA(ξ̃1, . . . , ξ̃n) = 0 and E|A(ξ̃1, . . . , ξ̃n)|2 = E|A(ξ1, . . . , ξn)|2 .

Proposition 5.5. Let Eξ4
i ≤ C4σ

4
i for some fixed constant C4 ≥ 3 . Let, for a symmet-

ric matrix A with aii = 0 for i = 1, . . . , n , constants G and CA fulfill

max
i=1,...,n

nG−2
n∑

`=1

a2
i`σ

2
i σ

2
` ≤ CA . (5.5)

Then, for every three times continuously differentiable function f with f3 = supx |f ′′′(x)| <
∞ , it holds

∣∣∣Ef
(
G−1A(ξ1, . . . , ξn)

)−Ef
(
G−1A(ξ̃1, . . . , ξ̃n)

)∣∣∣ ≤ (8/3)f3(C4CA)3/2n−1/2.

Remark 5.1. The value CA can be easily evaluated for the case of an homogeneous

noise when all σ2
i coincide with some σ2 . Clearly each sum di =

∑n
`=1 a2

i` is i -th

diagonal element of A2 and (5.5) meets with CA = nG−2σ4 max
i=1,...,n

di .
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Remark 5.2. The conditions of Proposition 5.5 do not guarantee that the distribution

of G−1A(ξ1, . . . , ξn) is close to some normal distribution. A typical example which just

meets in hypothesis testing framework corresponds to the quadratic form A(ξ1, . . . , ξn) =

(ξ1 + . . . + ξn)2 − (ξ2
1 + . . . + ξ2

n) , which, being standardized, is nearly centered χ2
1 .

Proof. By change ξi into ξi/σi and ai` into ai`σiσ` the general case can be reduced

to the situation with σi = 1 for all i . Hence, for the sake of notation simplicity, we

suppose that σ2
i = 1 , i = 1, . . . , n .

We use the following obvious inequality
∣∣∣Ef

(
G−1A(ξ1, . . . , ξn)

)
−Ef

(
G−1A(ξ̃1, . . . , ξ̃n)

)∣∣∣

≤
n∑

i=1

∣∣∣Ef
(
G−1A(ξ1, . . . , ξi, ξ̃i+1, . . . , ξ̃n)

)
−Ef

(
G−1A(ξ1, . . . , ξi−1, ξ̃i, . . . , ξ̃n)

)∣∣∣

where we assume ξ0 = ξ̃n+1 = 0 . We evaluate the last summand here, the other can be

bounded in the same way. Denote

un−1 = G−1
n−1∑

i=1

n−1∑

`=1

ai`ξiξ`,

∆n = G−1A(ξ1, . . . , ξn)− un−1 = 2G−1ξn

n−1∑

i=1

ainξi ,

∆̃n = G−1A(ξ1, . . . , ξn−1, ξ̃n)− un−1 = 2G−1ξ̃n

n−1∑

i=1

ainξi .

The Taylor expansion yields
∣∣∣Ef

(
G−1A(ξ1, . . . , ξn

)−Ef
(
G−1A(ξ1, . . . , ξn−1, ξ̃n)

)∣∣∣

≤
∣∣∣Ef ′(un−1)(∆n − ∆̃n)

∣∣∣ +
1
2

∣∣∣Ef ′′(un−1)(∆2
n − ∆̃2

n)
∣∣∣ +

f3

6
(E |∆n|3 + E|∆̃n|3).(5.6)

Since ξn and ξ̃n are independent of ξ1, . . . , ξn−1 and since Eξn = Eξ̃n = 0 , Eξ2
n =

Eξ̃2
n = 1 , taking the conditional expectation given ξ1, . . . , ξn−1 , we obtain

E
(
∆n − ∆̃n | ξ1, . . . , ξn−1

)
= 0, E

(
∆2

n − ∆̃2
n | ξ1, . . . , ξn−1

)
= 0. (5.7)

