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STABILITY AND CONVERGENCE OF DUFORT-FRANKEL-TYPE
DIFFERENCE SCHEMES FOR A NONLINEAR SCHRODINGER-TYPE
EQUATION

F. Ivanauskas and M. RadZiunas

Abstract—We consider a first boundary problem for the nonlinear Schridinger equation

] 82
a—': = iaéx—,; + flu, uMu.

The convergence of a three-layer explicit difference scheme in the C and W21 norms is proved. The
stability of the scheme with respect to the initial data in the same norms is proved. To justify the
convergence and stability we use grid analogues of the energy-preservation laws and grid multiplicative
inequalities. The relation 2|a|t/ h%? < v < 1 is assumed for the grid stepsizes.

INTRODUCTION

We consider a first boundary problem for a nonlinear Schrodinger equation. Such equations appear in
nonlinear optics models [1, 2]; they describe energy transfer models in molecular systems [3, 4]; they are used
in quantum mechanics, seismology, plasma physics, theories of vortex motion and superconductivity, and other
domains of natural sciences.

Many works are devoted to numerical solution of nonlinear Schrédinger equations for both initial and boundary
problems. Some authors use the finite-difference method [5-13]; others prefer finite-element methods [14-17].

Among the difference methods, those having grid analogues of energy-preservation laws are of special interest
(see [12]). This property is possessed, for example, by the Crank-Nicolson difference schemes that were
considered in detail in [8-11]; in particular, the unconditional convergence and stability were proved there.
Unfortunately, these schemes are implicit.

On the other hand, explicit schemes often appear to be unstable as, for example, Euler schemes [5]. Some
modifications of the latter are conditionally stable. So is the three-layer explicit difference scheme of DuFort—
Frankel. For Schrédinger equations, these schemes were presented in [5-7]. For approximating these schemes
the condition t/h — 0 is required, where t and h denote the space and time steps of the grid, respectively.

In [6, 7], linear Schrodinger equations were considered and the stability of schemes was proved. In [5],
nonlinear equations were already considered, and a certain grid analogue of the energy-preservation law in the
space L, was obtained. The convergence and stability of the schemes, however, were not proved there. Thus,
our paper improves the results of [5-7].

In our paper, in the cubic nonlinearity case we deduce analogues of energy-preservation laws in the spaces
L, and Wzl, while in the general case we deduce a priori estimates of a new type, presented in [8—11]. We
also prove the convergence and stability of difference schemes in the spaces C and W, under the condition
t/h? < v < 1/2]al.

In Sec. 1, we state the problem and prove grid analogues of one embedding theorem and of a multiplicative
inequality. In Sec. 2, we deduce grid analogues of energy-preservation laws for a cubic Schrédinger equation.
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In Sec. 3, we prove the convergence and stability of the difference scheme for a cubic equation in the spaces L,
and C. In Sec. 4, we show the convergence and stability of the difference scheme in the spaces C and W, for
a more general nonlinearity.

1. FORMULATION OF THE PROBLEM. AUXILIARY STATEMENTS
We consider the first boundary problem for the cubic Schrédinger equation

] a2
51:- = iaﬁ —iMuPe, (0 €Q, (1.1)
with zero boundary conditions
u(0,t) =u(l,t) =0, te[0,T], (1.2)
and the initial condition
u(x, 0) = uo(x), x € [0, 1]. (1.3)

Herei = +/—1, O =(0,1) x (0, T), a #0, and A are real numbers, and u(x, t) is a complex function.
We define the inner product of two functions v(x) and w(x) by

1

(v, w) =/v(x)w*(x) dx.

0

By L, and W, we denote the Sobolev spaces with the norms

1

1/p Jun2 \ Y2
Hvlle=( f |v(x)|”dx> , nvuwzl=(uuniz+“5;||L2) .

0

Here w*(x) is the complex conjugate of a function w(x).

The existence of a solution of problem (1.1)—(1.3) was considered in [18, 19].

