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Abstract

In this article we propose a Weighted Stochastic Mesh (WSM) algo-
rithm for approximating the value of discrete and continuous time opti-
mal stopping problems. In this context we consider tractability of such
problems via a useful notion of semi-tractability and the introduction of
a tractability index for a particular numerical solution algorithm. It is
shown that in the discrete time case the WSM algorithm leads to semi-
tractability of the corresponding optimal stopping problem in the sense
that its complexity is bounded in order by ε−4 logd+2(1/ε) with d being
the dimension of the underlying Markov chain. Furthermore we study
the WSM approach in the context of continuous time optimal stopping
problems and derive the corresponding complexity bounds. Although we
can not prove semi-tractability in this case, our bounds turn out to be the
tightest ones among the complexity bounds known in the literature. We
illustrate our theoretical findings by a numerical example.
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1 Introduction

The theory of optimal stopping is concerned with the problem of choosing a time
to take a particular action, in order to maximize an expected reward or mini-
mize an expected cost. Such problems can be found in many areas of statistics,
economics, and mathematical finance (e.g. the pricing problem of American
options). Primal and dual approaches have been developed in the literature
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giving rise to regression-type Monte Carlo algorithms for high-dimensional op-
timal stopping problems. So far modern literature on numerical analysis of
high-dimensional optimal stopping problems focused almost exclusively on con-
vergence analysis of various simulation-based stochastic algorithms. However,
comparing different algorithms based only on their convergence rates is not pos-
sible since these algorithms may have different costs. Therefore it is important
to carry out complexity analysis of stochastic algorithms for optimal stopping
problems. Such a complexity analysis will provide us with convergence rates of a
stochastic algorithm in terms of its cost and hence can be viewed as a universal
criteria for comparing different algorithms. Complexity analysis has played and
is still playing an important role in numerical analysis of algorithms, see [15]
and the references therein. The key numerical problem studied in this literature
is the computation of integrals by means of deterministic and stochastic (ran-
domised) algorithms. Optimal stopping problems can not be boiled down to the
computation of a single integral but rather require computation of several nested
integrals (dynamic programming principle). Hence the standard concepts and
results from the existing complexity theory can not be directly transferred to
complexity analysis of optimal stopping problems.

One of the most widely adopted regression algorithms by practitioners is
the Longstaff & Schwartz (LS) algorithm. It is based on approximating condi-
tional expectations using least-squares regression on a given basis of functions
in each backward induction step. Longstaff and Schwartz [14] demonstrated
the efficiency of their approach through a number of numerical examples, and
in [6] and [20] general convergence properties of the method were established.
In particular, it follows from Corollary 3.10 in [20] that for a fixed number L
of stopping opportunities and a popular choice of polynomial basis functions
of degree less or equal to m, the error of estimating the corresponding value
function at one point is bounded by

κ 5L

(√
md

N
+

1

mα

)
, (1)

where N is the number of paths used to perform regression, α ≥ 1 is related
to smoothness of the corresponding conditional expectation operator, d is the
dimension of the underlying state space, and κ is some constant independent of
N, d, and α. On the other hand, due to the computation of a (random) pseudo-
inverse at every stopping date, the computational cost of the least-squares MC
algorithm is approximately proportional to κ1Nm

2dL where κ1 is proportional
to the cost of an elementary operation (multiplication for example). This leads
to the following estimate for the complexity of the LS algorithm, that is, the
amount of “elementary” operations needed to construct an approximation for
the value function with accuracy ε.

Proposition 1 For L stopping opportunities and underlying dimension d, the
computational work for achieving an accuracy ε by the LS algorithm is bounded
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by

CL (ε, d) = κ1
L 5(κ2+L)(2+3d/α)

ε2+3d/α
(2)

with κ2 := ln(2κ)/ ln 5.

If we next consider a continuous time optimal stopping problem, then we
need to approximate it by a discrete one with L stopping dates, and then let
L→∞. For instance, let us assume that the error due to the time discretization
is of order L−β for some 0 < β < 1, independent of d. Then, for achieving an
overall accuracy of order ε, we may take L = κ3ε

−1/β for some κ3 > 0, which
gives by (2) the complexity bound

C∞(ε, d) =
κ1κ35(κ2+κ3ε

−1/β)(2+3d/α)

ε2+3d/α+1/β
. (3)

It follows that the complexity of the LS algorithm for continuous time optimal
stopping problems may even grow faster than exp(ε−1/β). Similar complexity
bounds can be derived for other simulation based regression algorithms, such
as the value iteration algorithm by Tsitsiklis & van Roy [19] (TV). See also for
example, [8] for more general regression algorithms or [10] for a novel nested
type MC approach with complexity which is independent of d but exponential
in ε−1, unfortunately.

An interesting question is whether the complexity bounds (2) and (3) for
the discrete and continuous time stopping problems, respectively, are attained
in worst cases. The appearance of 1/ε in the exponential in (3) and the number
of exercise dates L in the exponential in (2), respectively, is of course due to the
appearance of L in the exponential of the convergence estimate (1). In fact, the
latter appearance is observed in all error bounds concerning regression-based
backward dynamic programs for optimal stopping in the literature (e.g. [8],
[20]). It also appears in a later result by [21], based on dependent samples, and
in the convergence analysis by [4] in the context of optimal stopping of McKean-
Vlasov processes. This factor seems to be unavoidable because at each backward
step the projection error of the estimated continuation function needs to be
bounded in relation to the projection error of the true continuation function.
For details, see for instance [20], Theorem 3.1 versus Theorem 3.3, and [21],
Theorem 5.1 versus Theorem 5.6. It should also be noted that if we discretize
a continuous time optimal stopping problem, then conditional variance of the
underlying process decreases from one exercise date to the next. However, this
decrease is typically of order 1/L with L being the number of exercise dates
and as such is not fast enough to remove exponential dependence on L in the
above convergence estimates. Thus, in view of the above considerations, the
complexity bounds (2) and (3) for the LS algorithm seem to be sharp in some
sense, but, a rigorous proof of this assertion seems highly nontrivial and therefore
beyond the scope of this article.

An important notion in complexity analysis is tractability of a numerical
problem. A d-dimensional numerical problem, for example, computation of an
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integral
∫

[0,1]d
f(x) dx is called tractable, if there is an algorithm to solve it with

complexity C(ε, d) satisfying

lim
d+ε−1↗∞

log C (ε, d)

d+ ε−1
= 0. (4)

Unfortunately in the case of optimal stopping problems this definition is not
very meaningful and rather restrictive. It turns out that for all regression-
type algorithms one has, already in the case of discrete time optimal stopping
problems,

lim sup
d+ε−1↗∞

log C(ε, d)

d+ ε−1
=∞ (5)

(based on the convergence rates known in the literature), that is, any discrete
time optimal stopping problem is intractable according to this definition. As an
example consider again the LS algorithm in the case of analytic (hence infinitely
smooth) continuation functions. Using results from [18], it can be shown that
the error (cf. (1)) of the estimated value function in this case has the form:

5L

(√
md

N
+ e−θm

)
, θ > 0,

where m is again the maximal polynomial degree. Similar to Proposition 1, it
then follows that

CL(ε, d) = L
52L

ε2

(
log

5L/θ

ε1/θ

)3d

(6)

is an upper bound for the LS complexity and so we get (5) (take ε−1 = d
and let d ↗ ∞). Thus even in the case of analytic continuation functions
tractability of discrete time optimal stopping problems in the sense of (4) can not
be established by the LS algorithm. However, the latter observation also applies
to any other simulation based algorithm addressed in this paper, including the
WSM algorithm that we are going to present below.

