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ON CONVERGENCE AND STABILITY OF DIFFERENCE SCHEMES
FOR NONLINEAR SCHRODINGER TYPE EQUATIONS

M. Radziunas

Abstract—The first and the second boundary value problems for a system of nonlinear equations of
Schrodinger type

Ju du 9

=A— +iB— +f(u,u*

at ax ax? +H )
are investigated. Here A and B are real and real positive definite, respectively, constant diagonal matrices,
f is a polynomial complex vector function. We do not try to get rid of the addend Ag—;" Using a new
type of a priori estimates, convergence and stability of difference schemes of Crank-Nicolson type for
these problems in Wzl norm are proved. No restrictions on the ratio of time and space grid steps are
assumed.

INTRODUCTION

We consider a class of evolution equations. We prove the convergence and stability of a conservative difference
scheme of Crank~Nicolson type for the nonlinear Schrodinger equation system

au_Aau+,BaZu
ar ~ Cax | ax?

+ f(u, u*).

Such equations appear in many models of nonlinear optics [1, 2], in models of energy transfer in molecular
systems [3, 4}, and they are used in plasma physics, quantum mechanics, and other fields of science.

There are a lot of studies in the field of initial value problems for the Schrodinger equations, but the theory
for the initial-boundary problems is less developed. In a majority of the works the first boundary problem [6-8,
11, 127 is considered. The second boundary problem is considered in [9]. Some authors solve problems using
finite element methods [11, 12], the others use difference schemes [6—-10].

The main difficulties appear due to a nonlinear function f(u. u*). In this work, as in many models, the
nonlinear part is polynomial. It appeared that the existence or blowing up of the continuous or discrete solution
of the Schrodinger equation depends on the degree of nonlinearity [5]. In this work we consider the period of
time when the solution of continuous problem exists. The convergence and stability of the difference schemes
are proved using a new type of a priori estimates and technique developed in papers [6-9]. No restrictions on
the ratio of the grid steps are assumed.

The present work differs from the works mentioned above because we do not try to get rid of the addend
A(;—‘r‘ Also, due to this addend, we can not use eigenvalue functions to obtain a priori estimates. We know
that in the case of the first boundary problem we can get rid of the addend A% in our equation using a simple
transformation. But in the case of the second boundary problem such transformation does not work. We prove
in this paper that one can use the technique [6-9] even in this case.

In Section | we find a priori estimates for the continuous problem. In Section 2 we prove some properties
for the nonlinear part and then find a priori estimates for a solution of a difference scheme. In Section 3 we
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prove the convergence of iterative process for a nonlinear difference scheme and get some estimates. In Section
4 we obtain the main result of the paper - the convergence and stability of the scheme in the space Wzl.

1. STATEMENT OF THE PROBLEM. A PRIORI ESTIMATES

We consider boundary value problems for the nonlinear Schrédinger equation system:

du du 3’u

rre —-Aa—-HBa + f(u, u*), (x,1) e Q, (1.1)
with the initial condition
u(x,0) =ug(x), xe€Q. (1.2)
and boundary conditions
u(0.t) =u(l,r) =0, t €[0; T}, (1.3)
or
d ]
Ro.n=(1.y=0. e[0T (1.4)
ax ax
Here Q = (0; 1), 0 = Q x (0; T, A, B are real constant diagonal matrices, B > 0, u(x, t) = (uy, ua, ..., uy),
f=(f1. fro...s fu), where u;, f; are complex-valued. We assume that functions f;(u, u*) are polynomials, that
1s,
fitwu) = yuu®t i=1n ViVk 1Bul > 1, (1.5)
k=1

here ul = ul' - u]"u'fj’“'l ey Gl =i e et o e
Let o(y) = ysp>(y + 1?71, where y = max;e{lyicl}. B = max;{|Bicl}, s = max;{s;}. Then

| fi (u, u™)} < Juje(|ul), |D? £ (u, <e(u) Vi, i=1.2, (1.6)

here |uj = max{ju;|}, DF = 39'/3u" - - dui duy™*" - dup™, @(y) is a continuous nondecreasing function.

We assume that ug € W% N V)Vé(Q) for the problem (1.1)-(1.3) and there exists a solution u(x, ¢) such that
u€ Ly (o. T, wi’n Vc’v;(sz)) o lullegg) = max{liuillcg)) < oo (L7)
Also we assume that ug € W%(Q) for the problem (1.1), (1.2), (1.4) and there exists a solution u(x, t) such that
u € Lo (0.T: Wi(2).  lulieg = max{lluillcg)} < oo (1.8)

Here Lo, W W' are Sobolev spaces; L, W,, W' are spaces of n components, that is B =B x --. x B, where
B is one of the Sobolev spaces mentioned above; the norms ]lv||B =3y M HB
We use the well-known imbedding theorem

weW () = fwl < q“a“ “ (1.9)

here {w{ = |wilL, and ¢; = ¢ (mes 2).
Let us denote b = min; {b;}, b = max, {b;}. ¢ = max;{|a, |}, where a,. b; are the clements of diagonal matrices
A. B, respectively.
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LEMMA 1.1. Assume that (1.6), (1.7), or (1.8) are satisfied, then the following estimates hold: for the
solution of (1.1)—(1.3)

lu() iy < 4By (1.10)

and for the solution of (1.1), (1.2), (1.4)
u@®llwy < d2lla(0) w1 (1.11)

here dy = dy(a,b,c;.n, T, (P(”u”c‘('Q")))’ dy =dy(a,n. T, qa(ul"”C(_Q_)))'