It is well known that, for all t € [0, T], a solution of problem (1.1)+(1.3) satisfies the following energy-
preservation laws:

fe(llz, = Nu(O)iL,s (1.4)

du 12 a _ 3% oI 4
[0, +eroroll,= |50, +02auol, (1.5)

Introduce a uniform grid in the domain C with steps t and h: Eh = Wy * w; and Qp = wp * w,. We suppose
that t = T/M, t; = jtr, h=1/N, x; = jh, @, ={t;;j=0,.... M}, or ={t5;j=1,.... M =1}, & =
{xj;7=0,..., N}y, and wp = {xj; j=1,...,N—1}.

We will use grid analogues of Sobolev spaces L, Wz‘h. By C (‘Q,,) we denote the analogue of the space
C(Q). Introduce the inner products

N-1 N

(u,v) = Zujv;h, (u,v]:Zujv;h.

i=1 i=t
Define the norms

N-1
hallf = 3 laglPh, P = G ul
j=1

Il = ), Hlullfyy = Bl + gl .
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Denote p = p/ = p(xi. 4j), p = Pt b=p" b= +P) 2 pe =Pl P =Pl P=pP_+pep =
(p— P)/2t, px = (p — p-)/h, pxx = (p — p-)/h, and pr, = (p — p-)/ h.

We now prove grid analogues of one embedding theorem and of a multiplicative inequality. Similar estimates
for grid functions on the time layer were considered and applied in [11].

LEMMA 1.1. Let vo = 0o = vy, = Uy = 0. Then the following estimate holds:

max{[I3lic,, vllc,} < 05CDx I + 05 1D (1.6)

Proof. Denote 9; by vy;; and v; by v_;;;. Then for all i

I,..., N —1 we can write

-1 -1
fviil = Z (v(—l)"+‘;i+k+l - v(—l)":i+k) < Z IU(—I)"+‘:i+k+l = V(—1ykiitk
and
N—i—1 N—-i—-Il
vl = Z (Ve 1+ttt = Vi) | S Z |Vttt = Vbl -
k=0 k=0
Summing these two inequalities, we get
N—i=1 N
20uil < Z [V iyertiighket — V- phirk| = Z [ ipeick = V(mtyemimtip—t |-
k=0 k=1
Similarly,
N
vl < Z |Vietpeivtie = Vemtp-ivet]-
k=1

Summing the last two inequalities and noting that max{||dlic,, lvic,} < max;(fvi| + [0;]), we get

N
2max{{Idllc,, Ivlic,} < Y lbean b+ Y [k, b
k=1 k=1

Now estimate (1.6) follows by the Cauchy inequality. The lemma is proved.
Similarly, we prove a grid analogue of the multiplicative inequality.

LEMMA 1.2. Let vg = g = vy, = 0, = 0. Then the following estimate holds:

max{[|31%, , vlI%, } < 05BN + vl (IDax 1 + 1D, 1D (1.7)

Proof. Foralli =1,...,N — 1, we have

=1

Z (v iprtsirert 2 — e nrivel)

k=—i

2 2 2
i I* = Jlue a1 = vl I =

-1

2 2

< Z ot = W neieel’]-
k=—i

In the same way we have
N=i~1

2 2 2
lvi|” € Z vt = el E
k=0
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Summing these two inequalities, we get

N
2 2
2ol <Y Jlwcapeiael® = Wit -
k=1
Similarly,
N
2 2
2v-rzl <Z|lv(_1)k-f+l;k| — [yt -
k=1

Summing the last two inequalities, we have

N N
2(lv-ril? + o) € Z Hoo il = lomie—t P+ Z [lviel® = lv=pe—11?].
k=1 k=1

Note that
N N
: 2 2 |U(—1)j;k‘ - ‘v(—l)i*“:fc—l‘
Z v nyial® = o yiria ] = Z A (vl + lvpivtg—1 DA
k=1 k=1
N _ 2\ 172
il = vyt a—tl
< (Z p R) o=l 4+ o).
k=1

Hence estimate (1.7) follows. The lemma is proved.
The following embedding theorems are known [21]:

ol < Iolic, < O5Hvzll < 050l

We further also use the following grid analogue of the Gronwall inequality:

;< (Yo+ 2e max {by }) exp(ads;).

