
Regression methods for stochastic control problems

D. Belomestny, A. Kolodko, and J. Schoenmakers

October 24, 2008

Abstract

In this paper we develop several regression algorithms for solving
general stochastic optimal control problems via Monte Carlo. This type
of algorithms is particulary useful for problems with high-dimensional
state space and complex dependence structure of the underlying Markov
process with respect to some control. The main idea of the algorithms
is to simulate a set of trajectories under some reference measure P∗ and
to use a dynamic program formulation combined with fast methods
for approximating conditional expectations and functional optimiza-
tions on these trajectories. Theoretical properties of the presented
algorithms are investigated and convergence to the optimal solution
is proved under mild assumptions. Finally, we present numerical re-
sults showing the efficiency of regression algorithms in a case of a high-
dimensional Bermudan basket options, in a model with a large investor
and transaction costs.

1 Introduction

Since the appearance of the groundbreaking articles of Carriere (1996),
Longstaff and Schwartz (2001), and Tsitsiklis and Van Roy (1999), regres-
sion methods have become an indispensable tool for solving high dimen-
sional optimal stopping problems in the context of pricing American style
derivatives. From a mathematical point of view any optimal stopping prob-
lem can be seen as a particular case of a more general stochastic control
problem. Optimal stochastic control problems appear in a natural way in
many areas of applied stochastics, in particular in mathematical finance.
For instance, problems of portfolio optimization under market imperfec-
tions, optimal portfolio liquidation, superhedging, etc., do all come down
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to problems in stochastic optimal control. In fact, an active interplay be-
tween stochastic control and financial mathematics has been emerged in the
last decades: While stochastic control has been a powerful tool for studying
problems in finance on the one hand side, financial applications have been
stimulating the development of several new methods in optimal stopping
and control on the other hand, see for example besides the works mentioned
above, Rogers (2002), Andersen and Broadie (2004), Broadie and Glasser-
man (2004), Haugh and Kogan (2004), Ibáñez (2004), Meinshausen and
Hambly (2004), Belomestny and Milstein (2006), Bender and Schoenmakers
(2006), Belomestny et al. (2007), Chen and Glasserman (2007), Kolodko and
Schoenmakers (2006), Jamshidian (2007), Rogers (2007), and Carmona and
Touzi (2008), and many others.

There are several approaches for solving stochastic optimal control prob-
lems. The most familiar approach requires consideration of all possible fu-
ture evolutions of the process at each time that a control choice is to be
made. This method is well developed and generally effective, but there are
certainly problems (such as the optimal control of a diffusion in high dimen-
sions) where the approach is impractical. In this paper we propose a Monte
Carlo approach combined with fast approximation methods and methods of
functional optimization. This approach is applicable to any discrete-time
controlled Markov processes. The main idea of the method is to simulate a
set of trajectories under some reference measure and then apply a dynamic
programming formulation (Bellman principle) to compute recursively esti-
mates for the optimal control process and the optimal stopping rule where
the use of fast approximation methods allows for computing conditional ex-
pectations without nested simulations. We propose a number of regression
procedures and prove the convergence of a value function estimate under
some additional assumptions.

2 Basic setup

For our framework we adopt the discrete time setup as in Rogers (2007). On
a filtered measurable space (Ω,F), with F := (Fr)r=0,1,...,T , T ∈ N+, we con-
sider an adapted control process a : Ω×{0, ..., T −1} → A, control for short,
where (A,B) is a measurable space. We assume a given set of admissible
controls which is denoted by A. Given a control a = (a0, a1, ..., aT−1) ∈ A,
we consider a controlled Markov process X valued in some measurable space
(S,S) defined on a probability space (Ω,F,Pa) with X0 = x0 a.s. and tran-
sition kernel of the following type,

Pa(Xr+1 ∈ dy | Xr = x) = P ar(x, dy), 0 ≤ r < T.

So in particular it is assumed that the distribution of Xr+1 conditional on Fr

is governed by a (one-step) transition kernel P ar(Xr, dy) which is controlled
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by ar. In this setting we may consider the general optimal control problem

(2.1) Y ∗
0 := sup

a∈A

Ea

[
T−1∑

r=0

fr(Xr, ar)

]
,

for given functions fr. The optimization problem (2.1) contains the standard
optimal stopping problem

Y ∗
0 := sup

τ
E [gτ (Xτ )] ,

as special case: Take Pa independent of a, fr(x, a) = gr(x)a, and A =
Astop = {a = (1τ=0, ..., 1τ=T ) : τ, 0 ≤ τ ≤ T, is a stopping time}. Multiple
stopping problems may be considered in a similar way by choosing a suitable
A. In this article however we choose A to be the set of all adapted controls
(as in Rogers 2008), while keepin the standard optimal stopping problem
as a special case. This leads to our central goal solving the optimal control
problem

(2.2) Y ∗
0 = sup

a∈A, τ∈T

Ea

[
τ−1∑

r=0

fr(Xr, ar) + gτ (Xτ )

]

for a given set of measurable functions fr : S × A → R, gr : S → R.
For technical reasons fr and g are assumed to be bounded from below. To
exclude trivialities we further assume that

sup
a∈A

Ea

[
T−1∑

r=0

fr(Xr, ar)

]
<∞, sup

a∈A

Ea[gi(Xi)] <∞, i = 0, . . . , T.

