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Abstract

We discuss possible extensions of the recently established theory of evolu-
tionary Γ-convergence for gradient systems to nonlinear dynamical systems
obtained by perturbation of a gradient systems. Thus, it is possible to de-
rive effective equations for pattern forming systems with multiple scales. Our
applications include homogenization of reaction-diffusion systems, the justi-
fication of amplitude equations for Turing instabilities, and the limit from
pure diffusion to reaction-diffusion. This is achieved by generalizing the Γ-
limit approaches based on the energy-dissipation principle or the evolutionary
variational estimate.

1 Introduction

The theory of evolutionary Γ-convergence was developed for families of gradient systems
(X,Eε,Rε)ε∈[0,1], which define the family of gradient flows

Du̇Rε(u
ε, u̇ε) = −DEε(u

ε), uε(0) = u0
ε.

The aim of the theory is to provide as general conditions as possible for the convergence of
the energy functionals Eε  E0 and of the dissipation potentials Rε  R0 for ε→ 0, that
still guarantee that the solutions uε : [0, T ]→ X converge to a solution u0 : [0, T ]→ X of
the limiting gradient flow as ε → 0. We refer to the surveys [SaS04, Ste08, Ser11, Bra13,
Mie15b]. We emphasize here that there are numerous much older works relating to the
case that X is a Hilbert space H and Rε(u, u̇) = 1

2
‖u̇‖2

H is independent of ε such that
only equation has the form u̇ = −DEε(u) where Aε is a maximal monotone operator,
see [Bré73,Att84].

Here we are interested in perturbed gradient systems, where we allow the energy
functional Eε to depend on the time t ∈ [0, T ] and the equation to contain a non-gradient
term hε. We use the quadruple (X,Eε,Rε, hε) to denote the perturbed gradient system,
which then defines an evolutionary equation

Du̇Rε(u
ε, u̇ε) = −DEε(u

ε) + hε(t, u
ε), uε(0) = u0

ε. (1.1)

Here we understand that hε is a lower order perturbation of the gradient system obtained
for hε ≡ 0. Thus, the hope is that it is possible to generalize the strong results on
evolutionary convergence of gradient systems (see [Ser11,Mie15b]) to the perturbed case
without adding too much technicalities.

Hence, there are two major motivations for considering perturbed gradient systems.
On the one hand, there may be cases where a given system has a particular gradient
structure (X̂, Êε, R̂ε), but it may be easier to treat it as a perturbed gradient system
(X,Eε,Rε). We highlight this by looking at the reaction-diffusion system

u̇ = div
(
aε(x)∇u

)
+
cε(x)(1−uv)

dε(x)+u+v
, v̇ = div

(
bε(x)∇v

)
+
cε(x)(1−uv)

dε(x)+u+v
,
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where u, v > 0 are densities and aε, bε, cε and dε are positive ε-periodic coefficients. It was
shown in [Mie11] that this system is has a gradient system with

Ê(u, v) =

∫

Ω

λB(u) + λB(v)dx with λB(u) := u log u− u+ 1,

R̂∗ε(u, v, µ, ν) =

∫

Ω

(aε
2
|∇ξ|2 +

bε
2
|∇ν|2 + Cε(x, u, v)(ξ+ν)2

)
dx,

where cε(x, u, v) = cε(x)uv
(dε(x)+u+v)(log(uv)−1)

> 0, and R∗ε is the Legendre dual potential of Rε,

see (4.1). However, doing a multiscale analysis for the limit ε→ 0 is very difficult because

of the dependence of R̂∗ε on u and v.
For a perturbed gradient structure we may choose the classical L2 gradient structure

for the leading terms and treat the reactions as perturbations, i.e.

Eε(u, v) =

∫

Ω

(aε
2
|∇u|2 +

bε
2
|∇v|2

)
dx, Rε(u̇, v̇) =

1

2
‖u̇‖2

L2 +
1

2
‖v̇‖2

L2 ,

and the perturbation hε(x, u, v) = cε(x)(1−uv)
dε(x)+u+v

(
1, 1
)>

. For such a system the limit ε → 0

can be taken much more easily, see Section 5.1 and [MRT14,Rei15].
On the other hand, the treatment of perturbed gradient systems is important, since

the dynamics of pure gradient systems is completely different from perturbed ones. In
gradient systems, typical solutions converge to local minimizer of the energy for t → ∞.
In a perturbed s gradient system, much more complicated dynamics can happen, like Hopf
bifurcations or chaos, see e.g. [FiP90].

Section 2 provides a priori estimates for the perturbed gradient system (X,Eε,Rε, hε).
In additions to the standard conditions on gradient systems the new assumption is an
estimate of the form R∗ε(u,

1
c
hε(t, u)) ≤ CE(t, u) (cf. (2.2)). Based only on these simply

estimates we provide two abstract results on evolutionary Γ-convergence.
The first result on evolutionary Γ-convergence for perturbed gradient systems is given

in Theorem 3.2 and relies on the rather strong assumption of λ-convexity. For this we
assume that X is a Hilbert space H, that the dissipation potentials have the quadratic
form Rε(u, u̇) = 1

2
〈Gεu̇, u̇〉, and that there exists a λ ∈ R such that u 7→ Eε(u)−λRε(u) is

convex for all ε ∈ [0, 1]. Otherwise the assumptions are rather weak, since the simple Γ-

convergence of Eε(t, ·) Γ−→ E0(t, ·) and pointwise convergence of Rε are essentially sufficient.
The second result on evolutionary Γ-convergence for perturbed gradient systems relies

on De Giorgi’s energy-dissipation principle. It is much more flexible, since no λ-convexity
is needed and Rε can be much more general. The major new quantity in this approach is
the dissipation functional

Dε(u(·)) :=

∫ T

0

(
Rε(u(t), u̇(t)) + R∗ε

(
u(t), hε(t, u(t))−DuEε(t, u(t))

))
dt.

