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Coexistence of Hamiltonian-like and dissipative dynamics
in chains of coupled phase oscillators

with skew-symmetric coupling
Oleksandr Burylko, Alexander Mielke, Matthias Wolfrum, Serhiy Yanchuk

Abstract

We consider rings of coupled phase oscillators with anisotropic coupling. When the coupling is
skew-symmetric, i.e. when the anisotropy is balanced in a specific way, the system shows robustly
a coexistence of Hamiltonian-like and dissipative regions in the phase space. We relate this phe-
nomenon to the time-reversibility property of the system. The geometry of low-dimensional sys-
tems up to five oscillators is described in detail. In particular, we show that the boundary between
the dissipative and Hamiltonian-like regions consists of families of heteroclinic connections. For
larger chains with skew-symmetric coupling, some sufficient conditions for the coexistence are
provided, and in the limit of N →∞ oscillators, we formally derive an amplitude equation for so-
lutions in the neighborhood of the synchronous solution. It has the form of a nonlinear Schrödinger
equation and describes the Hamiltonian-like region existing around the synchronous state simi-
larly to the case of finite rings.

1 Introduction

Many phenomena in nature can be studied using models of lattices of coupled oscillatory systems.
Examples are interacting semiconductor lasers [56], neural networks [2, 47], mechanical systems [28],
biological oscillators [58], and others. In the limit of weak coupling, the dynamics of each subsystem
can be described by a scalar phase variable [26, 64], and the coupled system can be reduced to a
lattice of phase oscillators. In this context, one dimensional arrays with periodic boundary conditions
have been studied extensively [15, 51, 38, 58, 22, 17, 62, 69, 68, 42, 66, 30]. The rotation symmetry
of such a system is a source of rich dynamical behavior including rotating waves [47, 70, 69, 8, 41,
45, 67, 68], heteroclinic cycles, symmetric chaos [16, 68, 42, 38, 70], chimera states [32, 1, 66],
or compactons [43]. As an application in neuroscience, bifurcation mechanisms in rings of coupled
Hodgkin-Huxley type neurons with inhibitory and excitatory synapses were studied in [7, 55, 27, 65],
where a complex dynamical scenario and multistability are reported. A specific coupling structure on
a ring is the case of undirected non-local coupling to several nearest neighbors, where self-organized
patterns of coherence and incoherence, so called “chimera states”, have been discovered.

While for certain applications, such as molecular chains, the coupling of one element to its neighbors is
symmetric with respect to reflection in space, for other systems the coupling is essentially directional.
This happens for instance in laser systems with directional coupling through optical injection or in neu-
ronal systems, where neurons are coupled in one direction via chemical synapses. As a result, there
is a need for the theoretical understanding of the dynamical properties of rings with non-symmetric
(anisotropic) couplings.

In this work we focus on a specific case of the anisotropy, when the coupling matrix is skew-symmetric.
In such a case the system possesses a time-reversal symmetry, and the dynamics exhibits the coex-

DOI 10.20347/WIAS.PREPRINT.2447 Berlin 2017



O. Burylko, A. Mielke, M. Wolfrum, S. Yanchuk 2

istence of Hamiltonian-like and dissipative regions in the phase space for the same parameter values.
Moreover, there can be more than one Hamiltonian-like ”island”, and the solutions in conservative re-
gion can be periodic, quasi-periodic, or chaotic. For some cases, the dynamics becomes conservative.

We remind that time-reversal symmetry R of a system ẋ = G(x) is the involution R of the phase
space satisfying

G(RΦ) = −R(G(Φ)) (1.1)

and R2 = id, with id being the identical transformation. In particular, time-reversibility implies that
RΦ(−t) is a solution when Φ(t) is.

We note that there have been examples of reversible systems reported as well as the coexistence of
Hamiltonian-like and dissipative dynamics in reversible systems. Politi et al. showed such dynamics in
a 3-dimensional laser system [44]. Globally coupled superconducting Josephson junction arrays were
studied by Tsang et al. [61] who showed the coexistence of Hamiltonian-like and dissipative dynamics,
with the Hamiltonian-like dynamics being non-homotopic to zero. An infinite chain of locally coupled
phase oscillators with reversible properties has been studied by Topaj and Pikovsky in [59], and an
asymmetric ring by Pikovsky and Rosenau in [43]. The latter case corresponds to a particular case of
our model (4.1), which will be introduced in Sec. 4. Golubitsky et al. proved the existence of families
of periodic and quasi-periodic solutions in the Stokeslet model with time-reversal symmetry [23]. For
general theoretical results on the dynamics of time-reversible systems, see [39, 18, 3, 52, 21, 33, 49,
20, 35, 6, 36, 71, 11, 9, 54], the review [34] by J. Lamb and references therein.

This paper is organized as follows. In Section 2 the model for the ring of coupled phase oscillators as
well as the system for phase differences are introduced. In the following Sec. 3 we define synchronous
solutions and rotating waves and provide conditions for their existence and asymptotic stability. In
particular, we give explicit expressions for the eigenvalues of the characteristic equation for the rotating
waves.

In Section 4 we consider a more specific example of a ”forward-backward system”, for which the
coupling strengths to one or several next neighbors in one direction (forward) are all equal to the
same value a, while in the other direction (backward) equally many next neighbors are cooupled all
with coupling strength b. In such a case, the anisotropy of the coupling can be measured by the
difference a− b, and the skew-symmetric case corresponds to a + b = 0. We provide conditions for
the bifurcations and, in particular, show that in the case where the coupling is skew-symmetric, i.e.
a + b = 0, and includes only nearest-neighbors all eigenvalues of the rotating waves become purely
imaginary.

In Section 5, global properties of low-dimensional (dimension N = 3, 4 and 5) forward-backward
systems with a coupling function of Kuramoto-Sakaguchi type are studied in detail. It is shown that for
a + b = 0 the phase space exhibits the coexistence of a Hamiltonian-like region and a dissipative
region. ForN = 3, the phase space for phase differences is two-dimensional, and the Hamiltonian-like
region is foliated by a one-parameter family of periodic orbits bounded by a Z3-invariant heteroclinic
cycle. For this case, a complete bifurcation diagram as well as a list of possible phase portraits are
obtained. For the case N = 4 and a+ b = 0, the Hamiltonian-like region in the neighborhood of the
synchronous state is shown to be foliated by a 2-dimensional family of periodic orbits and bounded
by a surface, which is composed of heteroclinic cycles. In these low-dimensional cases, the relation
between the dimension of the subspace FixR and the phase space dimension N is of importance.
For N = 4, when the dimension of FixR is 2, the complete global description of the phase space
becomes complicated. Hence, the existence of an Hamiltonian-like region is shown only locally in
the neighborhood of the synchronous state, while the existence of a dissipative region is shown in
the neighborhood of asymptotically stable or unstable rotating waves. The sizes of the domains are
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estimated numerically by calculating the Lyapunov exponents.

In Section 6 we consider a system with an arbitrary number N of coupled identical oscillators. This
system is time-reversible for skew-symmetric coupling, and dim (FixR) = [N/2] holds. We present
conditions for the existence of a one-parameter family of periodic solutions when N is odd and condi-
tions for the existence of a two-parameter family for N even, as well as conditions for the appearance
of [(N − 1)/2]-dimensional tori in the neighborhood of the synchronous solution. Hence, the main
message is that the splitting of the phase space in a Hamiltonian-like region close to sync and a dis-
sipative region still holds for the case of arbitrary N , though with less geometric insight compared to
the cases of small N , studied before.

Section 7 considers specific cases when the reversible or conservative dynamics can occur in sys-
tems with non-identical coupled oscillators. We show that system with arbitrary frequency differences,
skew-symmetric (resp. symmetric) coupling, and odd (resp. even) coupling function is divergence free,
leading to the coexistence of periodic, quasiperiodic, and chaotic solutions. For some cases, the first
integrals are computed. For a special constellation of natural frequencies (equally distributed) we show
also the reversibility.

Finally, in Sec. 8 we consider the dynamics in a neighborhood of the synchronous solution in the
case of an infinite chain of identical oscillators (N → ∞) when each oscillator is coupled with a
finite number 2l of its neighbors. In particular, we show that for the skew-symmetric coupling the
resulting amplitude equation is the nonlinear Schrödinger equation. This fact agrees well with the
observations for finite N, where, as we have shown, the neighborhood of the synchronous solution
displays Hamiltonian-like dynamics. We conclude with a discussion in Sec. 9.

2 Oscillator model with circulant coupling

We consider the following translationally invariant chain of coupled phase oscillators with periodic
boundary conditions

θ̇i = ωi +
N∑
j=1

Kjg(θi − θi+j), i = 1, . . . , N, (2.1)

where θi ∈ [0, 2π) are phase variables, ωi are natural frequencies, g(x) is a smooth 2π-periodic
coupling function, Kj , j = 1, . . . , N , are coupling strengths, and all subscripts are assumed modulo
N . The coefficient KN ≡ K0 determines the self-coupling. System (2.1) can be rewritten in a way
similar to the Kuramoto system [31] as follows

θ̇i = ωi +
N∑
j=1

Kj−ig(θi − θj), i = 1, . . . , N,

and it describes a network of oscillators with coupling strengths given by the circulant coupling matrix

K = circ(K0, K1, . . . , KN−1) =


K0 K1 . . . KN−2 KN−1

KN−1 K0 K1
. . . KN−2

... KN−1 K0
. . .

...