Here Y > 0 and b > 0 are defined on the grid ., Yo< Yo €20, 0<1d <1/2. Forall j=1,...

foliowing estimate also holds:

j—1 j—t1
Y; <Yo+tdy (Yi+Yu)+1e) b
=0 1=0

The latter is proved, for example, in [20].

2. DIFFERENCE SCHEME. GRID LAWS OF ENERGY-PRESERVATION
Consider the following DuFort-Frankel-type difference scheme related to problem (1.1)—(1.3):

. p=2p . }
pr=ia e P —zklplzp, (x,1) € O,
P(XO’ t)::p(-xNﬂt)zoy t Ed)ry
p(x,0) = uo(x), X € Wp-

We find a solution on the first layer 7; using any two-layer scheme.

(1.8)

(1.9)

, M, the

2.1)

(2.2)
(2.3)

In {51, a partial case of a grid analogue of law (1.4) was proved for (2.1)—(2.3). Here we prove a grid analogue

of the same law, and also an analogue of law (1.5).
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LEMMA 2.1. For a solution of scheme (2.1)—(2.3), the following energy-preservation law holds:

2a
1) + 1p DI + = Im(p(2;), p(tj+1))

h2
) ,  2at ) (24)
= lp)lI” + I p()lI” + —hz—Im(P(to), p(n)), j=L..,M-1
If the grid steps satisfy the relation
0 <2lajr/k*<v <1, (2.5)
then the following estimate holds:
P01 + 1pE)IZ < w(lpEDI? + IlpE)I). (2.6)

Here u = (1 +v)/(1 —v).

Proof. Take the inner products of both sides of Eq. (2.1) with 47 p. Take the real part of the equality

o e A . 4art . 8art . Nl .
Re(p = p. b+ §) = =5 Im(p, p) + —5- ImllpI* + 4heIm 3 |pif 1l
i=1
Consequently,
. . 4ar .
IBI> = 151* + ~7 Im(p, p) =0
and
N 2art o . 2at .
1AIZ = 1Pl + —=Im(p, §) = lIpI* = I5I* = —5 Im(p, ).

Note that Im(p, p) = —Im(p, p) and
N=] N=2 N _
(B.P) =Y PPl +pidh =) piviPth+ Y Bioipih = (B, p).
i=1 i=0 =2
Hence the following equality holds:

2art
h?

2at

- Im(p, p).

IAI% + pl* + =Im(p, p) = Ipl* + 151> +

Summing the equalities over time layers yields (2.4).
Now estimate |Im(p(&), p(tei )

[(pa(te), Pl + 1(P-(te), plta))]
20 PP DI < N p @I + 1 p e DI

Hm(p(t), p(tc+1))]

NN

From condition (2.5) it follows that

2at

5 Im (B8, plaer )| < vUp I + 1P Gert) ).

Hence (2.6) follows. The lemma is proved.
We now prove a grid analogue of law (1.5).
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LEMMA 2.2. For a solution of scheme (2.1)—(2.3), the following equality holds:

A
oo GO + 1 pey G + ;up(t,-mp(r,-)u2
2.7
A
= | pex EDI* + | e D1 + ;npm)p(m)nz, j=1,...,M—1.

Proof. Take the inner products of both sides of Eq. (2.1) with p — p. The imaginary part of the equality
obtained is
a

L. . . A s e e
SoImlp — BI* = 5Re(p —2p, p— §) — SRe(pI(B + §), b — P)-

Hence it follows that
2 . oA A A2 v 42
ﬁRe(2p—p,p~p)+;(|lppll ~llppll) =0.
Note that
2 . 2 L. o
Z;Re(2p —-p,p—p)= E;(Re(p +p,p—p)—Re(p, p—p))
2 a2 v 2 = v =
=ﬁ(llpll —lipll* — Re(p, p) + Re(p, p)).