As a major assumption of the abstract result in Theorem 4.3 one needs the liminf estimate
lim infε→0 Dε(u

ε(·)) ≥ D(u(·)) if uε ⇀ u in W1,p([0, T ]; X).
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In Section 5 we discuss a few possible applications of the general results. We first
consider the classical question of homogenization of reaction-diffusion systems as a di-
dactical example. There we treat the diffusion part as a gradient part associated with
the convex and quadratic Dirichlet energy. Because of the semilinear structure, all the
nonlinear reaction terms can be treated as non-gradient perturbations. We are able to
apply the λ-convex theory and refer to [LiR15] for a comparison of the strengths and
weaknesses of the two different approaches discussed on the basis of the homogenization
of a Cahn–Hilliard-type problem.

In Section 5.2 we reconsider the theory developed in [Mie15a] for pure gradient sys-
tems. There it was shown that the Ginzburg–Landau equations can be understood as
the evolutionary Γ-limit of the suitable scaled Swift–Hohenberg equation. We discuss
the usage of perturbed gradient systems to analyze a coupled system of Swift–Hohenberg
equations introduced in [SA∗14].

Finally we speculate concerning the usage of evolutionary Γ-convergence to derive a
nonlinear reaction-diffusion system from a single Fokker–Planck-type master equation of
diffusion in physical space as well as along a chemical reaction path. This follows the
spirit of [PSV10,PSV12,AM∗12,LM∗15], where chemical reaction is understood as a limit
of diffusion.

2 Energy control and a priori estimates

As was announced earlier, we will consider the non-gradient term hε as a lower-order
perturbation of the gradient system. Before specifying this, we fix the major properties
of the energy functionals Eε. We assume that the reflexive and separable Banach space Z
is compactly embedded into X and

domEε := { (t, u) | Eε(t, u) <∞} = [0, T ]×Dε, Dε := domEε(0, ·), (2.1a)

∃ c0, α > 0 ∀ (ε, t, u) ∈ [0, 1]×[0, T ]×X : Eε(t, u) ≥ c0‖u‖αZ, (2.1b)

∃ Λna ≥ 0 ∀ (ε, t, u) ∈ [0, 1]×[0, T ]×Dε : |∂tEε(t, u)| ≤ ΛnaEε(t, u), (2.1c)

where ‖u‖Z =∞ for u ∈ X \Z. Note that the energies are only defined up to a constant,
so we can choose C = 0 in the usual condition of coercivity Eε(t, u) ≥ c0‖u‖αZ − C.

In this section we consider general dissipation potentials Rε : X×X → [0,∞], which
means that Rε(u, ·) : X→ [0,∞] is a lower semicontinuous and convex functional satisfy-
ing additionally Rε(u, 0) = 0. The first condition on the perturbation hε : [0, T ]×X→ X∗

is the following bound:

∃ Λng ≥ 0, c ∈ ]0, 1[ ∀ (ε, t, u) ∈ [0, 1]×[0, T ]×X :

R∗ε(u,
1

c
hε(t, u)) ≤ Λng

c
E(t, u).

(2.2)

Based on these assumptions we first derive a control of the energy Eε for fixed w and
along solutions u : [0, T ]→ X of the perturbed gradient flow

Du̇Rε(u, u̇(t)) = −DuEε(t, u(t)) + hε(t, u(t)) for a.a. t ∈ [0, T ]. (2.3)
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Note that all the estimates are uniform in ε ∈ [0, 1].

Proposition 2.1 If (2.1c) holds, then for all (ε, s, t, w) ∈ [0, 1]×[0, T ]2×Dε:

e−Λna|t−s|Eε(s, w) ≤ Eε(t, w) ≤ eΛna|t−s|Eε(s, w). (2.4)

Assuming additionally (2.2) and setting Λ := Λna + Λng, every solution u : [0, T ]→ X of
(2.3) satisfies, for 0 ≤ s < t ≤ T , the estimate

Eε(t, u(t)) +

∫ t

s

(1−c)Rε(u(r), u̇(r))dr ≤ eΛ(t−s)Eε(s, u(s)). (2.5)

Proof. Equation (2.4) follows by a simple Gronwall estimate based on (2.1c).
For the second result we apply 〈·, u̇〉 to (2.3) and use 〈Du̇Rε(u, u̇), u̇〉 ≥ Rε(u, u̇) and

the chain rule for Eε to obtain the energy estimate

Eε(t, u(t)) +

∫ t

s

Rε(u, u̇)dr ≤ Eε(s, u(s)) +

∫ t

s

∂rEε(r, u(r)) + 〈hε(r, u(r)), u̇(r)〉dr.