Further we evaluate E|∆n|3 and E|∆̃n|3 . Note first that, since Eξ4
n ≤ C4 with C4 ≥ 3 ,

E

(
n−1∑

i=1

ainξi

)4

=
n−1∑

i=1

a4
inEξ4

i + 3
n−1∑

`=1

a2
ina2

`n

≤
n−1∑

i=1

a4
in(C4 − 3) + 3

(
n−1∑

i=1

a2
in

)2

≤ C4

(
n−1∑

i=1

a2
in

)2

.
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Now the Hölder inequality yields in view of E|ξn|3 ≤ C
3/4
4

G3E|∆n|3 = E|ξn|3E
∣∣∣∣∣2

n−1∑

i=1

ainξi

∣∣∣∣∣

3

≤ 8C
3/4
4



E

(
n−1∑

i=1

ainξi

)4




3/4

≤ 8C
3/2
4

(
n∑

i=1

a2
in

)3/2

and the condition G−2
∑n

i=1 a2
in ≤ n−1CA provides

E|∆n|3 ≤ 8(C4CA)3/2n−3/2. (5.8)

For the expression ∆̃ with a Gaussian r.v. ξ̃n , the similar bound applies:

E|∆̃n|3 ≤ 8(C4CA)3/2n−3/2. (5.9)

Substituting these estimates as well as (5.7) in (5.6) implies
∣∣∣Ef

(
G−1A(ξ1, . . . , ξn)

)−Ef
(
G−1A(ξ1, . . . , ξn−1, ξ̃n)

)∣∣∣ ≤ 16
6

f3(C4CA)3/2n−3/2.

Similar bounds hold for the other summands in (5.6). Summing them out, we obtain

∣∣∣Ef
(
G−1A(ξ1, . . . , ξn)

)−Ef
(
G−1A(ξ̃1, . . . , ξ̃n)

)∣∣∣ ≤ 8
3
f3(C4CA)3/2n−1/2

as required.

Corollary 5.6. Under the conditions of Proposition 5.5, for each δ > 0 and every x

P
(
G−1A(ξ1, . . . , ξn) > x

) ≤ P
(
G−1A(ξ̃1, . . . , ξ̃n) > x− δ

)
+ C C

3/2
A n−1/2δ−3

with a constant C depending on C4 only. If, in addition, G2 ≥ E|A(ξ1, . . . , ξn)|2 , then

for every x0 > δ and all x ≥ x0

P
(
G−1A(ξ1, . . . , ξn) > x

) ≤ P
(
G−1A(ξ̃1, . . . , ξ̃n) > x

)
+ CC

3/2
A n−1/2δ−3 + C(x0)δ

with some fixed constant C(x0) .

Proof. Let a smooth nondecreasing function f fulfill f(u) = 0 for u ≤ −1 and f(u) = 1

for u ≥ 0 . Define Cf = supu |f ′′′(u)| . Now, given x and δ > 0 , set fx,δ(u) = f(δ−1(u−
x)) . Obviously fx,δ(u) = 0 for u ≤ x− δ , fx,δ(u) = 1 for u ≥ x , 0 ≤ fx,δ(u) ≤ 1 and

also |f ′′′x,δ(u)| ≤ Cfδ−3 for all u .

Next, by Proposition 5.5

P
(
G−1A(ξ1, . . . , ξn) > x

) ≤ Efx,δ

(
G−1A(ξ1, . . . , ξn)

)

≤ Efx,δ

(
G−1A(ξ̃1, . . . , ξ̃n)

)
+

8
3
(CAC4)3/2Cfδ−3n−1/2.

It remains to note that

Efx,δ

(
G−1A(ξ̃1, . . . , ξ̃n)

)
≤ P

(
G−1A(ξ̃1, . . . , ξ̃n) > x− δ

)
.

