The Annals of Statistics
1996, Vol. 24, No. 6, 2477-2498

ADAPTIVE HYPOTHESIS TESTING USING WAVELETS

By V. G. SPOKOINY

Weierstrass Institute for Applied Analysis and Stochastics and
Institute for Information Transmission Problems

Let a function f be observed with a noise. We wish to test the null
hypothesis that the function is identically zero, against a composite
nonparametric alternative: functions from the alternative set are sepa-
rated away from zero in an integral (e.g., L,) norm and also possess some
smoothness properties. The minimax rate of testing for this problem was
evaluated in earlier papers by Ingster and by Lepski and Spokoiny under
different kinds of smoothness assumptions. It was shown that both the
optimal rate of testing and the structure of optimal (in rate) tests depend
on smoothness parameters which are usually unknown in practical appli-
cations. In this paper the problem of adaptive (assumption free) testing is
considered. It is shown that adaptive testing without loss of efficiency is
impossible. An extra log log-factor is inessential but unavoidable payment
for the adaptation. A simple adaptive test based on wavelet technique is
constructed which is nearly minimax for a wide range of Besov classes.

1. Introduction. Suppose we are given data
dX(t) = f(¢) dt + edW(2), 0<tx<l,

where f is an unknown function and W is a standard Wiener process. We
wish to test the null hypothesis H: f = 0 against the composite nonparamet-
ric alternative that the function f is separated away from zero in L,-norm,
I7l = o(e), and also f possesses some smoothness properties. The problem is
to describe the minimal (optimal) rate for the distance o(¢) for which testing
with prescribed error probabilities is still possible. The result depends heavily
on what kind of smoothness assumptions are imposed. For the cases of
Holder or Hilbert—Sobolev functional classes, this problem was exhaustively
solved by Ingster (1982, 1993) and Ermakov (1990). It turned out that the
optimal rate (&) for testing differs from the optimal rate for the problem of
estimation of a function: if s is the smoothness parameter, then

4s/(4s+1)

o(e) =¢

The case of Besov functional classes B, , , with p <2 was considered in

Lepski and Spokoiny (1995b). This case is not only of theoretical interest. It
corresponds to the situation when functions from the alternative set are of
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inhomogeneous smoothness properties. The optimal rate was proved to be

7‘(8) — 845"/(43”+1),

where s" =s — 1/(2p) + 1/4. The rate-optimal test constructed in that pa-
per makes heavy use of the pointwise adaptive procedure proposed in Lepski,
Mammen and Spokoiny (1997) and developed in Lepski and Spokoiny (1995a).

However, the practical applications of this test or of that proposed by
Ingster meet the crucial problem: the structure of the test uses knowledge of
the smoothness parameters s, p, which are typically unknown. The present
paper treats the problem of adaptive (assumption free) testing. The goal is to
proposed a test which does not use any information about smoothness proper-
ties of the function f but which is at least nearly optimal.

The theory of adaptive nonparametric estimation is now well developed.
We mention here the papers by Efroimovich and Pinsker (1984), Poljak and
Tsybakov (1990), Golubev (1990) and Lepski (1991). The key point of the
relevant results can be asserted as follows: an adaptive estimation of the
function f for integrated losses is possible without loss of efficiency and can
be performed even in an optimal way (up to the exact constant). The reader is
referred to Donoho and Johnstone (1993) and Marron (1987) for further
discussion of this problem.

In this context, it is worth mentioning an interesting phenomenon discov-
ered by Lepski (1990) and then Brown and Low (1992): for some statistical
estimation problems, an adaptive estimation without loss of efficiency is
impossible. A typical example of this sort is the problem of estimation of a
function f at a given point ¢,. It was shown in Lepski (1990) that adaptive
pointwise estimation leads to a nearly minimax rate, which is worse than a
minimax one within an extra log-factor.

In the present paper it is shown that adaptive testing also leads to some
loss of efficiency but in this case within an extra log log-factor. The difference
from the preceding case is explained mostly by the structure of the loss
function (it is bounded in the hypothesis testing problem). However, the
related consideration seems to be more involved.

The rate-optimal adaptive test is also presented. We use the wavelet
technique for the construction, which provides very useful tools for studying
the problem under consideration.

The paper is organized as follows. In Section 2 we state the testing
problem and formulate the main results. In Section 3 we explain the proposed
adaptive test procedure, which makes use of wavelet decomposition. The
proofs are postponed to the last section.

2. Main results. In this section we formulate the problem of minimax
and adaptive minimax hypothesis testing and state the results.

2.1. Model and hypothesis testing problem. Assume we are given the data
X(#), 0 <t < 1, obeying the following stochastic differential equation:

(2.1) dX(t) = f(¢t)dt + edW(t), 0=<t<1,X(0)=0.
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The function f(-) is unknown and the following statistical problem is consid-
ered: to test the null hypothesis H|, that the function f is identically zero,
H,:f=0.