Proof. For all j we multiply both sides of (1.1) by uj’.‘, then integrate over §2 and take real parts. Integrating
by parts we obtain

d P 21 . du; .l . du; |2 *
o.sznuju’ =0.5q; (lujj lo) + Reib; (a—xfujlo) —Rezb,-“aj-” +Re/fjujdx
Q
= 0.5a;Re (Iujlzlé> + Re/ fiujdx.
Q

If (1.3) is satisfied, we estimate | Re fQ fjujfdxl < fQ |f,-||uj‘fldx, then sum these inequalities and then integrate
over the interval [0; t], use (1.6), and after that we obtain the estimate (a)

a1 < 1a@)1* + 2n9 (llullc(z)) f lu(z)}*dz.
0

If (1.4) holds, then we estimate

3.
/ ajlujl-dx

Q

duj 2

u;
<2l 5L < w2+ | 52

2
< lugl,
2

and obtain the estimate (b)

t
lu()i* = [u)|* <a/uu<r>nfwdr+2n<p(uunc(5,)/nu<r)||2dr.
0 0

Now for all j we multiply both sides of (1.1) by , then integrate over §2 and take imaginary parts. As a result
we get
a du; du 9% Bu*
/\ u"dr—a,lm Brl - dr+b Re a_" ff,(uu)—dx (1.12)
We take a conjugate equation
dus duy 0w L
G TGy T e

and in the case of problem (1.1)=(1.3) we substitute du; /7 by the right-hand side of the conjugate equation
only in the third term of the right-hand side of (1.12). In the case of problem (1.1), (1.2), (1.4) we make the
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same substitution in the first and in the third terms of the same side of (1.12). In the case of problem (1.1)-(1.3)
we integrate by parts, then integrate over the interval [0; f], use (1.9) and obtain the inequalities

du, du;

<afp| Lo |}||u,,-<r>n+a/b|\%‘¥<0>||nu,<0)n

+2(1 +ac,/b)/“ i )M Ouj (r)”dr.

u du,

We use (1.9), e-inequalities [15] with € = 0.5, the inequality

o] - [ 2 22

2qo<||u(r>uc>}: “ L),

which follows from (1.6), sum the obtained inequalities for j = 1...., n, use (a), and get the estimate
nu(z)ufvz, < (a?/b* + 2acy /b + 2) u(0) ”fv; +2n (a*/b* + dac /b +4) ¢ (llulcg) / ]|u(r)||€vz.dr.

Using the Bellman-Gronwall lemma [13] we obtain estimate (1.10) with

= Ja2/b? + 2ac /b + 2exp (nT (4 + dac, /b + a*/b*) ¢ (lull¢()) -

Similarly, for problem (1.1), (1.2), (1.4) we have the inequality

then add (b) and get the estimate

"+ dng (lulleig) / “ %‘S(r)l|2dr.

0

<5

la()I, < IOE, + (@ +4ne (lulcg)) / (o)1, -
0

From this estimate (1.11) with d> = exp(T (0.5a + 2ne(llullcg)))) follows. The lemma is proved.

2. DISCRETE PROBLEM. A PRIORI ESTIMATES

We introduce the uniform grids with steps t and & in the domain Q. Q,,, = wp xw; and Qyp = Wiy * Wy
are grids in the case of the first problem, Q. = @ * @ and Qay = wyy, * w are grids in the case of the

second problem. Here h = I/N, 1t =T/M. 1 =it, we=1{4;i=0,.... My, w, ={t;;i=0,..., M —1}. We
denote x; = ih, @\ = {x;1i =0...., N}, wiyp ={xi;i=1,..., N — 1} in the ﬁrst case, and x; = (i — 0.5)h,
W ={xi 1 =0,.... N+ oy ={xi =10, N} in the second case. Here, in the second case, we defined

the fictitious space grid points xo = —0.5A and vyt = 1 +0.5A.
We will use grid analogues L. th ,,l L. W,h W,, of Sobolev spaces and Cj, denotes the analogue
of the space C(Q). Let us define scalar products at the grid @yp:

N-1 N

(u,v) = Z w, v h, [t v] = (wov) + (h/2)(uovy + unvy). (u. vl = Zuiv,»*h,

=1 =1
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similarly at the grid @ay:

N-1 N N N

(v, v) = Z ujv'h, (u.v] = Zu,'v,-'h. (. v] = Ztl,vfh, [u,v) = Zu,-v,*h.

i=2 i=1 i=2 i=1

The norms in both grids are denoted as follows:

Wl = [uou), el =l ful = (),

hellyy, = 1601 + el Qs = el + loegell®.

The norms in the spaces Lo, W),, W3, are defined in the same way as earlier.
i - P41 . ~ ~
We denote p = p/ = plxitp). p = p/™. p = (p+ P)/2 pr = (h — P)/T. pix = (px — p2)/h.

pe = (pioy = pD)/ R pz = (p! = pl_) ki pi = (Pl = P /2h P = (p1. ... pa).
We relate problem (1.1)—(1.3) with the following Crank—Nicolson type symmetric difference scheme:

p: = Ap; +iBpz, +f(p, p*), (x,1) € Qu, (2.1)
p(x,0) = ug(x), X € Wip, (2.2)
p(xo.t) = plxn.t) =0, ! € Wy. (2.3)

Also we relate problem (1.1), (1.2), (1.4) with a similar scheme:

Pr = Ap; +iBpzc +£(p.p*),  (x,1) € Qu, (2.4)

p(x, 0) = up(x), X € W, (2.5)

p(xg. 1) = p(x1, ¢), plxn. 1) = p(xns1). t € wy. (2.6)

In the case of the first problem, we often deal with functions u evoVéh, that 1s, ué = u'/’;, =0 and Jju|| = [{u]].

