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STABILITY AND CONVERGENCE OF DUFORT-FRANKEL-TYPE 
DIFFERENCE SCHEMES FOR A NONLINEAR SCHRODINGER-TYPE 

EQUATION 

E Ivanauskas and M. Rad~ifinas 

Abstract--We consider a first boundary problem for the nonlinear SchrOdinger equation 

Ou 02U 
- -  = i a  + f (u ,  u * )u .  
Ot Ox 2 

The convergence of a three-layer explicit difference scheme in the C and W21 norms is proved. The 
stability of the scheme with respect to the initial data in the same norms is proved. To justify the 
convergence and stability we use grid analogues of the energy-preservation laws and grid multiplicative 
inequalities. The relation 21alr/h 2 <~ u < 1 is assumed for the grid stepsizes. 

INTRODUCTION 

We consider a first boundary problem for a nonlinear Schr~dinger equation. Such equations appear in 
nonlinear optics models [1, 2]; they describe energy transfer models in molecular systems [3, 4]; they are used 
in quantum mechanics, seismology, plasma physics, theories of vortex motion and superconductivity, and other 
domains of natural sciences. 

Many works are devoted to numerical solution of nonlinear Schr6dinger equations for both initial and boundary 
problems. Some authors use the finite-difference method [5-13]; others prefer finite-element methods [14-17]. 

Among the difference methods, those having grid analogues of energy-preservation laws are of special interest 
(see [12]). This property is possessed, for example, by the Crank-Nicolson difference schemes that were 
considered in detail in [8-11]; in particular, the unconditional convergence and stability were proved there. 
Untbrtunately, these schemes are implicit. 

On the other hand, explicit schemes often appear to be unstable as, for example, Euler schemes [5]. Some 
modifications of the latter are conditionally stable. So is the three-layer explicit difference scheme of DuFort- 
Frankel. For Schr6dinger equations, these schemes were presented in [5-7]. For approximating these schemes 
the condition 7:/h --+ 0 is required, where ~ and h denote the space and time steps of the grid, respectively. 

In [6, 7], linear Schr6dinger equations were considered and the stability of schemes was proved. In [5], 
nonlinear equations were already considered, and a certain grid analogue of the energy-preservation law in the 
space L2 was obtained. The convergence and stability of the schemes, however, were not proved there. Thus, 
our paper improves the results of [5-7]. 

In our paper, in the cubic nonlinearity case we deduce analogues of energy-preservation laws in the spaces 
L2 and W~, while in the general case we deduce a priori  estimates of a new type, presented in [8-11]. We 
also prove the convergence and stability of difference schemes in the spaces C and W~ under the condition 
r / h  2 ~< v < 1/21al. 

In Sec. 1, we state the problem and prove grid analogues of one embedding theorem and of a multiplicative 
inequality. In Sec. 2, we deduce grid analogues of energy-preservation laws for a cubic Schr6dinger equation. 
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In Sec. 3, we prove the convergence and stability of  the difference scheme for a cubic equation in the spaces L2 
and C. In Sec. 4, we show the convergence and stability of  the difference scheme in the spaces C and W 1 for 
a more general nonlinearity. 

1. F O R M U L A T I O N  OF T H E  PROBLEM.  AUXILIARY S T A T E M E N T S  

We consider the first boundary problem for the cubic SchrSdinger equation 

OU 02U 
" - -  -- iXlulEu, (x, t) e Q, 

Ot = taax  2 

with zero boundary conditions 

and the initial condition 

u(0, t) = u(1, t) = 0, t E [0, T], 

u ( x ,  O) = u o ( x ) ,  x e [0, 1]. 

Here i = v / T ,  Q = (0, 1) x (0, T), a ~ 0, and )~ are real numbers, and u(x, t) is a complex function. 
We define the inner product of  two functions v(x) and w(x)  by 

(1.1) 

(1.2) 

(1.3) 

1 

(v, w) = f v(x)w*(x) dx. 
0 

By Lp and W2 I we denote the Sobolev spaces with the norms 

i \ IlvllLp = Iv(x)l p d x }  , 
2 '~ 1/2 

Here w*(x) is the complex conjugate of a function w(x).  
The existence of  a solution of problem (1.1)-(1.3) was considered in [18, 19]. 
It is well known that, for all t E [0, T], a solution of problem (1.1)-(1.3) satisfies the following energy- 

preservation laws: 

II u (t)II Lz = II u (0)II L2, (1 .4 )  

+ (x/2a)Ilu(0)1144. (I .5) 

Introduce a uniform grid in the domain Q with steps v and h: Qh = {Oh * {O~ and Qh = (-Oh * O-)r- We suppose 
that r = T / M ,  tj = j r ,  h = l / N ,  xj = jh ,  &r = {t j ; j  = 0  . . . . .  M}, c o r =  { t j ; j  = 1 . . . . .  M - -  1}, {Oh = 
{xj; j = 0 . . . . .  N}, and Wh = {xj; j = 1 . . . . .  N - -  1}. 