We wish to test this hypothesis against as large a class of alternatives as
possible. That is why we do not assume any special (parametric) structure for
the alternative set. This leads to considering a nonparametric alternative set.
Following Ingster (1982, 1984a, b, 1993) and Lepski and Spokoiny (1995b),
we assume only that the function f obeys some smoothness conditions. More
precisely, the function f is supposed to lie in some Besov ball B (M),

B, , (M) = (f:Ifls,,, < M).

The definition of the Besov norm | -|| B, ,, can be found, for example, in
Triebel (1992). For the discussion of this notion in a statistical context, see
Donoho and Johnstone (1995) or Donoho, Johnstone, Kerkyyacharian and
Picard (1994). For the case of an integer s and p = ¢, one may apply
Sobolev’s type of seminorm || fllg, = ([If(B)I* dt)/P instead of the men-
tioned Besov norm. For this case, the parameter s might be viewed as the
number of derivatives of the function f bounded in L,-norm. Note that the

definition of a Besov space can be done also in terms of the wavelet decompo-
sition; see the property ISO2 in Section 3.1.

To be able to test the null against the alternative, we assume also that the
alternative set is separated away from the null in L,-norm. Hence we arrive
at the following alternative:

Hy:7,(0) = (f€B, , (M):lIfl = o}

Now we define the hypothesis testing problem. A (nonrandomized) test ¢ is a
measurable function of the observation X(-) with two values {0, 1}. As usual,
the event {¢ = 0} is treated as accepting the null hypothesis, and {¢ = 1}
means that the null is rejected. To simplify the exposition, we do not consider
randomized tests. All the results can be extended to the case of randomized
tests in a standard way; see, for example, Lehmann (1959) or Ingster (1993).

Let P, be the distribution of the process X(-) under the null, that is, if we
observe pure noise, and let P, mean the distribution of the process X under f
due to (2.1), P, = Z(X|f).

The quality of any test ¢ is measured by the corresponding error probabili-
ties of the first and second kinds. For the case under consideration with a
simple hypothesis, the error probability of the first kind is

a(¢) =Py(d=1).
If f is a point from the alternative set, f € % (), then the error probability
of the second kind at f is defined as usual by B(f) = P:(¢ = 0). The value
1 — B(f) is called the power of the test ¢ at f.
We consider further the minimax set-up, which leads to the following
criterion:

(2.2) B,(¢,0) = sup P,(¢=0).

ez, (o)

S, P> 4q
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2.2. Minimax rate of testing. Here we focus on the asymptotic hypothesis
testing problem as the noise level tends to zero (¢ — 0). We are interested in
evaluating the optimal (fastest) rate of decay to zero of the radius p as a
function of & as &£ — 0, for which testing with prescribed error probabilities is
still possible. The following definition of the minimax rate o(&) was proposed
in Ingster (1993).

DEFINITION 2.1. A sequence o(¢) is called the minimax rate of testing if
o(g) - 0 as ¢ = » and the following two conditions hold.
(i) For any sequence ¢ (&) such that
0(e)/0(e) =o0,(1),

one has

inf[Py(4,) + B, (¢, 0(2))] =1~ o0,(1).

]

(i) For any a, B > 0, there exist a constant C > 0 and test ¢ such that
Py(;) < a+o0,(1)
B, (¢, Co(e)) < B+ o.(1).

Here and below we denote by 0,(1) any sequence tending to zero as & — 0.

REMARK 2.1. The first condition of the above definition means that testing
with a rate faster than p(e) is impossible; if the distance between the null
and the alternative set is less in order than o(¢), then any test has asymptot-
ically trivial power in the sense that the sum of the error probabilities of the
first and second kinds is close to 1. The second condition means roughly that,
on the contrary, if the distance is of the order p(e), then testing can be done
with prescribed error probabilities.

It turns out that the rate o(e) depends critically on the smoothness
parameters o = (s, p,q, M).

THEOREM 2.1 [Lepski and Spokoiny (1995b)]. Given o = (s, p, q, M) with
sp > 1, let

(2_3) Qg(é‘) _ Ml/(4s”+1)84s”/(4s”+1)’
where
1 1 ) 1 1
s"=s5— (% - Z)+= mm{s,s “ % + Z}

Then o,(&) is the minimax rate of testing in the sense of Definition 2.1.

The structure of rate optimal tests ¢* is described in the next section.
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2.3. Adaptive testing. Now we turn to the problem of adaptive testing
when the parameters o = (s, p,q, M) are unknown. First we state the
phenomenon of “lack of adaptability” for this problem, that is, we show that
adaptive testing with the same rate is impossible. Then we describe the
optimal adaptive rate of testing. For this we use the notion of adaptive factor.