The following well-known inequalities are valid for such functions [15]

Heell = [[ee]] < calluell, c2 = ca(mes 2). (2.7)

For functions from W,, we have [15]
lullc < esllullyy . c3 = c3(mes §2) (2.8)

Before deriving a priori estimates in the discrete case, we prove some properties of the fu..ction f(u, u*).
For us it is convienent to denote by [(«)] any of the norms in the space L, introduced above.

LEMMA 2.1.  Assume that f(u.u®) sarisfies (1.5). (1.6) and w.v € La,. Then ¥i = |

..... n, for both
problems we have

Aoy D<o dlvile) T, (2.9)

[(filvov?) = filw. w™)| < 2Vng (max{|iviic. [wlich [(v — w)l. (2.10)
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Proof. At any point x; of the grids wy, or wa, we have the estimates
n
)2 2 2 2 kK
Lfi e VI <@ (i) el < @ (vlie) Y vl
i=1

They lead to the estimates

L n

(D<@ UVle) Y D vl *h.

k=l i=1

Hence we get (2.9).
Now at that same space grid point x; we can write

2

n

iV v = fiwie Wl < | D fils1(vie, wid) = il (e, W)
j=1

2n

<2 1fitkin) — i1
j=l

where &; (v, wy) is a 2n dimensional vector: § = (vi4. ..., Unoko Ul o =+ - » DMK
E = (Wike o Wik itk oo a Vpy) B J =10

_ * * * ceos
& = (Wikr - W] ko Vi o ur i) if j=n+1,...,2n.

Let j < n, then

w il Bit.j Bit.j *Lil.2n
figi-0) — fi§pl = Z}’ilwf‘il (! - w) U,,il
=1

Bir.j—1

Si

Bir m | Bij—m=1 *Bil.2n
Z)’““’x.k Z Wi kYjk " Vnk
=1 m=0

< ik — wiklo(max{|vil, [wel}).

< v — wykl

If j > n, we can obtain a similar result. Hence, we can write

Lfiv) = frw)l? < dng?(max{ivil Iwil D D lvje — il

=1

and obtain (2.10). The lemma is proved.
We can get some corollaries from this lemma:

COROLLARY 2.1. Under the conditions of Lemma 2.} forall i = 1,..., n and for both problems we have
I fie(vovOl < 2vne (Ivlle) vl (2.11)
1A vy, < 2Vn@ AVl IVlwy, - (2.12)

Proof. We take vi. v4_; and the norm || ]} instcad of vi. wy and [{ )], respectively in Lemma 2.1. This leads
to (2.11). Formula (2.12) follows tfrom (2.9) and (2.11).
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LEMMA 2.2,  Assume thar f(u, u*) satisfies (1.5). (1.6) and w.v e W,,, Then ¥i =1, ..., n, for both
problems we have

1A v) = fitwe Wil < 2V2np(max(iiviic. Iwlic)) (za)l + 25 welllzllyy ) . 213)
herez =v —w.
Proof. Similarly as in Lemma 2.1, at every space grid point x; we have

(U INSivia v) = f[iVrora Vi) — (fi(Wie, wi) — filwieoi, W)

< (1/h) Z | i =1 (Vi Ve 1)) — fi (& (Vi vier))) — (fi&j~1(we, Wi1)) — S (&5 (Wi, W)

j=1
T p Bir.j~1 ﬁ |
i1 il j—m=1 *Bi.2n
Syz :Z Uy -1 Vi k=1 Vi """ Unk Vjke
j=1 1=1 m=0
ﬁ ﬂiIA/‘l ﬂ ;
i il j—m=1 *Bit.2n
TN Wi § : W; k= Wik Wy W)kt
m=0
2 & 8 s 8 g 8
Bt Bt i1 *Bit.2n il.1 *ﬁ./.n
<Y (IZJ-k-r(Ul.k—l “Upk )' + Iw} L N R )|>

j=1 i=l

We estimate the first summand using the expression of function ¢, the second one — in the same way as the
similar difference in Lemma 2.1. We obtain

Cfev, v = fiw. w))iel < 20 (IVIE) Y Izjel + 4o (max(fivllc. iwllc)) D lwjael Y llzrlic-
ji=1 j=t r=1

Using (2.8), we can obtain the following estimate:
1(fivv) = filw. WP < 8 (IVile) lz]1? + 323 (max{liviic. Awlic)) wzlllizl,
From this (2.13) follows. Lemma 2.2 is proved.

COROLLARY 2.2.  Under the conditions of Lemma 2.2 foralli =1, ..., n, for both problems we have

IV = fiwe WDy, < 2V2ng(max{Ivic. IWlc)) (1 + 2e5wllyy, JIv = Wiy, . (2.14)

Proof. This inequality follows from Lemmas 2.1 and 2.2.
LEMMA 2.3 (Difference Gronwall inequality). Ler functions A" > 0, A® > 0, F > 0 be defined on the
grid we, and let the function Y > 0 be defined on the grid @,. Let A = 2(A™M) + A®), Yy = const > Y. If the

condition

i
Y + Z (A’(-”Y,' + AEZ)Y,'_l + F,‘)T,'
i=1

. . . 1 .
is satisfied and max,{t, A; } < 172, then we have the estimate

max{Y, <Y()+7ZFT,> u&p(ZA r,)
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Proof. The proot of this lemma can be found in {16].