K2
. . . . . . . . . K1

K1 K2 . . . KN−1 K0

 . (2.2)
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Figure 2.1 shows examples of networks with circulant connections for seven oscillators with coupling
strengths K0, . . . , K6. Note that system (2.1) reduces to the classical Kuramoto model of globally
coupled oscillators when Ki = K0 for all i = 1, . . . , N − 1 and g(x) = sinx.
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Figure 2.1: Networks of seven asymmetrically coupled oscillators: (a) nearest-neighbor coupling l =
1, see Eq. (4.1), (b) second nearest-neighbor coupling l = 2, (c) l = 3. Networks in (d)–(f) are
described by Eq. (2.1), where (d): K1 = K3 = a, K−1 = K−3 = b, and K2 = K−2 = 0; (e):
K1 = a1 6= K2 = a2 and K−1 = b1 6= K−2 = b2; (f): arbitrary Kj , j = 0, . . . , 6. Different colors
of arrows denote different coupling strengths.

By introducing new variables

ϕi = θ1 − θi+1, i = 1, . . . , N − 1, (2.3)

we reduce (2.1) to the system in phase differences

ϕ̇i = ∆i +
N−1∑
j=1

Kj(g(ϕj)− g(ϕi+j − ϕi)), i = 1, . . . , N − 1, (2.4)

where ∆i = ω1 − ωi+1, the subscripts are considered modulo N , and ϕ0 = 0. We remark that the
original system (2.1) possesses a S1 phase shift symmetry

θi → θi + const

that allows to reduce it to the phase differences (2.4) where the reduced system has one less variables
and does not have the S1 symmetry.
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In the paper we mainly consider the case of identical oscillators ∆i = 0, except for Sec. 7. Section 5
investigates examples of low-dimensional systems where Kj = a, K−j = b, j = 1, . . . , l, l < N/2
(see Fig. 2.1(a)–(c)), and the coupling function g(x) = − sin(x−α). In the case of identical oscillators
we therefore deal with only two bifurcation parameters b and α, while we can fix a = 1.

3 Synchronous solution and rotating waves

In the system of identical oscillators, the synchronous state exists where θi(t) = θj(t) for all i, j
and t. In the system for phase differences (2.4) this solution corresponds to the fixed point ϕi = 0,
i = 1, . . . , N − 1. In fact, the reduced system (2.4) can have many different fixed points depending
on the form of coupling function g(x), however, some of them arise as a result of rotation symmetry
of the network. Note that for identical oscillators the circulant structure of the coupling matrix induces
an equivariance of the system with respect to the cyclic group ZN acting by

γ : (θ1, θ2, . . . , θN) 7−→ (θN , θ1, . . . , θN−1).

For the reduced system (2.4) this symmetry is given as

γ̃ : (ϕ1, ϕ2, . . . , ϕN−1) 7−→ (−ϕN−1, ϕ1 − ϕN−1, . . . , ϕN−2 − ϕN−1).

One can check that solutions of (2.1) of the form(
θ(t), θ(t)− 2πk

N
, . . . , θ(t)− (N − 1)2πk

N

)
, (3.1)

k = 0, . . . , N − 1 are invariant under the symmetry action γ for arbitrary coupling function g(x).
Eq. (3.1) represents rotating wave solutions with wave number k, where each oscillator is phase-
shifted by 2πk/N with respect to the neighboring one. The corresponding solutions of the reduced
system (2.4) are equilibria

Mk =

(
2kπ

N
,
4kπ

N
, . . . ,

2(N − 1)kπ

N

)
. (3.2)

The synchronous solution is therefore the rotating waveM0 with zero wave number. By substituting
(3.2) into (2.4) one can see that the rotating waves with any wave number k exist for any choice of the
coupling function g.

Proposition 1. For any coupling function1 g, system of coupled identical phase oscillators (2.1) pos-
sesses rotating wave solutions (3.1) with all possible wave numbers k. The corresponding solutions of
the system in phase differences (2.4) are the equilibria (3.2).

We note that system (2.4) can have other equilibria in addition toMk. Let us first point out the relation-
ship between the system (2.1) and the corresponding system in phase differences (2.4). The following
proposition shows that the Jacobian matrices of these two systems evaluated at the corresponding
points share the same set of eigenvalues except of the trivial one, which is induced by the phase-shift
symmetry of the original system (2.1).

1Here and hereafter, we assume that g(·) is sufficiently smooth to guarantee the global existence of the solution, but
do not mention explicitly.
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Proposition 2. LetA andB the Jacobi matrices of systems (2.1) and (2.4), respectively, that are eval-
uated at corresponding points (θ1, . . . , θN) and (ϕ1, . . . , ϕN−1), ϕi = θ1−θi+1 (i = 1, . . . , N−1).
Then the following relation holds

det(A− λIN) = −λ det(B − λIN−1),

where IN is N ×N -dimensional identity matrix.

Proof. Let us first rewrite (2.1) and (2.4) in the vector form:

Θ̇ = F (Θ), Θ = (θ, . . . , θN), (3.3)

and
Φ̇ = G(Φ), Φ = (ϕ1, . . . , ϕN−1). (3.4)

We append the first equation θ̇1 = F1(θ1, . . . , θN) = F1(θ1, θ1 − ϕ1, . . . , θ1 − ϕN−1) of (3.3) to
(3.4) and obtain the extended N -dimensional system:

˙̄Φ = Ḡ(Φ̄), Φ̄ = (θ1, ϕ1, . . . , ϕN−1), (3.5)

where

Φ̄T =

(
θ1

ΦT

)
= SNΘT , SN =


1 0 . . . 0 0

1 −1
. . . . . . 0

... 0
. . . . . .

...

1
...

. . . −1 0
1 0 . . . 0 −1

 . (3.6)

One can check that det(SN) = (−1)N−1 and S−1
N = SN . The Jacobian matrices at the correspond-

ing points Θ0, Φ0, and Φ̄T
0 = SNΘT

0 are A = ∂F
∂Θ

(Θ0), B = ∂G
∂Φ

(Φ0), and B̄ = ∂Ḡ
∂Φ̄

(Φ̄0). Using the
relationship (3.6) we have B̄ = SNAS

−1
N . It also holds that

B̄ =

(
B̄11 b̄

¯̄bT B

)
,

where ¯̄b = 0, because the right-hand sides Ḡ2, . . . ḠN do not depend on θ1. Further, the right side of
the first equation in (3.5) is Ḡ1(ϕ̄) =

∑N
j=1Kjg(ϕj), and it is independent of the variable θ1, which

implies B̄11 = ∂Ḡ1/∂θ1 = 0. Using the above properties we obtain the necessary result:

det(A− λIN) = det(S−1
N (B̄ − λIN)SN) = det(B̄ − λIN)

= det

(
−λ b̄

0 B − λIN−1

)
= −λ det(B − λIN−1). (3.7)

The additional zero eigenvalue of the matrix A corresponds to the neutral stability of each solution of
the original system (3.3) along the eigenvector v = (1, . . . , 1) and appears due to the phase shift
symmetry.

The following result establishes the spectrum of the rotating wavesMk.
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Proposition 3. Eigenvalues of the Jacobi matrix of system (2.1) evaluated at the rotating wave solution
Mk are

λm(Mk) =
N−1∑
j=1

Kjηkj

(
1− eı

2mjπ
N

)
, m = 1, . . . , N − 1,

where ı =
√
−1 and ηkj = g′

(
2πk
N
j
)
.

Proof. Let A be the corresponding Jacobi matrix. Direct calculation gives

Aii(Mk) =
N∑
j=1

Kj−ig
′(Mk,j−1 − Mk,i−1) =

N∑
j=1

Kj−iηk(j−i) =
N∑
j=1

Kjηkj,

Aij(Mk) = −Kj−ig
′(Mk,j−1 −Mk,i−1) = −Kj−iηk(j−i), i, j = 1, . . . , N, j 6= i,

whereMi,j = 2πi
N
j denotes the component ofMi. Since A(Mk) is circulant, it can be presented

as a polynomial of the cyclic permutation matrix

PN =


0 1 0 . . . 0

0 0
. . . . . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
1 0 . . . 0 0


in the following form

A(Mk) =
N∑
j=1

Kj−iηk(j−i)IN −
N∑
j=1

Kj−iηk(j−i)P
j−i
N =

N∑
j=1

Kjηkj
(
IN − P j

N

)
, (3.8)

k = 0, . . . , N − 1. Eigenvalues of this circulant matrix can be written as

λm(Mk) =
N∑
j=1

Kjηkj(1− νjm), m = 1, . . . , N, (3.9)

where νm = exp
(

2πı
N
m
)

are eigenvalues of PN . Note that equalities νjN = exp
(

2πı
N
jN
)

= 1 imply
λN(Mk) = 0.

Separating the real and imaginary part, we have also the following expression:

λm(Mk) =
N−1∑
j=1

Kjηkj

(
1− cos

(
2mjπ

N

))
− ı

N−1∑
j=1

Kjηkj sin

(
2mjπ

N

)
. (3.10)

This equality implies that the system has [N/2] complex conjugate pairs (the cases when Imλ = 0
are also taken into account):

λN−m(Mk) = λ−m(Mk) = λm(Mk), (3.11)

where [x] is the integer part of x, λ is the complex-conjugate to λ. (3.11) shows that Im(λN/2(Mk)) =
0 for anyMk when N is an even number.

The following result follows from Proposition 3 and summarizes the stability properties ofMk:
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Proposition 4. The following statements hold true:
– If the inequality

Re(λm(Mk)) =
N−1∑
j=1

Kjηkj

(
1− cos

(
2mjπ

N

))
< 0

holds for all m = 1, . . . , N − 1, then the rotating waveMk is asymptotically stable.
– If there exists an index 1 ≤ m ≤ N − 1 such that Re(λm(Mk)) > 0 then the rotating wave is
unstable.
– If there exists an index 1 ≤ m ≤ N − 1, m 6= N/2 such that Re(λm(Mk)) = 0 then there exists
a pair of complex conjugated eigenvalues

λ±m(Mk) = ±ıΩm, Ωm = −
N−1∑
j=1

Kjηkj sin

(
2mjπ

N

)
.