We will use grid analogues of Sobolev spaces Zph, Wlh �9 By C(Qh) we denote the analogue of  the space 

C(Q).  Introduce the inner products 

N-I  N 
(u, v ) =  ~ ujv;h,  (u, v] = ~ u j v ; h .  

1=1 .i=t 

Define the norms 
N--I 

llutl~,,~ = ~ lujlPh, Ilu]l 2 = (u, u], 
j=l  

Ilull 2 = (u, u), Ilullw, = Ilull 2 + Ilui]l 2- 
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Denote p = p,.J = p(x i ,  t j ) , /3  = p[+ l  /3 = p{ - l , / ~  = (/3 + / 3 ) / 2 ,  p+ = P{+I P -  = P [ - I , P  = P -  + P+, Pt 
(/3 - / 3 ) / 2 r ,  p ,  = (p - p _ ) / h ,  Px'., = (/3 - p _ ) / h ,  and p , /  = (p - / 3 _ ) / h .  

We now prove grid analogues o f  one embedding theorem and of  a multiplicative inequality. Similar estimates 
for  grid functions on the t ime layer were considered and applied in [1 I]. 

LEMMA 1.I. Let v0 = 130 = v N = vlv = O. Then the fo l lowing estimate holds: 

max{ll~311ch, Ilvllch} ~< 0.5(11~3.~.]1 + II~=~']l). (1.6) 

Proof.  Denote 13 i by vl:i and vi by V-l;/. Then for all i = I . . . . .  N - 1 we can write 

I --I U(--l)k;i+k) -I 1131;i1 = ~ ( V ( _ l ) k + l ; i + k + l -  ~ v (_ , ) , : i+~[  
k=--i k=-i 

and 

]vl:i] = (V(- l )k+l ; i+k+l  - -  V(--l)k:i+k) "~< 
k=O k=0 

Summing these two inequalities, we get 

N-i-I 
2[vl:il 

IU(_ l)k+l : ,+k+ 1 - -  V(_ 1)/:;i+k [ : 

N 

S [ v(-l)k+l;i+k+l -v(-l)k'i+k] = ~ ]v(-l)k-i;k- v(-l)k-i-l;k-ll" 
k=0 k= 1 

Similarly, 
N 

2lv-I: i l  ~< ~ Iv(-l)k-i+':k -- V(-l)k-i;k-ll- 
k=l 

Summing the last two inequalities and noting that max{ll~311ch, Ilvllch} <~ maxi( lvi l  q- Ivi I), we get 

N N 

2 max{ll~31lch, [Ivllch} ~ ~ 173k:,,,,lh -+- ~ 1~3k:x/Ih. 
k=l k=l 

Now estimate (1.6) follows by the Cauchy inequality. The lemma is proved. 
Similarly, we prove a grid analogue of  the multiplicative inequality. 

LEMMA 1.2. Let vo = 13o = v u = 13 N = 0. Then the fo l lowing estimate holds: 

max{ll~ll~h, 2 Ilvllch} ~ 0.5(1t~11 + llvll)(ll~.~]l + IIDx/]l). (1.7) 

Proof.  For all i = 1 . . . . .  N - 1, we have 

-1 

Ivt:,l 2 = [Iv(_,,,,.il 2 -lV(_l,_,:~_i121 = ~ (ll)(-l}t:+l:i+k+l [2 - - IV(_ l )k ; i+k[  2) 
k=-i 

-1 
12 12[. 

k=-i 

In the same way we have 
N-i-I 

k=O 

12 ] 2 12 
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Summing these two inequalities, we get 

N 

21v,:il 2 ~< ~ IIvr = -Ivr 121. 
k=l 

Similarly, 
N 

2lv-l:il2 ~< Z ]lv(-~)k-;+~: ~1=- IV(--Ok-~:k--ll2] " 
k=l 

Summing the last two inequalities, we have 

N N 

2(Iv-,:il 2 + Ivl-il z) ~ ~ ]lV-l:kl z -  IV-lzk-llel + ~ IIv~:kl ~ -  Iv-kk-,Izl.  
k=l k=l 

Note that 

' 2 [Iv<_1)J:kl -Ior : I~r  lu(-iV+':k-,l (lvr + Ior 
k=l =- h 

~ (~-~l'v(--l)J:kl--'V(--l)'+':k--l' 2 h )  1/2 
~=t h (llv-lll + Ilvlll). 

Hence estimate (1.7) follows. The lemma is proved. 
The following embedding theorems are known [21]: 

Ilollc,,h ~ Ilvllch ~ 0.511o~]1 ~ 0.511vllws (1.8) 

We further also use the following grid analogue of  the Gronwall inequality: 

Yj <~ ('Yo + 2etj max {bt}) exp(4dtj). O<~l<j / 
(1.9) 

Here Y /> 0 and b ) 0 are defined on the grid &r, Y0~< Y0; e l > 0 ,  0 < r d < ~  1/2. For all j = 1 . . . . .  M, the 
following estimate also holds: 

j - i  j - I  

rj .< Yo + + r/+,) + b,. 
1=0 1=0 

The latter is proved, for example, in [20]. 