Estimating 〈hε, u̇(r)〉 ≤ cR∗ε(u,
1
c
hε) + cRε(u, u̇) ≤ ΛngEε(t, u) + cRε(u, u̇) we find the

purely energetic a priori estimate

Eε(t, u(t)) +

∫ t

s

(1−c)Rε(u, u̇)dr ≤ Eε(s, u(s)) +

∫ t

s

ΛEε(r, u(r))dr. (2.6)

Neglecting Rε, Gronwall’s estimate gives Eε(t, u(t)) ≤ eΛ(t−s)Eε(s, u(s)) for all t ∈ [s, T ].
Next we replace t by r in the latter relation and insert it into the right-hand side of (2.6),
which provides the assertion (2.5).

The main point of this proposition is that we are able to derive uniform a priori
estimates as follows:

Corollary 2.2 (Uniform a priori estimates) Assume that the dissipation potentials
are equicoercive:

∃ cR > 0, p > 1 ∀ (ε, u, v) ∈ [0, 1]×X2 : Rε(u, v) ≥ cR‖v‖pX , (2.7)

and that the initial energies satisfy Eε(0, u
0
ε) ≤ CE <∞. Then, there exists C∗ <∞ such

that the solutions uε : [0, T ]→ X of (2.3) satisfy

‖uε(·)‖L∞([0,T ];Z) + ‖uε(·)‖W1,p([0,T ];X) ≤ C. (2.8)

Proof. We use (2.5) for s = 0 and t ≤ T , where the right-hand side is estimated by
eΛTCE <∞. Now, the coercivity (2.1b) of Eε gives the bound in L∞([0, T ]; Z). Then, the
coercivity (2.7) of Rε gives the bound in W1,p([0, T ]; X).
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3 Perturbed evolutionary variational estimate

In this section we consider a simple Hilbert-space setting, i.e. the dynamic space X is a
Hilbert space H with norm ‖ · ‖, and the dissipation potentials Rε are one-half of the
square of Hilbert-space norms. Nevertheless, we do not work with one Hilbert space but
with a family of norms:

∃ C > 0 ∀ ε ∈ [0, 1] ∃Gε = G∗ε ∈ Lin(H,H) :

Rε(v) =
1

2
〈Gεv, v〉 and

1

2C
‖v‖2 ≤ Rε(v) ≤ C

2
‖v‖2.

(3.1)

For the energies Eε : [0, T ]×H→ R∞ we assume that they are uniformly λ-convex:

∃ λ∗ ∈ R ∀ (ε, t) ∈ [0, 1]×[0, T ] : Eε(t, ·) + λ∗Rε(·) is convex on H;

Eε(t, uθ) ≤ (1−θ)Eε(t, u0) + θEε(t, u1) + λ∗θ(1−θ)Rε(u1−u0),
(3.2)

where uθ := (1−θ)u0 + θu1. For sufficiently smooth Eε condition (3.2) simply means

Eε(t, w) ≥ Eε(t, u) + 〈DEε(t, u), w−u〉+ λ∗Rε(w−u). (3.3)

For the non-gradient term hε : [0, T ]×H → H∗ we assume that it is controlled by the
gradient parts as in (2.2).

Here we do not address the question of existence and uniqueness of solutions, which
we assume to hold. (For this one may additionally impose a global Lipschitz continuity
of hε.) Our concern is the convergence of the solutions uε : [0, T ]→ H for the perturbed
gradient system (H,Eε,Rε, hε), i.e. uε satisfies (2.3).

Our next result provides a reformulation of this equation in terms of a perturbed
evolutionary variational estimate (PEVE), which is a direct generalization of the metric
theory in [AGS05,DaS14], where Λna = Λng = 0. Since it is a statement for fixed ε ∈ [0, 1],
we can drop the index ε here.

Proposition 3.1 Assume that the assumptions (3.1), (2.1), (3.2), and (2.2) hold and set
Λ := Λna + Λng. Then, a function u ∈ H1([0, T ]; H)∩ L∞(0, T ; Z) solves (2.3) if and only
if (PEVE) holds:

∀ 0 ≤ s < t ∀ w ∈ H :

eλ∗(t−s)R(u(t)−w)− R(u(s)−w) + A+
∗ (t−s)E(t, u(t))

≤ A−∗ (t−s)E(t, w)−
∫ t

s

eλ∗(r−s)〈h(r, u(r)), w−u(r)〉dr,
(PEVE)

where A±∗ (r) =
(
eλ∗r − e∓Λr

)
/(λ∗ ± Λ) (giving A±∗ (0) = 0 and (A±∗ )′(0) = 1).

Proof. We first show that (2.3) implies (PEVE). For this, we choose arbitrary w and
apply 〈·, u(t)−w〉 to (2.3) to obtain

d

dt
R(u(t)−w)

(3.1)
= 〈DR(u̇), u−w〉 (2.3)

= 〈DE(t, u)− h(t, u), w−u〉
(3.3)

≤ E(t, w)− E(t, u)− λ∗R(w−u)− 〈h(t, u), w−u〉.
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Moving −λ∗R(w−u) to the left-hand side and multiplying by eλ∗(t−s) we can integrate
over t ∈ [s, t1]. Renaming t and t1 into r and t, respectively, we find

eλ∗(t−s)R(u(t)−w)− R(u(s)−w)

≤
∫ t

s

eλ∗(r−s)
(
E(r, w)− E(r, u(r))− 〈h(r, u(r)), w−u(r)〉

)
dr.

From (2.4) we obtain E(r, w) ≤ eΛ(t−r)E(t, w), and (2.5) implies E(r, u(r)) ≥ e−Λ(t−r)E(t, u(t)).
Inserting this into the last estimate and doing the integration in r ∈ [s, t] explicitly for
the first two terms leads to the desired result (PEVE).