We start with the definition of the problem of adaptive testing. Let again
the alternative set H; be described as before, but let the parameter o be
unknown. We assume only that o belongs to some set 7. For each o .9,
the optimal rate of testing o(e) = g,(&) is from (2.3). Due to Definition 2.1,
given o, ay, B,, there are a constant ¢, and tests ¢, , such that o(¢, ,) =
Py(¢, ,=1 < ay, +0,(1) and B,(¢,,c,0,(g)) < B, + 0,(1). But now, for the
problem of adaptive testing, we search for a unlversal test ¢, such that
o(¢,) < ay +0,(1) and B,(¢,,co,(&) < B, + 0,(1) for some ¢ > 0 and all
geT.

We say that a set 7 is nontrivial if there are such p,q, M and s, < s*
that

(s,p,q, M) €7, Vsels,,s*].

The first result shows that adaptive testing (without loss of power) is impossi-
ble for any nontrivial set ..

THEOREM 2.2. Let T be nontrivial. Then for any ¢ > 0 and any test ¢,

Py(p=1) + sugﬁg(d),cgg(s)) >1-o0.(1).

The next question is how one should define the optimal adaptive rate. One
way to do this was proposed by Lepski (1990) for the problem of adaptive
estimation of a function at one point where the phenomenon of lack of
adaptability appeared for the first time. We use another approach based on
the notion of adaptive factor. Namely, we search for a sequence £, — * such
that testing with the rate g (et,) will be possible adaptively in o €., The
next results show that for the problem under consideration the minimal
adaptive factor is (Inln &~ 2)¥/4,

THEOREM 2.3. Let
(2.4) t, = (Inln &~ 2)"".

If 7 is a nontrivial set and if t., is such that t./t, = 0,(1), then for any ¢ > 0
and any test ¢,,

Py(, = 1) + sup B, (4., co,(st,)) =1~ o,(1).

oceT
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THEOREM 2.4. Let t, be as above and let a set T be of the form
IT={o=(s,p,q,M):s<s*1<p<p*, M, <M <M*, sp>1}

with some prescribed positive s*, p*, M,, < M*. Then there exist a constant
c; = cy(s*, p*, M, M*) and a test ¢, such that

Py(¢,=1) =0,(1)
Sugﬁo’(¢8’cl Qa(gts)) = 08(1)'

oEY

REMARK 2.2. Here we meet the degenerate behavior of the error probabili-
ties for the adaptive test. The similar degenerate behavior of the losses
appeared in the problem of adaptive estimation at a point; see Lepski and
Spokoiny (1995a).

2.4. Results for other nonparametric statistical models. In the present
paper we focus on the ideal “signal + white noise” model. Of course, the
statistical practice needs to consider more realistic models such as density or
spectral density function models, regression models with heteroskedastic
non-Gaussian errors and so on. We believe that the ideas proposed are well
applicable to the models mentioned above, but the exact theoretical study lies
beyond the scope of the present paper. We cite only a few papers which can be
helpful for these developments. Brown and Low (1996) proved the equiva-
lence in the Le Cam sense of the “white noise” model and Gaussian regres-
sion model. Nussbaum (1993) stated a similar result for density models.
Neumann and Spokoiny (1995) showed the equivalence in the estimation
problem between the regression model with heteroskedastic non-Gaussian
errors and the white noise model. Ingster (1984a, b, 1993) explored the
hypothesis testing problem for the density and spectral density models.
Kerkyacharian and Picard (1993) studied the optimal properties of the wavelet
shrinkage procedure for the density model. Hardle and Mammen (1993)
studied the problem of testing parametric versus nonparametric regression fit
for the case of heteroskedastic errors.

3. Test procedure. The construction of the test makes heavy use of the
wavelet decomposition.

3.1. Wavelet transform. Assume we are given an orthonormal basis of
compactly supported wavelets of L,[0, 1]. One may use the construction from
Meyer (1990) or Cohen, Daubechies, Jawerth and Vail (1993). Let ¢; ,, ¢; ,,
be a system of compactly supported orthogonal wavelets (supp ¢ € [—0, A]
and supp ¢y € [—0, A]). We suppose that ¢ and € C™, where m is the
maximal integer smaller than s, ... This implies [cf. Daubechies (1992),
Chapter 7] that (x) has at least m vanishing moments.

Let j, be such that 2/0 > A + 1. It has been shown in Cohen, Daubechies,
Jawerth and Vail (1993) and Cohen, Daubechies and Vail (1993b) that an
orthogonal wavelet basis on [0, 1] can be constructed by retaining ; , and
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¢; , as the interior wavelets and scaling functions and adding adapted edge

wavelets and scaling functions. These edge elements are tailored so that the
total number is exactly 2/ at resolution j. For the sake of simplicity, we use
the same notation for the edge corrected and original functions. This con-
struction provides an unconditional basis for the B, », q[O, 1] space if sp > 1.