Proposition 4 shows that the conditions Re(λm(Mk)) = 0 provide stability boundaries for the rotating
waves and the synchronous solution k = 0. In the case when Ω 6= 0, an Andronov-Hopf bifurcation
can take place [24, 48]. We will show in Sec. 4 that for different equilibria the system can have both
degenerate and regular Andronov-Hopf bifurcations.

Using the complex conjugacy: ν−m = νm we can rewrite real and imaginary parts of eigenvalues
(3.10):

Re (λm(Mk)) =

[(N−1)/2]∑
j=1

(Kjηkj +K−jη−kj)

(
1− cos

(
2mjπ

N

))
+

1

2

(
(−1)N + 1

) (
(−1)m+1 + 1

)
KN/2, (3.12)

Im (λm(Mk)) = −
[(N−1)/2]∑

j=1

(Kjηkj −K−jη−kj) sin

(
2mjπ

N

)
. (3.13)

Proposition 4 together with Eq. (3.12) show that it is possible to observe a degenerate bifurcation with
up to [(N − 1)/2] critical pairs of eigenvalues at the pointMk.

Remark 5. System (2.4) has other equilibria except for the origin and rotating waves (3.2). For exam-
ple, it has fixed points Φ̃ = (ϕ̃1, . . . , ϕ̃N−1) with coordinates 0 and π (ϕ̃i ∈ {0, π}). It is easy to
check that Jacobian matrix of the system (2.1) at the solution Θ̃ (corresponding to solutions Φ̃ of (2.4))
is not circulant. Therefore, the eigenvalues λm(Θ̃) can not be described similarly to Eq. (3.9).

4 The model with different forward and backward connections

In this section, we consider the special case when Ki = a, K−i = b, i = 1, . . . , l and Ki = 0
for l < |i| < N/2 , i.e. each oscillator is connected with identical coupling strength a to its l next
neighboring oscillators in the clockwise direction (forward) and with identical coupling strength b to the
same number of next neighbors in the counter-clockwise direction (backward). In this case system
(2.1) has the form

θ̇i = ωi + a
l∑

j=1

g(θi − θi+j) + b
N−1∑
j=N−l

g(θi − θi+j), i = 1, . . . , N, (4.1)

DOI 10.20347/WIAS.PREPRINT.2447 Berlin 2017



Coexistence of Hamiltonian-like and dissipative dynamics 9

Further in Sec. 5, low-dimensional examples of such systems will be treated in more detail, especially
in the skew symmetric case a = −b leading to the coexistence of Hamiltonian-like and dissipative
dynamics. In this section, we state basic stability properties for the rotating wavesMk for general N .
The network is unidirectional when either a = 0 or b = 0. The schematic diagram in Fig. 2.1 illustrates
examples of seven coupled oscillators with (a) l = 1, (b) l = 2, and (c) l = 3 where connections in
different directions are marked by arrows of different color.

The system corresponding to (4.1) in phase differences has the form

ϕ̇i = ∆i + a
l∑

j=1

(g(ϕj)− g(ϕi+j − ϕi)) + b

N−l∑
j=N−1

(g(ϕj)− g(ϕi+j − ϕi)), (4.2)

i = 1, . . . , N−1. In the case of identical oscillators ωi = ω, i = 1, . . . , N , without loss of generality
we can set a = 1 by rescaling the time. In this case, the number of coupling parameters is reduced to
just one continuous parameter b, apart from integer parameters N , l, and the coupling function g(x).

By applying the results of Proposition 4 to system (4.2) we obtain the following statement about the
stability of rotating waves.

Corollary 6. The rotating wave solutionsMk, k = 0, . . . , N − 1 of system (4.2) undergo a bifurca-
tion, if

Re(λm(Mk)) =
l∑

j=1

(aηkj + bη−kj)

(
1− cos

(
2mjπ

N

))
= 0 (4.3)

for some 1 ≤ m ≤ [(N − 1)/2]. If, additionally, the inequality

Ω := Im(λm(Mk)) = −
l∑

j=1

(aηkj − bη−kj) sin

(
2mjπ

N

)
6= 0 (4.4)

holds, then a pair of complex conjugate critical eigenvalues λ±m = ±ıΩ appears.

For the case of nearest-neighbor coupling l = 1, the condition (4.3) reads

Re(λm(Mk)) = (aηk + bη−k)

(
1− cos

(
2mπ

N

))
= 0.

For m 6= 0 (non-synchronous rotating waves), 1 − cos
(

2mπ
N

)
> 0 and the term aηk + bη−k is

independent of m. Considering also the condition (4.4) in the same way, and recalling the definition of
ηk, we have the following statement.

Corollary 7. The rotating wave solutionsMk of system (4.2) with nearest-neighbor coupling (l = 1)
have all eigenvalues purely imaginary if the condition

ag′(2kπ/N) + bg′(−2kπ/N) = 0 (4.5)

is satisfied. If additionally g′(2kπ/N) 6= 0, then among these eigenvalues there are [(N − 1)/2]
complex conjugated pairs.

The solutionMk is asymptotically stable when ag′(2kπ/N) + bg′(2kπ/N) < 0.
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The conditions (4.3) and (4.4) can be simplified at the synchronized solutionM0 of (4.2) to the follow-
ing form

Re(λm(M0)) = g′(0)(a+ b)
l∑

j=1

(
1− cos

(
2mjπ

N

))
= 0, m = 1, . . . , N − 1, (4.6)

Im(λm(M0)) = −g′(0)(a− b)
l∑

j=1

sin

(
2mjπ

N

)
6= 0. (4.7)

The last multiplier on the right hand side of (4.6) is always positive and the last multiplier on the right
hand side of (4.7) is nonzero because m 6= 0, j 6= 0. For the bifurcation of the synchronous solution
we obtain the following conditions.

Corollary 8. The synchronous solutionM0 of system (4.2) with nearest-neighbor coupling (l = 1)
has all eigenvalues purely imaginary if the condition

a = −b 6= 0 or g′(0) = 0. (4.8)

is satisfied. In the case g′(0) = 0, all eigenvalues are zero.

The solutionM0 is asymptotically stable when ag′(0) + bg′(0) < 0.

An example, when all eigenvalues are zero is the Kuramoto-Sakaguchi [50] coupling function g(x) =
− sin(x − α) for α = ±π/2, there a degenerate transcritical bifurcation occurs, since g′(0) =
− cos(0− α) = 0.

In the case a = b when the coupling is symmetric, the condition (4.3) reduces to

l∑
j=1

(ηkj + η−kj)

(
1− cos

(
2mjπ

N

))
= 0. (4.9)

In particular, the condition holds for all k, when the derivative of the coupling function is odd g′(x) =
−g′(−x). We have the following statements.

Corollary 9. Let a = b in (4.2) and the coupling function is even g(x) = g(−x). Then the spectrum
of all rotating wave solutionsMk is critical, i.e. Re(λm(Mk)) = 0 for all m = 1, . . . , N − 1 and
k = 0, . . . , N − 1.

Corollary 10. Let a = −b in (4.2) and the coupling function is odd g(x) = −g(−x). Then the
spectrum of all rotating wave solutionsMk is critical, i.e. Re(λm(Mk)) = 0 for allm = 1, . . . , N−1
and k = 0, . . . , N − 1.

5 Bifurcation properties in low-dimensional systems

In this section we study in detail the low-dimensional system (4.1)–(4.2) with specific coupling func-
tions. Mostly, we consider a coupling function of Kuramoto-Sakaguchi type [50]

g(x) = − sin(x− α) (5.1)
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with a phase shift parameter α.

We note that in the case a = b the system (4.2) has the dihedral symmetry DN . The system (4.2)
with Kuramoto-Sakaguchi coupling (5.1) has additional symmetries Γ1, Γ2, and Γ3 that are given by
the actions:

γ1 : (ϕ1, . . . , ϕN−1, a, b, α, t) 7−→ (ϕ1, . . . , ϕN−1,−a,−b, α,−t),

γ2 : (ϕ1, . . . , ϕN−1, a, b, α, t) 7−→ (−ϕ1, . . . ,−ϕN−1, a, b,−α,−t),

γ3 : (ϕ1, . . . , ϕN−1, a, b, α, t) 7−→ (ϕ1, . . . , ϕN−1, a, b, α + π,−t). (5.2)

For b = −a, the system has also the time-reversal symmetryR

R : (ϕ1, . . . , ϕN−1t) 7−→ (ϕN−1, . . . , ϕ1,−t), (5.3)

which plays an important role for the coexistence of Hamiltonian-like and dissipative dynamics, as it
will be discussed in the following.

5.1 Three coupled oscillators

“In this section, we describe the phase space of the system of N = 3 identical oscillators with
Kuramoto-Sakaguchi coupling function (5.1) written in phase differences (2.4):

ϕ̇1 = − sin(ϕ1 − α)− b sin(ϕ2 − α)− b sin(ϕ1 + α)− sin(ϕ1 − ϕ2 + α),

ϕ̇2 = − sin(ϕ1 − α)− b sin(ϕ2 − α)− sin(ϕ2 + α)− b sin(ϕ2 − ϕ1 + α).
(5.4)

Note that we set the coupling parameter a = 1 without loss of generality. In this N = 3 case the
system is globally coupled (all-to-all). System (5.4) possesses two parameters b and α. The bifurcation
diagram with respect to these parameters is shown in Fig. 5.1, and the typical phase portraits for
different parameters are shown in Fig. 5.2. In the following, we describe the dynamical properties of the
system in details. An important conclusion about the coexistence of Hamiltonian-like and dissipative
dynamics will be given in Proposition 11.