2. DIFFERENCE SCHEME. GRID LAWS OF ENERGY-PRESERVATION 

Consider the following DuFort-Frankel-type difference scheme related to problem (1.1)-(1.3): 

Pt = ia fi  - 2[~ hl--T - -  iLlpl2~b, (x, t) E Qh, (2.1) 

p(xo,  t) = p ( x  u,  t) = 0, t 6 &r, (2.2) 

p ( x ,  0) = u0(x), x 6 &h- (2.3) 

We find a solution on the first layer tl using any two-layer scheme. 
In [5], a partial case of a grid analogue of law (1.4) was proved for (2.1)-(2.3). Here we prove a grid analogue 

of the same law, and also an analogue of law (1.5). 



Stability and convergence of DuFort-Frankel-type difference schemes 253 

LEMMA 2.1 .  For a solution of  scheme (2.1)-(2.3) ,  the following energy-preservation law holds: 

2at  
Ilp(tj+l)ll z + IIp(tj)ll 2 + ~ Im(13(tj), p( t )+l))  

2 a t  
= IIp(q)l[ 2 + IIp(to)ll e + ~ Im(~(to),  p ( t 0 ) ,  j = I . . . . .  M - I. 

I f  the grid steps satisfy the relation 

0 < 21alr/h z <<. u < 1, 

then the following estimate holds: 

IIp(tj+l)ll z + IIp(tj)ll 2 <<. Iz(llP(h)ll z + IIp(to)ll2). 

Here/z  = (1 + v ) / ( l  - v). 

Proof. Take the inner products o f  both sides of  Eq. (2.1) with 4r / i .  Take the real part o f  the equali ty 

4at  8at  2 4Xr lm ~-~ Re(/3 - p,  /3 + /3) -- h2 Im(/3, / i )+--~--Iml[ /~l[  + z_.., Ipil2lpil2h" 
i= l  

Consequently, 
4az" 

11/3112 - 11/5112 + 7 Im(/5,/}) = 0 

and 
2 a t  2at  

11/3112 - Ilpll 2 4- --~--Ira(/5,/3) = Ilpll 2 - II/?112 - - -~-Im(/3 , /5) .  

Note that Im(/3,/?) = - Im( /~ , /5)  and 

N - I  N-2  N 

(/3, P) = ~ r  + P[+l) h = ~ /3i+,p~.h q- ~ p i - l p [h  = (~, p). 
i=1 i=0 i=2 

Hence the following equality holds: 

2av _ 2av z 
11/3112 + Ilpll 2 + - -~- Im(p , /3 )  = tlpl[ 2 + Itt3112 + - ~ - I m ( p ,  p) .  

Summing the equalities over time layers yields (2.4). 
Now estimate [Im(/5(tD, p(tt+l))l: 

IIm(/3(tk), p(tk+~))] ~< I(p+(ta), p(tk+~))l + ](p_(t~), p(t~+t))l 

211p(t~)llllp(tk+~)ll <~ IIp(tk)ll 2 + IIp(tk+l)ll 2. 

From condition (2.5) it follows that 

2 a t  
Im(/5(tk), p(tk+l)) <~ v(llp(tDl[ 2 + I[p(tk+l)ll2). 

Hence (2.6) follows. The lemma is proved. 
We now prove a grid analogue of  law (1.5). 

(2.4) 

(2.5) 

(2.6) 
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LEMMA 2.2. For a solution of  scheme (2.1)-(2.3), the following equality holds: 

Ilpx~,, (tj+l)]l 2 + Ilpx/(tj+t)]l  2 + ~-Ilp(tj+l)p(tj)[I 2 
a 

X 2 
= I lpx\( t t )] l  2 + ][px/(tl)]l  2 + -[[p(tl)p(to)l l  , 

a 
j = l  . . . . .  M - - 1 .  

(2.7) 

Proof. Take'the inner products of  both sides of Eq. (2.1) with /3 - / 3 .  The imaginary part of  the equality 
obtained is 

ImllP -/3112 = 7wRe(/3 - 2/~,/3 - / 3 )  - Re(lp[2(/3 +/3) , /3  - / 3 ) .  

Hence it follows that 

Note that 

2 L 
-TRe(2p - P ' /3 - / 3 )  + -([[P/3l[2a - 11/5p1[2) = 0. 

2 2 
~-~Re(2/5 - / 3 , / 3  - / ~ )  = ~-3(Re(/3 +/~, /3  - / ~ )  - Re(/3,/3 - / 3 ) )  

2 2 
= ~z-3 ( [I /3 ]l - 11/3112 - Re(/3,/3) + Re(/3,/3)). 

Since (/3,/3) = (/3, p), we have 

2 1 
~-TRe(2,b - / 3 , / 3  - / 3 )  = ~ (2(11/3112 - Re(/3,/3) + Ilpll z) - 2(llpl[ z - Re(~, p) + 11/3112)). 