It is helpful to use also for ¢; , the notation ¢, & = 1,...,2/°. Denote also

by _# the set of resolution levels for the considered wavelet basis,
F={J zJo}
and let .7 be the index set for the jth level,
Fy={kik=1,...,29 U {(ug,k): k=1,...,2%},
F={(J,k):k=1,...,27}.

By .# we denote the global index set for the considered basis, .7 = {7, j €.7}.
Now the wavelet decomposition of a function f can be represented in the form

f(t) = Z O (2) = Z Z O (t),

Ies JEF IS

where 6, is the Ith wavelet coefficient,

o= [f(Ow(t)dt, Ie.
0

Let now X;, I .7 be empirical wavelet coefficients for the model (2.1),
1
X, = [u(t) dX(2).
0
The model equation (2.1) yields
1
X, =0, + efo W, (t) dW(¢)

and the original functional model (2.1) is translated into the sequence space
model

(3.1) X, =6, + &&, I e,

where & = [iy; dW are standard normal and independent for different I. The
wavelet transform is justified by the following (isometric) properties [cf.
Triebel (1992), page 240].

(IS0O1) For any function f € L,[0, 1],
(3.2) IFIIP = ll6l* == Y 62.
5

(ISO2) There are two constants C; and C, such that
Ciliflls, ., <llolls, ,, <Cslflls, , ,»

s, P9
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where

1/q

2
1/p
Y 21““/“/“(Z|e,|p) L g<
J=Jo <

(33) ol = ’

s, pP,q

J=Jjo <

) 1/p
sup 21(s+1/21/p)(2|01|p) , q = .

3.2. A minimax test. First we restrict the considered set of wavelet
coefficients .# by some subset .~. This procedure is typical for statistical
analysis based on wavelet technique; see for example Donoho, Johnstone,
Kerkyacharian and Picard (1994).

Define the level j, as the minimal integer with

27 > 72,
Set now
z= U
NSA

It is convenient to introduce also the “normalized” observations Y; = £ 1 X,
that is due to (3.1),

Y, =9, + ¢&.
Denote for each j € 7,

(3.4) 5= e L (X7 = %) = DY - 1),

&

Given A > 0, set also

S;(A) = e 2 L[ XP21(1X,] > eX) — £2b(A)]
7
(29 — SV 2) - b))
¥
Here

b(A) = E[£21(1€]> V)]

and ¢ means the standard normal variable.
Given o = (s, p, g, M), define the level J = J (o) €7 by

B £ \4/@s"+ 1)
. 27 = [—
(3.6) ( M) ,

that is,
J=(s"+1/4) " logy(M/s).
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We assume without loss of generality that the right-hand side of this equality
is an integer. Otherwise one can take its integer part. Obviously J depends
on ¢ and J tends to infinity as & tends to zero. In what follows we assume &
to be small enough and J > j,.

Let 7, and _#_ be the partition of the level set 2 into two parts: above
and below o/:

So={Jjo<i<d}, F={jef:j=J}.
Now put for j € 7_,

AN=4/(j—-J+8)m2, j>J
and introduce the test statistics 7'(JJ) given by

(3.7) T(J) =2—J/2[ Y s+ Y sj(Aj)}.

JES, JES_
The test ¢* is defined by

(3.8) ¢* = 1(T(J) > v(J) xe, )
where yx, is the (1 — a)-quantile of the standard normal law,

204+ ) 27+ ) zfd()\j)}

JES JES

(3.9) v2(J) = 27741

and
d(A) = 3E[£21(1¢1> ) — b(V)]".
We finish describing the test ¢* by a few remarks.

REMARK 3.1. The test ¢* depends on o= (s, p,q, M) and &, but this
dependence is only through the value J.

REMARK 3.2. It is easy to check that v(J) converges as & — 0 to the value
v with

v2 =2+ Y 2*d(4y/(k + 8)In2 ).
k=0

Hence this universal constant v can be used in place of v(J) for the test ¢*.

REMARK 3.3. The choice of the thresholds A; of the form Gyj —J was
proposed for the estimation problem in Delyon and Juditsky (1995).

3.3. An adaptive test. Now we describe the structure of the test ¢, from
Theorem 2.4.

The idea of the test is quite clear. For each set o = {s, p, g, M}, one may
determine the level J(o) and the corresponding test procedure ¢* from the
above. Therefore, the range of adaptation .7 can be translated into a range 7
of the form 7 = {J: J,;,, <J <.} and for each J € 7/, we are given the

test procedure ¢(<J). Our adaptive method can be viewed as follows: each test
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¢(J) is to be applied independently and the whole procedure rejects the null
hypothesis if at least one test does. The problem here is that each test has a
finite error probability of the first kind, and the corresponding error probabil-
ity of this composite procedure is too large. To cope with this, we take the
threshold value for each test with an extra growth factor.