The supremum in (2.2) is taken over a ∈ A and all F-stopping times with
values in a subset T ⊂ {0, . . . , T}.

The optimal control problem (2.2) with T ={0, . . . , T} will be the main
object of our study. To this end we consider the process

(2.3) Y ∗
r = sup

a∈Ar, τ∈Tr

Ea

[
τ−1∑

s=r

fs(Xs, as) + gτ (Xτ )

∣∣∣∣∣Fr

]
, 0 ≤ r ≤ T

with Tr := {r, . . . , T} and Ar being the set of all adapted controls a : Ω ×
{r, ..., T−1} → A. As a general result, there exists a vector h∗ = (h∗0, . . . , h

∗
T )

of measurable functions on S, such that Y ∗
j = h∗j (Xj) and h∗ satisfies

h∗r(x) = max [gr(x), (Lh
∗)r (x)] , 0 ≤ r < T,

h∗T (x) = gT (x),(2.4)

where L : h→ Lh is a Bellman-type operator defined by

(Lh)r (x) := sup
a∈A

[fr(x, a) + P ahr+1(x)]
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and

P ahr+1(x) :=

∫
P a(x, dy)hr+1(y).

We now assume that there exists a reference measure P∗ equivalent to Pa,
such that

P a(x, dy) = ϕ(x, y, a)P ∗(x, dy), a ∈ A,

with P ∗(x, dy) := P∗(Xr+1 ∈ dy | Xr = x) and function ϕ(x, y, a) satisfying
ϕ > 0 and

∫
P ∗(x, dy)ϕ(x, y, a) ≡ 1. Then for any nonnegative measurable

function F : ST+1 → R+ it holds

(2.5) Ea[F (X)|Fj ] = E∗[F (X)Λj,T (a,X)|Fj ],

where

Λj,r(a,y) :=
r−1∏

l=j

ϕ(yl, yl+1, al), r = j + 1, ..., T, y ∈ ST+1.

If, moreover, F depends on X0, . . . ,Xr only, we have for 0 ≤ j ≤ r,

Ea[F (X)|Fj ] = E∗[F (X)Λj,r(a,X)|Fj ],

and if F depends only on Xj+1 it holds

(2.6) Ea[F (Xj+1)|Fj ] = E∗[F (Xj+1)ϕ(Xj ,Xj+1, aj)|Fj ].

3 Regression methods for control problems

The solution Y ∗
0 of the optimal control problem (2.2) can in principle be com-

puted backwardly via the a dynamic programming principle (2.4). However,
in particular if the space S is high-dimensional, an analytic computation of
the conditional expectation

Cr(x, a) := Ea[hr(Xr+1)|Xr = x] = E∗ [ϕ(Xr,Xr+1, a)hr+1(Xr+1) | Xr = x] ,

where henceforth for notational convenience h := h∗, is ussually difficult,
even if hr+1 is explicitly known. On the other hand, a straightforward
backward (approximative) construction of (2.4) by Monte Carlo simulation
(under P∗) would lead to nested simulations where the degree of nesting ex-
plodes with the number of exercise dates. In the context of optimal stopping
problems, much research was focused on the development of fast methods
for computing approximations of Cr to resolve this issue. We will show that
these methods can be extended to a more general optimal control problems.
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From now on we assume that S ⊂ R
d for some d > 0. Suppose that

hr+1 is estimated by ĥr+1 and that we want to approximate hr via (2.4) and
(2.5), hence

ĥr(x) := max

[
gr(x), sup

a∈A

[
fr(x, a) + P aĥr+1(x)

]]

= max

[
gr(x), sup

a∈A

{
fr(x, a) + E∗

[
ϕ(Xr,Xr+1, a)ĥr+1(Xr+1) | Xr = x

]}]
.

Let ((
X(1)

r ,X
(1)
r+1

)
, . . . ,

(
X(M)

r ,X
(M)
r+1

))

be a Monte Carlo sample from the joint distribution of (Xr,Xr+1) under P∗

and suppose that, based on this Monte Carlo sample and an approximation
ĥr+1 of hr+1, an estimate Ĉr,M(x, a) of the conditional expectation Cr(x, a)
is constructed for all x ∈ S and a ∈ A. In this paper we consider a class of
estimation methods where Ĉr,M is of the form

(3.7) Ĉr,M (x, a) =

M∑

m=1

wm,M (x,X(·)
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)

where
wm,M

(
x,X(·)

r

)
= wm,M

(
x,X(1)

r , . . . ,X(M)
r

)

are some coefficients which are to be specified by the method under con-
sideration. It turns out that this class of approximation methods is very
general and contains local and global regression methods. We discuss these
two types of method in the next sections.