Using condition (2.2), we note that 

2(11/3tl 2 - Re(/5,/3) + Ilpl] 2) = (llpl[ z - 2Re(p_, /3)  + 11/3112) + (llpll 2 - 2Re(p+,/3) + 1]/3112) 
N N-'.- 

= ~--}~(]Pj_l[ 2 --  2Re(pj_,/3~) + [/3j12)h + Z ( l P j + l ]  2 --  2Re(pj+l/3j*) + ]/3j12)h 
j=l j=o 

N N - I  

= ~ ]pj- ,  - /3 j lZh + ~ [Pj+t -/3j[Zh. 
j= l  j=0 

Consequently, 

This leads to the equality 

2 
~-y([I/3ll z - Re(p,/3) + llpll 2) : ll/3x~,,]l 2 + 11/3xll[ 2. 

1113~]12 + 11/3~/]12 + ~llp/3112 = I Ip~,] t  2 + I ]px l l l  2 + ~ l l~pl l  2. 
a a 

Summing the equalities over time layers yields (2.7). The lemma is proved. 

C O N V E R G E N C E  AND STABILITY OF T HE  D I F F E R E N C E  S C H E M E  

Suppose the solution u(x ,  t) of problem (1.1)-(1.3) is sufficiently smooth for an approximation of  the equation. 
More exactly, we assume that it is of class Ca(Q),  i.e., it has continuous partial derivatives of the third order 
with respect to t and derivatives of the fourth order with respect to x. 

Let ~ (ti) denote the approximation error. One easily checks that this error has the order O (v2+  h 2 +  (-c/h)2). 
Thus, for justifying the scheme one needs r / h  --+ O. 
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Furthermore, because of the smoothness of the solution the following conditions are satisfied: 

max{lldO(tj)llt.zn} ~ 0 ,  r ,  h --+ 0 ,  
tj Etot 

(3.1) 

and 

MI = max { (h.t)~zx.t~,~max [lu(t)llw~, ; t ~ : ~  Ilu(t)llw~ } <  c~, 

Mz max{ max ~ - ( t ) ; m a x O ~ t ( t ) L z ]  < CO, 
( h , r ) ~ A , t c g o r  tE[0:TI 

(3.2) 

where A = (0; ho] x (0; 7:o], and ro and ho are some small positive constants. 

Hence by the embedding theorem W~h -+ Ch we have the following estimate: 

max max lu(x , t ) l  = Ilullc(~h) ~ 0.5Mr. 
(h.r)~zX (x,t~-Oh 

(3.3) 

The solution error satisfies the boundary problem 

i c l  
et = 7-4". @ - -  2 k )  + vp + dO, (x, t) E Qh, 

t l  L 
(3.4) 

e ( x , 0 ) = 0 ,  x ~coh, e(xo, t ) = e ( x s ,  t ) = O ,  t E~or. (3.5) 

Here 

qJ = -i)~(lul2ti -IP12/~). 

We will also assume that for the solution error the following is true on the first layer: 

Ile(tl)tlw21n ~ 0, llle(tl)ll ~ 0, r, h --+ 0. (3.6) 

Suppose )~/a >10. We will prove an auxiliary lemma. 

LEMMA 3.1. Let )~/a ) 0 and u(x,  t) ~ C~(Q). Let conditions (2.5) and (3.6) be satisfied. Then there exist 
constants ro > 0 and ho > 0 such that, for  all r <~ 1:o and h <<. ho, the following estimates hold for  a solution of  
problem (2.1)-(2.3): 

max Ilpx\(tj)]l + [Ipxz(G)]i) ~ M3 (3.7) 

IIPlIc(Qh) -- max Ip(xi, t/)l <~ 0.5M3. (3.8) 
(xi .t i )E'Oh 

Here M3 = M3(a, )~, Mr, v). 
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Proof. Note that 

11~3~]1 z + 11~3~,]12 

| N 

= h--- ~/~.= (IPil 2 - 2Re(pi~i*__t) + I/3~-ll 2 + 1~3il 2 - 2Re(/~P~_t) + IP~-tl2)h 

1 N 
---- h-- 2 ~ (Ipil 2 - 2Re(pipLO + [pi-tl  2 + I/3il 2 - 2Re(/3i/3i*-l) + 1/3i-112) h 

i=1 

1 N 
+ ~-~ ~ 2Re((/3i - P i ) ( P i * l -  P~-I)) h 

i=1 

2 r  2 /~--p P---P-) 
= IIF3~]I 2 + IlPi]l 2 + - ~ - R e [  v ' r " 

(3.9) 

Proof. 
equality 

/~. v'c 2 ~ "  IlPxN(q)]12 + IlPx~/(tt)]lz + -Ilp(tl)p(t~ <~ 2M~ + -~I M~ + 6 1  a M4 <~ 0"5M'2; 

here r ~< lalM~/vM~, M23 = 2M~(3 +XM~/16a). Hence (3.7) follows. Now (3.8) follows from (1.6) and (3.7). 
The lemma is proved. 

We now prove the convergence of the scheme in the C norm. 

THEOREM 3.1. Let L/a >>. 0, u(x, t) E C4(Q) and let conditions (2.5) and (3.6) be satisfied. Then the 
solution Of problem (2.1)-(2.3) converges to the solution of problem (1.1)-(1.3) in the space C(Qh). There exist 
constants to and ho such that, for all r ~< r0 and h <~ ho, we have the estimate 

2 Ilellcr ~< clll~(t~)ll +c2 max {llO(tj)ll}. I<~j<~M-I 

Here ci = ci (a, ~., v, MI, T), i = 1,2. 