Symmetries and fixed points. The Z3 symmetry in system (5.4) is generated by the action

γZ3 : (ϕ1, ϕ2) 7−→ (−ϕ2, ϕ1 − ϕ2).

The originM0 = (0, 0) and the two rotating wave pointsM1 = (2π/3, 4π/3),M2 = (4π/3, 2π/3)
are invariant under the action γZ3 . While the locations of these points do not depend on parameters,
their stability does. In addition to theMk, the system has three Z3-symmetric saddles. For α = 0, the
coordinates of these saddles are (0, π), (π, 0), and (π, π), see Fig. 5.2(a), and they change with pa-
rameters. The saddles exist for all parameter values except for α = ±π/2. Simultaneous connections
of stable and unstable one-dimensional manifolds of the three saddles create Z3-heteroclinic cycles
for some parameter values, see Figs. 5.2(c), (f), (g), and (j).

Bifurcations of fixed points, see Fig. 5.1(a). As follows from Corollary 7 and condition (4.5), the
Andronov-Hopf bifurcation lines for the pointsMk are given by the expressions

Hk =

{
(α, b) : b = −cos(2kπ/3− α)

cos(2kπ/3 + α)

}
, k = 0, 1, 2.

In particular, the corresponding bifurcation line for the originM0 is b = −1 = −a.

DOI 10.20347/WIAS.PREPRINT.2447 Berlin 2017



O. Burylko, A. Mielke, M. Wolfrum, S. Yanchuk 12

Z3-symmetric transcritical bifurcations of the origin occur on the bifurcation lines α = ±π/2, where
the second condition of (4.8) holds: g′(0) = 0. In this case, three symmetric saddle points (Fig. 5.2(a),
(b)) approach the origin simultaneously and create a degenerate saddle at the bifurcation moment
(Fig. 5.2(d), (k)). Then the saddles pass the origin changing its stability.

Two heteroclinic bifurcation linesHC are very close to the Andronov-Hopf linesH1 andH2 ofM1 and
M2, respectively.HC andH lines intersect at the points (α, b) = (0,−1), (±π/2, 1), (±π/2,−1)
and at the point where coordinate b is close to−0.4. The global HC bifurcation consists of three sym-
metric saddle connections and it creates stable (Fig. 5.2(g)) or unstable (Fig. 5.2(f)) heteroclinic cycles.
This bifurcation leads to the appearance of a limit cycle with the same stability as the heteroclinic cycle
(Fig. 5.2(i), (d)). As a result, limit cycles appear at the H bifurcation and disappear in HC bifurcation
(or vice versa). The third symmetric HC bifurcation line coincides with the H0 line b = −1.

The system (2.4) is conservative at the codimension-two bifurcation points (α, b) = (0,−1) (Fig. 5.2(c))
and (α, b) = (±π,−1). There, it has the first integral

I(ϕ1, ϕ2) = cosϕ1 + cosϕ2 + cos(ϕ1 − ϕ2).

The system is also conservative when (α, b) = (π/2, 1) (Fig. 5.2(d)). A similar first integral exist
also for more general cases. The system (2.4) for the phases of N = 3 coupled oscillators with
K2 = −K1, K0 = 0 and g(ϕ) = −g(−ϕ) has the first integral

I(ϕ1, ϕ2) = h(ϕ1) + h(ϕ2) + h(ϕ1 − ϕ2),

where h′(ϕ) = g(ϕ).

The regions where the origin is stable consist of two parts: 1) b > −1, α ∈ (−π/2, π/2) and 2)
b < −1, α ∈ (π/2, 3π/2) (gray color in Fig. 5.1(a)). The regions of the stability ofMk, k = 1, 2,
are located between two neighboring Hi lines and it has width π along the α-axis. In particular, the
stability region forM1 is located between two (blue) bifurcation lines H1 in Fig. 5.1(a) and it satisfies
the inequalities

arctan

(
1 + b√
3(1− b)

)
+ 2nπ < α < arctan

(
1 + b√
3(1− b)

)
+ (2n+ 1)π, n ∈ Z.

The case b = −1 (α arbitrary) is especially interesting for us. In this case, the system possesses the
time-reversal symmetryR presented by the action (5.3)

R : (ϕ1, ϕ2, α, t) 7−→ (ϕ2, ϕ1, α,−t).

The line FixR : {(ϕ1, ϕ2), ϕ1 = ϕ2} is fixed under this symmetry. The superposition of Z3 andR
gives two other reversible symmetries with the corresponding fixed subspaces ϕ1 = 0 and ϕ2 = 0.

The system for b = −1 has Hamiltonian-like and dissipative regions that coexist in the phase space,
see Fig. 5.2(j). The following proposition rigorously states that the phase portrait shown in Fig. 5.2(j)
holds qualitatively for almost all values of the parameter α when b = −1.

Proposition 11. For b = −1 and α /∈ {0,±π/2, π}, system (5.4) possesses the following dynamics
in the phase space:

(A) Hamiltonian-like region: there exists a region in the phase space, which contains the originM0

and which is foliated by a one-parametric family of periodic orbits. This region is bounded by a Z3-
invariant heteroclinic cycle consisting of three saddle points and connecting orbits between them. The
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corresponding saddle points belong to the fixed subspace of the reversibility symmetry FixR or one
of its symmetry images under the action of Z3.

(B) Dissipative region: The pointsM1 andM2 are sink and source, respectively. That is, there exists
neighborhoods of the pointsM1 (resp.M2), such that all orbits starting from this neighborhoods are
asymptotically attracted toM1 (resp. repelled fromM2).

Proof. (A) According to the Corollary 7, under the conditions of the proposition, the origin has the
complex conjugated pair of eigenvalues±ıΩ1 = ±ı

√
3 cosα 6= 0. The Lyapunov center theorem for

time-reversible systems [23, Theorem 1.1] implies that the system has a one-parameter family Φσ(t)
of periodic solutions with periods near 2π/Ω1 where Φ0(t) =M0 and the parameter σ varies along
FixR. This shows that a neighborhood ofM0 is foliated by periodic orbits.

Let us now show that the maximal region D0 containing the set of neutral periodic orbits is bounded
by the heteroclinic cycle mentioned in the Proposition. It is known that the boundary of an invariant
region is flow-invariant. For our two-dimensional system, three types of invariant sets are possible:
a limit cycle, a homoclinic cycle, or a heteroclinic cycle. A limit cycle is impossible because it must
be neutral from the inside (it borders neutral periodic orbits), and it is neutral from the outside as well,
since any trajectory in its small neighborhood intersects FixR twice and is, therefore, periodic. Hence
the assumed bounding periodic orbit it neutral and is an internal with respect to D0. A homoclinic
cycle cannot be a border of D0, since, according to Z3 symmetry, there are three such homoclinic
loops that are connected to three different saddles Si and contain the same neutral fixed pointM0.
Hence these homoclinic orbits must intersect each other leading to a contradiction. Therefore, a Z3-
symmetric heteroclinic cycle is the only possible border for D0. More specifically, it consists of three
saddles S1 (ϕ̃, ϕ̃) ∈ FixR1, S2 (−ϕ̃, 0) ∈ FixR2, S3 (0,−ϕ̃) ∈ FixR3, where ϕ̃ = π-2α,
FixRi = γ̃i−1

Z3
FixR, i = 1, 2, 3, and of three one-dimensional invariant manifolds of these saddles.

The regionD0 has a maximal area when α = 0 or α = π and it occupies just 3/4 of the phase space
T2 (Fig. 5.2(c)). Increasing of the parameter |α| from 0 to π/2 (decreasing |α| from π to π/2) leads
to a symmetric motion of Si to the origin along FixRi (ϕ̃ changes from π to 0) that implies further
shrinking of the heterolinic cycle andD0 to the origin. Three saddles reachM0 when α = ±π/2 and
they form a degenerate saddle at the bifurcation moment (Fig. 5.2(l)).

(B) For the given parameter values, M1 is a sink (with eigenvalues λ1,2(M1) = −3
√

3
2

sinα ±
ı
√

3
2

cosα) andM2 is a source.

Our numerical observations (using numerical integration, software AUTO [19], as well as DS-Tool [5])
indicate that the dissipative region extends to T2 \ D0.

We will show in further sections that the above described phenomenon of the coexistence of Hamiltonian-
like and dissipative dynamics is typical for system (2.4) with an arbitrary number of oscillators and an
arbitrary periodic function g(x), when the coupling matrix K is skew symmetric. The case b = −1 =
−a is a particular example of skew-symmetric coupling.

We note that system (5.4) also has another time-reversal symmetry R′ given by the action R′ :
(ϕ1, ϕ2, t) 7−→ (−ϕ2,−ϕ1,−t) at the codimension-two point (α, b) = (0,−1) (Figs. 5.2(c) and
(d) correspondingly). The fixed subspace of R′ is FixR′ = {(ϕ1,−ϕ1), ϕ1 ∈ T1}, and it is also
flow-invariant. A further time-reversal symmetry R′′ : (ϕ1, ϕ2, t) 7−→ (−ϕ1,−ϕ2,−t) exists when
α = ±π/2 (Figs. 5.2(d), (k), and (l)). FixR′′ in this situation consists of only two points (0, 0) and
(π, π) in contrast to the previous case where FixR′ is a one-dimensional line. We note that the
symmetry R′′ exists for the general equation (2.4) with arbitrary even coupling function g(x) and for
an arbitrary number of oscillators N .
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Figure 5.1: Bifurcation diagrams in (α, b) bifurcation plane for three (a) and four (b) coupled oscil-
lators. Hk: line of the Andronov-Hopf bifurcation ofMk; TCk: transcritical bifurcation ofMk; HC :
heteroclinic (saddle-connection). Lines HC and H2 (H1) are located very close to each other, they
intersect when b ≈ −0.4 and partially merge in the figure. The Points a–l indicate parameter values,
for which corresponding qualitatively different phase portraits are shown in Fig. 5.2. g and f indicate
upper and lower parts of the sameHC line; i and e indicate upper and lower regions betweenH2 and
HC ; c(0, 1), d(π/2, 1), l(π/2,−1) are codimension-2 bifurcation points; j belongs to H0 between
c and l; k belongs to TS0 between d and l. Shaded regions show stability regions of the synchronous
solution.