More precisely, let oJ ., J,..x be taken by

Jmin = (smax + 1)71 10g2 ‘972’
Jmax = 10g2 872'

and

(3.10) I =y, <d < do.).

It is easy to see that J(o) €2 for any o € . Obviously
(3.11) m, = #(7) <log, £ 2.

Let also T(J) and v(J) be defined by (3.7) and (3.9), respectively. Define the
following test:

(3.12) ¢, = 1( SLLIZ)*T(J)U_I(J) > 2VInlne % .
Je

REMARK 3.4. Now we are in a position to explain the nature of the
log log-factor entering in the adaptive rate of testing. Later we will see that
T(J)/v(J) are under the null, asymptotically standard normal and, more-
over, they are weakly dependent for different /. Hence our test statistic in
(3.12) is the supremum of m,_ weakly dependent asymptotically Gaussian
random variables and its distribution is degenerate around

y2lnm, = V2Inlne™? .

This explains the choice of the testing level in (3.12).

4. Proofs. In this section we prove Theorems 2.3 and 2.4. The result of
Theorem 2.1 for the proposed test ¢ can be easily deduced from the proof of
Theorem 2.4.

Throughout this section, we identify the function f with the set of the
corresponding wavelet coefficients 6 = {6,, I €.7}. Due to ISO2, one may
translate the smoothness condition of the form | f|| B, ,, <M into the condi-
tion

(4.1) 0€06,=/{0:6l, <M}

4.1. Proof of Theorem 2.4. First we study the behavior of the test ¢,
under H,, that is for 6 = 0.

Let the level sets 2 = {j: j, <j <j. ) and 2 ={J: J;, <J < J_ ..} beas
introduced in Section 3.3. In Lemma 4.1, we identify S; from (3.4) with S;(A)

from (3.5) for A = 0.
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LEMmMA 4.1.  The following conditions hold true under H,:
(1) For any A = 0 and each j € 7,
ES,(A) =0,
ES?(A) =27d()),
where d(A) is from (3.9) and particularly d(0) = 1.
(ii) The random variables S,();) are independent for different j and any A;.
(iii) Uniformly inj €7 and |t| < 2In 72,
Py(2777%8; > t)
1—®(¢)

-1, e — 0.

ProoF. The first two statements follow directly from the definition (3.4).
The last statement is an easy consequence of the general results on the rate
of convergence in the central limit theorem for ii.d. random variables [see,
e.g., Amosova (1972)]. The only important fact here is that 2/ — « uniformly

7

in j €7 and each summand in S; has finite moments. O

The next technical result describes the behavior of the test statistics T'(J)
under H,.

LEMMA 4.2. The following statements are fulfilled uniformly in J € 7.
(i) ET(J) =0,
ET*(J) =v%(J);
(ii) Uniformly in |t| < 21n &2,
Py(v™!(J)T(J) > t)
1- @() o

e— 0.

ProoF. The first statement of the lemma can be readily checked using (i)
and (ii) of Lemma 4.1. The second statement is again an application of
general results on the rate of convergence in the central limit theorem [see
Petrov (1975)]. O

The last lemma yields the desirable property of the test ¢, under H,. In
fact, by (1),

Py, =1) < ¥ P(T(J)>2v(J)VInlns?)
Jes!
1
< ) exp{—§4lnln32}
Jeg!

#(.2) In &2
= <
(Ine2)?  (Ine?)”

-0, e— 0.
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Now we turn to studying the power of the test ¢.. Denote

42) g (e) = MV, ifp=2,
. (&)= p v en e y .
o Ml/(4s +1)€4s /(45 +1)t;—8/(p(4s +1)), lfp < 2’

where, recall, s" =s + 1/4 — 1/(2p). Obviously 0(¢) < g,(et,) and it suf-
fices to check that for some ¢ > 0 and any o €.9,

(43) By (8., c0,(2)) = 0.(1).

Let us fix some o = (s, p, ¢, M) €7 and some 6 € O,, that is, 6/, < M.
Define the level J = J(o) by the equality

) {(stg/M)4/(4s+D, if p > 2,

(4.4) er1
(8t82/p/M)2/(2 +1-1/p)

, ifl<p<2.

We will examine the behavior of the statistic 7'(¢J) under P,. The goal is to
show that for 6 from the alternative set, one has with a large P,probability
T(J) > 2v(J)t? that obviously yields the desired assertion.

For the proof, we use the following decomposition:

T(J) =E,T(J) + T(J) — E,T(J).