In fact, the problem with criterion (4) is that it puts too much weight on the
dimension d on the one hand, but on the other hand, is too relaxed regarding the
dependence of C(ε, d) on ε. For instance, it is not difficult to see that it renders a
problem with an algorithmic complexity of order d2 exp(ε−1/ log log ... log ε−1)
to be (weakly) tractable while an algorithm with complexity 2d/ε is not. How-
ever, running an algorithm with a complexity growth of exp(ε−1/ log log ... log ε−1),
hence faster than any ε−k, k ∈ N, when ε ↘ 0, is in practice impossible (even
when d = 1). In the setting of optimal stopping problems, the dimension d is
typically fixed, though can be large. Therefore in our paper we propose a more
meaningful definition of tractability based on the quantity called tractability
index.

Definition 2 (i) For an algorithm with complexity C (ε, d) the so-called tractabil-
ity index is defined as

ΓC
def
= lim sup

d↗∞
lim sup
ε↘0

log C (ε, d)

d log(1/ε)
. (7)
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(ii) We call a problem semi-tractable if there is an algorithm to solve it which
has zero-tractability index, that is,

ΓC = 0. (8)

For example, it is easily seen from Proposition 1 that for continuation functions
with smoothness α the discrete time LS algorithm has tractability index ΓC =
3/α, whereas in the case of analytic continuation functions (6) implies

log CL(ε, d)

d log(1/ε)
.

logL+ log 1
ε + d log log 1

ε

d log 1
ε

,

hence Γα=∞
C = 0 and semi-tractability in our sense follows. However, we see

from (3) (for α <∞) and a similar expression obtained from (6) in the case of
analytic continuation functions, that the LS algorithm has tractability index∞
for continuous time optimal stopping problems.

In this paper we introduce Weighted Stochastic Mesh (WSM) algorithm and
show (under mild assumptions) that a discrete time optimal stopping prob-
lem may be computed by this algorithm with tractability index 0, and so is
semi-tractable in the sense of Definition 2-(ii). Furthermore, we show that the
continuous time stopping problems may be computed via this algorithm with
finite tractability index equal to 2. The construction of this algorithm in the
discrete time case follows closely the idea of the mesh method by Broadie and
Glasserman [5]. By enhancing the latter method with a suitable regularization,
we prove that the complexity of the resulting WSM algorithm satisfies (8) (un-
der mild conditions), provided the transition densities of the underlying Markov
chain are analytically known or can be well approximated. It turns out that
for solving a continuous time optimal stopping problem we do not need to as-
sume that the transition densities are known but can use Gaussian transition
densities of the corresponding Euler scheme. This results in an algorithm with
complexity of order cdε−(2d+14) for some constant c > 1. Although this does not
imply semi-tractability of continuous time optimal stopping problems, the pro-
posed algorithm is very simple and its complexity remains provably polynomial
in ε−1 as opposed to the LS approach. In particular, it follows that the WSM
algorithm for continuous time optimal stopping problems has tractability index
2, and as such has the smallest tractability index among the existing algorithms
for continuous-time optimal stopping problems.

Let us remark that a complete convergence analysis as well as complexity
analysis of the stochastic mesh method for optimal stopping in discrete and
continuous time is still missing in the literature, apart from some preliminary
results for the discrete case in Agarwal and Juneja [1]. But, [1] does not trace
the dependence of the errors on the underlying dimension and the number of
stopping times, and is moreover based on a rather restrictive assumption of
a compact state space. Further, the WSM algorithm presented in this paper
bears some similarities to the random grid algorithm of Rust [16]. However, the
Rust [16] algorithm was constructed and studied for Markov Decision Problems
in discrete time and is not directly applicable to optimal stopping problems.
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As such the corresponding convergence analysis in [16] differs in several re-
spects. For example, it assumes a compact state space and Lipschitz continuity
of transition densities with Lipschitz constant basically not depending on the di-
mension. (The latter assumption is violated by a d-dimensional Gaussian kernel
with small enough variance, due to exponentially growing Lipschitz constants
in d, for instance.)

The paper is organized as follows. A description of the proposed algorithm
is given in Section 2. Section 2.2 is devoted to convergence and complexity
analysis of our algorithm. In Section 3 we turn to continuous time optimal
stopping problems. Section 4 concisely highlights the main achievements of the
paper. Some numerical experiments are presented in Section 5 and all proofs
are collected in Section 6.

2 Discrete time optimal stopping problems

We begin with the description of the WSM algorithm for discrete time optimal
stopping problems. Let us assume a finite set of stopping dates {0, . . . , L} , for
some natural L > 0, and let (Zl, l = 0, . . . , L) be a Markov chain in Rd, adapted
to a filtration (Fl, l = 0, . . . , L) . For a given set of nonnegative reward functions
gl, l = 0, . . . , L, on Rd, we then consider the discrete Snell envelope process:

Ul = Ul(Zl)
def
= esssup

τ∈Tl,L
El [gτ (Zτ )] , (9)

where Tl,L stands for the set of F-stopping times with values in the set {l, . . . , L},
and El := EFl stands for the Fl-conditional expectation, and the measurable
functions Ul(·) exist due to Markovianity of the process (Zl)l≥0.

For simplicity and without loss of generality we assume that the Markov
chain (Zl)l≥0 is time homogeneous with l-steps transition density denoted by
pl(y|x) and one-step density denoted by p(y|x) = p1(y|x), so that

P [Zk+1 ∈ dy|Zk = x] = p(y|x)dy, p(y|x) > 0,

for all x, y ∈ Rd. Fix some x0 ∈ Rd and assume that Z0 = x0. It is well known
that the Snell envelope (9) satisfies the dynamic program principle,

UL(ZL) = gL(ZL), (10)

Ul(Zl) = max {gl(Zl),E [Ul+1(Zl+1)|Zl]} , l = 0, . . . , L− 1.

Next we fix some R > 0 and define a truncated version of the above dynamic
program via

ŨL(ZL) = gL(ZL) · 1ZL∈BR , (11)

Ũl(Zl) = max
{
gl(Zl),E

[
Ũl+1(Zl+1)

∣∣∣Zl]} · 1Zl∈BR , l = 0, . . . , L− 1,
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where BR
def
= {z : |z − x0| ≤ R} . Thus, by construction, Ũl vanishes outside the

ball BR. Also by construction it holds that

‖Ũl‖∞ ≤ GR
def
= max

0≤l≤L
sup
z∈BR

gl(z), (12)

which is easily seen by backward induction. In view of (11) we may write

E
[
Ũl+1(Zl+1)

∣∣∣Zl = x
]

=

∫
Ũl+1(y)

p(y|x)

pl+1(y|x0)
pl+1(y|x0) dy.