5.2 Four coupled oscillators

System (4.2) ofN = 4 identical oscillators is three-dimensional for the phase differences (ϕ1, ϕ2, ϕ3):

ϕ̇i = g(ϕ1)− g(ϕi+1 − ϕi) + b(g(ϕ3)− g(ϕi+3 − ϕi)), i = 1, 2, 3, (5.5)

where g(x) = − sin(x − α). Here we also set a = 1 without loss of generality. Apart from the
synchronous solutionM0 at the origin, system (5.5) possesses the equilibriaM1 = (π/2, π, 3π/2),
M2 = (π, 0, π), andM3 = (3π/2, π, π/2).

The bifurcation diagram in the parameter plane (α, b) for N = 4 is shown in Fig. 5.1(b), where
Andronov-Hopf (H) and transcritical (TC) bifurcation lines of the rotating waves are plotted. The
stability region for the origin is the same as in the case of three oscillators. The stability region of
the point M2 coincides with the instability region of the origin. Stability regions of two points M1

and M3 are also complementary to each other. These regions are bounded by the lines α = 0,
α = π, and b = 1. The system is conservative at the codimension-two points (α, b) = (0,−1)
and (α, b) = (π,−1) with the first integral I1(ϕ1, ϕ2, ϕ3) = ϕ1 − ϕ2 + ϕ3. In these cases, the
whole phase space T3 is filled with a continuous set of non-isolated periodic orbits that are located
within the parallel planes ϕ1 − ϕ2 + ϕ3 = constant. The plane ϕ1 − ϕ2 + ϕ3 = π consists of
degenerate saddle points. The system also has another first integral I2(ϕ1, ϕ2, ϕ3) = cos(ϕ1) +
cos(ϕ1−ϕ2) + cos(ϕ2−ϕ3) + cos(ϕ3). Therefore, the periodic orbits in the mentioned planes are
described by expressions cos(ϕ1) + cos(ϕ1 − ϕ2) + cos(ϕ1 − c1) + cos(ϕ1 − ϕ2 − c1) = c2,
where the constant c1 corresponds to the choice of a certain plane and the constant c2 to the choice
of a certain periodic curve in this plane.

The last situation can be generalized for arbitrary coupling function g(ϕ) with two the first integrals
I1(ϕ1, ϕ2, ϕ3) = ϕ1−ϕ2 +ϕ3 and I2(ϕ1, ϕ2, ϕ3) = h(ϕ1) +h(ϕ1−ϕ2) +h(ϕ2−ϕ3) +h(ϕ3),
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Figure 5.2: Phase portraits for different parameter values for N = 3 coupled oscillators. Phase por-
traits in (a)–(l) correspond to system (5.4) and parameters from the points a to l in Fig. 5.1(a). Phase
portraits (m), (o), and (p) correspond to the coupling function (9.1) with additional second harmonic
term. (n)–(p): phase portraits for different natural frequencies of the oscillators. Colored areas indicate
Hamiltonian-like regions in the phase space that are filled with neutrally stable limit cycles. Colors for
fixed points indicate: red — source, blue — sink, green — saddle, magenta — center, dark green —
degenerate saddle. Stable limit cycles are shown in blue, unstable in red.
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where h′(ϕ) = g(ϕ).

The case of skew-symmeric coupling b = −1 leads to the emergence of coexisting Hamiltonian-like
and dissipative dynamics as in the case N = 3. The following proposition describes it in more detail.
As in the previous case, the conservative dynamics appears due to the time-reversibility (5.3).

Proposition 12. For b = −1 and α /∈ {0,±π/2,±π} system (5.5) possesses the following dynam-
ics in the phase space:

(A) Hamiltonian-like region: there exist neighborhoods of the equilibriaM0 andM2, which are foliated
by two-parametric families of periodic orbits.

(B) Dissipative region: The equilibriaM1 andM3 are sink and source, respectively. That is, there
exist neighborhoods of the pointsM1 (resp.M3), such that all orbits starting from this neighborhood
are asymptotically attracted toM1 (resp. repelled fromM3).

Proof. (A) The time-reversal symmetryR has the 2-dimensional fixed subspace

FixR : {(ϕ1, ϕ2, ϕ3) : ϕ1 = ϕ3} .

According to (3.9), the eigenvalues of the origin are λ1,3(M0) = ±ıΩ1 = ±ı2 cos(α) and λ2 = 0.
It follows from [23, Theorem 2.2] that there exists a 2-parameter family of periodic solutions in the
neighborhood ofM0 with periods near 2π/Ω1. Hence, there exists an invariant regionD0 around the
origin that is foliated with non-isolated limit cycles. The fixed pointM2 belongs also to FixR and it
has properties similar toM0. Hence,M2 also possesses a neighborhood D′0, which is foliated with
non-isolated limit cycles as well.

(B) Using (3.9) one can check that the fixed point M1 is a sink or a source when b = −1 and
α /∈ {0,±π}. The reversibility R implies that the point M3 symmetric to M1 possesses stability
properties opposite toM1. Finally we note again that the Hamiltonian-like regions D0 and D′0 shrink
to points when |α| approach π/2.

The following observations provide more details and complete the global picture of the dynamics in
the phase space for b = −1, they are also summarized in Fig. 5.3. We note that the superposition
of Z4 and R gives another time-reversal symmetry R′ with FixR′ : {(ϕ1, ϕ2, ϕ3) : ϕ2 = 0}.
The intersection of the planes FixR, FixR′ gives the 1D flow-invariant subspace V0 = FixR ∩
FixR′ = {(ϕ, 0, ϕ), ϕ ∈ T1} = span v, where v = (1, 0, 1) is an eigenvector corresponding to
the eigenvalue λ2 = 0 of the equilibriumM0. It is easy to check that the whole line V0 is filled with
equilibria. The equilibriumM2 belongs also to subspace V0. The equilibria in V0

⋂
(D0

⋃
D′0) are

neutral in the directions transverse to V0 and they are saddles otherwise, outside of the conservative
regions. Each periodic trajectory rotates around V0 and it has two intersections with invariant plane
FixR at the points (ϕ1, ϕ2, ϕ1), (ϕ1−ϕ2,−ϕ1, ϕ1−ϕ2) and two corresponding intersections with
FixR′ at the points (−ϕ1, 0, ϕ2 − ϕ1), (ϕ2 − ϕ1, 0,−ϕ1). One can check that the plane FixR
contains two lines of non-isolated fixed points ϕ2 = 2(ϕ1 + α) ± π (or, equivalently, this is one
line in T2 with rotation number 1:2). Each fixed point of the line is a degenerate saddle, it is neutral
along the line and it has attractive and repulsive 1D invariant manifolds in directions transversal to the
line. According to the rotational symmetry, another invariant plane FixR′ has also one-parametric
lines of degenerate saddles defined by the expression ϕ3 = −ϕ1 + 2α ± π. Fixed points on the
intersection of the above mentioned line with V0 have all zero eigenvalues. There are four such points
with coordinates (±π ± α, 0,±π ± α) that are on the boundary between the conservative and the
dissipative parts (Fig. 5.3).
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Figure 5.3: (a) Structure of the phase space of the system of four coupled oscillators (5.5) for b =
−a = −1 and α ∈ (0, π/2). (b) Hamiltonian–like regionD filled by a 2–parametric family of periodic
orbits and bounded by a surface of heteroclinic cycles. (c) Fixed subspace for the time-reversibility
transformation FixR as a Poincare section for the system when α = 0.2. Blue region indicates the
intersection of FixR with the attraction basin of the rotating waveM1 (heteroclinic trajectories start
atM3, intersect FixR and converge toM1). Red and green regions indicate families of non-isolated
periodic orbits that intersect FixR transversally in neighborhoods ofM0 andM2 respectively.

The one-parametric family of the invariant 1D manifolds of saddles form a 2D surface (tube), which
is the boundary between the Hamiltonian-like region D0 (D′0) and the dissipative region. The whole
separatrix surface consists of heteroclinic cycles that connect two degenerate saddles of the same
invariant line. There are also heteroclinic orbits that connect the saddle of the invariant line and the
sinkM1 (or the sourceM3).

5.3 Five coupled oscillators

In the case of five coupled oscillators

ϕ̇i = g(ϕ1)− g(ϕi+1 − ϕi) + b(g(ϕ3)− g(ϕi+3 − ϕi)), i = 1, 2, 3, 4, (5.6)

g(x) = − sin(x−α), the situation is more complicated, since the phase space is 4-dimensional, and
we are not able to give a complete description of the phase space structure as in the case of N ≤ 4.
Nevertheless, one can still show the coexistence of dissipative and Hamiltonian-like regions that are
densely filled with two-dimensional tori and families of periodic orbits. Figure 5.4(a) illustrates different
trajectories belonging to the dissipative domain (heteroclinic orbit shown in red) and Hamiltonian-like
(tori in green and magenta, as well as a periodic orbit in blue).

The following proposition holds.