COROLLARY 2.3.  Suppose thar A", A2 F. Y. Yy are the same as in Lemma 2.3, and A:.” = A,‘.Z) =d.
Fi=v¢biy.t, =1 =T/M. If the conditions

ji=1 ji—1
Y, <Yo+td ) (Y + Yig) +teZb,-
i =0 =0

and 0 < td < 1/2 are satisfied. then we have the estimate

Y, < <Y0+2er, max (b} ) exp(4dr;): (2.15)

0gi<j
hereti =vj < T.
Proof. The proot of this corollary follows directly from Lemma 2.3.

LEMMA 2.4. Assume that (1.6) is satisfied for problem (2.1)-(2.3). Then there exists tg > 0 such that
V1.0 < 1 < 19 we have

P Iy, < dlipto)lly . (2.16)
here d =d(a.b.ca.n.tj, @(Ipllcg, ) To = Tola. b.ca . elplicg, )
/ !

Proof. We take a scalar product (.. ) of (2.1) and p, use the discrete Green formulas [15], and take the real
part. We use (2.3), sum the equations for layers from f up to ¢;_, and get the estimate (a)

=1 n
IR < IRt +22 3 S Il i k-

k=0 i=1

Now we multiply scalarly (using the scalar product (-, -)) both sides of (2.1) by rp;; and take imaginary
part. We take Eq. (2.1) instead of p;, in the third summand of the right-hand side of the equation. use the
discrete Green formulas and an expression of p by p and p, divide both sides of the equality by 0.5 b;, sum
the equations for layers from top up to t;_. estimate real and imaginary parts of scalar products by their absolute
value, estimate |a;|/b; < a/b. use inequalities ||u:]] < lluz]l, (2.7), and obtain the inequalities

HP:‘}-(T_;‘)]I HP!\ fO)] < (I/b) (“Pn(f/)]l HP:(I‘,)H +L4|1pr\(10)]l )
~1

+27(1 +ac4/b)z i 11 Pis ()],
k=0

We use e-inequality with ¢ = (0.5, sum the obtained inequalities, use (a). and obtain

=1

1P < llpto)l, +2t(er+1) ZZuf,m iy, 171 00 g, (2.17)
k=0 i=1
here ¢ = (2 + 2aca/b +a”/b*).
Now we use (2.12), estimate I\pH' 0. W(lel + |Ip|| } and obtain
=1
llp(f,)H{V:; < erllpt) H“l +2t(ey + 1) Hsﬂ(HPH )Z lplrest) ‘1 + Iip¢ szlh>~

k=0
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Now (2.16) follows from Corollary 2.3 with

d = (Va? + 2abcs + 267 /b) cxp<4(3 + 2aca/b + al/bz)rz(,w(llpllc(.é )))
t

T = (4(3 + 2acy /b + (zz/hz)rx(p(llpllc(a, )))—l.

The lemma is proved.

LEMMA 2.5. Assume that (1.6) is satisfied for problem (2.4)~(2.6). Then there exists 1y > O such that Vr,
0 <1 <19 we have

Py, < PGl (2.18)
here d = d(a.n. ;. v(lpllcg, ). o = (@ 1. 1. ¢(lIPlleg, )

Proof. We take the scalar product [-, -] of the ith component of Eq. (2.4) and p;, use the discrete Green for-
mulas and condition (2.6), and take real part. We get |[5;]]* = |[p,-]|2+a,-r([p,;,‘ pi)+(pix. ﬁi]) +2tRelfi. pil.

n

We estimate [[piv. pi) + (iee i) < 1 + AP = Al . lail < a. then take T, use the Cauchy
inequality, and obtain the estimate (a) ’

I < lp]F +azliplig,, +2t ) ILANIA
- i=]

We find the scalar product [-, -] of the ith component of (2.4) and tp;,, take imaginary part, and get
0 = a;itIm(p;;. pi] + bitRe[pizc. pir] + tIm[ fi, pic].
We take Eqs (2.4) instead of p;, in the first and third summands of the right-hand side of the equation, use the

discrete Green formulas, condition (2.6), the expression of p by p and p, divide both sides of the equality by
0.5b;. use the Cauchy incquality. sum the obtained inequalities, and finally get the estimate

1B:1P < lipel® +20 Y i fisll 1 pic]l.
i=1

We add (a). sum inequalities for layers from 1y up to ¢;, and obtain

oI, < Pl +ra}:up<muw, +4rZZuf,(rk s, 15i )y, - (2.19)
k=0 k=0 i= .
Hence
=1
IRy < Pty + (0. 5a+4w(upu ))Z IR DIy, + IPGOT, )
k=0 '

and from here. as in the case of Lemma 2.4, estimate (2.18) tollows with

d = cxp(z, (u + x;z¢<|§p§tt.(§{’)))). T = (a + 811<P<|lp|tc(§/ )))“.

Lemma 2.5 1s proved.
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3. THE INVESTIGATION OF THE NEW LAYER

Now we will prove the solvability and uniqueness of problems (2.1)-(2.3) and (2.4)-(2.6). Wc need the
following lemmas.

LEMMA 3.1. Assume we have the problem (a) in the grid 51,,: v = ave + ibvgc + g, where x € wyy;
v E"V’h N W??h;

¢

g €Wl ly=10y =0 rthenVr 31 0 eW} N W3, and we have
”i}”w}h < d, ||Uuw,‘h +fd2“g“w11h: (3.1)

here dj = dj(a. b, c2). j = 1.
Ifwe have the prob[em (b) in the grid Q»,, v, = ave + ibvge + g, where x € @i Vo = Vi, Uy = UN+1:
vE W:'/p g€ Wzn Do = Dy, UN = Uny1; then there exists 19 > 0, VT < 19 3! 0 € W, and we have