Since (5, p) = (p, p), we have

2 U B . . .
FRe2p—p.p—P) = ﬁa(upu2 ~Re(p, p) + llpI® — 20l pI* — Re(p, p) + 1511%).

Using condition (2.2), we note that

20181> = Re(p, p) + P11 = (Ipl* — 2Re(p—, p) + I1p1D) + (lpli* — 2Re(p4, p) + 1515

N N-*-

=Y (Upj=1? —2Re(pj15)) + 151D + Y (pjril* — 2Re(pj415]) + | 51k
N N-1

=) |pj-1 —ﬁj|2h+Z|Pj+l — pil*h.
j=t j=0

Consequently,
2 a2 = - 2 A 12 A2
2 el —Re(p, p) + Ilpll") = loxxJI” + 1 px 11

This leads to the equality

A2 N AT T 2 2, Ay 0
(PPN [ o -7 [ ;Ilppll = lpes I + llpx 17+ ;”PP” -
Summing the equalities over time layers yields (2.7). The lemma is proved.

CONVERGENCE AND STABILITY OF THE DIFFERENCE SCHEME

Suppose the solution u(x, t) of problem (1.1)—~(1.3) is sufficiently smooth for an approximation of the equation.
More exactly, we assume that it is of class C;‘(Q), i.e., it has continuous partial derivatives of the third order
with respect to ¢ and derivatives of the fourth order with respect to x.

Let & (1;) denote the approximation error. One easily checks that this error has the order O (t2+h%+(t/h)?).
Thus, for justifying the scheme one needs t/h — 0.
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Furthermore, because of the smoothness of the solution the following conditions are satisfied:

max{[|® ()L} — 0, 7,h—0, (3.1)
tjE(ut

and

M=max{ max u(t 15 max Hu(z }<oo,
t (h.t)eA. tewr " ( )" Wan te[0:T] " Ol WZ‘

u—u ou G.2)
M, = max{ max ()|; max "—(t) ] < 0,
(h.t)EA t€i, T te[0: T Il 3t L,
where A = (0; ho] x (0; tol, and 1o and h¢ are some small positive constants.
Hence by the embedding theorem W2‘h — Cj, we have the following estimate:
max max f|ulx,t) =lullcm., <0.5M. 3.
(hDeh (e ep, lu(x, ) = lullcg,y 1 (3.3)
The solution error satisfies the boundary problem
ia _ .
g =5E-20+¥+02, (x,1) € On, (3.4)
£(x,0) =0, x € wy, e(xo.t) = e(xy, 1) =0, t€ay. 3.5)
Here
W = —id(|ul*i — |pi*p).
We will also assume that for the solution error the following is true on the first layer:
1
leGllw), —> 0, zHS(h)lI — 0, T,h— 0. (3.6)

Suppose A/a > 0. We will prove an auxiliary lemma.

LEMMA 3.1. LetA/a >0 and u(x,t) € C;(Q). Let conditions (2.5) and (3.6) be satisfied. Then there exist
constants tg > 0 and hg > 0 such that, for all T < 19 and h < hg, the following estimates hold for a solution of
problem (2.1)-(2.3):

. ) <
 max, lpex G+l px (201 < M3, (3.7
1Pl = max_ [p(x, )] < 0.5Ms. (3.8)
(% .4;)€Qn

Here My = Ms(a, A, My, v).
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Proof. Note that

PSSRk

i
n2

I

(1pil* — 2Re(pi pr_y) + 1pi1 1> + 1pil* — 2Re(pip; ) + | pic1t) R

™M=

-

i=1

A Ax

(Ipi|* — 2Re(pi p_y) + | piot]* + |Bil* — 2Re(Pi p7_) + | Bi-11) R (3.9)

i
3".—.
™=

{

i

I

,,ZZ2R€ (i — P(Bi—1 — Pi_D)h

=1

. 202/ p—p p-—p-
= 131 + Ipall” + —rRe(E=7, )
T T

Using (3.6), (3.9), (3.2), and (1.8), we can estimate from above the right side of equality (2.7) for sufficiently
small T and A:

A VT
I pen DI + 1 ey GO + = p(e) pCt)I* < 2MT + — M3 + i< < 0.5M%;
a la| 16a

here T < |a|M?/vM2, M3} = 2M*(3+AM}/16a). Hence (3.7) follows. Now (3.8) follows from (1.6) and (3.7).
The lemma is proved.
We now prove the convergence of the scheme in the C norm.