Proposition 13. For b = −1 and α /∈ {0,±π/2,±π}, system (5.6) possesses the following dynam-
ics in the phase space:

(A) Hamiltonian-like region: (i) In a neighborhood ofM0 the exists a one-parameter family of periodic
solutions. (ii) In any neighborhood ofM0 there exists an analytic 2-dimensional torus, which is invari-
ant with respect to the flow and with respect to the reversibility transformationR. Moreover, if Uε is an
ε-neighborhood ofM0, then the Lebesgue measure of the invariant tori tends to the full measure of
the neighborhood Uε, as ε→ 0.

(B) Dissipative region: For 0 < α < π, the rotating waves M1, M2 are sinks and M3, M4 are
sources. For −π < α < 0, the stability is inverse, i.e.M1,M2 are sources andM3,M4 sinks.
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Figure 5.4: (a) Trajectories of (5.6) for α = 0.2. Blue trajectory is periodic, green and magenta are
quasi-periodic with different amplitude, red trajectory is heteroclinic and it connects the repellerM4

with the attracting equilibriumM1. The first three trajectories belong to the Hamiltonian-like part of
the system while the last one belongs to the dissipative part. (b) Different domains of the fixed point
subspace of the involution R: red: Hamiltonian-like region, where all Lyapunov exponents are close
to zero; light and dark blue: attraction basin of one of the asymptotically stable rotating waves. Black
lines correspond to the families of periodic orbits.

The proof follows from the general Proposition 15 in Sec. 6. Roughly speaking, statement (A) is a
consequence of the KAM theory for reversible systems [52, 53], and the second part follows from the
stability analysis of the rotating wave points. In Fig. 5.4(b) we illustrate numerically the dynamics using
the two-dimensional fixed point subspace of the involutionR:

FixR = {(ϕ1, ϕ2, ϕ3, ϕ4) : ϕ1 = ϕ4, ϕ2 = ϕ3} .

Figure 5.4(b) shows which part of FixR belong to the Hamiltonian-like region (red domain) and which
to the dissipative one (blue domains). In particular the red domain corresponds to the points, which
lead to the orbits with all four Lyapunov exponents close to zero (less than 10−4 in absolute value).
The blue domain belongs to the attraction basin of one of the rotating wave: light-blue to M2 and
dark-blue toM1. Black lines in Fig. 5.4(b) show the Poincare-sections for the one-parametric families
of periodic orbits.

6 Coexistence of Hamiltonian-like and dissipative dynamics in
systems of coupled identical oscillators

In this section, we consider system (2.1) with arbitrary number N of coupled identical oscillators. Our
main goal is to show that the splitting of the phase space into regions with dissipative and Hamiltonian-
like dynamics, which was observed for low-dimensional systems in Sec. 5, remains, provided the
coupling is skew-symmetric, i.e. Kj = −K−j .
For the skew-symmetric coupling, systems (2.1) and (2.4) can be written as follows

θ̇i = ω +

[(N−1)/2]∑
j=1

Kj (g(θi − θi+j)− g(θi − θi−j)) , (6.1)
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ϕ̇i =

[(N−1)/2]∑
j=1

Kj(g(ϕj)− g(ϕ−j)− g(ϕi+j − ϕi) + g(ϕi−j − ϕi)) (6.2)

with i = 1, . . . , N−1. Note, thatK0 = 0 as well asKN/2 = 0 whenN is even. As it was mentioned,
the originM0 andMk are equilibria for the system in phase differences (6.2).

Let us firstly show that system (6.2) is time-reversible.

Lemma 14. System (6.2) has time-reversal symmetry

R : (ϕ1, . . . , ϕN−1, t) 7−→ (ϕN−1, . . . , ϕ1,−t). (6.3)

Proof. One can check that

Gi(RΦ) = Gi(ϕN−1, . . . , ϕ1)

=

[(N−1)/2]∑
j=1

Kj(g(ϕ−j)− g(ϕj)− g(ϕ−(i+j) − ϕ−i) + g(ϕ−(i−j) − ϕ−i))

= −
[(N−1)/2]∑

j=1

Kj(g(ϕj)− g(ϕ−j)− g(ϕ(−i)+j − ϕ−i) + g(ϕ(−i)−j − ϕ−i))

= −G−i(ϕ1, . . . , ϕN−1) = −GN−i(Φ)

for any i = 1, . . . , N − 1. This implies

(G1(RΦ), . . . , GN−1(RΦ))T = −R(G1(Φ), . . . , GN−1(Φ))T .

We emphasize that the reversibility property is independent of the coupling function g(x).

The fixed subspace of the involutionR is

FixR = {Φ ∈ TN−1 : RΦ = Φ} =

{
Φ ∈ TN−1 : ϕi = ϕN−i, 1 ≤ i ≤

[
N − 1

2

]}
.

Generically, the dimension of this set is d(N) := dim(FixR) = N − 1 − [(N − 1)/2] = [N/2].
The subspace FixR can be used for describing the dynamical features of the system, because of the
following properties:

– If some orbit intersects FixR at two points, then it is periodic, and it consists of two parts that are
mapped into each other by the involutionR.

– Any non-periodic trajectory can intersect FixR only once (in the opposite case this trajectory is
periodic).

– If a reversible system has a sink or source equilibrium, then it does not belong to FixR.

– If a reversible system has a sink (source)M, thenRM is an equilibrium, and it is a source (sink).

– If a trajectory starts from a source and intersects FixR, then it tends to a symmetry related sink,
and this trajectory is heteroclinic (as in Figs. 5.2, 5.3 and 5.4). Note that the reversibility does not imply
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the existence of a trajectory that starts from a source and intersects with FixR, i.e. the sink and the
related source can be disconnected.

Since all trajectories that intersect FixR two times are time-periodic, it is instructive to consider the
intersection of FixR with its evolution under the flow:

Ft(FixR) = {Φ(t) : Φ(0) ∈ FixR, t ∈ R}.

Reversible periodic trajectories appear for all points of the intersection FixR∩Ft(FixR). Since the
dimension of Ft(FixR) is dt(N) := dim(Ft(FixR)) = [N/2] + 1, according to the transversality
theorem, the dimension of the intersection in TN−1 is generically

d∗(N) := dim(FixR∩ Ft(FixR)) = d(N) + dt(N)− (N − 1) =

{
1, when N is odd,
2, when N is even.

Therefore, we generically expect that system (6.2) possesses one or two-parametric families of peri-
odic orbits, depending on the parity of the phase space dimension. Such families have been already
described in the low-dimensional cases in Sec. 5. In particular, for the casesN = 3 andN = 4, when
the phase space of (6.2) is 2 and 3, respectively, the families of periodic orbits occupied open sets of
the phase space forming the Hamiltonian-like domains filled with just periodic orbits, see Sec. 5.1 and
5.2. However, already for N = 5, when the phase space is four-dimensional, the families of periodic
orbits do not occupy an open subset of the phase space, but rather form two-dimensional invariant
manifolds, as in Sec. 5.3. As a result, other states appear such as quasiperiodic, as in case N = 5
(Sec. 5.3), or chaotic.

For a general system (6.2) of N coupled oscillators, the following proposition holds.

Proposition 15. For g′(0) 6= 0 system (6.2) possesses the following dynamics:

(A) Families of periodic orbits in the vicinity ofM0: For almost all skew-symmetric couplings K such
thatKj = −K−j , there exists a one-parameter family of periodic solutions Φσ(t) in the neighborhood
ofM0 when N is odd and a two-parameter family Φ(σ1,σ2)(t) of periodic solutions when N is even,

with periods close to 2π/Ωm, where Ωm = 2g′(0)
∑[(N−1)/2]

j=1 Kj sin
(

2mjπ
N

)
.

(B) Dense set of invariant tori in the vicinity ofM0: Under the non-resonance and non-degeneracy
conditions (b1) and (b2), given below, in any neighborhood ofM0 there exist analytic [(N − 1)/2]-
dimensional tori with conditionally-periodic motions with incommensurable frequencies close to
Ω1, . . . ,Ω[(N−1)/2]. The tori are invariant with respect to the flow and with respect to the reversibility
transformation R. Moreover, if Uε is an ε-neighborhood ofM0, then the Lebesgue measure of the
invariant tori tends to the full measure of the neighborhood Uε, as ε→ 0.
– (b1) Non-resonance: (q,Ω) =

∑[(N−1)/2]
m=1 qmΩm 6= 0 is satisfied for all q with |q| ≤ 2l + 2 and

some l ∈ N.
– (b2) Non-degeneracy: The leading cubic terms (i.e. their imaginary parts) of the normal form are
non-degenerate (equiv. to operator Γ in [53]).

(C) The statements (A) and (B) hold also for a neighborhood ofMN/2 if N is even.

(D) Dissipative dynamics: The equilibriumMk, k 6= 0, is a sink if the condition

Re(λm(Mk)) =

[(N−1)/2]∑
j=1

Kj (ηkj − η−kj)
(

1− cos

(
2mjπ

N

))
< 0 (6.4)

satisfied for all m = 1, . . . , N − 1. In this caseM−k is a source.