We now show that (PEVE) implies (2.3). For this we divide both sides by t − s > 0
and then take the limit s ↗ t. Using A±∗ (r)/r → 1 for r ↘ 0 we obtain the differential
form again, namely

d

dt
R(u−w) = 〈Gu̇, u−w〉 = 〈DuE(t, u), w−u〉

≤ E(t, w)− E(t, u)− λ∗R(u−w) + 〈h(t, u), u−w〉.

Keeping t fixed and inserting the test function w = u(t) − δv with δ > 0, we divide by
δ first and then pass to the limit to obtain 〈u̇, v〉 ≤ 〈−DE(t, u) + h(t, u), v〉. Since v is
arbitrary, we also have the opposite sign (replace v by −v), and (2.3) is established.

The above characterization of solutions of the perturbed gradient system (H,Eε,Rε, hε),
which give rise to the evolution equation (2.3), allows us to formulate a result concerning
evolutionary Γ-convergence. For this we use the notion of (strong) Γ-convergence of the
energies, continuous convergence of the dissipation potentials, and strong convergence of
the perturbations:

Eε
Γ−→ E0, i.e.

{
wε → w in H =⇒ lim inf

ε→0
Eε(t, wε) ≥ E0(t, w0),

∀ ŵ0 ∃ ŵε → ŵ0 in H : Eε(t, wε)→ E0(t, ŵ0);
(3.4a)

Rε
C−→ R0, i.e. wε ⇀ w0 in Z =⇒ Rε(wε)→ R0(w0); (3.4b)

wε ⇀ w0 in Z =⇒ hε(t, wε) ⇀ h0(t, w0) in H∗. (3.4c)

Concerning the static Γ-convergence in (3.4a) we refer to the standard textbooks [Dal93,
Bra02, Bra13]. In these statements the weak convergence in Z can be replaced by the
more general and maybe more flexible statement of convergence within sublevels of Eε,
namely wε → w0 in H and Eε(t, wε) ≤ C. Clearly, the equicoercivity (2.1b) implies weak
convergence in Z.

The following result relies on PEVE and the a priori estimate provided in Corollary
2.2. The latter shows that the desired accumulating points exist, since the unit ball in
W1,p([0, T ]; Z) is weakly compact, i.e. converging subsequences as assumed in the following
result always exist.
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Theorem 3.2 (Evolutionary Γ-convergence via PEVE) Let the assumptions of
Proposition 3.1 and (3.4) hold. If for a family of solutions uε : [0, T ] → H of (2.3) a
subsequence (uεk)k∈N satisfies

εk → 0 and uεk ⇀ u in H1([0, T ]; H),

then u is a solution of the limiting perturbed gradient system (H,E0,R0, h0), i.e. u solves
(2.3) for ε = 0.

Proof. By the a priori estimate in Corollary 2.2 we can assume uεk ⇀ u in H1([0, T ]; H)
and

∀ t ∈ [0, T ] : uεk(t) ⇀ u(t) in Z and uεk(t)→ u(t) in H.

We now exploit that the perturbed evolutionary variational estimate (PEVE) holds with
λ∗ and Λ independently of ε. For 0 ≤ s < t ≤ T and w ∈ H we have

eλ∗(t−s)Rε(u
εk(t)−w)− Rε(u

εk(s)−w) + A+
∗ (t−s)Eε(t, uεk(t))

≤ A−∗ (t−s)Eε(t, w)−
∫ t

s

eλ∗(r−s)〈hε(r, uεk(t)), w−uεk(r)〉dr.
(3.5)

Fixing s and t we may now choose a suitable test function w = wεk , namely such that
wεk → w0 and E(t, wεk) → E(t, w0) (cf. (3.4a)). Note that the equicoercivity implies
wεk ⇀ w0 in Z.

Hence, we can pass to the limit inferior for εk → 0 in (3.5). Indeed, on the left-hand
side the first two terms converge to eλ∗(t−s)R0(u(t)−w0)−R0(u(s)−w0) because of (3.4b),
whereas the third term has a liminf bounded from below by A+

∗ (t−s)E0(t, u(t)), where we
use A+

∗ (t−s) > 0. On the right-hand side the first term converges to A−∗ (t−s)E0(t, w0) by
the choice of wεk , whereas the second term converges to

∫ t
s

eλ∗(r−s)〈h0(r, u(r)), w0−u(r)〉dr
by strong convergence of wεk−uεk(r) and weak convergence of hεk

(r, uεk(r)). Thus, since
w0 is arbitrary, (PEVE) is established for u, and by Proposition (3.1) we know that u is
a solution of (2.3) for ε = 0.

4 De Giorgi’s energy-dissipation principle

To prepare for De Giorgi’s reformulation of gradient flows in terms, we recall the following
fact from convex analysis. For a convex function Ψ : X→ R∞ := R∪{∞} the Legendre–
Fenchel dual Ψ∗ : X∗ → R∞ is defined via

Ψ∗(ξ) := sup{ 〈ξ, v〉 −Ψ(v) | v ∈ X } (4.1)

and the convex subdifferential via

∂Ψ(v) = { ξ ∈ X∗ |Ψ(w) ≥ Ψ(v) + 〈ξ, w−v〉 for all w ∈ X }. (4.2)
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Proposition 4.1 Let X be a reflexive Banach space and Ψ : X→ R∞ be proper, convex,
and lower semi-continuous. Then, the following holds:

(A) Young-Fenchel estimate: ∀ (v, ξ) ∈ X×X∗ : Ψ(v) + Ψ∗(ξ) ≥ 〈ξ, v〉.
(B) Fenchel equivalence ( [Fen49, EkT76]): for all (v, ξ) ∈ X×X∗ we have

(i) ξ ∈ ∂Ψ(v) ⇐⇒ (ii) v ∈ ∂Ψ∗(ξ) ⇐⇒ (iii) Ψ(v) + Ψ∗(ξ) = 〈ξ, v〉.