Hﬁllwzlh < dslivlly, + tdaligliwy, ; (3.2)

here 19 = 19(a), d; = dj(a), j = 3.4.
In both cases a. b € R, lal <a.0<b< b

Proof. We gather functions 0 in problems (a) and (b) at the left-hand side of equations. In the case (a) we
obtain v—atv; /7—tbrvn/2 =gwithx e D, Do = vy = 0. In the case (b) we have D—art vy /7——zbrvn/2 =g
with X € wap, Vo = V1. UN = Un+1, Do = D, Dy = On41. In both cases § = v +avtve/2 +ibtve /2 + 18 and
g € Ly, We can write L10 = § and La0 = g, where L, and L, are linear operators in a finite-dimensional
space. Let g = 0, v =0, then we have problems L0 =0 and L,0 = 0 in this case. Now g satisfies (1.6) and
we can use Lemmas 2.4 and 2.5. We obtain the inequality “ﬁ“w,',, < d”v”Ww';. =0, where d is the constant from
the lemmas, mentioned above. Hence, homogeneous linear problems in the finite dimension space have only
one solution v = 0. From here, as in [14], we know, that (a) and (b) problems have unique solutions.

In case (a) we use (2.17) with n = I, j = |, (remember that there d > 1) and obtain the inequality

AnD

141y = dllply <+ Dilglhyy, (15w, + Vallplyy)-

From here (3.1) follows with d| = \/(2 +2aca/b +a?/bY), dr = dl2 + 1.
In case (b) we use (2.19) with n = 1, j = | and obtain the inequality

”

1515, = 11y, < 20(1Bly, + 1PNy ) a/B(1Awy, +1P1wy) + gl )

From here (3.2) follows with 79 < 4/a. dy = 1 + 2aty/(4 —atg). dy = 8/(4 —atp) and if 19 < 2/a, then d; <
(14 S 4.
Using the estimations written above. we can show that {[0]] wl is bounded by the norms of functions from

WZ‘,,. Hence, 0 € Wllh‘ In both cases we can write
fogel =1t — 71v/rb + ai; /b + 71{:/1’[)][ (2/th +a/b) ||u||W| + 2i{gll/th.

If 7 is fixed all norms on the right-hand side of this inequality are bounded. Thus, U € W3,. Lemma 3.1 is
proved.
LEMMA 3.2, Assume we have problem (¢) in the grid 51,,: v=artuv, /2 + ibt Vi /2 + T, where X € wyy;

g€ Llyivy=vy =0 thenVr 3l v e w! 5 N W,, and we have

el < rdillell. Toell < dallgll. lveell < dsilgll. (3.3)
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If we have problem (d) in the grid —Q-z/,: v = (~ITU\~/;Z + il;rv\-._\./2 + Tg, where X € way;, Vg = V|, UN = UN+1;
g € Lap: then there exists 1o > 0. VYt < 19 3! v € W;, and we have

vl < rdallgll. e ]l < dallgl luecll < dollg]l. (3.4)

here tp = to(a. b). dj =d;(a.b), j=1.....6
In both cases a, b are the same as in Lemma 3.1.

Proof. The existence and uniqueness of the solutions we prove similarly as in Lemma 3.1. We multiply
scalarly (using the scalar product [-, -]) both sides of equation of our problem (c) (or (d)) by v and take real parts.
For (c) we obtain |{v]] < t|[g]l and for (d) we have |[v]|* < atllvel] [[v]l/2+zilg]l I[v]], or |[v]| < azllugll/2+
7|[g]l. When we take imaginary parts, in case (c) we have [jv; 11* < allvell lvll/b + 2lvll ligll/b. Using the
estimate, which we have gotten before, from the e-inequality with ¢ = 0.5 we obtain the estimate ||vg]} < dal[g]]
In case (d) we get [lug]|* < alluz]l [[v]l/b+2I[v]| |[g]l/b. From here we obtain ||vg][* < (1/2b) (allv 1l +21[gl)?
or ||ve]] € dsl{g]l, and then the estimate |[v]] < td4[g]] follows. llvllwx is bounded, thus v € Wz;:

We can obtain the last estimate of (3.3) and (3.4) directly from the equatlons fveell < 2l[v]l/tb+allv; ]|/b+
2i[gll/b < dilg]l, where d = d; or d = dg. The right-hand side of the inequality is bounded, thus v € Wih

Here we have di = 1, dy = /1(a’t + 2b)/b, dy = (4 + ad))/b, Vt. Also ds = +/2b/(~/2b — a /%),

ds = 2./70/(v/2b — am, d5 = (2dy +ads +2)/b if only T < 19 < 2b/a* and dy < 2, ds < 2/a or
< 2/21/b, ds < 8/b if T < 19 < b/2a>.
Lemma 3.2 is proved.

Searching for solutions of problems (2.1)~(2.3) and (2.4)-(2.6) in a new layer, we must solve nonlinear
equation systems. We use iterative methods. Now we write iterative processes for both problems and prove their
convergence with the exponential rate.