DOI 10.20347/WIAS.PREPRINT.2447 Berlin 2017



Coexistence of Hamiltonian-like and dissipative dynamics 21

Proof. (A) The existence of families of periodic orbits can be shown using Lyapunov center theorem
for time-reversible systems [63, 23]. Using the skew-symmetry of the matrix K and expression (3.10),
the eigenvalues of the synchronous stateM0 are

λm(M0) = g′(0)

[(N−1)/2]∑
j=1

(Kj +K−j)

(
1− cos

(
2mjπ

N

))

−ıg′(0)

[(N−1)/2]∑
j=1

(Kj −K−j) sin

(
2mjπ

N

)
=

−ı2g′(0)

[(N−1)/2]∑
j=1

Kj sin

(
2mjπ

N

)
=: ıΩm, (6.5)

for anym = 1, . . . , N−1. Hence, λ±m(M0) = ±ıΩm,m = 1, . . . , [(N−1)/2], and λN/2(M0) =
0 if N is even. It is easy to see from (6.5) that the following non-resonance conditions are satisfied for
almost all values of Kj for N ≥ 5, and for all values of K for N = 3, 4:
i) all ıΩm are simple eigenvalues of the Jacobi matrix B(M0);
ii) ınΩm are not eigenvalues of B(M0) for all n > 1 .
WhenN is odd, the conditions of [23, Theorem 1.1] are satisfied in the neighborhood ofM0 ∈ FixR.
Therefore, there exists a one-parameter family of periodic solutions Φσ(t) of (6.2).

In the case of N even, Theorem 2.1 from [23] is applicable. In order to satisfy the conditions of this
theorem, it is necessary to check that R is the identity transformation on ker(B(M0)). Indeed, the
eigenvector of the trivial eigenvalue λN/2(M0) = 0 is v = (1, 0, 1, 0, . . . , 1, 0, 1)T , and V0 =
ker(B(M0)) = span(v) = (ϕ, 0, ϕ, 0, . . . , ϕ, 0, ϕ), ϕ ∈ T1, hence dimV0 = 1, and one can
check thatRv = v. Therefore, as follows from [23, Theorem 2.1], there exists a 2-parameter family of
periodic orbits for even N in the vicinity ofM0. The period of these solutions is close to 2π/Ωm.

(B) The existence of dense families of quasiperiodic tori follows from the KAM theory for reversible
systems [53, 40, 4, 12, 11, 13, 35]. Under the non-resonance and non-degeneracy conditions (b1)
and (b2), the conditions of the Theorem from [53] are satisfied. More specifically, the dimensions of
tori are (N − 1) for odd N and (N − 2) for even N (in notations of [53]: m = (N − 1)/2, k = 0 for
odd, and m = (N − 2), k = 1 for even dimensions).

(C) It is easy to check that the equilibrium MN/2 is neutral because ηN/2j − η−N/2j = 0 and,
therefore, Re(λm(B(MN/2))) = 0 for any m. SinceMN/2 ∈ FixR, the same arguments as in (A)
and (B) can be applied.

(D) We know that the system has equilibria Mk independently of system parameters and we can
check the stability of these points using Propositions 3–4. In particular, the real parts of the eigenvalues
ofMk, k 6= 0, are

Re(λm(Mk)) =

[(N−1)/2]∑
j=1

Kj (ηkj − η−kj)
(

1− cos

(
2mjπ

N

))
, (6.6)

m = 1, . . . , N − 1. According to the time-reversal symmetry R the equilibriumM−k is a source if
Mk is a sink and vice-versa.

Remark 16. The families of periodic orbits fill an open set in the phase space around the origin in
the cases N = 3 and N = 4. The situation is different for higher dimensions. In particular, for
N = 5, the intersection of the family of periodic orbits with two-dimensional manifold FixR consists
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of two one-dimensional curves P1(Φ) and P2(Φ), see Fig. 5.4. These two curves intersect at the
origin:M0 = P1(Φ) ∩ P2(Φ) ∈ FixR. Solutions with initial conditions on P1(Φ) have the period
near 2π/ω̃1, and the solutions starting on P2(Φ) have periods near 2π/ω̃2. There are at least two
intersections of each periodic solution with FixR.

The condition (6.4) is only sufficient, and it can be weakened using the fact that the system can have
other attractors/repellors except forMk.

Remark 17. The cases when g(x) is odd or even can be special. One can see that condition (6.4) is
not satisfied when the function g(x) is odd. Also Im(λm(M0)) = 0, m = 1, . . . , N − 1, when g(x)
is even. This implies that in this situation the origin is a degenerate saddle and the conservative region
may shrink to one point.

We note that the superposition of symmetries ZN andR implies the existence ofN−1 other reversal
symmetriesRi, i = 2, . . . , N . Hence, there exist N − 1 hyperplanes FixRi = γiZNFixR1 that are
fixed under the transformations Ri, i = 2, . . . , N − 1. All FixRi intersect inM0 if N is odd and
they intersect along one-dimensional line V0 ∈ TN−1 when N is even. If a periodic orbit intersects
only one FixRi in two points, then there are N ZN -symmetry related periodic orbits. If a periodic
orbit intersects at least two FixRi, then it intersects all of them. As in the considered low-dimensional
cases, the Hamiltonian-like dynamics is localized around the origin when N is odd and this dynam-
ics translates along line V0 when N is even. There are also the second “island” of Hamiltonian-like
dynamics in the even-dimensional case around a neutral fixed pointMN/2.

7 Nonidentical oscillators

7.1 Divergence-free dynamics

We have shown that system (2.4) is Hamiltonian-like in the whole phase space for three and four
oscillators when coupling function g(x) = − sinx and a = −b. The system has N neutral rotating
wave points Mk, saddles, heteroclinic structures, continuous sets of periodic orbits (as shown in
Fig. 5.2(c) for three oscillators) and quasi–periodic or chaotic trajectories (for higher dimensions). In
such a case, the vector field has zero divergence even for arbitrary frequency differences ∆i. The
following proposition holds.

Proposition 18. (A) The system (2.4) with arbitrary frequency differences ∆i, i = 1, . . . , N − 1,
skew-symmetric coupling K−j = −Kj and odd coupling function g(x) is divergence free.
(B) The system (2.4) with arbitrary frequency differences ∆i, i = 1, . . . , N − 1, symmetric coupling
K−j = Kj and even coupling function g(x) is divergence free.

Proof. We give the proof for the case (A), since the case (B) is analogous.

divG(Φ) =
N−1∑
i=1

∂ϕ̇i
∂ϕi

=

[(N−1)/2]∑
i=1

Ki(g
′(ϕi)− g′(ϕ−i))

+
N−1∑
i=1

[(N−1)/2]∑
j=1

Kj(g
′(ϕi+j − ϕi)− g′(ϕi−j − ϕi))
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Figure 7.1: The coexistence of periodic, quasi-periodic, and chaotic solutions in the divergence-free
system of seven phase oscillators with graph Fig. 2.1(b). Time series (t, ϕ1(t)), t ∈ [0, 2000], ϕ1 ∈
[−π, π], for N = 7, l = 2, a = −b = −1, g(x) = − sin(x). Initial conditions are different in
different simulations.

=

[(N−1)/2]∑
j=1

Kj

(
N−1∑
i=0

(g′(ϕi+j − ϕi)− g′(ϕi−j − ϕi))

)

=

[(N−1)/2]∑
j=1

Kj

(
N−1∑
i=0

(g′(ϕi+j − ϕi)− g′(ϕi − ϕi+j))

)
= 0,

since g′(x) = g′(−x) is implied by g(x) = −g(−x).

Remark 19. We remark that a system of Kuramoto-Sakaguchi oscillators with the phase shiftα = π/2
is a particular situation of the case (B) of the Proposition 18.

The divergence-free system of coupled oscillators can demonstrate the coexistence of periodic, quasi-
periodic, and chaotic behavior. Fig. 7.1 shows solutions of different types for different initial conditions
and the same parameters. Homotopic to zero and non-homotopic to zero solutions coexist in phase
space.

Proposition 20. The system (6.2) with nearest neighbor coupling

ϕ̇i = K1(g(ϕ1)− g(ϕ−1)− g(ϕi+1 − ϕi) + g(ϕi−1 − ϕi))
and odd coupling function g(ϕ) has the first integral

I1(ϕ1, . . . , ϕN−1) =
N−1∑
i=0

h(ϕi − ϕi+1),

where h′(ϕ) = g(ϕ), ϕN = ϕ0 = 0. We note that h(ϕ) is even.
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Proposition 21. Consider the system (6.2) with even oscillator number and odd coupling function
g(ϕ) with skew-symmetric coupling matrix (Kj = −K−j) and Kj = 0 for even j, i.e. oscillators are
coupled with the nearest neighbors, third neighbor, fifth neighbor, etc. This system has the first integral

I2(ϕ1, . . . , ϕN−1) =
N−1∑
i=1

(−1)i−1ϕi.

7.2 Pairwise equidistant natural frequencies and reversibility

In this section we show that the general system (2.4) can have the reversibility property when the
coupling is skew-symmetric and the frequencies are not identical, but satisfy a particular relation.
System (2.4) for skew-symmetric coupling can be written as

ϕ̇i = ∆i +

[(N−1)/2]∑
j=1

Kj(g(ϕj)− g(ϕ−j)− g(ϕi+j − ϕi) + g(ϕi−j − ϕi)), (7.1)

where i = 1, . . . , N − 1, see also (6.2).

Proposition 22. System (7.1) is time-reversible with the involutionR determined by (6.3) if and only
if the following relation between the frequency differences hold

∆N−i = −∆i, i = 1, . . . , [N/2]. (7.2)

Proof. We rewrite system (7.1) as

ϕ̇i = G̃i(ϕ1, . . . , ϕN−1) = ∆i +Gi(ϕ1, . . . , ϕN−1), i = 1, . . . , N − 1. (7.3)

It holds

G̃i(RΦ) = ∆i +Gi(RΦ) = −(−∆i +GN−i(Φ))

and

−G̃N−i(Φ) = −(∆N−i +GN−i(Φ)).

Remark 23. Note that Eq. (7.2) and, hence, conditions of Proposition 22 hold for the particular case
of equally-distributed frequencies ωj = ω0 + hj in the case of an odd number N of oscillators.