3.1 Algorithms based on local estimators

By introducing

dr(x, a) :=

∫

S
ϕ(x, y, a)hr+1(y)pr(x, y) dy, pr(x) :=

∫

S
pr(x, y)dy

with pr(x, y) being the joint density of (Xr,Xr+1) under P∗, we may write

Cr(x, a) = dr(a, x)/pr(x).

So it is natural to estimate Cr as a ratio of estimates for pr and dr, respec-
tively. With this goal in mind we consider for a Borel measurable kernel
function ΦM(x, y) on R

d × R
d the following estimators,

pr,M(x) := M−1
M∑

m=1

ΦM (x,X(m)
r ),

d̂r,M (x, a) := M−1
M∑

m=1

ΦM (x,X(m)
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1),
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where x ∈ R
d and a ∈ A, and then consider for Cr the estimator

Ĉr,M(x, a) :=
d̂r,M (x, a)

pr,M(x)
(3.8)

=:
M∑

m=1

wm,M (x,X(·)
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)

with weight coefficients defined by

wm,M (x, y(·)) := wm,M (x, y1, y2, ...) :=
ΦM (x, ym)

∑M
m′=1 ΦM (x, ym′)

.

If in (3.8) pr,M = 0 we set Ĉr,M := 0. It is important to note that here wm,M

are nonnegative weights summing up to one. The name “local” comes from
the fact that in most cases the function ΦM(x, y) converges (in some sense)
to a delta function as M → ∞. The class of local estimators is rather large
and contains well known examples such as the Nadaraya-Watson and the
k-nearest neighbors regression estimators.

Example 1. Let K be a measurable function on R
d. Take

ΦM (x, y) = δ−d
M K((x− y)/δM ),

where {δM} is a sequence of positive numbers tending to zero. Then (3.8)
yields the well-known Nadaraya-Watson regression estimator

(3.9) Ĉr,M(x, a) =

∑M
m=1K((x−X

(m)
r )/δM )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)∑M

m=1K((x−X
(m)
r )/δM )

.

Example 2. We can modify the estimator in Example 1 by specifying an
increasing sequence (kM ) of natural numbers with kM ≤ M, and reducing
the number of summands in (3.9) to kM in the following way. Consider

the first kM nearest neighbors of x, say X
(m1)
r , . . . , X

(mkM
)

r in the Monte

Carlo sample X
(1)
r , . . . ,X

(M)
r , and define RM :=

∥∥∥x−X
(mkM

)
r

∥∥∥
2

to obtain

the kM -nearest neighbors regression estimator
(3.10)

Ĉr,M (x, a) =

∑kM

n=1 ϕ(x,X
(mn)
r+1 , a)ĥr+1(X

(mn)
r+1 )K((x−X

(mn)
r )/RM )

∑kM

n=1K((x−X
(mn)
r )/RM )

.

Finally, after estimating Cr(x, a) we construct

âr,M(x) := arg sup
a∈A

[fr(x, a) + Ĉr,M (x, a)], x ∈ S,(3.11)

and estimate hr by

(3.12) ĥr,M (x) := max{gr(x), fr(x, ar,M (x)) + Ĉr,M(x, âr,M (x))}.
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Starting with ĥT,M (x) = gT (x) and working backwardly, we so obtain esti-
mates for all hr, r = 0, . . . , T − 1.

Remark 3. Local estimators have in some respects nice theoretical proper-
ties, for example, almost sure convergence to Cr under rather weak smooth-
ness assumptions. Basically only local smoothness is required for this. A
disadvantage of local estimators is their numerical complexity in general.
For instance, if we want to compute Ĉr,M (x, a) at M points in R

d using
the Nadaraya-Watson estimator (3.9), it will require M2 operations. In the
case of the kM -nearest neighbors estimator, this number can be reduced to
M logM using fast search algorithms.

3.2 Global regression estimators

As an alternative to local regression methods we now consider algorithms
based on global regression. From a practical point of view global regression
estimators are easier to implement in an efficient way than local estimators.
Convergence proofs for global estimators are more delicate and usually im-
pose rather strong assumptions on Cr and the underlying Markov process
Xr. For the standard Bermudan stopping problem (fr ≡ 0, ϕ ≡ 1) we refer
to Clément, Lamberton and Protter (2002), Egloff (2005) and Egloff, Kohler
and Todorovic (2007). The global regression procedures in the next two sec-
tions are in some sense a generalization of the methods of Tsitsiklis and
Van Roy (1999) and Longstaff and Schwartz (2001), respectively, to optimal
control problems.