Now assume that we have a set of trajectories Z
(n)
l , l = 0, . . . , L, with Z

(n)
0 = x0,

n = 1, . . . , N, simulated according to the one-step transition density p, and
consider the approximation:

E
[
Ũl+1(Zl+1)

∣∣∣Zl = x
]
≈ 1

N

N∑
n=1

Ũl+1(Z
(n)
l+1)

p(Z
(n)
l+1|x)

pl+1(Z
(n)
l+1|x0)

,

where in view of the Chapman-Kolmogorov equation

pl+1(Z
(n)
l+1|x0) =

∫
p(Z

(n)
l+1|z)pl(z|x0) dz ≈ 1

N

N∑
m=1

p(Z
(n)
l+1|Z

(m)
l ).

Hence we have approximately

E
[
Ũl+1(Zl+1)

∣∣∣Zl = x
]
≈

N∑
n=1

Ũl+1(Z
(n)
l+1)

p(Z
(n)
l+1|x)∑N

m=1 p(Z
(n)
l+1|Z

(m)
l )

. (13)

We thus propose the following algorithm. We start with

UL(Z
(n)
L )

def
= gL(Z

(n)
L )1

Z
(n)
L ∈BR

for n = 1, . . . , N. Once U l+1 is constructed on the grid for 0 < l+ 1 ≤ L, we set

U l(Z
(r)
l )

def
= max

{
gl(Z

(r)
l ),

N∑
n=1

U
(n)

l+1(Z
(n)
l+1)

p(Z
(n)
l+1|Z

(r)
l )∑N

m=1 p(Z
(n)
l+1|Z

(m)
l )

}
1
Z

(r)
l ∈BR

,

(14)
for r = 1, . . . , N. By construction, each function U l vanishes outside the ball
BR. Working all the way down to l = 0 results in the approximation:

U0 = max

[
g0(x0),

N∑
n=1

U
(n)

1 (Z
(n)
1 )

p(Z
(n)
1 |x0)∑N

m=1 p(Z
(n)
1 |x0)

]

for U0. As such the presented algorithm is closely related to the mesh method
of Broadie and Glasserman [5] apart from truncation at level R and a special
choice of weights.
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2.1 Cost estimation

Let us estimate the cost of carrying out the backward dynamic program (14).

One needs to compute p(Z
(n)
l+1|Z

(m)
l ) for all l = 1, . . . , L, n, m = 1, . . . , N. This

can be done at a cost of order N2Lc
(d)
f , where c

(d)
f is the cost of evaluating a

(typical) function of 2d arguments. In the typical situation c
(d)
f is proportional

to d. The evaluation of

1

N

N∑
m=1

p(Z
(n)
l+1|Z

(m)
l )

for l = 1, ..., L, n = 1, ..., N, has a cost of order N2Lc∗ with c∗ being the cost

of an elementary numerical operation, which is negligible if c∗ � c
(d)
f . So the

overall cost of carrying out the backward dynamic program (14) is of order

N2Lc
(d)
f .

2.2 Error and complexity analysis

In this section we analyze convergence of the WSM estimate (14) to the solution
of the discrete optimal stopping problem (9) for l = 0 and a fixed x0 ∈ Rd as

N →∞. Let us first bound a distance between Ul and Ũl, l = 0, . . . , L.

Proposition 3 With

εl,R
def
=

∫
|x−x0|>R

Ul(x)pl(x|x0) dx

l = 0, . . . , L, it holds that∫ ∣∣Ul(x)− Ũl(x)
∣∣pl(x|x0) dx ≤

L∑
j=l

εj,R. (15)

Proposition 4 Suppose that

max
0≤l≤L

gl(x) ≤ cg(1 + |x|), x ∈ Rd (16)

and that

E

[
max
l≤l′≤L

|Zl′ |
∣∣∣∣Zl = x

]
≤ cZ(1 + |x|), x ∈ Rd. (17)

Suppose further that for some κ, α > 0, and l = 1, . . . , L,

0 < pl(y|x) ≤ κ
(2παl)d/2

e−
|x−y|2

2αl (18)

for all x, y ∈ Rd. One then has∫ ∣∣Ul(x)− Ũl(x)
∣∣pl(x|x0) dx

≤ Lcgκ
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
2d/4e−

R2

8αL . (19)
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Next we control the discrepancy between U0 and Ũ0.

Proposition 5 With

F 2
R

def
= max

1≤l≤L

∫ ∫
|y−x0|≤R

p2(y|x)

pl+1(y|x0)
pl(x|x0) dxdy, (20)

and N such that (1 + FR) /
√
N < 1, it holds that

E
[∣∣U0 − Ũ0

∣∣] ≤ (3 +
√

2
)
LGR

1 + FR√
N

.

Corollary 6 Under the assumptions of Proposition 4, we have for (20) the
estimate

F 2
R ≤

κ
(2πα)d/2

Vol(BR) =
κRd

(2α)d/2Γ (1 + d/2)
≤ κ (e/α)

d/2
Rdd−d/2,

where the last inequality follows from Γ (1 + a) ≥ aae−a for any a ≥ 1/2. Then
by combining (19) with Proposition 5 we obtain the error estimate,

E
[∣∣U0 − U0

∣∣] ≤ Lcgκ (1 + cZ + cZ |x0|+ cZ
√
dαL

)
2d/4e−

R2

8αL

+
(

3 +
√

2
)
Lcg(1 +R)

1 + κ1/2 (e/α)
d/4

Rd/2d−d/4√
N

. (21)

Proposition 7 Under the assumptions of Proposition 4 the complexity of the
WSM algorithm is bounded from above by

C(ε, d) = c1α
2c4gκ2c

(d)
f cd2L

d+7ε−4

× logd+2

L (1 + cZ + cZ |x0|) e
cZ
√
αL

1+cZ+cZ |x0| 23/4 (cgκ ∨ 1)

ε

 , (22)

where c1 > 0 and c2 > 1 are natural constants and c
(d)
f stands for the cost of

computing the transition density pl(y|x) at one point (x, y).

Corollary 8 For a fixed L > 0 the discrete time optimal stopping problem (9)
with g and (Zl)l≥0 satisfying (16), (17) and (18) is semi-tractable, provided that
the complexity of computing the transition density pl(y|x) at one point (x, y) is
at most polynomial in d. Different approximation algorithms for discrete time
optimal stopping problems can be compared using the tractability index (7). For
example, it follows from (2) that the tractability index of the LS approach is equal
to 3/α. If the continuation functions are analytic, then the tractability index for
the LS approach becomes zero. Moreover from inspection of Theorem 2.4 in [3],
we see that the Quantization Tree Method (QTM) has tractability index 2.
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LS WSM QTM
3/α 0 2

Table 1: Tractability index Γ of different algorithms for discrete time optimal
stopping problems

2.3 Approximation of the transition density

A crucial condition for semi-tractability in the discrete exercise case is the avail-
ability of the transition density p(y|x) of the chain (Zl)l≥0 in a closed (or cheaply
computable) form. However, we can show that, if a sequence of approximating
densities pn(y|x), n ∈ N, converging to p(y|x) can be constructed in such a way
that ∣∣∣∣pn(y|z)− p(y|z)

pn(y|z)

∣∣∣∣ . (1 + |y − x0|m + |z − x0|m)
n

n!
, y, z ∈ BRn (23)

for some m ∈ N and a sequence Rn ↗∞, n↗∞, then under proper assump-
tions on the growth of Rn and the cost of computing pn (in fact it should be at
most polynomial in d), one can derive a complexity bound C(ε, d) satisfying

lim
ε↘0

log C(ε, d)

log 1
ε

is finite and does not depend on d .