THEOREM 3.1. Let Xja > O, u(x,t) € Cg(Q) and let conditions (2.5) and (3.6) be satisfied. Then the

solution of problem (2.1)—(2.3) converges to the solution of problem (1.1)~(1.3) in the space C (Qp). There exist
constants 1ty and hg such that, for all T < 19 and h < hg, we have the estimate

leli2 g, < culle@l +ez _max (@@, (3.10)

IM=

Here ¢ = ci(a, A, v, M1, T), i =1,2.

Proof. Taking the inner product of both sides of Eq. (3.4) with 47¢, similarly to Lemma 2.1, we obtain the
equality

2at
a2 2 - A
el + lell” + 5% Im(€, €) =
Now using (3.3) and (3.8) we can investigate the last two summands on the right side of the inequality. We have
4TRe(Y, £) = 4At Im(Ju|%i — | pIp, &) = 4rr Im(((Jul® — |p|D)iz, &) + (Ip*E, &)

< IAz(al + tpDal + 1@Dlel, (181 + 1eNl
< O.51A(My + Ma)Mycliell (21 + 11ED)
<

dir((lel® + 1817 + (EIR + lel®);

here d, = OZSIAI(Ml + M3)M1.
For the other summand, we have

47 Re(®, &) < 2T((P, & + )| < 2|7 + (1817 + 1E17).
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Using these estimates one can write
. 2at o
IEN? + el + =7 Im(E, &)
. 2ar s . -
< Hlell? + 1817 + 7 Im(E, &) + 2e] @01 + (di + Dr(Uel® + 1817 + AEN? + 1ell?)).

Summing the inequalities over layers from #; to ¢;, we obtain the estimate
2at -
eI + eI + =5 ImE (@), £(+0)

) i
<He@IF + le@I? + S Im(Eo), s()) +27 Y @@l
k=1

J
+ (i + D1 Y (UeeasD I + 1@ + U@ + et )I)).

k=1

Using condition (2.5), similarly to Lemma 2.1, we obtain
e+ + eI

J J
< (e + eI + dat Y NP +dst Y ((leCe)I + 6@ + U@ + le@-011%);
k=1 k=1

here dy =2/(1 — v), d3 = (d; + 1)/(1 —v).
Now apply the grid Gronwall inequality (1.9) with d = d3, e = da, b; = [P ¥ = lle@+)I? +
()%, and Yo = u(lle()l* + lle(o)[1*). Hence, for every t < 1/2da, we have the estimate

eI -+l < exp@dsT) (eI + e +24T max {I®@)I7}).

Recalling that £(z9) = 0, we can write that, forall j =0,..., M,

le)I* < dalle@)l® +d5 | _max_ (o)1}

X%

Here dy = @ exp(4dsT), ds = 2d;T exp(4dsT).

By conditions (3.1) and (3.6), the right side of this inequality converges to zero as t, A — 0. Thus, we have
obtained the convergence of difference scheme (2.1)«2.3) in the L, norm.

Using multiplicative inequality (1.7), we get

1813 g,, < max{lle()I}

max 1?;2xM{I|uX\(tj)][ + flue 1Y+ ijne?g:{”s(tj)”} 1inja<xM{Hp‘\(tj)]l 1 pes (D)

xJ/ =

For sufficiently small 7, k, and © < Sla|M?/2vM?2, by equality (3.9) and condition (3.2) we have

2tvMI\ 12
) < 3M,.
lal

Thus by (3.7) and the estimate just obtained we get the inequality

e 3+ lliae 1 < (4M12 +

el g,, < GM1+ Ma){rjlgf{lls(t,;)ll},

where the right side converges to zero.
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Hence inequality (3.10) follows with the constants ¢; = (3M| + M3)+/ds and ¢; = (3M| + M3)/ds. Since
M3 = Mz(a, A, My, v), we have that ¢; =¢;(a, A, v, M|, T), i =1,2. Theorem 3.1 is proved.

We now prove the stability of difference scheme (2.1)+(2.3) with respect to initial data in the C norm.