Denote
! 6
Y= = .
o.(¢)
The condition [|0]* > ¢l @0'(8)|2 can be rewritten as
Iyll* > c.
We will show that for 6 € O, one has
(4.5) E,T(J) = [3lIy]° = ey(o)] 22

with some constant c¢,(o) depending only on ¢ and uniformly bounded for
o €9. We will also prove that for £ small enough,
(4.6) D,T(J) = E,[T(J) — E,T(J)]> <4 + llyl>.

Finally we prove that T'(¢J), being centered and normalized, is asymptotically
normal under P,. Namely, if

T(J) - ET(J)

‘=T

then uniformly in |¢| < In &2,

P(=4(J)>1t)
1-d(t)

(4.7) 1—o0,(1).
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These statements will be proved later on. Now we explain how they imply
the assertion of the theorem. Indeed

Py(b, = 0) < P(T(J) < 2v(J)t?)

< P,(E,T(J) + {(J)YD,T(J) < 20(J)t?)
E,T(J) — 2v(J)t?

YD,T(J)
To prove our assertion, by (4.7), it suffices to check that
E,T(J) — 2v(J)t?
Y

But if 6 € O, is such that

<P, _g(J) >

o0, g— 0.

o1

||’Y||2 = @Tﬁ') > 3cy(0) +6v(J),

then by (4.5) and (4.6),
E,T(J) — 2v(J)t; . t2(Iyl7/2 = e(a) = 20()) .
VDT (J) B 2+ lyll

To check (4.5) and (4.6) we use the following consequence of the smooth-
ness condition [0, , <M.

oo, e— 0.

LEMMA 4.3. Let 6 € ©, and let A; be defined by (3.2), j €7 Then the
following conditions hold:

(1) 27772 3 Y e ?071(16,l < Aje) < cy( o)l
jes
(ii) 27772 % Y 1(l6l = Aje) < ez(o)t?;
JeL I

where cy(0) < 2.
(iii) Uniformly in J € 7.,

e 22772617 — ¥ Y 02| <2M?277/2 0.
iss4 7,

ProoF. Consider first the case p < 2. The condition 6 € 0, yields for
each j € 7 [see (3.3)]:

(4.8) Y16,17 <275 PMP,

7

s' being s + 1/2 — 1/p.
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Now
27772 %" Zg—zelzl(leﬂ < /\js) <2772y Zg—P|0,|PAJ2.-P1(|0,I < Ajs)
JEF I jef S
<2772 % &P Y1617
jes. 7
<eP277/2 ) )\JZ-*I’Z*J'S"’.
JEL
Note that

Y AP <27 r Y (4R 1+ 8) P27 < ey )27 7R,
JESL_ k=0

Here c,(o) is the latest sum and for s’ > 1/2, one gets very roughly c,(o) <
48.

Next, using the definition (4.4) of J and the equality s’ + 1/2p) = s +
1/2+1/@2p) =s" + 1/4, one gets

= ¢2

&£

9 (s'p+1/2)/(s"+1/4)
et2/p
(M/e)p27°]/227‘]le = (M/s)p(—;/.’ )

and (i) is proved for p < 2.

The case p > 2 can be considered in the same way, substituting every-
where 2 in place of p.

To check (ii) we note that for each j by (4.8),

;1(|9,| > \e) < Y (Ae) P16,7 < (A;8) TP,

J J

We proceed further as before and, moreover, one can easily estimate c5(o) <
2.

It remains to check (iii). Let j, be the latest resolution level in Z. Using
again (4.8) we obtain for any j > j_,

2/p »
Y o< |Ylol?| <Mm?2m2E,
7, 7,

J J

Recall that by definition 277- < ¢2 and also the condition sp > 1 gives
s' > 1/2. Hence

(4.9)

e722772|I01° — X L 02| < M2277/%2 ) 27
<% i>i.

<2M?2277/2 - 0,
This completes the proof of the lemma. O
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Now we are ready to show (4.5). One has
ET(J) =277 ¥ YE(Y2-1)+ X YLEJ[Y1(IY,l> A;) - b(A)]|,
ieL I jesf 5

where Y, = £, + &,.
The random errors &; are standard normal and obviously

E,(Y? - 1) =& 7%/.

To estimate the second sum in (4.1), we use the following property of the
standard normal law.

LEMMA 4.4. For any A > 0 and each vy,
B(y,A) =E(y + &)°1(ly + £l > A) — E£21(1€]1 > A) = 1y21(lyl > A).