We have the following process for the first problem:

k+1 k k* *
PP _ A Bi gy p-+p p+p
T = 2 ( * + p\') + 2 (prt + pfr) + f 2 ) 2 1 X E Cl)]h,
pP’=p.  pt =py' =0 (3.5)
For the second problem the process is given by the following relations:
k+1 k o *
PP A Bi i1 pP+p P +p
P L@ )+ g eee) o1 (B R ESE) cen
pO = p, pg+l — pl}(+l‘ pl;\/+1 — pI}(V++l] (36)

LEMMA 3.3. Assume that the following conditions are satisfied: p eW}, W3, f(p,p*) €W}, Ipllw,, <o
Then process (3.5) produces the unique sequence of the functions {p*), k =0, 1...., converging to the solution

of problem (2.1)=(2.3) in the space Wéh mwg,,. There is the unique solution p of this problem with the condition
ipllc = O(1), when t© — 0. More over, there exists T| > 0 such that ¥Vt 0 < t < 1y, Vk we have

“Pk I wi, < dlllpllwlxh. ”f)” Wi, < 4 lipll wl, (3.7)

here dy = d\(a. b.c2): 1y = 1y(a. b.ca.ca. g . @), where g < 1,
If the conditions p € W§/,~ f(p.p*) € W%h. HpHWJh < a are satisfied, then process (3.6) produces the unique

sequence {pk}. E=0.1..... converging to the solution of problem (2.4)—(2.6) in the space W%/r 3! p satisfving
the condition ||pllc = O(1). when t — 0. There exists T2 > 0 such that ¥t 0 < v < 3, Vk we have

Hpk ”w:*h < dl”pr:‘h- “[A)szlh < f12||p||w:|h~ (3.3

here dr = dx(a); 1o = Tala. bon.ca g, a. @) where ¢ < 1.
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Proof. The existence and uniqueness of the sequence in both cases follow from Lemma 3.1. We will prove
the estimates using a method of mathematical induction.

a) When k = 0, then (3.7) and (3.8) are valid, because p° =p.

b) Suppose these estimates are valid for all { < k. Then, using Lemma 3.1, Vj = 1,..., n we get

1P wy, = edllpillwy, < rea] £((0° +p)/2. (0% +27)/2) |y -

where e, e; are constants in the estimates (3.1) or (3.2). We multiply both sides of the inequalities by || p;‘“ I W, +

el pjllwy, . take Y>_. use Corollary 2.1 and estimate 3_;_, llp;l| < v/lipll, divide both sides by pe+! ||w,'; n
exllpHW’rh and obtain 2

1P My, — erllpjllwy, < teane ((IIp*llc + Iplic) /2) 10" + pllwy, -
We use the induction’s supposition and get
1P lwy, < (er + Teang ((e3 + Deser/2) (e3 + D) pllwy,

here e3 is one of the constants d;. d, of this lemma. We need the condition e; + teang ((e3 + 1)ca/2) (e3 +
1) < e3 to be satisfied. We can take e5 = e; + I, then this condition is valid, when 0 < t < 79, where
19 = l/eang ((e; + 2)c3a/2) (e; + 2). The induction step is proved.

Now we subtract the equations for the p component from the equations for the p

pk+l pl = v . Using Lemma 3.2, we obtain the estimates (a)

k+' component. We denote

AN < reallgfll. ISl S esllgfll vkl < esllgf1l,

here ey, es, e are constants from the inequalities (3.3) or (3.4) and
g = fi (P +p) /2. (0" +97) /2) = £ (P +0) /2. (7" +97) /2).
Using (2.10), we can obtain: g, < /o ((es + Desa/2) |[v']]. From (a) we easily get (b)

V] < Tesne ((e3 + Deya/2) IV

and (c¢)
V¥ s, < enllV* 1L,

here e7 = ne ((ex + Dy /2) ,/rzei + eg + eé‘ If 1 < g/ (eqng ((e3 + Dcaa/2)), where ¢ < I, from (b) we
obtain |[v*]] < ¢*|[¥’]|. Then from (c) we obtain |lv"||W1:h < e7g*~[VO]l. Tt follows that ¥ my.ms € N, m| <
m, llp™* — p™' lezh < q""“e7|[v0]|/(l —¢q) — 0. when m;.m, — oc. Thus, the sequence {p"'} is a Cauchy
sequence in the complete Banach space W3,. It means [14] 3! w € W3, such that |p* — w|| wi — 0. when
k — oo. Due to the inequality Ip* “w‘ e1|lp|lwl we obtain ||wl|W1 “pk”W?,lh +|w—p*|l wl, < ey “p”W:',, +¢,
where ¢ is any small positive number Thus, Hw1|w| ex|ipll Wi,

We will prove that w satisfies problems (2.1)- (2 3) or (2.4)- (7 6) We gather all summands at the left-hand

side of the equations of corresponding problem. take w instead of p, subtract the equations of iterating process
(3.5) or (3.6). take the norm of space L, and obtain the inequality

(w=p) A _ iB . w+p w+p wHph w4 phl
R A e (] e e

P “ma> e} + ) :
< <% . a+ 7>||w—p ™ +Hp<ma‘([H\V|I( Ip*~"lle ) + tipllc >HW—pI‘_'|i 0

5
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where t 1s fixed and kK — oc. From here it follows

w— A iB w+p w'+p*
l—rﬂ = (WP — (W + P —f(———B. 4 )

2 2

-0

Thus, w has the same values as the solution of the problem in the grids w;, or wa,;. Similarly we can show that
w satisfies the equations of the boundary conditions.

Now we will show that if p € W3,, then Yz < 1o 3! p, such that [|plic = O(1) when T — 0. Suppose we
have two such solutions p; and p;. We denote p; — p2 = z. Then from (2.1)—(2.3) or (2.4)—(2.6) we obtain the
equations in the grids wp or was:

At Bt pr+p P +p° p2+p P;+p°
= —1z; + —17; f . —f , =2 .
z 2zvr+ > z,x-i—r(( 3 3 5 5 )

Using Lemma 3.2 and (2.10), we can obtain the estimate

lzll < Tnesp((max{iipilic. IB2lic} + Ipllc)/2)lzl.

We supposed that our solutions are bounded in the norm of the space Cy, thus, ||z|| < O(z)|lz|. Hence, |z|| =0
and p; = P, in the grids w1, or wy,. Similarly we deal with the boundary equations. Hence, the function w,
which we can find from the iterative process, is the unique solution of problems (2.1)—(2.3) or (2.4)~(2.6) in the
given class of functions. Lemma 3.3 is proved.