The proof involves a (rather straightforward) extension of the present one based
on exact transition densities. But, on the one hand, one of the main results in
this paper, tractability index 2 of the continuous time stopping problem, does
not rely on transition density approximation, and on the other hand, such a
proof would entail a notational blow up and might detract the reader from the
main lines, therefore the details are omitted.

To construct a sequence of approximations pn(y|z) satisfying the assump-
tion (23), one can use various small-time expansions for transition densities of
stochastic processes, see, for example, [2] and [13]. Let us exemplify this type
of approximation in the case of one-dimensional diffusion processes of the form:

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x0,

where b is a bounded function, twice continuously differentiable, with bounded
derivatives and σ is a function with three continuous and bounded derivatives
such that there exist two positive constants σ◦, σ

◦ with σ◦ ≤ σ(x) ≤ σ◦. Con-
sider a Markov chain (Zl)l≥0 defined as a time discretization of (Xt)t≥0, that

is, Zl
def
= X∆l, l = 0, 1, 2, . . . for some ∆ > 0. Under the above conditions the

following representation for the (one-step) transition density p of the chain Z is
proved in [9] (see also [7] for more general setting):

p(y|x) =
1√

2π∆

1

σ(y)
exp

(
− (s(x)− s(y))2

2∆

)
U∆(s(x), s(y)), x, y ∈ R,
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with U∆(x, y) = R∆(x, y) exp
[∫ x

0
b̄(z) dz −

∫ y
0
b̄(z) dz

]
,

R∆(x, y) = E

[
exp

(
−∆

∫ 1

0

ρ̄(x+ z(y − x) +
√

∆Bz) dz

)]
, (24)

where Bz is a standard Brownian bridge, s(x) =
∫ x

0
dy
σ(y) , g = s−1 and

ρ̄ = (b̄2 + b̄′)/2 with b̄ = (b/σ) ◦ g − σ′ ◦ g/2.

Note that the expectation in (24) is taken with respect to the known distribution
of the Brownian bridge Bz. By expanding the exponent in (24) into Taylor series,
we get for ∆ small enough

p(x|y) =
1√

2π∆

1

σ(y)
exp

(
− (s(x)− s(y))2

2∆

)
× exp

[∫ x

0

b̄(z) dz −
∫ y

0

b̄(z) dz

] ∞∑
k=0

∆k

k!
ck(x, y)

with

ck(x, y) = (−1)kE

[(∫ 1

0

ρ̄(x+ z(y − x) +
√

∆Bz) dz

)k]
.

If ρ̄ is uniformly bounded by a constant D > 0, then the above series converges
uniformly in x and y for all ∆ small enough. Set

pn(x|y) =
1√

2π∆

1

σ(y)
exp

(
− (s(x)− s(y))2

2∆

)
× exp

[∫ x

0

b̄(z) dz −
∫ y

0

b̄(z) dz

]{ n∑
k=0

∆k

k!
ck(x, y)

}
.

It obviously holds pn(y|x) > 0 for ∆ < ∆0(D) and∣∣∣∣pn(y|z)− p(y|z)
pn(y|z)

∣∣∣∣ ≤ (∆D)n

(1−∆D exp(∆D))
(25)

uniformly for all x, y ∈ R. Hence the assumption (23) is satisfied with m = 0,
provided that ∆ < ∆0 for some ∆0 depending only on D. Similarly if ρ̄ ≤ 0,
then (23) holds. To sample from pn we can use the well-known acceptance
rejection method which does not require the exact knowledge of a scaling factor∫
pn(y|x) dy.

3 Continuous time optimal stopping for diffu-
sions

In this section we consider diffusion processes of the form

dXi
s = bi(Xs) ds+

m∑
j=1

σij(Xs) dW
j
s , Xi

0 = xi0, i = 1, . . . , d, (26)

11



where b : Rd → Rd and σ : Rd → Rd×m, are Lipschitz continuous and W =
(W 1, . . . ,Wm) is a m-dimensional standard Wiener process on a probability
space (Ω,F , P ). As usual, the (augmented) filtration generated by (Ws)s≥0 is
denoted by (Fs)s≥0. We are interested in solving optimal stopping problems of
the form:

U?t = esssup
τ∈Tt,T

E[e−r(τ−t)f(Xτ )|Ft], (27)

where f is a given real valued function on Rd, r ≥ 0, and Tt,T stands for the
set of stopping times τ taking values in [t, T ]. The problem (27) is related to
the so-called free boundary problem for the corresponding partial differential
equation. Let us introduce the differential operator Lt :

Ltu(t, x) =
1

2

d∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(t, x) +

d∑
i=1

bi(x)
∂u

∂xi
(t, x),

where

aij(x) =

d∑
k=1

σik(x)σjk(x).

We denote by Xt,x
s (or Xt,x(s)), s ≥ T, the solution of (26) starting at moment

t from x : Xt,x
t = x. Denote by u(t, x) a regular solution of the following system

of partial differential inequalities:

∂u

∂t
+ Ltu− ru ≤ 0, u ≥ f, (t, x) ∈ [0, T )× Rd, (28)(

∂u

∂t
+ Ltu− ru

)
(f − u) = 0, (t, x) ∈ [0, T )× Rd,

u(T, x) = f(x), x ∈ Rd,

then under some mild conditions (see, e.g. [11])

u(t, x) = sup
τ∈Tt,T

E[e−r(τ−t)f(Xt,x
τ )] , (t, x) ∈ [0, T ]× Rd, (29)

that is, u(t, x) = U?t (x).
With this notation established, it is worth discussing the main issue that we

are going to address in this section. Our goal is to estimate u(t, x) at a given
point (t0, x0) with accuracy less than ε by an algorithm with complexity C?(ε, d)
which is polynomial in 1/ε. As already mentioned in the introduction some well
known algorithms such as the regression ones fail to achieve this goal (at least
according to the existing complexity bounds in the literature).

Let us introduce the Snell envelope process:

U?t
def
= esssupτ∈Tt,T EFt [g(τ,Xτ )] , (30)

where (somewhat more general than in (27)) g is a given nonnegative function
on R≥0 × Rd. In the first step we perform a time discretization by introducing

12



a finite set of stopping dates tl = lh, l = 1, . . . , L, with h = T/L and L some
natural number, and next consider the discretized Snell envelope process:

U◦tl(Xtl)
def
= esssup

τ∈Tl,L
EFtl [g(τ,Xτ )] ,

where Tl,L stands for the set of stopping times with values in the set {tl, . . . , tL}.
Note that the measurable functions U◦tl(·) exist due to Markovianity of the pro-
cess X. The error due to the time discretization is well studied in the literature.
We will rely on the following result which is implied by Thm. 2.1 in [3] for
instance.