We emphasize that the relation (i) is a relation in dual space X∗, (ii) is a relation in
X, and (iii) is a relation in R. Using (A), it is immediate that (iii) can be replaced by the
estimate (iii)′ Ψ(v) + Ψ∗(ξ) ≤ 〈ξ, v〉.

We can apply these equivalences with Ψ(·) = Rε(u, ·) to the formulation of the gradi-
ent flow associated with our perturbed gradient system (X,Eε,Rε, hε) and obtain three
equivalent formulations:

force balance Du̇Rε(u, u̇) = −DuEε(t, u) + hε(t, u);

rate equation u̇ = DξR
∗
ε

(
u,−DuEε(t, u)+hε(t, u)

)
;

power balance Rε(u, u̇)+R∗ε(u, hε(t, u)-DuEε(t, u))=〈hε(t, u)-DuEε(t, u), u̇〉.

The main point is that a time-integrated version of the third formulation can be used
to characterize solutions of perturbed gradient systems. For this we need an abstract
chain rule for Eε. We say that (X,E) satisfies the chain rule if for all p ≥ 1 the following
holds. If u ∈W1,p([0, T ]; X), E(·, u(·)) ∈ L1([0, T ], and DuE(·, u(·)) ∈ Lp∗([0, T ]; X∗), then
t 7→ E(t, u(t)) is absolutely continuous and

d

dt
E(t, u(t)) = 〈ξ(t), u̇(t)〉+ ∂tE(t, u(t)) a.e. in [0, T ]. (4.3)

We refer to [RoS06,MRS13] for general treatments and derivations of such abstract chain
rules. Using this chain rule, we can integrate the power balance in time and replace
〈DuEε(t, u), u̇〉 by the difference of the initial and final energies plus an integral over ∂tEε.
De Giorgi’s energy-dissipation principle (EDP) states that this integrated version of the
power estimate (iii)′ is equivalent to the force balance (2.3) for a.a. t ∈ [0, T ]. Again we
can drop the parameter ε > 0.

Theorem 4.2 (De Giorgi’s EDP) Assume that (X,E) satisfies the chain rule (4.3)
and that there exists C, p > 1 such that (1+‖u̇‖p)/C ≤ R(u, u̇) ≤ C(1+‖u̇‖p). Then a
function u ∈ W1,p([0, T ]; X) is a solution of the perturbed gradient system (X,E,R, h) if
and only if it satisfies the Upper Energy-Dissipation Estimate

E(T, u(T )) + D(u(·)) ≤ E(0, u(0)) +

∫ T

0

∂tE(t, u(t)) + 〈h(t, u(t)), u̇(t)〉dt, (UEDE)

where De Giorgi’s dissipation functional D is given by

D(u(·)) :=

∫ T

0

R(u(t), u̇(t))+R∗
(
u(t), h(t, u(t))−DuE(t, u(t))

)
dt. (4.4)
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This result is a simple generalization of [Mie15b, Thm. 3.3], where the proof for the
case h ≡ 0 is given. We remark that the EDP relates the final energy E(T, u(T )) plus

the dissipated energy
∫ T

0
R+R∗ dt to the initial energy E(0, u(0)) plus the external work∫ T

0
∂tE(t, u(t))dt and the work due to the non-gradient terms

∫ T
0
〈h(t, u(t)), u̇(t)〉dt. It is

sufficient to establish the UEDE, then by the chain rule one obtains an equality in UEDE
giving the power balance.

The EDP is ideal for proving evolutionary Γ-convergence. In fact, it is the basis of the
famous Sandier–Serfaty approach, see [SaS04,Ser11]. For this we look at the ε-dependent
UEDE:

Eε(T, u
ε(T )) + Dε(u

ε(·)) ≤ Eε(0, u
0
ε) +

∫ T

0

∂tEε(t, u
ε(t)) + 〈hε(t, uε(t)), u̇ε(t)〉dt. (4.5)

The main importance of the EDP is that it involves the UEDE, which states that the final
and the dissipated energies only need to have a good upper bound. Hence, in passing to the
Γ-limit it will be sufficient to have good liminf estimates for these terms, while the right-
hand side can be controlled by the well-preparedness of the initial conditions and proper
assumptions on the power of the external forces ∂tEε(t, u) and the power 〈hε(t, u), u̇〉.
The following result gives sufficient conditions for evolutionary Γ-convergence, in fact for
“pE-convergence” in the sense of [Mie15b].