4. CONVERGENCE AND STABILITY OF THE DIFFERENCE SCHEME

Let a grid function ®(r;) be an error of approximation of difference schemes (2.1)—(2.3) or (2.4)~(2.6) in a
layer 7;, where t; = tj and T = T/M. In the grids w), or wy; we have

ou ) ] S
() = (U:(fj) - E(T(J + 0-5))) —A (U.t(tj) - a(f(J + 0-5))>

9%u

- (,‘B(ﬁ,;x(r,) -3 (t(j + 0.5))> — (F(a, w* (1)) — f(u. u*(r(j + 0.5)))).

where u is a solution of problem (1.1)-(1.3) or (1.1), (1.2), (1.4). We know that in the case of the first boundary
value problem we have ug = uy = 0, thus ®(xg, #;) = ®(xy.t;) = 0. In the case of the second boundary value
problem, we define the value of the solution of (1.1), (1.2), (1.4) in the fictitious grid points xg, xx similarly as
in the difference scheme: ug = u;, uy = uy4y. When h — 0, these conditions and (1.4) are equivalent.

We suppose that u(x. ) is smooth enough and the following condition is satisfied:

ogzla/ﬁ-l {ll@(t,-)!lwzlh} — 0, when t1.h— 0. 4.1

Also we introduce the grid function € as an error of the solution in the grids Oy, or @, € = u — p, where P
is the solution of (2.1)—~(2.3) or (2.4)-(2.6).

We subtract a difference problem in a layer r; from a corresponding differential problem in a time moment
7(j + 0.5). In the case of the first problem we have u(xg,t) = u(xy.t) = pg = py = 0, thus, we obtain the
following equations:

€ = Aé; +iBéz + V¥ + b, (x.1) € Q.
e(x.0) =0, x €wy, e(xg. 1) =€e(xn. 1) =0, 1€ w,. (4.2)

In the case of the sccond problem we have defined u(xg. 1) = ux;, 1), u(xy. 1) = ulxyy, 1), thus
g =Ae, +iBe;  + VW + D (x.r)e Q. e(x, M) =0, x € wy.

elxg. 1) = e(x).1). glxy.t) =elxye 1), | € Wr. (4.3)

In both cases W = f(u.a") — f(p. p").
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THEOREM 4.1.  Assume that (1.5)-(1.7), (4.1) are satisfied for problem (1. 1) (1.3). Then a solution p of
problem (2.1)-(2.3) converges to a solution u in the norm of space Loo(0. T; W! sn) and there exists 1y, hy > 0
such that Vt, 0 < v < 15, Yh, 0 < h < hy we have

max {He(t,)]lwl } < ¢4 max [II¢(t,)l|wx } (4.4)
0<jsM ogjsM
here Mt =T, c4 = cs(a. b, c2, 3. [ull¢c ). lluollw; . 9).

If (1.5), (1.6), (1.8), (4.1) are sansﬁedforproblem (1.1), (1.2), (1.4), then a solution of (2.4)-(2.6) converges
10 u in the same norm and there exists t{/, hg > 0 such that ¥t, 0 < v < tg, Yh, 0 < h < hg we have

Jmax (el | <es | max {1961y | (4.5)

here cs = cs(a. b, cs, luli¢g) luollw,, @).

Proof. In case (4.2) we notice that W(xo. t;) = W(xy, t;) = 0. Then, similarly as in Lemma 2.4, we obtain
an inequality similar to (2.17). Using ||¥; + ®;[| < W |f + | ®;ll, (2.14), the e-inequality with £ = 0.5, the €
expression by € and €, we obtain

j-1

Hs(rj)lliv,lh < elne(ro)nzwﬁ,h +rle+ 1))y ncb(zk)uiwh
: ! > !

j—1
(s + D@En+0.5) Y (el + el );

k=0

here
& = 2V2np (max[uuqu) Pl (g, )]> (1 + 2¢3 max {Ip(t) })~

e; is the constant from inequality (2.17).
Let 1) = 1/((e; + 1)(2é2n + 1)). Then Vr, 0 < v < 1y we use Corollary 2.3, the equality ”5(’0)”th =0,

take the square root, and have

It lhwy, < & max {190y | (4.6)

here & = /2(e1 + D5 exp(tj(er + 1)(262n + 1))

In case (4.3) we use (2.19), (2.14) and V1, 0 < t < 13, where 13 = 1/(a + 4ean + 2), we get

ey, <& max {1®6oty |- (4.7

SER/ -

here ¢s = 2./fj exp(tj(a + 4ean + 2)).
We notice that if positive parameter ¢, increases the values of parameters ¢4 or ¢s increase, too.
For the first problem we will show that 3z, kg such that VT, /1, 0 <t < 0.0 <h<hyVj=0.1.....M,

lptti)lic € 2llull¢p)- We use mathematical induction:
) If j = 0 then {[p(ro)llc < llu(r)lic < lhalleg, < a.
b) Let |p(tidllc S @ Vi =0.1,..., j — 1. Using Lemma 2.4 we can write the estimates: ”P(’j—l)”th <

e3llp(to) - Here é3 is the parameter from estimate (2.16), it depends on [Ipll¢g, - If that norm increases,
Zh -1
¢y increases, too. Due to the induction’s supposition, |Iplleg, , < a. Thus. we can write Hp([,‘)”u/lh <
yo bl
exllp( fo)le = ezllu()H“; Vi =0.1...., J — I, where ez < ¢35 = Jeyexp (4(e1 + 1)nT<p(oz)). Using Lemma

3.3, we obmm lIlp(;) “w‘ < “36’4||“0||w,‘,~ where ¢ is constant from (3.7). Using (2.8), we obtain the estimate

HP(’/ e < (303"4“‘1(”’“:',"
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In (4.6) parameter ¢4 depends on ”P”C(E,.)’ maxogkgj{llp(rk)llw|h} and increases, when these norms increase.
f b}

We evaluate these norms by the constants c3ese)|jugl| wi, and e;e;||u0||WJh. We obtain constant ¢4 > ¢4, where

ca =/ 2(ey + DT exp(T(e; + 1)(2e3n + 1)

and
ey = 2v/2n(1 + 2cses¢ uollyy ) (caeseslluollyy ).