Proposition 9 Let g : [0, T ] × Rd → R be Lipschitz continuous and p ≥ 1.
Then one has that

max
l=0,...,L

∥∥U?tl(Xtl)− U◦tl(Xtl)
∥∥
p
≤ c◦e

C◦T (1 + |x0|)
L

,

where the constants c◦, C◦ > 0 depend on the Lipschitz constants for b, σ, and
g, respectively.

In order to achieve an acceptable discretization error we choose a sufficiently
large L, and then concentrate on the computation of U◦.

In the next step we approximate the underlying process X using some strong
discretization scheme on the time grid ti = iT/L, i = 0, . . . , L, yielding an
approximation X. It is assumed that the one step transition densities of this
scheme are explicitly known. The simplest and the most popular scheme is the
Euler scheme,

X
i

tl+1
= X

i

tl
+ bi(Xtl)h+

m∑
j=1

σij(Xtl)
(
W j
tl+1
−W j

tl

)
, X

i

0 = xi0, (31)

i = 1, . . . , d, which in general has strong convergence order 1/2, and the one-step
transition density of the chain (Xtl+1

)l≥0 is given by

p̄h(y|x)
def
=

1√
(2πh)

d |Σ|
exp

[
−1

2
h−1(y − x− b(x)h)>Σ−1(y − x− b(x)h)

]
(32)

with Σ = σσ> ∈ Rd×d and h = T/L. Now we will turn to the discrete time
optimal stopping problem with possible stopping times {tl = lh, l = 0, . . . , L}.
To this end we introduce the discrete time Markov chain Zl

def
= Xtl adapted

to the filtration (Fl)
def
= (Ftl), and gl(x)

def
= g(tl, x) (while abusing notation

slightly) and consider the discretized Snell envelope process

Utl(Xtl)
def
= esssup

τ∈Tl,L
EFtl

[
g(τ,Xτ )

]
= esssup

ι∈Il,L
EFl [gι(Zι)]

def
= Ul(Zl), (33)
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where Il,L stands for the set of stopping indices with values in {l, . . . , L}, and the
measurable functions Utl(·) (or Ul(·)) exist due to Markovianity of the process
X (or Z). The distance between U and U◦ is controlled by the next proposition.

Proposition 10 There exists a constant CEuler > 0 depending on the Lipschitz
constants of b, σ, and g, such that

max
l=0,...,L

E
[∣∣U◦tl(Xtl)− Utl(Xtl)

∣∣] ≤ CEuler
√
h.

Thus, combining Proposition 9 and Proposition 10 yields:

Corollary 11 If X is constructed by the Euler scheme with time step size h =
T/L, where L is the number of discretization steps, then under the conditions
of Proposition 9 and Proposition 10 we have that

E [|U?0 (x0)− U0(x0)|] . CEuler
√
h for h→ 0, (34)

where . stands for inequality up to constant depending on c◦, C◦ and CEuler.

Since the transition densities of the Euler scheme are explicitly known (see
(32)), the WSM algorithm can be directly used for constructing an approx-
imation U0(x0) based on the paths of the Markov chain (Zl). To derive the
complexity bounds of the resulting estimate, we shall make the following as-
sumptions.

(AG) Suppose that cg > 0 is such that

g(t, x) ≤ cg (1 + |x|) for all 0 ≤ t ≤ T, x ∈ Rd. (35)

(AX) Assume that there exists a constant cX̄ > 0 such that for all 0 ≤ l ≤ L,

EFtl

[
sup

l≤l′≤L

∣∣X l′h

∣∣ ∣∣∣X lh = x
]
≤ cX̄ (1 + |x|) , x ∈ Rd, (36)

uniformly in L (hence h). This assumption is satisfied under Lipschitz
conditions on the coefficients of the SDE (26), and can be proved using
the Burkholder-Davis-Gundy inequality and the Gronwall lemma.

(AP) Assume furthermore that
(
X lh, l = 0, . . . , L

)
is time homogeneous with

transition densities plh(y|x) that satisfy the Aronson type inequality: there
exist positive constants κ and α such that for any x, y ∈ Rd and any l > 0,
it holds that

0 < plh(y|x) ≤ κ
(2παlh)d/2

e−
|x−y|2
2αlh .

This assumption holds if the coefficients in (26) are bounded and σ is
uniformly elliptic.

The next proposition provides complexity bounds for the WSM algorithm
in the case of continuous time optimal stopping problems.

14



Proposition 12 Assume that the assumptions (AG), (AX) and (AP) hold,
then

• the cost of computing U0(x0) in (33) for a fixed L > 0 with precision ε > 0
via the WSM algorithm is bounded from above by

C(ε, d) = c1α
2c4gκ2c

(d)
f cd2

T d+7

hd+5

× ε−4 logd+2

 T
h (1 + cX̄ + cX̄ |x0|) e

cX̄

√
αT

1+cX̄+cX̄ |x0| 23/4 (cgκ ∨ 1)

ε

 . (37)

• the cost of computing U?0 (x0) with an accuracy ε > 0 via the WSM algo-
rithm is bounded from above by

C?(ε, d) = c1α
2c4gκ2c

(d)
f cd2

T d+7

ε2d+14

× logd+2

T (1 + cX̄ + cX̄ |x0|) e
cX̄

√
αT

1+cX̄+cX̄ |x0| 23/4 (cgκ ∨ 1)

ε

 . (38)

The first statement follows directly from Proposition 7 by taking in (22),
α = αh, cZ = cX̄ , and L = T/h. Then by setting h � ε2 we obtain (38) (with
possibly modified natural constants c1, c2).

Discussion As can be seen from (38),

ΓWSM = lim
d↗∞

lim
ε↘0

log C?(ε, d)

d log ε−1
= 2 (39)

and this shows the efficiency of the proposed algorithm as compared to the
existing algorithms for continuous time optimal stopping problems at least as
far as the tractability index is concerned. Indeed, the only algorithm available
in the literature with a provably finite limit of type (39) is the quantization
tree method (QTM) of Bally, Pagès, and Printems [3]. Indeed, by tending the
number of stopping times and the quantization number to infinity such that the
corresponding errors in Thm. 2.4-b in [3] are balanced, we derive the following
complexity upper bound

C?QTM (ε, d) = O

(
1

ε6d+6

)
(40)

Hence ΓQTM = 6.
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LS WSM QTM
∞ 2 6

Table 2: Tractability index Γ of different algorithms for continuous time optimal
stopping problems.

4 Summary

For discrete time optimal stopping problems we have established semi-tractability
for the proposed WSM algorithm with respect to rather general Markov chains
governed by certain transition kernels. In particular, apart from assumption
(17) on the spatial decay of such kernels and some growth condition on the
pay-off, no further smoothness assumptions are imposed. As a rule, if both
the transition kernels and the rewards are non-smooth, the continuation func-
tions may be smooth only up to some finite degree. (Examples may be easily
constructed.)