Let u (x,t), us(x,t) and p;, pa be solutions of problems (1.1)~«(1.3) and (2.1)—(2.3) with the initial data
u0(x) and uyp(x), respectively.

THEOREM 3.2. Let the hypotheses of Theorem 3.1 be satisfied. Then there exist constants vy and hg such
that, for t < t9.and h < hg, the following estimate holds:

llpr = p2liz g, < eslluro — uoll. 3.11)

Here c3 = c3(a, A, v, T, maxte[O,T]{”ul(t)“wzh lie2 @) liw) D)

Proof. Denote z = p; — p;. Then

ia . . . .
a= 5@ =20 ~iMIpPpr = Ipalpr). (1) € O,
z(x,0) = ujp(x) — uzo(x), x € s, 2(xo, 1) = 2(xy, 1) =0, 1 €.

Taking the inner product of both sides of the equation with 4rz, similarly to Theorem 3.1, we get the inequality

(017 + Nz
J
< m(llzE)I? + @) ) + diz Y (el DI + 2@ + (2@ + lzt-)I);

k=1

here dy = (A/(1 — v)ipillc,, (lPilcg,) + 1P2llc@,))- By (3-8), the quantity d; is bounded for sufficiently
small r and A.
By Gronwall inequality (1.9), we have the estimate

max jz()I* < da izt + Iz (t0)1%)-

Here d3 = dy(a, A, T, | pillcg,y: P2l v)-
For sufficiently small ¢, the condition [[z(z;)|| < 2|lz(t)|| is satisfied. The dependence of norms |{ p; ”C(Ch)
and "PZHC(@,) on the quantities max;e0,1] |lu1(t)||W2. and maxyepo, 7 w2 (8)]| W) can be proved as in Lemma 3.1.

Hence using the last two estimates we obtain the stability in Lj:

max Hz () < dallz(to)l;

here dy = dy(a, 2, T, v, maxeero.ry {11 (D llwy» lluz (Dl D)
Using multiplicative inequality (1.7), similarly to Theorem 3.1, one can deduce (3.11). The theorem is proved.

4. GENERAL CASE
Consider the equation
8u_, 32u+f( “ il
5 _laax2 W, uu, 4.1

where f(u,u*) is a polynomial with respect its arguments « and «*. Introduce a continuous nondecreasing
function ¢(u) satistying the conditions

Lf (e, u™)] < o(luh), |D? f(u, u*)ul < p(lul), 7l =1,2; (4.2)
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here j is a two-dimensional vector, |j| = j| + ja, DI = 3Y9!/0u/13u*22.
We relate to Eq. (4.1) the difference scheme

. p=2p .
pr=za—hz—+f(p,p)p, (x,1) € Qh- 4.3)

For the nonlinear grid function f (v, v*)7, the following estimates hold:

| £ (v, )9, 9] < 0.5p(llvllc,)(191% + 1511%), (4.4)
I(f (v, v = f(w, wh, v — w)| A5
< o(max({li¥lc,. Ivlic,. 19lic,. Nwllc, (1D — @i + v — wl® + 15 — @?). *)
From (4.5) it follows that

[((f (v, v") )z, D21l < @(max{l1Blic,, Ivllc,» 1Dllc, DUTED® + llvell® + (Del?). (4.6)

The following estimate also holds:

(v, w0 — f (w, wHw Bz, 22 ()]

< (| max (1 uaCeern)ll oz ()11 @

x e max (IvGeridlicy, Iwesnlic,)) (| max Uizzeen)])),

where ¢ is a constant, and z = v — w.

Estimates (4.4)—(4.7) can be proved as similar estimates in [10].

We prove the convergence and stability in a way slightly different from that used in Secs 2 and 3. Instead of
equalities of the form (2.4), (2.7), we will obtain a priori estimates of a new type introduced in [8-10].