Theorem 4.3 (Evolutionary Γ-convergence via EDP) Assume that the perturbed
gradient systems (X,Eε,Rε, hε) satisfy (2.1), (2.2), (2.7) and that

Eε(t, ·) Γ−→ E0(t, ·) and Eε(0, u
0
ε)→ E0(0, u0

0); (4.6a)

(X,E0) satisfies the chain rule; (4.6b)

wε
Z
⇀ w0 =⇒

(
∂tEε(t, wε)→∂tE0(t, , w0) & hε(t, wε)

Z∗→ h0(t, w0)
)
; (4.6c)

ŵε(·) ⇀ ŵ0(·) in W1,p([0, T ]; X) =⇒ D0(ŵ0) ≤ lim inf
ε→0

Dε(ŵ
ε). (4.6d)

If uε : [0, T ]→ X is a family of solutions for (2.3) with uε(0) = u0
ε and

εk → 0 and uεk ⇀ u in W1,p([0, T ]; X) as k →∞,

then u is a solution for the perturbed system (X,E0,R0, h0) with u(0) = u0
0.

The crucial and most difficult condition here is the liminf estimate for De Giorgi’s dissi-
pation potential, where D0 again must have the form (4.4). The liminf estimate is then
sufficient, since the duality of R0 and R∗0 and the chain rule (4.6b) imply equality again.

Proof. Because of the assumptions we can use the a priori estimates of Corollary 2.2 and
may assume the additional convergences

∀ t ∈ [0, T ] : uεk(t) ⇀ u(t) in Z and uεk(t)→ u(t) in X.
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Using the EDP in Theorem 4.2 we know that uε satisfies the UEDE (4.5). Using the
assumptions (4.6a) and (4.6b) and the a priori estimates, we easily see that the right-

hand side in (4.5) converges to E0(0, u0
0) +

∫ T
0
∂tE0(t, u(t)) + 〈h0(t, u(t)), u̇(t)〉dt.

On the left-hand side we have E0(T, u(T )) ≤ lim infεk→0 Eεk
(T, uεk(T )) and D0(u(·))

≤ lim infεk→0 Dεk
(uεk(·)). Thus, the UEDE for u with ε = 0 is established, and the EDP

in Theorem 4.2 implies that u solves (2.3) for ε = 0.

Based on the philosophy of this result, the notion of “EDP-convergence” was intro-

duced in [LM∗15] by asking Dε
Γ
⇀ D0 in W1,p([0, T ]; X). This convergence is in fact

much more than what is needed for evolutionary Γ-convergence. In principle, in (4.6d)
it is sufficient to obtain the desired liminf estimate only along solutions. In contrast,
EDP-convergence asks for a Γ-convergence along arbitrary functions. This is physically
justified by fluctuation theory, which gives the proper justification of gradient structures,
see e.g. [OnM53].

Remark 4.4 A similar theory may be derived for perturbed gradient systems in the form

u̇ = DξR
∗
ε

(
u,−DuEε(t, u)

)
+ gε(t, u).

The corresponding energy-dissipation principle takes the form

Eε(T, u(T )) + D̂ε(u) ≤ Eε(0, u(0)) +

∫ T

0

(
∂tEε(t, u)+〈DuEε(t, u), gε(t, u)〉

)
dt,

where D̂ε(u) =

∫ T

0

(
Rε(u, u̇−gε(t, u)) + R∗ε(u,−DuEε(u))

)
dt.

We refer to [DPZ13,Bud14,DL∗15] for the usage of this variational principle, where the
term 〈DuEε(t, u), gε(t, u)〉 even disappears because of a Hamiltonian structure of gε.

5 Applications of evolutionary Γ-convergence

We provide a few possible applications of the two theories developed above.

5.1 Homogenization of reaction-diffusion system

We only discuss a few simple results, where we emphasize that scalar reaction-diffusion
equations can easily be treated as unperturbed gradient systems. However, for general
systems no gradient structure exists. We consider a vector u = (u1, ..., uI) ∈ RI of
concentrations depending on (t, x) ∈ [0, T ]×Ω, where Ω is a bounded smooth domain in
Rd, which we may consider as a periodically structured solid, surface or interface. The
reaction-diffusion system reads

Mε(x)u̇ = div
(
Aε(x)∇u

)
− Fε(x, u) in Ω, Aε(x)∇u · ν = 0 on ∂Ω. (5.1)
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Here Mε, Aε, and Fε depend periodically on x in the form

Mε(x) = M(
1

ε
x), Aε(x) = A(

1

ε
x), Fε(x, u) = F(

1

ε
x, u),

where the functions M, A, and F are 1-periodic in the variable y = 1
ε
x ∈ Rd, viz.

M(y+k) = M(y) for all y ∈ Rd and all k ∈ Zd.
We can apply the theory of perturbed gradient systems by using the spaces X =

L2(Ω; RI) and Z = H1(Ω; RI) and the functionals

Eε(u) =

∫

Ω

1

2
∇u · Aε(x)∇u+

1

2
|u|2 dx and Rε(u̇) =

∫

Ω

1

2
u̇ ·Mε(x)u̇dx.

For the perturbation hε we choose hε(t, x, u) = u− Fε(x, u).
In addition to the 1-periodicity, the main assumptions on the functions M, A, and F

are the following. There exists C, c0 > 0 such that

M = M> ∈ L∞(Rd; RI×I), ξ ·M(y)ξ ≥ c0|ξ|2,
A = A> ∈ L∞(Rd; R(I×d)×(I×d)), Ξ : A(y)Ξ ≥ c0|Ξ|2,
F(·, u) ∈ L∞(Rd; RI), |F(y, u)−F(y, ũ)| ≤ C|u−ũ|,

for all u, ũ ∈ RI , y, ξ ∈ Rd, and Ξ ∈ RI×d.
First we observe that the general assumptions (2.1) hold with Dε = Z = H1(Ω; RI),

α = 2, and Λna = 0. Moreover, (2.2) holds since

R∗ε(u, hε) ≤ C1‖hε‖2
L2 ≤ C(1+‖u‖2

L2) ≤ ΛngEε(u).