In this case it is easy to see that the reversibility condition (6.3) is satisfied if and only if (7.2) holds,
that corresponds to pairwise equidistant distribution of frequency pairs around the frequency of the
first oscillator: (ωi+1 + ωN−i+1)/2 = ω1. We remind that ∆N/2 = 0 when N is even.

As a result of Proposition 22, the Hamiltonian-like dynamics appears in systems of non-identical os-
cillators that satisfy relation (7.2). Indeed, at least for small deviations ∆ from zero, the families of
periodic orbits that are mentioned in statement (A) of proposition 15 persist, since they appear due
to the generic intersection of Ft(FixR) and FixR. The dissipative equilibria remain also dissipative
under small perturbations.
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7.3 Non-homotopic to zero Hamiltonian-like part

A Hamiltonian-like dynamics of (7.1) that is non-homotopic to zero is possible when |∆i| are large
enough. An example is shown in Fig. 5.2(o) for three oscillators, where such a region is foliated by
periodic trajectories that are non-homotopic to zero. There might be a coexistence of the regions with
homotopic to zero periodic orbits with another region filled with non-homotopic to zero periodic orbits,
see yellow and green regions in Fig. 5.2(o). The coexistence of many regions of two types is also
possible, as shown in Fig. 5.2(p) for N = 3 and coupling function (9.1).

Increasing frequency differences |∆i| from zero leads to a sequence of the disappearance of equilibria
via local bifurcations. The homotopic to zero Hamiltonian-like part of the dynamics disappears together
with the disappearance of the equilibrium within FixR. Then, a possible Hamiltonian-like part can
consist only of non-homotopic to zero non-isolated orbits. Similar situations were observed for other
systems in [60] and [59]. From this point of view, it is instructive to give conditions when the system
does not possess equilibria.

Proposition 24. System (7.1) does not have fixed points when one of the following conditions is
satisfied:

min
x∈T1

g(x) > −4[(N − 1)/2] min
i
|∆i|

or
max
x∈T1

g(x) < −4[(N − 1)/2] max
i
|∆i|.

Proof. The proof follows from the conditions ∆i + G̃i(Φ) > 0 (< 0) for i = 1, . . . , [N/2]. Note that
the conditions of this proposition are satisfied when the frequency differences are large enough.

8 Large system (N →∞) and nonlinear Schrödinger amplitude
equation for skew-symmetric coupling

In this section we consider the dynamics in a neighborhood of the synchronous solution θi = θ in the
case of an infinite chain of identical oscillators (N →∞) when each oscillator is coupled with a finite
number 2l of its neighbors:

θ̇i = ω +
l∑

j=−l

Kjg(θi − θi+j), i = 1, . . . , N, (8.1)

and a skew-symmetric coupling matrix K , i.e. Kj = −K−j , j = 1, . . . , l.

Using the ”co-rotating” coordinates ψi = θi −

(
ω + g(0)

l∑
j=−l

Kj

)
t, system (8.1) is reduced to

ψ̇i =
l∑

j=−l

Kjf (ψi − ψi+j) (8.2)

with f(x) = g(x)− g(0). Since f(0) = 0, the one-dimensional invariant synchronization manifold

S = {(ψ1, . . . , ψN) : ψi = ψ, i = 1, . . . . , N}
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consists of equilibria ψi = ψ = const, which are related to each other by the phase-shift symmetry.
Hence, the equilibria have neutral stability along the manifold and the same stability properties in the
transverse directions to the manifold. Therefore, in order to study the dynamics in the neighborhood of
a synchronous solution, it is enough to consider the neighborhood of the origin ψi = 0, i = 1, . . . , N .
Note that in this section we do not write system for phase differences Eq. (2.4), but work directly
with (8.2). This will result in the persistence of the phase-shift symmetry in the obtained amplitude
equations.

Expanding function f(x) in Taylor series, we rewrite system (8.2) as

ψ̇i =
l∑

j=−l

Qjψi+j +
f ′′(0)

2f ′(0)

l∑
j=−l

Qj (ψi − ψi+j)2

+
f ′′′(0)

6f ′(0)

l∑
j=−l

Qj (ψi − ψi+j)3 +O
(
‖ψ‖4

)
(8.3)

where

Q0 = f ′(0)
l∑

j=−l,j 6=0

Kj,

Qj = −Kjf
′(0), j = −l, . . . , l, j 6= 0.

The Jacobi matrix Q is circulant and, similarly to Eq. (3.9), its eigenvalues are:

λm(Q) =
l∑

j=−l

Qje
ı2πjm/N , m = 1, . . . , N.

In the limit of large N , the spectrum can be approximated by the asymptotic continuous spectrum
[68, 69]:

λ(φ) =
l∑

j=−l

eıjφQj = Q0 +
l∑

j=1

(Qj +Q−j) cos(jφ)

+ ı

l∑
j=1

(Qj −Q−j) sin(jφ), φ ∈ [0, 2π). (8.4)

with a continuous parameter 0 ≤ φ ≤ 2π. Each function λ(φ) presents a closed curve in the
complex plane C. Using (8.4) and definition of Qj , one can check that λ(0) = 0, that corresponds
to the neutral stability along the invariant manifoldM. Expression (8.4) implies also the symmetry of
spectrum λ(−φ) = λ(φ).

The skew-symmetry of matrixK implies the skew-symmetry of the matrixQ:Qj = −Q−j . Therefore,

λ(φ) = ı2
l∑

j=1

Qj sin(jφ) = ıω̃(φ), ω̃(φ) ∈ R,

and the whole spectrum belongs to the interval [−ımaxφ ω̃(φ), ımaxφ ω̃(φ)] of the imaginary axis.

Assuming that the coupling function has a cubic nonlinearity and using the approach from [29],
adapted to the spatially discrete case as proposed in [22, 68], the following statement holds.

DOI 10.20347/WIAS.PREPRINT.2447 Berlin 2017



Coexistence of Hamiltonian-like and dissipative dynamics 27

Proposition 25. Assume that system (8.3) satisfies the following conditions:
1) the coupling matrix is skew-symmetric : Qj = −Q−j ;
2) there exists φ0 6= 0 such that ω̃(φ0) 6= 0;
3) the coupling function has a cubic nonlinearity at zero, i.e. f ′′(0) = 0;
4) the second derivative of the imaginary part is not equal to zero: ω̃′′(φ0) 6= 0;
5) non-resonance condition:

∑l
j=1 Qj sin3(jφ0) 6= 0.

Let ε = 1/N . Then the multiple scale ansatz

ψi(t) = εA (T1, xi, T2) eı(ω0t+φ0i) + ε3A3 (T1, xi, T2) e3ı(ω0t+φ0i)v3 + c.c., (8.5)

with the amplitude A ∈ C depending on the rescaled coordinates T1 = εt, T2 = ε2t, and xi = εi
(c.c. denotes complex conjugated terms, v3 ∈ R) to system (8.3) leads to the following solvability
conditions up to the order ε3:

ı∂T2u =
1

2
ω̃′′(φ0)∂2

ξu+ ρu|u|2, (8.6)

with periodic boundary conditions

u(ξ, T2) = u(ξ + 1, T2),

where u(ξ, T2) with ξ ∈ [0, 1] is related to the amplitudeA by

A(T1, xi, T2) = u (ω̃′(φ0)T1 + xi, T2)

and

ρ =
2f ′′′(0)

f ′(0)

l∑
j=1

Qj sin(jφ0) (cos(jφ0)− 1) .

Remark 26. Note that the amplitude has to satisfy the nonlinear Schrödinger equation (8.6), which
is Hamiltonian. This confirms that the skew-symmetric coupling leads to the Hamiltonian dynamics in
the vicinity of the synchronous solution of the chain.

9 Discussion

In this concluding section we point out some general consequences of our results.

(i) Unidirectional rings are special case of anisotropic coupling: The case when the ring is unidirectional
is important for applications and considered in many works, see e.g. [14, 37, 69, 42, 10, 57, 46]. The
general network (2.1) is unidirectional when Ki 6= 0 for j = 1, . . . , [(N − 1)/2] and Kj = 0 in
other cases. For the forward-backward system (4.1) the condition for unidirectionality is just b = 0.
The bifurcation diagram Fig. 5.1 shows that the system dynamics does not change qualitatively with
a small variation of coupling parameters. Actually, one can see that the straight line b = 0 and lines
b = ±ε intersect bifurcation lines (AH, HC, TC) transversally at almost the same points when ε is
close to zero. This tells us about the structural stability of the system along parametric line b = 0
independently on parameter α.

(ii) Effects of higher harmonics in the coupling function: In Sec. 5 we considered examples where the
coupling function had only the first term of the Fourier series (5.1). If the coupling function has higher
harmonics, the basic properties related to the symmetries or reversibility of the system remain the
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same. However, a more complex shape of g(x) can lead to the appearance of new solutions or new
bifurcation properties. For instance, for the Hansel-Mato-Meunier coupling function [25]

g(x) = − sin(x− α) + p sin(2x) (9.1)

the system (2.4) has additional fixed points when |p| ≥ 1/2. If these additional points belong to FixR,
there might appear the same Hamiltonian-like regions around them, similar as it is described above.

An example in Fig. 5.2(m) shows that the system of three coupled oscillators with function (9.1) has
four different Hamiltonian-like regions: three of them are bounded by homolinic loops (colored regions
in Fig. 5.2(m)) and one is bounded by a Z3-heteroclinic cycle. These regions coexist with the simply
connected dissipative region that includes the sinkM1, the sourceM2, and heteroclinic trajectories
that connect these two points. Figures 5.2(n), (o), and (p) illustrate other possible examples. In particu-
lar, Fig. 5.2(o) shows how two Hamiltonian-like regions coexist, one of which is homotopic and another
is non-homotopic to zero.
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