Let p be a solution of difference scheme (4.3), (2.2), (2.3). Let condition (2.5) be satisfied. As in deduc-
ing (2.4), one can get the equality

2 2 - N-—-1
1BIZ + pI + o 1m(5, 5) = IpI? + I + = Im(3, p) + 4t Re )_ f(piv pDIpilh

i=1

Hence two estimates follow.
First, estimating summands of the type Zat 1m(p, p) and the nonlinear part, we get the estimate

. . 2t A .
1512+ 1P < n(lpl® + 1517) + T——oUpllc,) (1BI” + 1517)- (4.8)

Second, summing the previous equalities over the layers 1, k =1,..., j — 1, and using estimate (4.4), we
get the inequality

7
PN + 1D < (1P + 1p)IR) + ——odllplic, )
| —v i

j=1 (4.9)
x Y (PO + Hp ) + (1P + I pt-01%)).

k=1

Here |iplicio,» = maxock<jlPtdlic, }-
Introduce the fictitious grid points of (=&, ;) and (1 + h, tj), where j = 0,..., M. Denote the function
values at these points by v_; and v, ,. Define the values of the solution of the difference scheme at these
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points by p_y = —p; and py_; = —py_,- This corresponds to zero boundary conditions (1.2) and to the
condition %:—’;(O, 1) = %(1, t) = 0, where u is a solution of differential problem (4.1), (1.2), (1.3), extended to

the boundz‘ary of the domain.
Now from (4.3) we get
[3'—2[7' *y - j . .
—— + (. PIP)e  p=pi, j=L. M-l i=1. N

Pix =ia
Taking the inner product of both sides of the equation with 4t p;, we obtain the equality

2at

n - A . 2at - - .
1A1F + p:) + == Im(Pz, bzl = lp:ll” + 1 P=l* + = Im(Bs, ps] + 47 Re((f (p, p) D)z, Pl

Hence two estimates follow.
First, using (1.8) and the estimate of the nonlinear part

((f(p, PPz, PRI < /B (p, P, AN P:N < (1 Welipllic) I P2,

we have

2 R .
T ore Pl (1A + 15211) (4.10)

16200 + 1p)l* < (llpall* + 15217) +

Second, using estimate (4.6) one can write

4
I + 12501 < (I ps I + 1P IP) + 0l Plicco,m)

i 4.11)
X Y (Upe DI + 1pr 1) + Ul pz )11 + Pz B 1)1P).
k=1
Summing inequalities (4.8) and (4.10) by condition (2.5), we obtain the estimate
An < 2 ~ 2 An2 ~ 12 .
1Pl < u(llpllwz.h + llpllwzlh) + T V)w(llpilch)(llpllwzlh + ||p“W21h)
For b < ho, ho = lal(1 —v)/2ve(llplic,) we have
~An2 2 Y2
181y, < (u+ Dmax{llpl, 151, } (4.12)
Summing inequalities (4.9) and (4.11), we get
Nk G012, < k(PR + 1P, ) + ——e(lplicio )
Ep Gy, +lIpE-Oly, < wllptdlly, +1ptl, ) + —elirlice,n
j-1 (4.13)
2 2 2 2
2 (WP Gerd iy, + 1PN, ) + (PG, +1pt-DTy, ) )-
For the approximation error, we will require that
max {||<b(z,-)||w2.h} — 0, t,h— 0. (4.14)
I]'Ewr

This is a rather natural requirement, since, for u € C;‘(Q), trom condition (2.5) it follows that

2\ 172
h) < (W + h +v2h) < ch.

Nt + R+ (/) h)?
1ol < o Y|
i=1
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For the error of the solution of problem (4.1), (1.2), (1.3), the same equations (3.4), (3.5) are satisfied with
W = (f(u,u")i— f(p, p*)p)-

Using estimates (4.5) and (4.7), similarly to [10] and almost as in deducing estimate (4.13), one can write
the inequality for the error

2 2
(¢ + |le(ti—
eI,y + le-0l,

2r it
< u(le@) iy + e ) + 7= > I®@IG,
. k=1

(4.15)

. A
T (‘ + dep(max{llullcg). IPlci,mh) max {1, luz@ll, up,;ak)m)

j—1
<y ((lle(rm)uivz.h + ey, ) + (le@ol, + ||e<tk_.)nfvz.h)).
k=1

Let us prove a theorem on the convergence of the scheme.