PrOOF. We assume without loss of generality that y > 0. It is easy to see
that
yEE1(ly + 1> 1) =0
and
E&21(ly + €1 > 2) — E€21(l€1> )) = 0.
This yields
B(y,)) =y P(ly + €1> ) = 2y21(lyl > A). i

By this lemma for each j € 7,

YE[Y21(IY,1> &) = b(A)] = 3 X e 071(16,1 > Aje)
7 7
g2 g2

Now applying Lemma 4.3 we obtain
ET(J) =277 2 Y Yor+5 Y 267 —35 2 Yor1(l6] < A;e)
jes 7 jes JsF
> 3[277/%72)|9)* — M?277/2 — cy(0)t2].
The definition (4.4) of J gives by (4.2) for p > 2,

et,
M

For p < 2, one has similarly

= (et,) P/ETVMA A DE < g, (1,)| 2.

&

2/(4s+1)
9-7/2,-2 _ 82( )

2(4s"+1)

277/%7 % = g % (et2/? /M) =195,(&)| *t2

that completes the proof of (4.5).
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The next step is in estimating D,T'(<J).
Since ¢; and hence Y; are independent for different I one gets

D,T(J) =277 ¥ DY+ ¥ YD,(Y 1(IY;l= A)))|.
JjES, ‘/71 JEL. =]J
Obviously
D,Y?2=E(ls 10, + &I° — Elo %, + &I°)
= E(28710]§I + 612 - 1)2
= 4207 + 2.

To estimate the value D,(Y,*1(|Y;| > A;)) we use the following technical
assertion.

LEMMA 4.5. For each y and any A > 2,

D(ly + £°1(ly + £€1> 1)) < 4y + 21(Iyl > A/2) + AZe™ V75

ProOOF. First we note that for any y, A,
D(ly + éP°1(ly + £1> 1)) < Dly + £I° = 4y* + 2.
Next, one has readily for A > 2 and |y| < A/2,

D(ly + £P1(ly + €1 > 1)) <Ely + £1*'1(ly + £€1> ))
<EIN/2 + £1*1(1A/2 + €] > ))
< MeA/8

and the lemma follows. O

Applying this result, we get

D,T(J) <27 | ¥ ¥ (4 %2 + 2)
jes

+ Z 2(48720]2 + 21(|01| > /\13/2) + /\;e)\]?/g)l

je A
(4.10) IS

< 472277017 + 2770 + 277 Y 271
jes,

+2—J+1[ Y Y1(lel> Ae/2) + L 21/\je”?/sl.

jef 5 jes.
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Obviously
) J
2 Y 2/77 <2y 27k <2,
ies k=1
Y 20 e /8 < ¥ zij(4m)4272(ij+8) < Yot=o
jes j=J k=0

Also, by (ii) of Lemma 4.3

27772 Y Y 1(16]] = A;8/2) < 42
jeF- 7,

and similarly to the above
el
07 (e)

Combining all these estimates, we conclude for £ small enough,

— — 2
e 2277201 =

t2 =|yll*t2.

D,T(J) <4-27772|ylI%t2 + 4 +4-277/2t2 < 4 + ||yl

since 277/%t2 - 0 as & — 0 uniformly in J €. Assertion (4.6) follows.

It remains to establish asymptotic normality of /(<) in the sense of (4.7).
To this end, we note that /() is a centered and normalized sum of indepen-
dent random variables having arbitrary number of moments. Moreover, it is
not difficult to check that the third or fourth absolute moment of /(J) is
bounded uniformly on &, and the desirable asymptotic normality can be
proved by application, for instance, the general results by Amosova (1972).

4.2. Proof of Theorem 2.3. To prove the lower bound from Theorem 2.3,
we apply the Bayes approach which is usual for such statements; see Ingster
(1993). We restrict ourselves to the case with p > 2.

We proceed as follows. First we change a given nontrivial parameter set .7
by a finite subset .7, with the cardinality N, = #(7,) < In & 2. Then for each
o €9, we construct a prior measure mw, which concentrates on the corre-
sponding alternative set =, = {0: 16l , < M, 16l = co,(st,)},

(4.11) 7 () = 1.

The choice of the constant ¢ here will be made precise below.
The whole prior 7, is taken of the form

1
g

“8 z\r
& 0'698

Let P, denote the Bayes measure for the prior 7,. Obviously for any test ¢,

sup sup Py(¢ = 0) > P, (¢ = 0).
ceT 0T, °
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We will show that for a special choice of the set 7, and the priors =,
o € 7,, one has for ¢ small enough

dP

778

=" 4P,

under P,-probability as ¢ — 0. This yields for any test ¢ [see Lehmann
(1959)],

(4.12) Z

-1

Py(d=1) + P, (¢=10) =1~ 0(1)

and hence the result of the theorem.

Now we present the construction of the set .7, and the priors 7, satisfying
(4.11) and (4.12). Let 9 be a nontrivial parameter set with the corresponding
S4,S*, p,q, M. To be more definite and to simplify calculation we assume
that M = 1.