3.2.1 Algorithms based on continuation functions

For a given Monte Carlo sample {X(m)
r , 0 ≤ r ≤ T, 1 ≤ m ≤M} under the

measure P ∗ and a system of basis functions ψ := [ψ1, ..., ψK ]⊤ we consider
for each a ∈ A the regression problem

(3.13) β̂r(a) := arg min
β∈RK

M∑

m=1

(
ψ⊤(X(m)

r )β − Y (m)(a)
)2
,

where

Y (m)(a) := ϕ(X(m)
r ,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)

and an estimate ĥr+1 of hr+1 is assumed to be already constructed. The
solution of (3.13) is explicitly given by

(3.14) β̂r(a) = (F⊤F )−1F⊤Y (a) =: F †Y (a),

where F = (Fmk) = (ψk(X
(m)
r )) is a M × K design matrix and Y (a) :=

(Y (m)(a))m=1,...,M . Note that the design matrix F does not depend on a.
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We next consider

âr,M (x) = arg max
a∈A

{fr(x, a) + Ĉr,M(x, a)},(3.15)

where

Ĉr,M (x, a) = ψ⊤(x)β̂r(a) = ψ⊤(x)F †Y (a)

=
M∑

m=1

wm,M (x,X(·)
r )ϕ(x,X

(m)
r+1, a)ĥr+1,M (X

(m)
r+1)

with coefficients wm,M given by

wm,M (x,X(·)
r ) = ψ⊤(x)

(
(F⊤F )(X(·)

r )
)−1

ψ(X(m)
r ).(3.16)

In order to solve (3.15) one may, for instance, construct an approximation
procedure for finding the a roots of the stationary point equation

∂

∂a
Ĉr,M(x, a) =

∂

∂a
fr(x, a) +

K∑

k=1

ψk(x)F
† ∂

∂a
Y (a) = 0.

We proceed with a second regression problem, based on a new sample {X̃(m)
r ,

0 ≤ r ≤ T, 1 ≤ m ≤M} under P∗:
(3.17)

β̃r = arg min
β∈RK

M∑

m=1

(
ϕ(X̃(m)

r , X̃
(m)
r+1, âr,M (X̃(m)

r ))ĥr+1(X̃
(m)
r+1) − ψ⊤(X̃(m)

r )β
)2

to end up with

(3.18) ĥr,M (x) = max
[
g(x), fr(x, âr,M (x)) + ψ⊤(x)β̃r

]
.

The second regression is needed to avoid matrix multiplication in (3.14) for

each X̃
(m)
r .

3.2.2 Algorithms based on backward construction of stopping

time and control

In this section we present an algorithm where, instead of regressing continu-
ation functions, the control and stopping times are backwardly constructed
on a sample of simulated trajectories. This method relies on the following
consistency theorem proved in Appendix.

Theorem 4. The optimal stopping time τ∗(r) and the optimal control a∗(r)
solving the problem

Y ∗
r = sup

a∈Ar, τ∈Tr

Ea

[
τ−1∑

s=r

fs(Xs, as) + gτ (Xτ )

∣∣∣∣∣Fr

]
,
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satisfy the following consistency relations

τ∗(r) > r ⇒ τ∗(r) = τ∗(r + 1) and a∗j(r) = a∗j(r + 1)

for all j such that r + 1 ≤ j < τ∗(r + 1).

Note that a∗j (r) is only defined for r ≤ j < τ∗(r), i.e. the control a∗(r) is

not defined if τ∗(r) = r. Given a sample (X
(m)
0 , . . . ,X

(m)
T ), m = 1, ...,M, we

construct estimates τ (m)(r) and a
(m)
j (r), r ≤ j < τ (m)(r) for stopping times

and control processes respectively in the following way. At the terminal time
we set

τ (m)(T ) = T, m = 1, ...,M.

Let τ (m)(r + 1), a
(m)
j (r + 1), r + 1 ≤ j < τ(r + 1) be constructed for m =

1, . . . ,M, at time r + 1, 0 ≤ r < T. Let ψ := [ψ1, . . . , ψK ]⊤ be a system of
basis functions. For any a ∈ A consider the regression problem

(3.19) β̂(a) := arg min
β∈RK

M∑

m=1

(
ψ⊤(X(m)

r )β − Y (m)(a)
)2
,

where
Y (m)(a) = ϕ(X(m)

r ,X
(m)
r+1, a)Z

(m)
r+1

with

Z
(m)
r+1 :=

τ (m)(r+1)−1∑

l=r+1

Λr+1,l(a
(m)(r + 1),X(m))fl(X

(m)
l , a

(m)
l (r + 1))

+ Λr+1,τ (m)(r+1)(a
(m)(r + 1),X(m))g(X

(m)

τ (m)(r+1)
).

The solution of (3.19) is given by (3.14) and we can define an estimate
Ĉr,M(x, a) = ψ⊤(x)β̂(a) and then âr,M(x) as a solution of (3.15). Now we
simulate a new set of trajectories

(X̃
(m)
0 , . . . , X̃

(m)
T ), m = 1, . . . ,M

under P∗ and define

β̃r := arg min
β∈RK

M∑

m=1

(
ψ⊤(X̃(m)

r )β − ϕ(X̃(m)
r , X̃

(m)
r+1, ar,M (X̃(m)

r ))Z
(m)
r+1

)2
.