2a t  2a t  
II~ll 2 + ll~ll 24- ~ Im(L ~) = Ilell 2 + I1~!I 2 + 7 Im(~, k) + 4rRe(qJ, k) + 4 r R e ( ~ ,  k). 

Now using (3.3) and (3.8) we can investigate the last two summands on the right side of the inequality. We have 

4 rRe(~ ,  k) = 4Xr Im(lul2t~ - Ipl2,b, k) = 4Xr Im(((lul 2 - Ipl2)h, k) + (IplZk, k)) 

~< I~l~l((lul + IPl)(lfil + Ifil)l~l, (1~1 + I~1))1 

~< 0.51,kl(Ml + M3)M~rllell(ll~ll + Ilkll) 

~< dtr((llelt 2 + I1~'112) + (11~11 ~" + [lel12)); 

here dl = 0.251~-1(M1 + M3)Mt. 
For the other summand, we have 

4r Re(O, k) ~< 2r [ (~ ,  (k + ~))1 ~< 2rll~]l z + r(ll~ll 2 + 11~112). 

(3.10) 

Taking the inner product of both sides of Eq. (3.4) with 4rk, similarly to Lemma 2.1, we obtain the 

Using (3.6), (3.9), (3.2), and (1.8), we can estimate from above the right side of equality (2.7) for sufficiently 
small r and h: 
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Using these estimates one can write 

2al" 
I1~112 + I1~11 z + ~ Im(L ~) 

2at Im(~, e) + 2r Ilqbll 2 + (d~ + l)r((llell  2 + II~ll 2) + (11~112 + 11~112)). ~< II~ll 2 + I1~11 z + 

Summing the inequalities over layers from t~ to tj, we obtain the estimate 

2 a ~  
Ile(tj+l)ll 2 + li6(tj)ll 2 + ~ Im(e(t j) ,  e(ts.+,)) 

2a~ _ . J 
<~ tle(tt)ll z + Ile(t0)ll z + ~ Im(e(to), e(q)) + 2r  ~ II*(tk)ll 2 

k=l  

J 

+ ( d l  + l ) r  ~ ((llE(tk+l)ll 2 + Ile(tk)ll 2) + (lle(/k)ll 2 + Ile(tk-l)tl2)). 
k=l  

Using condition (2.5), similarly to Lemma 2.1, we obtain 

IIE(tj+l)ll z + Ile(t./)ll 2 
) ) 

~< ~(l le(q)l l  2 + II~(to)ll z) + dzv ~ Ilqb(tk)ll 2 + d3r ~ ((llE(tk+~)ll z + IIE(tk)ll 2) + (ll~(tk)ll z + lle(/k-0112)); 
k=l  k= l  

here d2 = 2/(1 - v), d3 = (dl + 1)/(1 -- v). 
Now apply the grid Gronwall inequality (1.9) with d = d3, e = d2, bi = II~(ti+0112, Yj = II~(tj+0112 + 

Ile(tj)ll 2, and Yo =/x(ll~(q)ll  z + Ile(to)ll2) �9 Hence, for every r ~< 1/2d3, we have the estimate 

Ile(tj+,)ll 2 + I ls ( t j ) l l  z <~ exp(4d3T)(Ix(lle(tl)]12 + lle(to)t[) + 2 d 2 T  max {]l*(ti)tl2}). 
l<~i<~M-I 

Recalling that e(to) = 0, we can write that, for all j = 0 , . . . ,  M, 

II~(tj)ll2<<.d411s(tl)llZ+cl5 max {tl4~(t))112}. 
l<<.i<<.M--t 

Here d4 = / x  exp(4d3T), d5 = 2dzT exp(4d3T). 
By conditions (3.1) and (3.6), the right side of this inequality converges to zero as r, h -+ 0. Thus, we have 

obtained the convergence of difference scheme (2.1)-(2.3) in the Lz norm. 
Using multiplicative inequality (1.7), we get 

II~llc(~ ) ~ ma_x{llE(tj)ll} max {llux~(tj)]l + Ilux~'(tj)]l} + tj~o~ ~<j~M tje,o~ l~<j~<M max{lls(t))ll} max {ltP~\(t j)] l  + Ilp~/(tj)]l}. 

For sufficiently small r, h, and r ~< 5lalM2/2vM~, by equality (3.9) and condition (3.2) we have 

2ruM2 2)  LI2 
lifix\lt + tlfix~.]l <~ (4M~ + la----~ ~< 3M1. 

Thus by (3.7) and the estimate just obtained we get the inequality 

I[~[]c(~,,) ~< (3Ml + M3) max{ile(ti)][}, 
tj e ~  

where the right side converges to zero. 
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Hence inequality (3.10) follows with the constants ct = (3Ml + M3)4~d44 and c2 = (3Mr + M3)~/~5. Since 
M3 = M3(a, ~., Ml, v), we have that ci = ci(a, L, v, Ml, T), i = 1,2. Theorem 3.1 is proved. 