By Lemma 5.3, for every G with G2 ≥ E|A(ξ̃1, . . . , ξ̃n)|2 , the density of G−1A(ξ̃1, . . . , ξ̃n)

is uniformly in x ≥ x0 bounded and the last statement of the corollary follows.
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5.3 A family of quadratic forms

Here we briefly discuss the situation arising in adaptive testing problem when the max-

imum of a family of quadratic forms of ξi ’s is considered. We again aim to show that

the joint distribution of this family (and thus the distribution of the maximum) can be

well approximated by the similar distribution of quadratic forms of Gaussian random

variables.

Let A1, . . . , AM be a collection of symmetric n × n -matrices with vanishing di-

agonal elements. We analyze the joint distribution of the standardized quadratic forms

G−1
m Am(ξ1, . . . , ξn) with independent random variables ξi satisfying Eξi = 0 , Eξ2

i = σ2
i

and Eξ4
i < ∞ , and some constants Gm , m = 1, . . . , M . More precisely, we intend

to show that the distribution of this family is close to the distribution of the family

{G−1
m Am(ξ̃1, . . . , ξ̃n), m = 1, . . . , M} with Gaussian variables ξ̃i ∼ N(0, σ2

i ) .

Proposition 5.7. Let the variables ξi fulfill Eξ4
i ≤ CEσ4

i and let every matrix Am

satisfy the conditions of Proposition 5.5 with the same constant CA , m = 1, . . . , M .

Then, for every three times continuously differentiable function f in the space IRM , it

holds
∣∣∣Ef

(
G−1A(ξ1, . . . , ξn)

)−Ef
(
G−1A(ξ̃1, . . . , ξ̃n)

)∣∣∣ ≤ 8
3
f3M

3(C4CA)3/2n−1/2

where G−1A denotes the vector with elements G−1
m Am and f3 means the maximum of

the absolute value of the third derivative of f , that is,

f3 = sup
x∈IRM

max
i,j,k=1,...,M

∣∣∣∣
∂3f(x)

∂xi∂xj∂xk

∣∣∣∣ .

Proof. The proof follows the same line as in the case of one quadratic forms when un-

derstanding G−1A , un−1 , f ′(un−1) and ∆n as vectors in IRM and f ′′(un−1) as the

M ×M -matrix of the second derivatives of f at un−1 . The only difference is that we

apply the bound E|∆n|3 ≤ M38(C4CA)3/2n−3/2 for the norm of ∆n which is M3 times

larger than in the case of M = 1 , cf. (5.8). The details are left to the reader.

A straightforward corollary of this results concerns the maximum of G−1
m Am ’s.

Corollary 5.8. Let the conditions of Proposition 5.7 be fulfilled. Then for any x ≥ δ

P

(
max
m≤M

G−1
m Am(ξ1, . . . , ξn) > x

)
≤ P

(
max
m≤M

G−1
m Am(ξ̃1, . . . , ξ̃n) > x− δ

)
+ CM3C

3/2
A n−1/2δ−3

with a constant C depending on C4 only. If, in addition, G2
m ≥ E|Am(ξ1, . . . , ξn)|2 for

all m ≤ M , then for every x0 > δ and all x ≥ x0

P

(
max
m≤M

G−1
m Am(ξ1, . . . , ξn) > x

)
≤ P

(
max
m≤M

G−1
m Am(ξ̃1, . . . , ξ̃n) > x

)
+ CM3C

3/2
A n−1/2δ−3 + MδC(x0).
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Proof. The first statement can be checked exactly as for the case of M = 1 , see the

proof of Corollary 5.6. As regards to the second statement, it suffices to mention that

the density of each G−1
m Am(ξ̃1, . . . , ξ̃n) is bounded by C(x0) for all x ≥ x0 and hence

the density of the maximum of the G−1
m Am(ξ̃1, . . . , ξ̃n) ’s is bounded by MC(x0) .

Remark 5.3. If M is not too large in the sense that M3n−1/2 is small, then, select-

ing a proper δ , we can derive from this statement that the distribution of the maximum of

G−1
m Am(ξ1, . . . , ξn) ’s is approximated by the similar distributions for G−1

m Am(ξ̃1, . . . , ξ̃n) ’s.
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