Put C̃r,M(x) = ψ⊤(x)β̃r. By setting for m = 1, . . . ,M,

τ (m)(r) = r, if fr(X
(m)
r , âr,M (X(m)

r )) + C̃r,M(X(m)
r )) < g(X(m)

r ),
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otherwise

τ (m)(r) = τ (m)(r + 1), a(m)(r) = âr,M(X(m)
r ),

a
(m)
j (r) = a

(m)
j (r + 1) for r + 1 ≤ j < τ (m)(r + 1),

we so end up with a sequence of estimates

(3.20) C̃r,M (x) :=

K∑

k=1

β̃r,kψk(x), r = 0, . . . , T − 1,

and a sequence of functions âr,M , r = 0, . . . , T − 1. Based on (3.20) one may
take the (generally suboptimal) stopping rule

τM := inf{0 ≤ r ≤ T : g(Xr) ≥ fr(Xr, âr,M (Xr)) + C̃r,M (Xr)}

and the (generally suboptimal) control process

aM (X) = (â0,M (X0), â1,M (X1), . . . , âT−1,M (XT−1))

to construct a lower approximation for Y ∗
0 via a next Monte Carlo simulation.

4 Convergence analysis of regression methods

The issues of convergence for regression algorithms in the context of pricing
Bermudan options have been already studied in several papers. Clément,
Lamberton and Protter (2002) were first who proved the convergence of the
Longstaff-Schwartz algorithm. Glasserman and Yu (2005) have shown that
the number of Monte Carlo paths has to be exponential in the number of
basis functions used for regression in order to ensure convergence. Recently,
Egloff, Kohler and Todorovic (2007) have derived rates of convergence for
continuation values estimates by the so called dynamic look-ahead algorithm
(see also Egloff (2004)) that “interpolates” between Longstaff-Schwartz and
Tsitsiklis-Roy algorithms.

In the case of general control problems the issue of convergence is much
more delicate because along with the convergence of regression estimates
Cr,M we also need the convergence of control estimates ar,M . The latter
convergence can be ensured only if the first one is uniform on the set of all
possible controls. This type of convergence can be proved only under some
additional assumptions.

A convergence analysis can be divided into two parts. The first part is
concerned with the convergence of a one step estimate

hr,M (x) := max

[
gr(x), sup

a∈A
[fr(x, a) + Cr,M(x, a)]

]
,
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based on the “pseudo” estimator

(4.21) Cr,M (x, a) :=

M∑

m=1

wm,M (x,X(·)
r )ϕ(x,X

(m)
r+1, a)hr+1(X

(m)
r+1),

i.e. (3.7) with ĥr+1 replaced by the exact solution hr+1. In practice, how-
ever, one starts from r = T and proceeds backwardly where at each step
the previously constructed estimate ĥr+1 is used instead of hr+1. Thus the
second part of the convergence analysis consists of proving a “global” con-
vergence of ĥr,M to hr in a suitable sense, taking into account all errors from
the previous steps. It turns out that the first type of convergence relies ex-
clusively on the sort of regression estimate under consideration and can be
established via standard results from the theory of empirical processes and
regression analysis. In this paper we will carry out the second part of the
convergence analysis assuming that Cr,M is known to converge to Cr in a
certain sense. In fact, the prove of the “global” convergence is more generic
and involves only general properties of the weights in (3.7).

Theorem 5. Suppose that starting with ĥT,M = h∗T (x) = gT (x), for each

backward step ĥr,M is constructed from ĥr+1,M via (3.12) or (3.18) using a
new independent sample of M trajectories. Suppose further that the function
ϕ is bounded, that is |ϕ| ≤ Aϕ for some constant Aϕ. If

E

{∫

Rd

‖Cr,M (x, ·) − Cr(x, ·)‖q
A pr(x) dx

}1/q

= E

{∫

Rd

[
sup
a∈A

|Cr,M(x, a) − Cr(x, a)|
]q

pr(x) dx

}1/q

= O(εM ), r = 0, . . . , T − 1, M → ∞

with some q > 1 and some sequence εM tending to 0, then it holds

E
∥∥∥ĥr,M − hr

∥∥∥
Lq(pr)

= O
(
λT−r

q,M εM

)
, 0 ≤ r ≤ T

with

λq,M = sup
0≤r≤T

M∑

m=1

‖wm,M (·, ·)‖Lq(pr⊗
M
l=1pr) .

Corollary 6. If all coefficients wm,M in (3.7) are nonnegative and sum up
to 1 (e.g. in the case (3.8)), then λq,M < M1−1/q and

E
∥∥∥ĥr,M − hr

∥∥∥
Lq(pr)

= O
(
M (1−1/q)(T−r)εM

)
, 0 ≤ r ≤ T.

In particular if q = 1 we have

E
∥∥∥ĥr,M − hr

∥∥∥
Lq(pr)

= O (εM ) , 0 ≤ r ≤ T.
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Thus, in the case of nonnegative weights and q = 1 the “global” rates coincide
with the rates of a particular regression estimator.

Proof. For r = T the statement is trivial. As induction hypothesis we
assume that

(4.22) E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

= O
(
λT−r−1

q,M εM

)
, M → ∞.