We now show that the theory developed in Section 3 for the perturbed evolutionary
variational estimate holds. By the definition of Rε it is quadratic on the Hilbert space
H = L2(Ω; RI), i.e. (3.1) holds. Moreover, Eε is convex, so (3.2) holds with λ∗ = 0.

To apply Theorem 3.2 we need to establish convergence for Eε, Rε, and hε. Strong
Γ-convergence of Eε in H (or similarly weak Γ-convergence in Z) holds with

E0(u) =

∫

Ω

(1

2
∇u : Aeff∇u+

1

2
|u|2
)

dx,

where the effective tensor follows from linear homogenization, see e.g. [Dal93, Bra06].
Since weak convergence in Z = H1(Ω; RI) implies strong convergence in H = L2(Ω; RI),
it is easy to show that wε ⇀ w0 in Z implies

Rε(wε)→ R0(w0) =

∫

Ω

1

2
w0 ·Meffw0 dx with Meff =

∫

[0,1]d
M(y)dy,

hε(wε)→ h0(w0) = w0 − Feff(w0) in H, where Feff(w) =

∫

[0,1]d
F(y, w)dy.

We refer to [MRT14] for the last convergence. Thus, assumption (3.4) is established,
Theorem 3.2 is applicable, and the limiting perturbed gradient system (H,E0,R0, h0) is
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identified by using Aeff, Meff, and Feff in its definition. In particular, the limiting perturbed
gradient flow is given by the effective reaction-diffusion system

Meffu̇ = div
(
Aeff∇u

)
− Feff(u).

Of course, the above homogenization problem only serves as a didactical example,
since the result is well known. However, the theory allows for significant generalizations.
We first mention the homogenization of the Cahn-Hilliard equation in [LiR15], where
also a comparison between the two abstract approaches (PEVE versus EDP) is done.
In [MRT14, Rei15] the case of ε-dependent diffusion constants is two-scale convergence
and proving strong convergence via a suitable Gronwall estimates.

5.2 Justification of amplitude equations

An application of the theory developed in Section 3 to the justification of amplitude
equations is given in [Mie15a] for the case of pure gradient systems. The suitably rescaled
fourth-order Swift–Hohenberg equation with periodic boundary condition on the circle S
reads

ẇ = − 1

ε2

(
1+ε2∂2

x)
2w + µw + βεwx − w3 on S := R/2πZ (5.2)

and is a gradient system for β = 0 on the Hilbert space L2(S) for the energy functional
FSH
ε (w) =

∫
S

1
2ε2

(w+ε2wxx)
2 − µ

2
w2 + 1

4
w4 dx and the dissipation potential RSH(ẇ) =

1
2
‖ẇ‖2

L2 . Here we show that the case β 6= 0 can be treated as a perturbed gradient
system.

Because of the special form of the linear operator all typical solutions of (5.2) will spa-
tially oscillate on the scale ε and are approximately of the form w(t, x) ≈ Re

(
A(t, x)eix/ε

)
.

Using a suitable bijection Mε between L2(S) and a proper subspace of H := L2(S; C),
which satisfies w = Re

(
(Mεw)eix/ε

)
, one can define the amplitudes Aε = Mεw

ε ∈ H and
finds perturbed gradient systems (H,Eε,Rε, hε) with Eε(Mεw) = FSH

ε (w), Rε(Mεẇ) =
RSH(ẇ), and the non-gradient part hε(A) = β

(
iA+ ε∂xA)/2.

Using the theory developed in [Mie15a] (cf. Thm. 2.3 there with γ = 0) one can show
that Theorem 3.2 applies with Z = H1(S; C), and we find evolutionary Γ-convergence to
the perturbed gradient system (H,EGL,RGL, h0) with

EGL(A) =

∫

S

(
|A′|2 − µ

4
|A|2 +

3

32
|A|4

)
dx and RGL(Ȧ) =

1

4
‖Ȧ‖2

L2

and h0(A) = iβA/2, which leads to the limiting perturbed gradient flow given by the
Ginzburg-Landau equation

Ȧ = 4Axx + (µ+iβ)A− 3
4
|A|2A.

This result is not too surprising, since the perturbation introduced by β 6= 0 can be
compensated by a rotation of the form w(t, x) = w̃(t, x−εβt), which then transforms into

a phase shift A(t, x) = Ã(t, x)eiβt via Mε.
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The theory for perturbed gradient systems can be used in much more general situa-
tions. We may consider a system of two Swift–Hohenberg equations with different critical
wave lengths that are coupled in a non-gradient manner:

u̇ = − 1

ε2

(
1+ε2∂2

x

)2
u+ µ1u+ (η + β)w − u3,

ẇ = − 1

ε2

(
1+µ2ε2∂2

x

)2
w + µ2w + (η − β)u− w3.

We refer to [SA∗14] for this model in the case µ1 = µ2 and η = 0. Here u has the critical
wave length 2πε while that of w is 2πµε. The coupling between the two system occurs
through a gradient term η or a non-gradient term β.