We can obtain a constant ¢4 when 0 < 7 < r;, where 3 = min {(4(e1 + Dnp(a))™!, ((ey + Dn(ey + De((e; +

Deserlluolly, /27" ((er + 1)2e4n + 1)) J. Now we have fle(t))liw), < camaxocigj-1{I®W)llw, ), where
the right- hand side of the inequality converges to 0 when 7, h — 0. Then 3ty hy >0, 75 < 13 such that vr,
0 <t <1y Yh, 0 < h < hy we can obtain: lle(t,)llwu < (1/c1)ﬂu||C<Q) Usmg (2 8) and expression of € by
u and p, we get |[(u — p)(t,)”c IIulIC(Q) Then the 1nequahty follows: {ip(¢)iic < llullc o t ta(t)llc < «a.
The induction step is proved.

Similarly we deal with the second problem. As follows from Lemmas 3.3 and 3.1, when t is small enough,
we can estimate e, < 4, where ¢ is the constant from (3.8). In the same way as before we get cs > ¢s, where

cs = 2«/Texp(T(a +4ein + 2)),
e3 = 2V/2n(1 + Bcseslluollwy, ) (4caeslinollyy ) > 2v/2n(1 + 2caefesliuollyy, )o(caesesliuollyy ).
and es is the constant which we obtain from (2.18): es = exp(T (a + 8ne(a))). We can get ¢s when
1; < 74 =min {{a + 8n<p(a))*l, (20"([3(2.56325”uo”wzlh))_l, (b/2a), (a + desn +2)~! b

We can find 7§, kg > 0, 7y < 74 such that V7, 0 < 7 < 75, Yh, 0 < h < hg, the condition of the induction step
is satisfied.

When we know such 73, kg and 1y, hg, we can write [|[p(t;)llc <a Vj =0,1,..., M. Now in (4.6) and (4.7)
we can take constants ¢4 and ¢s, independent from p, instead of ¢4 and cs. From this statement and from (4.1)
the convergence of schemes in the norm L, (0. T; W,h) follows. Theorem 4.1 is proved.

THEOREM 4.2. Assume that u|(x,t) and wa(x.t) are two solutions of (1.1)~(1.3) with the initial conditions
ujg and wy. Let (1.5)—(1.7), (4.1) be satisfied in both cases. Then there exists t5, hy > 0 such that Vt,
0 <1t <1y YA, 0 <h < hgthe following estimate for the solutions of (2.1)~(2.3) is valid:

oax {Ilpr = P (tllwy, } < colluio = vaollyy, (4.8)

here ¢, = C6(a b.ca. c3 flm ”(_‘(Q) ||u’“c(Q) “ulO”w' )

Similarly assume thar u|(x.t) and u»(x,t) are rwo solutions of (1.1), (1.2), (1.4) and conditions (1.5), (1.6),
(1.8), (4.1) are satisfied, then there exists . hy > O such that with the corresponding t. h the following estimate
for the solutions of (2.4)—(2.6) is valid:

omax {l(er =) (1), } < crliuio = uzollyy, . (4.9)

here ¢7 = c7(a.b. ca wille ). u2lleg) Iwoliwy - ¢)-

Proof. We denote z=p, — p> and T = f(p,;) — f(p,). Then, subtracting the equations for p, from the
equations for p;, we obtain problems of type (2.1)—~(2.3) or {2.4)~(2.6) for a function z with a function Y instead
of f.

In the first case we use (2.17), esimate || Y, I|W~'h with the help of (2.14), use Theorem 5.1 and find 7. b
such that V. h, 0 < 1t < 15, 0 < h < hy the following estimates are valid: |]p,~|lc@) < 2!|u,—!|c(@ and
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Maxogkg M {Ilpi ol Ww';.} < e.xeilluio||‘vlh. where i = 1, 2. Here and in what follows e,. 3. €. e5 arc constants
from Theorem 5.1. From here we obtain the following inequality:

j=1
l2(t)15y; < erllz(to)lly, + t(er + egn /;(nzmmn;vgh 2ol ).

where constant
e = 2\/2-11(1 + 2c3e3e lluol| W:Ih)(p (2 max{fju ¢ ). allcg))) -

Now we can use Corollary 2.3 and obtain the inequality
“z(t/)“iv,'h < erexp(dT (ey + l)egn)llz(to)lla,wlh.

This estimate is valid Vj =0, 1, ..., M, hence, we get (4.8) with cg = /e, exp(2T () + 1)egn).
In the second case we prove similarly that there are 7, h; such that (4.9) is valid. Here

c7 = exp(Taegn), eq = 2+/2n(1 + 8cyes llulollwznh)go(Z max{{|uollc g Iu2licg)))-

Theorem 4.2 is proved.

COROLLARY 4.1. Under the conditions of Theorems 4.1 and 4.2 we can prove the convergence and stabiliry
of difference schemes in the norm || “c@)-

Proof. This statement follows from (2.8).
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