Based on a new sample (X
(m)
r ,X

(m)
r+1), m = 1, ...,M, independent of the

samples needed for constructing the estimate ĥr+1,M , we define

ar,M (x) := arg sup
a∈A

[fr(x, a) +Cr,M (x, a)],

âr,M (x) := arg sup
a∈A

[fr(x, a) + Ĉr,M (x, a)],

where

Ĉr,M(x, a) :=

M∑

m=1

wm,M (x,X(·)
r )ϕ(x,X

(m)
r+1, a)ĥr+1,M (X

(m)
r+1).

Observe that due to

− sup
a∈A

∣∣∣Ĉr,M(x, a) − Cr,M(x, a)
∣∣∣

≤ fr(x, âr,M (x)) + Ĉr,M (x, âr,M (x)) − {fr(x, ar,M (x)) + Cr,M (x, ar,M (x))}

≤ sup
a∈A

∣∣∣Ĉr,M (x, a) − Cr,M(x, a)
∣∣∣

the inequality
∣∣∣ĥr,M (x) − hr,M(x)

∣∣∣ ≤ sup
a∈A

∣∣∣Ĉr,M (x, a) − Cr,M (x, a)
∣∣∣

holds for all x and a, where

hr,M (x) := max{gr(x), fr(x, ar,M (x)) + Cr,M(x, ar,M (x))}.

Analogously one can show that

|hr(x) − hr,M (x)| ≤ sup
a∈A

|Cr(x, a) − Cr,M(x, a)|.(4.23)

On the other hand we have

Ĉr,M (x, a) − Cr,M(x, a) =(4.24)

M∑

m=1

wm,M (x,X(·)
r )ϕ(x,X

(m)
r+1, a)(ĥr+1,M (X

(m)
r+1) − hr+1(X

(m)
r+1)),
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hence

∣∣∣ĥr,M (x) − hr,M (x)
∣∣∣

≤ Aϕ

M∑

m=1

|wm,M (x,X(·)
r )|

∣∣∣ĥr+1,M (X
(m)
r+1) − hr+1(X

(m)
r+1)

∣∣∣ , x ∈ R
d.

Denote with Gr+1 the σ-algebra generated by the samples used from T down
to r + 1. The application of Hölder’s and Jensen inequality leads to

E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

≤ Aϕ E
M∑

m=1

EGr+1

[∣∣∣ĥr+1,M (X
(m)
r+1) − hr+1(X

(m)
r+1)

∣∣∣
∥∥∥wm,M (·,X(·)

r )
∥∥∥

Lq(pr)

]

≤ Aϕ E

{[
EGr+1

∣∣∣ĥr+1,M (X
(1)
r+1) − hr+1(X

(1)
r+1)

∣∣∣
q]1/q

×
M∑

m=1

[
EGr+1

∥∥∥wm,M (·,X(·)
r )
∥∥∥

q

q−1

Lq(pr)

]1−1/q
}

≤ Aϕ E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

M∑

m=1

(∫
pr(x) E

∣∣∣wm,M (x,X(·)
r )
∣∣∣
q
dx

) 1
q

= Aϕ E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

M∑

m=1

‖wm,M (·, ·)‖Lq(pr⊗
M
l=1pr) .

The induction assumption (4.22) implies now that

E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

= O(εMλT−r
q,M ).

Note that by letting q ↓ 1, the last estimate holds true for q = 1 as well.
Further we have

E
∥∥∥ĥr,M − hr

∥∥∥
Lq(pr)

≤ E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

+ E ‖hr,M − hr‖Lq(pr) .

Hence due to (4.23)

E ‖hr,M − hr‖Lq(pr)

≤
{∫

Rd

‖Cr(x, ·) − Cr,M (x, ·)‖q
A pr(x) dx

}1/q

= O(εM ), M → ∞.
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5 Upper bounds

For computing upper bounds for solutions of control problems we extend the
approach in Rogers (2007) to problem (2.2). In fact, the following theorem
is a straightforward generalization of Theorem 1 in Rogers (2007).

Theorem 7. Let Y ∗
r be the solution of the optimal control problem (2.3),

then the following representation holds

Y ∗
r = inf

h∈H



hr(Xr) + E∗




T−1∑

j=r

Wr,j

(
(Lh)j (Xj) − hj(Xj)

)+

+ max
r≤i≤T

Wr,i (gi(Xi) − hi(Xi))
+

∣∣∣∣Fr

]}
,

where Wr,j = sup
a∈A [Λr,j(a,X)] and H is the space of bounded measurable

vector functions h = (h0, ..., hT ) on ST+1.

Proof. For any h = (h0, ..., hT ) ∈ H and a ∈ A let consider a martingale Mr

from the Doob decomposition of hr(Xr):

Ma

r+1 −Ma

r = hr+1(Xr+1) − Ea [hr+1(Xr)|Fr] ,

with Ma

0 = 0, i.e.,

Ma

r =
r−1∑

j=0

(
Ma

j+1 −Ma

j

)
=

r−1∑

j=0

(hj+1(Xj) − P ajhj+1(Xj)) .