Thus, we can define the associated perturbed gradient system via

H = L2(S)2, RcSH(u̇, ẇ) =
1

2
‖u̇‖2

L2 +
1

2
‖ẇ‖2

L2 , h(u,w) = β

(
w

−u

)
,

EcSH
ε (u,w) =

∫

S

((u+ ε2uxx)
2 + (w+µ2ε2wxx)

2

2ε2
+ E(u,w)

)
dx

with E(u,w) = −(µ1u
2+µ2w

2)/2−ηuw+(u4+w4)/4. It is clear that the theory developed
in Section 3 is principally applicable and that the induced limiting system for ε→ 0 will
again be a perturbed gradient system given in terms of two possibly coupled Ginzburg–
Landau equations. However, the critical bifurcations do no longer occur at µj = 0. So,
one needs to do a careful linear bifurcation analysis first. This and the justification of the
arising amplitude equations will be the content of subsequent work.

5.3 From diffusion to reaction

In a series of papers it was shown that simple reactions can be understood as evolutionary
Γ-limits of diffusion systems, if the occurrence of a reaction is measured moving along a
reaction path. In particular, for an interchange reaction A
 B one should consider A and
B are minima, which are separated by a saddle point. We refer to [PSV10,PSV12,AM∗12]
for a series of papers along this spirit.

In [LM∗15] a systematic approach based on the energy-dissipation principle was devel-
oped allowing for a simultaneous treatment of diffusion in a physical domain Ω ∈ Rd with
points x ∈ Ω and the diffusion along the chemical reaction variable y ∈ [0, 1] =: Υ. De-
noting by u(t, x, y) the concentration of particles one can write the master equation based
on a gradient system, where the energy functional is the relative entropy with respect to
the equilibrium state wε, namely

Eε(u) =

∫

Ω×Υ

λB

(
u(x, y)/wε(y)

)
wε(y)dydx with λB(z) := z log z − z + 1,

where the equilibrium state is wε(y) = e−V (y)/ε/Zε with Zε =
∫

Υ
e−V (y)/ε dy. Here y = 0

corresponds to the pure state A, while y = 1 corresponds to the pure state B. We assume
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V (0) = V (1) = 0 and 0 < V (y) < 1 = V (1/2) for y ∈ Υ \ {0, 1/2, 1}. The full state space
X is the set M(Ω×Υ) of all non-negative Radon measures on Ω×Υ.

Since in general the mass per particle can change during reactions we define a function
m : Υ → R>0 such that the total mass

∫
Ω×Υ

m(y)u(t, x, y) dy dx is conserved. E.g. for
the reaction 3 O2 
 2 O3 one may set m(0) = 2, m(1/2) = 1, and m(1) = 3, where we
assume that y = 1/2 corresponds to O1. Using the function m we can define a dissipation
potential Rε via its Legendre dual

R∗ε(u, ξ) =

∫

Ω×Υ

1

2

(
µ(y)|∇xξ|2 + τε

[ ∂yξ
m(y)

]2)
u dydx,

where µ is a possibly y-dependent spatial mobility and τε � 1 is the chemical mobility.
The latter has to be scaled in a suitable manner to allow the particles to overcome the
potential barrier of size 1/ε at y = 1/2.

Using that DEε(u) = log(u/wε), the master equation (Kolmogorov’s forward equation)
for u is given via u̇ = DξR

∗
ε(u,−DEε(u)) and takes the explicit form

u̇ = µ(y)∆xu+
τε

m(y)
∂y

(
u ∂y

[ log u+ V (y)/ε

m(y)

])
.

Generalizing the results in [LM∗15], where only the case m ≡ 1 was treated, it should
be possible to show that the gradient systems (M(Ω×Υ),Eε,Rε) have the evolutionary
Γ-limit (M(Ω×Υ),E0,R0), where the limit energy E0 is only finite if all the particles are
in pure states y = 0 or y = 1, i.e.

E0(u) =

∫

Ω

(
λB(c0/c

∗
0)c∗0 + λB(c1/c

∗
1)c∗1

)
dx if u = c0δy=0 + c1δy=1

and +∞ else. This means that we now have two concentrations c0 and c1 depending only
on time t and the physical position x ∈ Ω.

Fixing m(1/2) = 1 the limiting dissipation potential R∗0 takes the form

R∗0(c0, c1; η0, η1) =

∫

Ω

( 1∑

j=0

µjcj
2
|∇xηj|2 + k

(
c
m1)
0 cm0

1

)1/2

S∗(m1η0−m0η1)
)
dx

where S∗(η) = 4(cosh(η/2)−1), µj = µ(j), and mj = m(j). Thus, we expect evolutionary
convergence to the nonlinear reaction-diffusion system

ċ0 = µ0∆xc0 +m1k
(
(c0/c

∗
0)m1 − (c1/c

∗
1)m0

)
,

ċ1 = µ1∆xc1 −m0k
(
(c0/c

∗
0)m1 − (c1/c

∗
1)m0

)
.

It is interesting to note that R∗0 is no longer quadratic in the chemical potentials ηj,
but contains exponential terms through S∗. This seems to correspond nicely to the de
Donder–Marcelin kinetics as described in [Fei72, Def. 3.3], [GK∗00, Eqn. (11)], or [Grm10,
Eqn. (69)], and generalizes the usual quadratic fluctuation theory, cf. [OnM53]. The im-
portance of the function S∗ for fluctuations in reactions and jump processes was first
highlighted in [MPR14] based on large-deviation principles. Further discussions are found
in [LM∗15,MP∗15].
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