We now prove the stability of  difference scheme (2.1)-(2.3) with respect to initial data in the C norm. 
Let ul(x ,  t), u2(x, t) and pi,  p2 be solutions of problems (1.1)-(1.3) and (2.1)-(2.3) with the initial data 

ul0(x) and u20(x), respectively. 

THEOREM 3.2. Let the hypotheses of  Theorem 3.1 be satisfied. Then there exist constants ro and ho such 
that, for  r << ro .and h <~ ho, the following estimate holds: 

2 
IlPl - p21lc(~o ~< c3llum - u2oll. (3.11) 

Here c3 = c3(a, ),, v, T, max,~to.rl{llul(t)llw~, Ilu2(t)ll%l}). 

Proof. Denote z = Pl -- P2- Then 

i a  
zt = ~-g(z - 2k) - i~.(tplt2/~l - -  [ p 2 1 2 p 2 ) ,  (x, t) E Qh, 

Z(X, 0) = U l 0 ( X  ) - -  U20(X), X ~ (oh, Z(Xo, t) = Z(X u, t) = O, t ~ (O r. 

Taking the inner product of both sides of the equation with 4r~, similarly to Theorem 3.1, we get the inequality 

Ilz(tj+t) l l  2 -4- IIz(tj)li 2 

J 
~< tx(tlz(tl)[I 2 + IIz(t0)ll 2) -t- dl-C ~ ((llz(tk+t)ll 2 + IIz(tk)ll 2) + (llz(t~)ll z + IIz(tk_~)ll2)); 

k = l  

here d l =  (~./(1 - u))llplllc~(llp~ IIc(~) + llp2llc(~h))- By (3.8), the quantity dl is bounded for sufficiently 
small r and h. 

By Gronwall inequality (1.9), we have the estimate 

max Itz(tj)ll 2 ~ d3(llz(h)ll 2 + IIz(to) ll2). 
tj E~or 

Here d3 = d3(a, L, T, IlPtllc(~n), IIP2llc(~h), v). 
For sufficiently small r ,  the condition Itz(tl)ll ~ 211z(t0)ll is satisfied. The dependence of  norms IlPlllc(~h) 

and IlPzllc(oh) on the quantities maxteto, rl Ilul(t)llw~ and maxtst0.rl Ilu2(t)llw~ can be proved as in Lemma 3.1. 
Hence using the last two estimates we obtain the stability in L2: 

max Ilz(tj)ll <~ d411z(to)ll; 
tj Ecbr 

here d4 = d4(a, )~, T, v, maxteto.rl{llUl (t)llw~, lluz(t)llw~ }). 
Using multiplicative inequality (1.7), similarly to Theorem 3.1, one can deduce (3.1 l). The theorem is proved. 

Consider the equation 

4. G E N E R A L  CASE 

OU 02U 
- -  = ia  + f (u, u*)u,  
at Ox 2 

where f ( u ,  u*) is a polynomial with respect its arguments u and u*. 
function ~p(u) satisfying the conditions 

(4.1) 

Introduce a continuous nondecreasing 

I f (u ,  u*)[ ~< ~o(lul), IDJf (u ,  u*)ul ~< ~o(lul), IJl = l, 2; (4.2) 
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here j is a two-dimensional vector, IJl = Jl + h ,  DJ = olJl/Ouj'ou*jz. 
We relate to Eq. (4.1) the difference scheme 

/5 -- 2/~ 
Pt = ia h2 q- f ( p ,  p*)[~, (x,  t) ~. Qh. (4.3) 

For the nonlinear grid function f ( v ,  v*)iJ, the following estimates hold: 

If(o, v*)#, ~1 ~< 0.5~o(llvllch)(ll~3112 4- 11fil12), (4.4) 

l ( f ( u ,  v*)iJ - f ( w ,  w*)(o, b - (u)l 

qg( max{ll~llch, Ilvllch, IlOllch, Ilwllch ))(11~ - ~11 = + Iio - wll e 4- 11,3 - ~112). 

From (4.5) it follows that 

(4 .5)  

I ( ( f (v ,  v*)O)i, bi]l ~ ~0(max{ll~llcn, Ilvllc,, IlOllch})(ll~5~]l z 4- Ilvill z 4- 11~3~112). (4.6) 

The following estimate also holds: 

I ( ( f (u ,  v*)i)(tk) - f ( w ,  w*)tb(tk))i, ii(tk)]l 

<~ ( max {1, Ilvi(&+i)]l, IIw~(t~+i)]l}) 
ki=--l,0,1 

X crP(i=m_a,~,i{llo(tk+i)llC n, IIw(tk+i)llCh})(/_m_a,~. {llz.~(tk+i)]12}), 

(4.7) 

where c is a constant, and z = v - w. 
Estimates (4.4)-(4.7) can be proved as similar estimates in [10]. 
We prove the convergence and stability in a way slightly different from that used in Secs 2 and 3. Instead of  

equalities of the form (2.4), (2.7), we will obtain a priori estimates of a new type introduced in [8-10]. 
Let p be a solution of difference scheme (4.3), (2.2), (2.3). Let condition (2.5) be satisfied. As in deduc- 

ing (2.4), one can get the equality 

N-L 2 a t  2ar  
tl/3112 4- [Ipll 2 4- ~ Im(/3,/3) = Ilpi[ 2 4- 11/:3112 4- ~ Ira(p, p) 4- 4~ Re E f ( P i ,  p*)[[Ti[ 2h. 