In the most common case of infinitely smooth continuation functions, many
regression algorithms including the LS and TV algorithms are also semi-tractable
for discrete time optimal stopping problems. But when passing on to continuous
stopping problems, the tractability index of the WSM method remains bounded
(equal to two) while the tractability index of the regression methods tends to
infinity.

5 Numerical experiments

In the following experiments1 we illustrate the WSM algorithm in the case of
continuous time optimal stopping problems. A lower bound for the value func-
tion u(t0, x0) at a given point (t0, x0) via the WSM algorithm can be obtained
using a suboptimal policy computed on an independent set of trajectories. This
policy can be constructed either directly via (13) or by using an interpolation
of the likelihood weights

p(Z
(j)
l+1|·)∑N

m=1 p(Z
(j)
l+1|Z

(m)
l )

.

The fastest and simplest way to do this is to use the nearest neighbor interpola-
tion based on training set of trajectories, in all experiments below the number
of neighbors was set to 500.

5.1 American put option on a single asset

In order to illustrate the performance of the WSM algorithm in continuous time,
we consider a financial problem of pricing American put option on a single log-

1The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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Brownian asset

Xt = X0 exp(σWt + (r − σ/2)t), (41)

with r denoting the riskless rate of interest, assumed to be constant, and σ
denoting the constant volatility. The payoff function is given by g(x) = (K−x)+

and a fair price of the option is given by

U0 = sup
τ∈T [0,T ]

E
[
e−rτg(Xτ )

]
.

No closed-form solution for the price of this option is known, but there are
various numerical methods which give accurate approximations to U0. The pa-
rameter values used are r = 0.08, σ = 0.20, δ = 0, K = 100, T = 3. An accurate
estimate for the true price obtained via a binomial tree type algorithm is 6.9320
(see [12]). In Figure 1 we show lower bounds due to WSM, the least squares
approach of Longstaff and Schwartz [14] (LS) and the value function regression
algorithm of Tsitsiklis and Van Roy [19] (VF) as functions of the number of
stopping times L forming a uniform grid on [0, T ]. These lower bounds are con-
structed using a suboptimal stopping rule due to estimated continuation values
evaluated on a new independent set of trajectories. The maximal degree of
polynomials used as basis functions in LS and VF are indicated by the numbers
(2 and 4) in the legend. As can be seen WSM lower bounds are more stable
when L increases. The VF lower bounds seem to diverge as L→∞. A similar
behavior of regression algorithms for increasing L was observed in [17].

5.2 American max-call on five assets

Here a model with d = 5 identically distributed assets is considered, where each
underlying has dividend yield δ. The risk-neutral dynamic of assets is given by

dXk
t

Xk
t

= (r − δ)dt+ σdW k
t , k = 1, . . . , d,

where W k
t , k = 1, . . . , d, are independent one-dimensional Brownian motions

and r = 0.05, δ = 0.1, σ = 0.2. At any time t ∈ [0, T ] with T = 3 the holder of
the option may exercise it and receive the payoff

g(Xt) = (max(X1
t , . . . , X

d
t )−K)+.

We consider the approximations of this continuous time American option by dis-
crete time American options with stopping possibilities ti = iT/L, i = 0, . . . , L,
and apply the WSM approach to construct a lower bound. The results for
different L are presented in Figure 2 where also the related results for the LS
algorithm with a polynomial basis of order 2 are reported.
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Figure 1: Lower bounds for the price of a one-dimensional American put op-
tion approximated using different methods and a uniform grid tk = kT/L, k =
0, . . . , L, of exercise dates. The numbers of training paths are Ntrain = 1000 (a)
and Ntrain = 2000 (b), and the number of new trajectories used to construct
lower bounds is Ntest = 20000 in both cases. In LS and VF regression methods
a polynomial basis of degree 2 and 4 is used.

6 Proofs

6.1 Proof of Proposition 1

For achieving a target accuracy of order ε it is reasonable to divide the error
equally over the variance and the bias part of (1). One thus chooses m such
that κ5L/mα ≈ ε/2, that is, m ≈ (2κ5L/ε)1/α, and then takes N such that
κ5Lmd/2/N1/2 ≈ ε/2, i.e. N ≈ (2κ)252Lmd/ε2, yielding a computational work
load CL (ε, d) = κ1Nm

2dL as stated.

6.2 Proof of Proposition 3

For l = L the statement reads∫ ∣∣∣UL(x)− ŨL(x)
∣∣∣ pL(x|x0)dx =

∫
1|x−x0|>R g(x)pL(x|x0)dx = εL,R,

so then it is true. Suppose (15) is true for 0 < l + 1 ≤ L. Then, by using

|max(a, b)−max(a, c)| ≤ |b− c| and the fact that Ũl(x) vanishes for |x− x0| >
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Figure 2: Lower bounds for the price of a five-dimensional American put op-
tion approximated using different methods and a uniform grid tk = kT/L, k =
0, . . . , L, of exercise dates. The numbers of training paths is Ntrain = 2000. In
the LS method a polynomial basis of degree 2 is used.

R,∣∣∣Ul(x)− Ũl(x)
∣∣∣ ≤ 1|x−x0|≤R |max [g(x),E [Ul+1(Xl+1)|Xl = x]]

−max
[
g(x),E

[
Ũl+1(Xl+1)

∣∣∣Xl = x
]]∣∣∣+ 1|x−x0|>RUl(x)

≤ 1|x−x0|≤RE
[∣∣∣Ul+1(Xl+1)− Ũl+1(Xl+1)

∣∣∣∣∣∣Xl = x
]

+ 1|x−x0|>RUl(x).

Hence we have by induction,∫ ∣∣∣Ul(x)− Ũl(x)
∣∣∣ pl(x|x0)dx

≤
∫

1|x−x0|>RE
[∣∣∣Ul+1(Xl+1)− Ũl+1(Xl+1)

∣∣∣∣∣∣Xl = x
]
pl(x|x0)dx+ εl,R

≤
∫ ∣∣∣Ul+1(y)− Ũl+1(y)

∣∣∣ pl+1(y|x0)dy + εl,R

=

L∑
j=l+1

εj,R + εl,R =

L∑
j=l

εj,R.
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6.3 Proof of Proposition 4

Combining the assumptions (16) and (17) yields

Ul(x) = esssup
τ∈Tl,L

E [gτ (Zτ )|Zl = x]

≤ cgE
[

1 + max
l≤l′≤L

|Zl′ |
∣∣∣∣Zl = x

]
≤ cg (1 + cZ) + cgcZ |x| .