We then have

Y ∗
r = inf

h
sup
a∈Ar
τ, τ≥r

Ea




τ−1∑

j=r

fj(Xj , aj) + gτ (Xτ ) −
τ−1∑

j=r

(hj+1(Xj) − P ajhj+1(Xj))

∣∣∣∣∣∣
Fr




≤ inf
h



hr(Xr) + sup

a∈Ar

E∗




i−1∑

j=r

Λr,j(a,X) (fj(Xj , aj) + P ajhj+1(Xj) − hj(Xj))

+Λr,i(a,X) (gi(Xi) − hi(Xi))|Fr]}

≤ inf
h



hr(Xr) + E∗




T−1∑

j=r

sup
a∈Ar

Λr,j(a,X)
(
(Lh)j (Xj) − hj(Xj)

)+

+ max
i≥r

sup
a∈Ar

Λr,i(a,X) (gi(Xi) − hi(Xi))
+

∣∣∣∣Fr

]}
.

For h = h∗ it holds max [gi, (Lh
∗)i] = h∗i , and h∗T (x) = gT (x), so we finally

have identity.
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6 Numerical experiment

Now we illustrate our algorithms by pricing a Bermudan basket option in
a model, where asset prices can be influenced by an investor holding large
amounts of shares of the asset. The large investor can increase (or decrease)
an asset price by buying (or selling) assets.

We consider a Bermudan put option on a basket of d assets with payoff

g(Xr) :=

(
1

d

d∑

i=1

X(i)
r −K

)+

(K is the strike price), which can be exercised at times r = 1, . . . , T. We
assume that a large investor buys ar × 100% (0 ≤ a ≤ 1) of each asset at
time r, and that the asset dynamics from time r to r + 1 depend on ar via
the Markovian model

X
(i)
r+1 = X(i)

r exp

(
−σ

2

2
δr + σ

√
δrζr,i

)
γ(ar), X

(i)
0 = x0, i = 1, ..., d,

where ζr,i are i.i.d. standard gaussian random variables, γ : [0, 1] → R+ is
some function, and δr is a time scaling parameter. In this case we have,

Par(x, dy) =
1

yσd
√

2πδr
d

exp


−

∑d
j=1(ln

yj

xj
+ σ2

2 δr − ln γ(ar))
2

2σ2δr


 dy

= exp


ln γ(ar)

∑d
j=1 ln

yj

xj
− dσ2

2 δr

σ2δr
− d ln2 γ(ar)

2σ2δr




× 1

yσd
√

2πδr
d

exp


−

∑d
j=1(ln

yj

xj
− σ2

2 δr)
2

2σ2δr


 dy.

As reference measure we take the one corresponding to γ ≡ 1, hence

Pa(x, dy) = ϕ(x, y; a) P∗(x, dy),

with

ϕ(x, y; a) = exp


ln γ(a)

∑d
j=1 ln

yj

xj
− dσ2

2 δr

σ2δr
− d ln2 γ(a)

2σ2δr


 .

In our particular example we take γ(a) = exp(a/20). So the large in-
vestor may push the asset price about 5% upwards by buying more shares.
Further we assume that, up to the call date, the investor pays at each step
transaction costs according to

(6.25) fr(X,a) = −2r+1a

x0d
(X(1) + · · · +X(d)).
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As a matter of fact, increasing transaction costs may shift the optimal stop-
ping time from the terminal exercise date, thus leading to a nontrivial op-
timal exercise policy. The price of the Bermudan basket option is finally
given by (2.2) with gr ≡ g and fr given by (6.25).

We now study a numerical example with d = 5, T = 3, δr ≡ 1, x0 = 100,
K = 90, σ = 0.2, and construct lower bounds for the option price based
on local regression (Section 3.1) and the global regression method in Sec-
tion 3.2.1. Due to a (suboptimal) stopping time and a (suboptimal) control
based on the k-nearest neighbor estimator (3.10) and corresponding esti-

mator (3.11) we construct a lower bound denoted by Y knn,low
0,M (with the

M from (3.10)). On the other hand, due to a (suboptimal) stopping time
and a (suboptimal) control based on (3.15) and the global regression esti-

mate (3.17) we obtain a lower bound denoted by Y gr,low
0,M (with the M from

(3.17)). Furthermore, we simulate upper bounds for the option price based
on the dual representation in Theorem 7, using approximative value func-
tions (3.12) and (3.18) for the local and global regression method, denoted

by Y knn,up
0,M and Y gr,up

0,M respectively. For the upper bounds we simulate 50
(“outer”) trajectories where on each trajectory the conditional expectations
in (Lh)r are estimated using 10000 independent (“inner”) trajectories. The
lower bounds are simulated using 50000 Monte Carlo trajectories in the final
simulation, see Tables 1,2.

For the optimal choice of kM in the nearest neighbors estimator (for
given M) one needs to balance between the variance and the bias of the
estimator (3.10). Moreover, it turns out that it can be advantageous to take
kM depending on x. To illustrate this we plot in Figure 1 the root-mean-
square errors of Ĉknn

2,10000(x, 1) and Ĉknn
2,50000(x, 1) relative to the “exact” values

C2(x, 1) (computed using 106 Monte Carlo trajectories) for

x(i) = x0 exp(−σ2 + σ
√
δ0ζ0,i + σ

√
δ1ζ1,i)

with ζr,i ≡ 0 (left figure), ζr,i ≡ 1.5 (right figure), and different number of
nearest neighbors. Here the best value of k for the “central” point x is about
0.1 ×M, and the error does not exceed 5% for M = 10000. However, the
error becomes rather large if x lies in a region with small concentration of
pre-simulated regression points (the optimal kM is about 10 in the right-
hand figure). Thus, the performance of the k-nearest neighbor estimator
can be improved by choosing kM adaptively depending on x.