i=1 

Hence two estimates follow. 
First, estimating summands of the type ~ Im(/~,/3) and the nonlinear part, we get the estimate 

11/3112 4- tlpll 2 ~ tz(llpll z 4-IIz3112) 4- 
2~ 

q~(llpllch)(ll/3112 4- 11/3112). (4.8) 
l - - v  

Second, summing the previous equalities over the layers tk, k = 1 . . . . .  j - 1, and using estimate (4.4), we 
get the inequality 

2r  
JlP('9)JJ2 -4-iIP(tJ-l)ll2 ~/z([iP(tl)jJ2 4- tJP(t~ 4- 1 - u q)(Hp]IC(Q'?)) 

• ~ ((ilp(t~+,)tl 2 + LIp(t~/112) + (,p(tk),  -~ + llp(t~_L)112)) 
k=l 

(4.9) 

Here IIPJlc(o,?) = maxo<,k<i{HP(tk)iJch}. 
Introduce the fictitious grid points of ( - h ,  r j )  and (1 + h, r j ) ,  where j = 0 , . , . ,  M. Denote the function 

values at these points by v_l and vN+ I. Define the values of the solution of the difference scheme at these 
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points by p_~ = -p~  and p~r = -PN-~-  This corresponds to zero boundary conditions (1.2) and to the 

condition a~"m t) = ~ " r l  a-;r~" t) = O, where u is a solution of differential problem (4.1), (1.2), (1.3), extended to 
the boundary of  the domain. 

Now from (4.3) we get 

Pti = ia p;c - 2Di h2 + ( f ( p , p * ) / ~ ) i ,  p = p / ,  j =  1 . . . . .  M -  1, i = l . . . . .  N. 

Taking the ifiner product of both sides of  the equation with 417/5~, we obtain the equality 

2ar _ 12 2at  Im(~, ,  pi]  + 4r R e ( ( f ( p ,  p:~)/5),,/5,]. IIt;~]l 2 + IIP,]l 2 + --~- Im(p, , /~i]  = lip,] + ll/5,]l 2 + -'s 

Hence two estimates follow. 
First, using (1.8) and the estimate of the nonlinear part 

I ( ( f (P ,  p*)p) i ,  p~]l ~< (2/h)llf(p, p*)llc~ll/,llll&]l ~< (l/h)~o(llpllcDIIf~]l 2, 

we have 

l l & ] l  2 + llp~]l 2 ~ tz(l lp~]l 2 + IItS~]l 2) + - -  

Second, using estimate (4.6) one can wri te 

2T 
(I - v)h ~~ + IIt5~112) (4.10) 

417 
l ip*(t j)]12 + I Ip~(t / - t ) l l2  ~</z(l lp*(tt)]12 + Ilpi(t~ + 1 - v ~~ 

j - I  

x ~ ((llp,(tk+,)]l 2 + IIp,(t~)]l z) + (llp,(tk)]l 2 + IIp,(t~_~)]12)). 
k=l 

(4.11) 

Summing inequalities (4.8) and (4.10) by condition (2.5), we obtain the estimate 

tal(1 - 

For h ~< h0, ho = lal(l - v)/2u~o(llPllch) we have 

11/3[l~vdh ~< (/x + 1)max {llPl12dh, 11/3[l~v~h }. (4.12) 

Summing inequalities (4.9) and (4.11), we get 

417 
I Ip( t i ) l l%,  + I Ip( t / - , ) l l~% ~< tz(llp(t~)llZwdh + IIp(to)l l%,) + I - v ~~176 

j - I  
• + + 

k=l 

(4.13) 

For the approximation error, we will require that 

max {11 @ (tj)[I w~h } 
tj EWr 

>0, r, h - +  O. (4.14) 

This is a rather natural requirement, since, for u ~ C~(Q), from condition (2.5) it follows that 

t r2 q'- h2 + ( r /h)2  2h ~ c(v2h 3 q- h + v2h) ~ ch.  
IIr ~< c h 



Stability and convergence of DuFort-Frankel-type difference schemes 261 

For the error of the solution of problem (4.1), (1.2), (1.3), the same equations (3.4), (3.5) are satisfied with 

* = ( f ( u ,  u*)tJ -- f ( p ,  p*)[~). 

Using estimates (4.5) and (4.7), similarly to [10] and almost as in deducing estimate (4.13), one can write 
the inequality for the error 

II~(tj)ll2~ + II~(tj-~)ll2~ 
2~: J-~ 

k = l  

-t- 1 _ i - ~  (1 -t- 4c~o(max{llullc(O), IlPllc(Q,?)})oma~j{l, Ilu~(tk)]l, Ilp2(tk)]l}) 

j - - I  

X Z ((lle(tk+l)ll2~, -t-Ile(tk)ll2w~)+ (IIe(tk)II22~h q-Ile(tk-l)II2w~n)). 
k = l  

(4.15) 

Let us prove a theorem on the convergence of the scheme. 