Recall that in the case of p > 2 the adaptive rate is defined as

o, (&) = o,(et,) = (st,)
Let, given o = (s, p, q) € 7, the level j(o) be defined by the equation

(4.13) 277 = (cet,)**HP
or

(4.14) Jj(o) =

with some ¢ € (0, 1).
As usual, if this expression is not an integer, we assume its integer part.
Since j(o) depends on o only through s, we will use also the notation j(s).
Denote

4s/(4s+1)

1 -1
—loga(eet,)

Je =J(8%),
JF=J(s*),
AT) ={jersj. <j=<Jj*)

and define for each j € A7) the value o; = (s}, p, @) by the equality j = j(s;)
or
(4.15) 277 = (cet,)/ Y,
The set 7, consists of g;, j € A9). Now we define for each j a prior m; which
is concentrated on the level j. Namely, let 3 = (9;, I €.%) be a random signal

(vector) with ¥; = 0 for I .7 and ¥; are i.i.d. within .7, with the Bernoulli
distribution of the form
mi (% = tu,) =1/2,
where
(4.16) u. = (Cgt )(4S+2)/(4S+1)'

First we check the condition (4.11) for these priors. One has obviously
9017 = Y u? = 2742
7
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and by (4.13) with s = s; and by (4.15)

2ju2 — (cets)—4/(4s+1)+83/(4s+1) _ (catg)ss/(4s+1) _ c/rf(et )
with o = 0; = (s;, p, q) and ¢ = ¢®/¢<+ D,
Next, in the same way

p — 9Jjs'p p
I91IE =25 Y ul
J
= 9(s+1/2=-1/p)jpQJjy, P
_ (Cé‘t )—(4p(s+1/2))/4s+1(08t )(4s+2)/(4s+1)p =1.
This means that 7(8 € 7, ) =1 and (4.11) is proved.

At the next step we evaluate the asymptotic expansion of the log-likelihood
ln(alP7ij /dP,) for each j € _#(9 ). Denote

I, =c%t?.

LEMMA 4.6. The following expansion holds true uniformly in j € A9 )
under the measure P:

dP,

(4.17) In szj ~1,8,+12/2-0, &-0,
and
Py(S; > ¢)
sup ——— — 1, e—>0
lt]<ln &2 1— (1)

Here S; = 277/2L (& — 1.

PROOF. A similar expansion can be found in Ingster (1993) and we give
only a sketch of the proof.
One has easily for the model (3.1) and the prior 7,
-2_,2

dP 1
L= dP §ln exp{a u & — e 2ul} + Eexp{—aflugfl — & %ul}).

Using the Taylor expansion, one has readily
Lj = Z [%3_2%3(512 - 1) - 1_125_4%?514 + 0(3_6u§§16)]
Notice now that by the definitions (4.16) and (4.13),

e 2y? = 872(08t8)2(4s+2)/(4s+1) _ 2—j/2c2t€2 _ 27‘/218'

&

Then, uniformly in j €_#(9) by the law of large numbers
el T (& - 8) = 1227 ¥ (& - 8) - 0

J J
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and
e 0ulY & =122"72 0 >0
7 I

as ¢ — 0 under the measure P,.
Finally we remark that ¢ *u}L (&’ — 1) = 1,8, and the lemma follows.
O

Now we check (4.12). The definition of =, yields

1
ers:ﬁ Z ij>
s jeAT)

where

N, = #(A9)) = logy(cet,)

4s, +1 4s* +1
and fore < 1

1 1 1 4
ﬁexp(lf) = Fexp(c4 Inlne ) = Fg(ln g2 >0, &-0.

& &

Now the statement (4.12) follows from the next general assertion.

LEmMmA 4.7. Let ({,,,i,n = 1) be a triangle array of independent random
variables on a probability space (Q, %, P) such that

P( gin > t)
(4.18) sup sup |———— — 10, n — o,
i<n |¢<2yinn 1- (I)(t)
If the sequence I, be such that
1
—exp(l2) =0, n— o,
n

then the following convergence holds under the measure P:
1 n
ni-1

PrOOF. The statement of the lemma means the law of large numbers for
the random variables

Z,, = exp{ln n — 13/2}.
For this, it suffices to check [see Petrov (1975)] that
EZ, 1(1¢,1<21,) - 1, n — o,

and

1

2
n-;

1 n
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Using the condition (4.18), one may replace {;, in these statements by a

standard normal ¢ and Z,, by Z = exp{l,{ — 12/2}. To complete the proof it
remains to note that

Eexp{l,(—12/2]1(1¢1<21,) > 1, n-ow

and

n'DZ1(1¢1 < 20,) <n 'DZ <n "l -0, n - o O

Acknowledgments. The author thanks O. Lepski, D. Picard, G. Kerky-
acharian, A. Juditsky and M. Neumann for helpful remarks and discussion.
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