The global regression estimator provides better lower and upper bounds
for the option price than the local regression estimators, see Table 2. The
gap between lower and upper bound for the best choice of base functions does
not exceed 4% (relative to the lower estimate), while for the local regression
estimator the gap is larger than 15%.
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k Y knn,low
0,10000 (SD) Y knn,up

0,10000 (SD) Y knn,low
0,50000 (SD) Y knn,up

0,50000 (SD)

10 13.94(0.06) 20.94(0.23) 13.82(0.06) 21.22(0.27)
20 14.10(0.06) 18.89(0.20) 14.20(0.06) 18.41(0.16)
50 14.08(0.06) 16.74(0.09) 14.33(0.06) 17.08(0.14)
100 14.13(0.05) 16.59(0.14) 14.19(0.05) 16.68(0.13
500 14.17(0.05) 16.73(0.14) 14.17(0.05) 16.48(0.13)
1000 13.56(0.05) 17.04(0.13) 14.06(0.05) 16.27(0.11)

Table 1: Lower and upper bounds obtained via local regression k-nearest
neighbor estimators.
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Figure 1: Root-mean-square error (in %) of the estimators Ĉknn
2,10000(x, 0)

and Ĉknn
2,50000(x, 0) for different number k of nearest neighbors at two points

x(i) = x0 exp(−σ2 + σ
√
δ0ζ0,i + σ

√
δ1ζ1,i) with ζr,i ≡ 0 (left) and ζr,i ≡ 1.5

(right).

7 Appendix

7.1 Proof of Theorem 4

Proof. The statements hold trivially true for r = T. For r < T we have

1τ∗(r)>rY
∗
r = 1τ∗(r)>r sup

a∈Ar, τ∈Tr

Ea




τ−1∑

j=r

fj(Xj , aj) + gτ (Xτ )

∣∣∣∣∣∣
Fr




= 1τ∗(r)>r sup
τ∈Tr+1

Ea
∗(r)

r




τ−1∑

j=r

fj(Xj , aj) + gτ (Xτ )

∣∣∣∣∣∣
Fr




= 1τ∗(r)>rfr(Xr, a
∗
r(r))+

+ 1τ∗(r)>r sup
τ∈Tr+1

Ea∗(r)
r E

(a∗

r+1(r),...)

r+1




τ−1∑

j=r+1

fj(Xj , a
∗
j (r)) + gτ (Xτ )

∣∣∣∣∣∣
Fr+1
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Table 2: Lower and upper bound via global regression estimator.

base functions Y gr,low
0,200000(SD) Y gr,up

0,200000(SD)

up to 2nd degree polynomials on gr(Xr) 15.15(0.06) 15.75(0.10)
up to 3th degree polynomials on gr(Xr) 15.10(0.07) 15.62(0.07)
up to 4th degree polynomials on gr(Xr) 15.13(0.07) 15.70(0.09)

1, X
(1)
r , . . . ,X

(5)
r , gr(Xr) 15.01(0.07) 15.76(0.08)

up to 2nd degree polynomials on

X
(1)
r , . . . ,X

(5)
r , gr(Xr) 15.09(0.06) 15.55(0.07)

≤ 1τ∗(r)>rfr(Xr, a
∗
r(r))+

1τ∗(r)>r Ea∗(r)
r sup

a∈Ar+1, τ∈Tr+1

E(ar+1(r),...)




τ−1∑

j=r+1

fj(Xj , aj) + gτ (Xτ )

∣∣∣∣∣∣
Fr+1




= 1τ∗(r)>rfr(Xr, a
∗
r(r)) + 1τ∗(r)>r E(a∗(r),a∗

r+1(r+1),...) ×

×




τ∗(r+1)−1∑

j=r+1

fj(Xj , a
∗
j(r + 1)) + gτ∗(r+1)(Xτ∗(r+1))

∣∣∣∣∣∣
Fr




= 1τ∗(r)>rfr(Xr, a
∗
r(r)) + 1τ∗(r)>r Ea∗(r)

r Y ∗
r+1 = 1τ∗(r)>rY

∗
r ,

due to the Bellman property. Hence

1τ∗(r)>rY
∗
r = 1τ∗(r)>rfr(Xr, a

∗
r(r))

+ 1τ∗(r)>r E
(a∗(r),a∗

r+1(r+1),...)
r ×

×




τ∗(r+1)−1∑

j=r+1

fj(Xj , a
∗
j (r + 1)) + gτ∗(r+1)(Xτ∗(r+1))

∣∣∣∣∣∣
Fr




from which the consistency relations follow.
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