THEOREM 4.1. Let u(x, t) E C4(Q), and let conditions (2.5), (3.6) be satisfied. Then the solution o f  
difference problem (4.3), (2.2), (2.3) converges to the solution o f  problem (4.1), (1.2), (1.3) in the spaces WJh 
and C(-Qh). There exist constants ~o and ho such that, for  all r ~< r0 and h <~ ho, the foUowing estimates hold: 

max {llq~(tj)llw~ }, (4.16) max{lle(tj)llw~ h } ~ calle(tt)llw~ + c5 tj~o)~ 
Ij  ~0)  r 

II~llcr ~ O.5c41l~(tl)llwJ~ + 0.5c5 max {ll~(tj)llw~ h }; 
t j  Etor  

here ci = ci(a, 99, v, Mr, T), i = 4, 5. 

(4.17) 

Proof. The theorem can be proved almost similarly to the theorems of [8-10]. 
Let us show by induction the boundedness of the functions p(tj), tj ~ s IIp(tj)llw] h <<, 2MI. 
For j = 0, by (2.3) we can write IIp(t0)llw] h ~< 211u(t0)llw~ h ~< 2Ml. For j = 1, by (3.6) one can assert that, 

for sufficiently small r and h, the estimate Ile(tl)llw~ h ~ Ml holds. Hence we obtain IIP(q)llw~ h <~ 2M1. 
Let for all k = 0 . . . . .  j - 1, the estimates llp(t~)llw~ h <~ 2M1 hold. Then by (1.8) we have IlPtlc(a,j_~n) <~ Ml.  

2 But then, for all h ~< h0 = lal(l - v)/(2v~o(Mt)), one can apply (4.12), obtaining the estimate IIp(tj)llw~ h ~< 

2(/x + 1)MI. From (1.8) it follows that ItPlIc(Q,?) ~ (Ix + l)Mi and maxo<~<<j{llp(tk)ll%} <~ 2(tx + 1)Ml. 
By (3.2), for all sufficiently small ~: ~< l /2dl  and h, one can apply Gronwall inequality (1.9) to (4.15). Here 

d l =  (1 + 4crp((/z + 1)MI)max{l,  2(/z-I- l )MI})/( l  -- v). 

We obtain the estimate 
ilk(t/)% -< d211 (t,)ll , + d, {ll| I. (4.18) 

where d2 = / x  exp(4dlT), d3 = 4T exp(4dlT)/(1 - v). 
The right side of this estimate converges to zero as r, h --+ 0. Therefore, one can find r0 and ho such that, 

2 for all r ~< v0 and h <~ h0, the estimate Ile(tj)llw] h <~ Ml holds. Hence it follows that IIp(tj)llwg~ <<. 2M1, and 

we are done. 
Thus we have proved that maxtjeco~{llp(tj)llw~;,} <<. 2Ml and, consequently, estimate (4.18) holds for all 

tj, tj ~ CSr. In fact, we have estimate (4.16). Applying (1.8), we obtain estimate (4.17) with the constants 

c4 = ~ and c5 = v/-~3. The theorem is proved. 
As in [8-10], one also proves the stability of the scheme with respect to initial data. Let ul(x ,  t), u2(x, t), 

and pt, p2 be solutions of problems (4.1), (1.2), (1.3) and (4.3), (2.2), (2.3) with initial data ulo(x) and u20(x), 
respectively. 
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THEOREM 4.2. Let the hypotheses of  Theorem 4.1 be satisfied. Then there exist constants ~o and ho such 
that, for  r <~ ro and h <~ ho, the following estimates hold: 

max {llPl (tj) - p2(tj)llw~ h } ~< c6llulo - u2011w~n, 
tj E60 r 

(4.19) 

II P l - P 2  II c<~) ~ 0.5c6 Ilu 1o - u2o II win. ( 4 . 2 0 )  

Here c6 = c6(a~ ~o, v, T, maxt~to:rl{llul(t)llw~, Ilu2(t)llw~ })- 

Proof: As in the proofs of  Theorems 3.2 and 4. I, applying estimates (4.5) and (4.7), we obtain the inequality 

IlZ(tj)ll2W~ q-I[z(t)_l)[12~ ~</z(llZ(tl)ll2~h q-Ilz(to)ll2~) 

j - - I  

+ rdl E ((llz(tk+')ll2~, + IIz(tk)ll2~,) + (llz(t~)ll2~, + Ilz(tk-') l l~v~,)) '  
k = l  

where d l :  4c~o(max{llPl IIc<~h), IIp2llc(~)}) max/j~,~ {1, IIp~ ( t j ) l lw~,  Ilp2(tj)llw~h }, z = pl  - p2. 
In Theorem 4.1 we showed the boundedness of norms Ilpllcc~n) ~< Ml and maxtj~co~{llp(tj)llw~h} << 2M1.  

Therefore, for the inequality obtained, one can apply Gronwall inequality (1.9) for sufficiently small r and h, 
and thus get estimates (4.19) and (4.20). The theorem is proved. 
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