By the estimate∫
|x−x0|>R

e−
|x−x0|

2

2αl dx ≤ e− R2

8αl (4/3)
d/2

(2παl)d/2,

and (using Cauchy-Schwarz) the estimate

∫
|x−x0|>R

|x− x0| e−
|x−x0|

2

2αl dx ≤
√∫
|x−x0|>R

e−
|x−x0|2

2αl dx

√∫
|x− x0|2 e−

|x−x0|2
2αl dx

≤ e− R2

8αl 2d/4(2παl)d/2
√
dαl,

we get (note that (4/3)
1/2

< 21/4)

εl,R ≤
κ

(2παl)d/2

∫
|x−x0|>R

(cg (1 + cZ) + cgcZ |x|) e−
|x−x0|

2

2αl dx

≤ κcg (1 + cZ + cZ |x0|)
(2παl)d/2

∫
|x−x0|>R

e−
|x−x0|

2

2αl dx

+
κcgcZ

(2παl)d/2

∫
|x−x0|>R

|x− x0| e−
|x−x0|

2

2αl dx

≤ κcg
(

1 + cZ + cZ |x0|+ cZ
√
dα
√
l
)

2d/4e−
R2

8αl

≡
(
A+B

√
l
)
cgκe−

R2

8αl ,

for l ≥ 1 (ε0,R = 0 for R > 0). Now by (15), i.e. Proposition 3, we get∫ ∣∣Ul(x)− Ũl(x)
∣∣pl(x|x0) dx ≤ L

(
A+B

√
L
)
cgκe−

R2

8αL ,

whence the estimate (19).

6.4 Proof of Proposition 5

Let us write the sample based backward dynamic program (14) for step l < L
in the form
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U l

(
Z

(i)
l

)
= 1

∣∣∣Z(i)
l −x0

∣∣∣≤R max

gl(Z(i)
l ),

N∑
j=1

U l+1(Z
(j)
l+1)wij

 (42)

by defining the weights

wij :=
p(Z

(j)
l+1|Z

(i)
l )∑N

m=1 p(Z
(j)
l+1|Z

(m)
l )

, (43)

where l is fixed and suppressed. Let us further abbreviate

E [f ](x) = E [f(Zl+1)|Zl = x] =

∫
f(y)p(y|x)dy

for a generic Borel function f ≥ 0. Using

Ũl

(
Z

(i)
l

)
= 1

∣∣∣Z(i)
l −x0

∣∣∣≤R max
[
gl(Z

(i)
l ), E [Ũl+1](Z

(i)
l )
]
,

(42) and |max(a, b)−max(a, c)| ≤ |b− c|, we thus get

∣∣∣U l − Ũl∣∣∣
N

:=
1

N

N∑
i=1

∣∣∣U l(Z(i)
l )− Ũl(Z(i)

l )
∣∣∣ ≤

1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
∣∣∣∣∣∣
N∑
j=1

U l+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣∣
≤
∣∣∣U l+1 − Ũl+1

∣∣∣
N

+Rl+1 (44)

with

Rl+1 =
1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
∣∣∣∣∣∣
N∑
j=1

Ũl+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣∣ ,
where we have used the fact that the weights in (43) sum up to one. One thus
gets by iterating (44) ∣∣∣Uk − Ũk∣∣∣

N
≤
L−1∑
l=k

Rl+1, (45)

since UL − ŨL = 0. Let us now introduce

w◦ij :=
1

N

p(Z
(j)
l+1|Z

(i)
l )

pl+1(Z
(j)
l+1|x0)

, (46)
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and consider the generic term

Rl+1 =
1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
∣∣∣∣∣∣
N∑
j=1

Ũl+1(Z
(j)
l+1)wij − E [Ũl+1](Z

(i)
l )

∣∣∣∣∣∣
≤ 1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
N∑
j=1

Ũl+1(Z
(j)
l+1)

∣∣wij − w◦ij∣∣
+

1

N

N∑
i=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R
∣∣∣∣∣∣
N∑
j=1

(
w◦ijŨl+1(Z

(j)
l+1)− 1

N
E [Ũl+1](Z

(i)
l )

)∣∣∣∣∣∣
=: Term1 + Term2.

We have
E [Rl+1] ≤ E [Term1] + E [Term2] .

While the first term Term1 is small as (wij) are close to (w◦ij), the second one
Term2 tends to 0 as N → ∞ by the law of large numbers. Indeed, due to (12)
one has

Term1 ≤
GR
N

N∑
i=1

N∑
j=1

1
∣∣∣Z(i)
l −x0

∣∣∣≤R1∣∣∣Z(j)
l+1−x0

∣∣∣≤R
∣∣wij − w◦ij∣∣ ,

and due to (43) and (46) we may write

∣∣wij − w◦ij∣∣ =

∣∣∣∣∣ p(Z
(j)
l+1|Z

(i)
l )∑N

m=1 p(Z
(j)
l+1|Z

(m)
l )

− 1

N

p(Z
(j)
l+1|Z

(i)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣
=

p(Z
(j)
l+1|Z

(i)
l )∑N

m=1 p(Z
(j)
l+1|Z

(m)
l )

∣∣∣∣∣1− 1
N

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣
to obtain

Term1 ≤
GR
N

N∑
j=1

1
∣∣∣Z(j)
l+1−x0

∣∣∣≤R
∣∣∣∣∣1− 1

N

∑N
m=1 p(Z

(j)
l+1|Z

(m)
l )

pl+1(Z
(j)
l+1|x0)

∣∣∣∣∣ .
Obviously, the expectation of the random variable inside of the above sum is
independent of j. So by taking j = 1 and splitting off the with Z(1) correlating
term due to m = 1, one gets

E [Term1] ≤ GR
N

E

[
1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R
∣∣∣∣∣
N∑
m=1

(
1−

p(Z
(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)∣∣∣∣∣
]

≤ GR
N
DR,l +

GR
N

E

[∣∣∣∣∣
N∑
m=2

1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R
(

1−
p(Z

(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)∣∣∣∣∣
]
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with

DR,l := E

[
1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R
∣∣∣∣∣1− p(Z

(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

∣∣∣∣∣
]
.

Now consider the i.i.d. random variables,

η(l+1)
m := 1

∣∣∣Z(1)
l+1−x0

∣∣∣≤R
(

1−
p(Z

(1)
l+1|Z

(m)
l )

pl+1(Z
(1)
l+1|x0)

)
, m = 2, ..., N. (47)

It is easy to check by conditioning on Z
(1)
l+1 that they have zero mean. Then by

applying Jensen’s inequality to the square-root, using the independence of the
random variables (47), and that the latter variables are identically distributed
with zero mean, we derive

E

∣∣∣∣∣
N∑
m=2

η(l+1)
m

∣∣∣∣∣ ≤
√√√√E

(
N∑
m=2

η
(l+1)
m

)2

= ER,l
√
N

with

E2
R,l := E

1∣∣∣Z(1)
l+1−x0

∣∣∣≤R
∣∣∣∣∣1− p(Z

(1)
l+1|Z

(2)
l )

pl+1(Z
(1)
l+1|x0)

∣∣∣∣∣
2
 .

Finally we get for Term1,

E[Term1] ≤ GRDR,l

N
+
GRER,l√

N
.