THEOREM 4.1. Let u(x,t) € C; (Q), and let conditions (2.5), (3.6) be satisfied. Then the solution of
difference problem (4.3), (2.2), (2.3) converges to the solution of problem (4.1), (1.2), (1.3) in the spaces Wzlh
and C(Q,,). There exist constants Ty and hg such that, for all T < tg and h < hg, the following estimates hold:

ljrré%f{lls(t,-)llw;h} < calle(t))llwy, + es max o)y }- (4.16)
llelle,) < 0-3calle()lyy, +0-5¢s max {le@)lwy, b (4.17)

here ¢; = cila, o, v, M, T), i =4,5.

Proof. The theorem can be proved almost similarly to the theorems of [8-10].
Let us show by induction the boundedness of the functions p(t;), ¢ € w:: || p(tj)"wzlh < 2M;.

For j = 0, by (2.3) we can write ”p(to)llwzlh < 2 |ult) W, < 2M,. For j = 1, by (3.6) one can assert that,
for sufficiently small T and h, the estimate [le(z))]| wi, < M, holds. Hence we obtain ||p(t1)||W2|h < 2M,.
Let forallk =0, ..., j—1, the estimates ”p(t")uwz',. < 2M; hold. Then by (1.8) we have "P”C(Q,j_,h) < M.

But then, for all & < hg = la|(l — v)/(2ve(M;)), one can apply (4.12), obtaining the estimate ||p(tj)||%vl <
2h

2( + 1)M,. From (1.8) it follows that [ipllccg, s < (4 + DMy and maxocs;{IlP0llwy,} < 2(u + DM,
By (3.2), for all sufficiently small < 1/2d, and k, one can apply Gronwall inequality (1.9) to (4.15). Here

dy = (1 +4cp((u + DMy max(l, 2(u + DM })/(1 — v).

We obtain the estimate
2 2 2
eIy < dalle@@f,y +ds max {I9CI, ), (4.18)

where dy = p exp(dd|T), dz = 4T exp(4d;T)/(1 —v).
The right side of this estimate converges to zero as T, h — 0. Therefore, one can find g and kg such that,
for all v € 19 and A < hg, the estimate ||£(tj)||%vl < M, holds. Hence it follows that [[p(z)]| W), < 2M,, and
2h

we are done.
Thus we have proved that max,je(;,,{llp(tj)ll Wzll} < 2M,; and, consequently, estimate (4.18) holds for all
tj, tj € we. In fact, we have estimate (4.16). Applying (1.8), we obtain estimate (4.17) with the constants

¢4 = /dz and ¢s = /d;. The theorem is proved.

As in [8—10], one also proves the stability of the scheme with respect to initial data. Let u,(x, ¢), uz(x,t),
and p,, p» be solutions of problems (4.1), (1.2), (1.3) and (4.3), (2.2), (2.3) with initial data u,o{x) and uz(x),
respectively.
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THEOREM 4.2. Let the hypotheses of Theorem 4.1 be satisfied. Then there exist constants ty and hg such

that, for t < 19 and h < hg, the following estimates hold:

‘lmei’: {Ipi1() — Pz(tj)llwzlh} < Colliro — uzollwy, (4.19)

it — p2lleig,y < 0.5cslluro — uzollyy - (4.20)
@) 24

Here cs = ce(a, ¢, v, T, maxeqo. {11 ()] wis lluza (D)l D.

Proof. As in the proofs of Theorems 3.2 and 4.1, applying estimates (4.5) and (4.7), we obtain the inequality

2 ) 2 2 2
l2@) Iy, + 120l < a(lzEl, + 1261, )

j=1
edi ) (el + 12 ) + (12O, + 2@, ),

where di = 4cp(max{l| pillcig,). IP2llcg,)) maxyea {1, Ipr @ lwy, > 1 P2y b 2= p1 — pa.

In Theorem 4.1 we showed the boundedness of norms |pli¢cg,) < Mi and maxgeg, {1l p ()l Wzlh} < 2M,.

Therefore, for the inequality obtained, one can apply Gronwall inequality (1.9) for sufficiently small = and A,
and thus get estimates (4.19) and (4.20). The theorem is proved.

[
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