Concerning Term2, let us write

E [Ũl+1](Z
(i)
l ) =

∫
Ũl+1(y)

p(y|Z(i)
l )

pl+1(y|x0)
pl+1(y|x0)dy

= E

[
Ũl+1(Z0,x0

l+1 )
p(Z0,x0

l+1 |Z
(i)
l )

pl+1(Z0,x0

l+1 |x0)

]
,

where Z0,x0 is an independent dummy trajectory. We thus have

E [Term2] ≤ E

[
1
∣∣∣Z(1)
l −x0

∣∣∣≤R
∣∣∣∣(w◦11Ũl+1(Z

(1)
l+1)− 1

N
E [Ũl+1](Z

(1)
l )

)∣∣∣∣]

+ E

∣∣∣∣∣∣
N∑
j=2

ζ
(l+1)
j

∣∣∣∣∣∣
 ,

where for j = 2, ..., N, the random variables

ζ
(l+1)
j := 1

∣∣∣Z(1)
l −x0

∣∣∣≤R
(
w◦1jŨl+1(Z

(j)
l+1)− 1

N
E [Ũl+1](Z

(1)
l )

)

=

1
∣∣∣Z(1)
l −x0

∣∣∣≤R
N

(
p(Z

(j)
l+1|Z

(1)
l )

pl+1(Z
(j)
l+1|x0)

Ũl+1(Z
(j)
l+1)− E

[
Ũl+1(Z0,x0

l+1 )
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z0,x0

l+1 |x0)

])
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are i.i.d. with zero mean. We so have by the Jensen’s inequality again,

E

∣∣∣∣∣∣
N∑
j=2

ζ
(l+1)
j

∣∣∣∣∣∣
 ≤√NVar

(
ζ

(l+1)
2

)
≤ FR,lGR/

√
N,

where

F 2
R,l = E

1∣∣∣Z(2)
l+1−x0

∣∣∣≤R
∣∣∣∣∣ p(Z

(2)
l+1|Z

(1)
l )

pl+1(Z
(2)
l+1|x0)

∣∣∣∣∣
2
 =

∫ ∫
|y−x0|≤R

p2(y|x)

pl+1(y|x0)
pl(x|x0) dxdy.

Secondly, by (46) one has

E

[
1
∣∣∣Z(1)
l −x0

∣∣∣≤R
∣∣∣∣(w◦11Ũl+1(Z

(1)
l+1)− 1

N
E [Ũl+1](Z

(1)
l )

)∣∣∣∣]
≤ 1

N
E

[
1
∣∣∣Z(1)
l −x0

∣∣∣≤R p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

Ũl+1(Z
(1)
l+1)

]

+
1

N
E

[
1
∣∣∣Z(1)
l −x0

∣∣∣≤RE
[
Ũl+1(Z0,x0

l+1 )
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z0,x0

l+1 |x0)

]]

≤ GR
N

E

[
1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

]

+
GR
N

E

[
1|Z0,x0

l+1 −x0|≤R
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z0,x0

l+1 |x0)

]
=:

GR
N
HR,l,

where the latter inequality follows from (12) and the fact that Ũl+1 vanishes
outside the ball BR. Combining the above estimates, we get for Term2

E[Term2] ≤ FR,lGR√
N

+
GR
N
HR,l.

Thus we have expressed our bounds for E [Term1] and E [Term2] in terms of the
quantities DR,l, ER,l, FR,l, HR,l, and GR. Furthermore, it is easy to see that
using (20)

DR,l ≤ 1 + E

[
1
∣∣∣Z(1)
l+1−x0

∣∣∣≤R p(Z
(1)
l+1|Z

(1)
l )

pl+1(Z
(1)
l+1|x0)

]

= 1 +

∫
pl(x|x0) dx

∫
|y−x0|≤R

p2(y|x)

pl+1(y|x0)
dy

≤ 1 + F 2
R.

Similarly, it follows that E2
R,l ≤ 2 + 2F 2

R, and that HR,l ≤ 1 + F 2
R due to

E

[
1|Z0,x0

l+1 −x0|≤R
p(Z0,x0

l+1 |Z
(1)
l )

pl+1(Z0,x0

l+1 |x0)

]
≤ 1.

24



By now taking the expectation in (45) and gathering all together we obtain,

E
[∣∣Uk − Ũk∣∣N] ≤ (L− k)GR

(√
2 + 2F 2

R + FR√
N

+
2 + 2F 2

R

N

)
. (48)

By next taking k = 0 and assuming that N is taken such that (1+FR)/
√
N < 1,

Proposition 5 follows.

6.5 Proof of Proposition 7

In order to achieve a required accuracy ε > 0, let us take R and N large enough
such that both error terms in (21) are equal to ε/2. Hence, we first take

Rε,d = (8αL)
1/2

log1/2
Lcgκ

(
1 + cZ + cZ |x0|+ cZ

√
dαL

)
21+d/4

ε
,

that is R ↗ ∞ when d + ε−1 ↗ ∞. Then take, with � denoting asymptotic
equivalence for R↗∞ up to some natural constant,

Nε � L2c2gκ (e/α)
d/2

d−d/2Rd+2
ε ε−2 � αc2gκ (8e/d)

d/2
Ld/2+3

× ε−2 logd/2+1
L
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
21+d/4cgκ

ε
.

Thus, the computational work load (complexity) is given by

c
(d)
f N2

εL ≤ c1α2c4gκ2c
(d)
f (8e/d)

d
Ld+7

× ε−4 logd+2
L
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
21+d/4cgκ

ε
(49)

where c1 is a natural constant. Now let us write

d−d logd+2
L
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)
21+d/4cgκ

ε

= d2 logd+2

L1/d
(

1 + cZ + cZ |x0|+ cZ
√
dαL

)1/d

21/d+1/4 (cgκ)
1/d

ε1/d

 .
Then, using the elementary estimate

(
a+ b

√
d
)1/d

≤ aeb/a, for a, b > 0, d ≥ 1,

and assuming that ε < 1, (49) implies (22).
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6.6 Proof of Proposition 10

On the one hand one has

U◦tl(Xtl)− Utl(Xtl) = esssup
τ∈Tl,L

EFtl [g(τ,Xτ )]− esssup
τ∈Tl,L

EFtl
[
g(τ ,Xτ )

]
≤ esssup

τ∈Tl,L
EFtl

[
g(τ,Xτ )− g(τ,Xτ )

]
≤ esssup

τ∈Tl,L
EFtl

[∣∣g(τ,Xτ )− g(τ,Xτ )
∣∣] ,

and on the other one has similarly

Utl(Xtl)− U◦tl(Xtl) = esssup
τ∈Tl,L

EFtl
[
g(τ ,Xτ )

]
− esssup

τ∈Tl,L
EFtl [g(τ,Xτ )]

≤ esssup
τ∈Tl,L

EFtl
[
g(τ ,Xτ )− g(τ,Xτ )

]
≤ esssup

τ∈Tl,L
EFtl

[∣∣g(τ,Xτ )− g(τ,Xτ )
∣∣] .

Hence we get

E
[∣∣U◦tl(Xtl)− Utl(Xtl)

∣∣] ≤ E

[
sup

0≤s≤T

∣∣g(s,Xs)− g(s,Xs)
∣∣]

≤ LgE
[

sup
0≤s≤T

∣∣Xs −Xs

∣∣] ≤ CEuler
√
h,

due to the strong order of the Euler scheme, with Lg being some Lipschitz
constant for g.
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