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ABSTRACT. Balanced Viscosity solutions to rate-independent systems arise as limits of
regularized rate-independent flows by adding a superlinear vanishing-viscosity dissipa-
tion.

We address the main issue of proving the existence of such limits for infinite-dimensional
systems and of characterizing them by a couple of variational properties that combine
a local stability condition and a balanced energy-dissipation identity.

A careful description of the jump behavior of the solutions, of their differentiability
properties, and of their equivalent representation by time rescaling is also presented.

Our techniques rely on a suitable chain-rule inequality for functions of bounded
variation in Banach spaces, on refined lower semicontinuity-compactness arguments,
and on new BV-estimates that are of independent interest.

CONTENTS

1. Introduction 1
2. Notation, assumptions and preliminary results 5
2.1.  The energy-dissipation framework 5
2.2.  Absolutely continuous and BV functions 7
2.3.  Two useful properties from the theory of gradient systems 9

2.4. Variational gradient systems 9
3. Balanced Viscosity (BV) solutions 10
3.1. Finsler dissipation functionals 10
3.2. Balanced Viscosity (BV) solutions 13
3.3. Optimal jump transitions 16
3.4. V-parameterizable solutions 18
4. Parameterized solutions 20
4.1. Vanishing-viscosity analysis, parameterized curves and solutions 20
4.2.  V-parameterized solutions 25
5. Examples 27
6. Chain-rule inequalities for BV and parameterized curves 30
6.1. Chain rule for admissible parameterized curves: proof of Theorem 4.4 30
6.2. Chain rule for BV curves: proof of Theorem 3.11 31
7. Convergence proofs for the viscosity approximations 32
7.1. Compactness and lower semicontinuity result for parameterized curves 32
7.2. Compactness and lower semicontinuity for non-parameterized curves 34
7.3. Convergence of the vanishing-viscosity approximations 36
7.4. Uniform BV-estimates for discrete Minimizing Movements 39
References 40

1. INTRODUCTION

This paper concerns the asymptotic behavior of the solutions w. : [0,7] — V, ¢ | 0, of
singularly perturbed doubly nonlinear evolution equations of the type

OV, (ue(t)) + 0 (ue(t)) 20 inV* te(0,T). (1.1)
Here (V, ||-||) is a Banach space satisfying the Radon-Nikodym property (e.g. a reflexive space, see
[DiU77]), O€ is the Fréchet subdifferential of a time-dependent energy functional € : [0,T] x V —
(—o00,400], and ¥, : V — [0,+00) is a family of convex and superlinear dissipation potentials;

the main coercivity and structural assumptions on W, € will be discussed in Section 2.1.
The main feature we want to address here is the degeneration of the superlinear character of
U, as ¢ | 0, approximating a degree-1 positively homogeneous convex potential ¥ : V' — [0, 400),
U(Av) =AU (v) foreveryv eV, \>0; U(v) >0 ifv#0. (1.2)
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An important example motivating our investigation is the vanishing quadratic approximation
€ 1
U_(v) =¥ (v) + §HUH2, associated with the viscous potential ®(v) := §||v||2 (1.3)

The superlinear case. Equations of the type (1.1) arise in several contexts, ranging from ther-

momechanics to the modeling of rate-independent evolution. In the realm of these applications,

(1.1) may be interpreted as generalized balance relation, balancing viscous and potential forces.
The analysis of (1.1) when the energy € has the typical form

E¢(u) = E(u) — (U(t),u), with £:[0,T] — V* smooth and &€ : V — (—o0, +00] convez

goes back to the seminal papers [CoV90, Col92]. Therein, the existence of absolutely continuous
solutions to the Cauchy problem for (1.1) was proved by means of maximal monotone operator
techniques. Existence and approximation results for a broad class of nonconvezr energies, also
featuring a singular dependence on time, have been recently obtained in [MRS13], relying on
various contributions from the theory of curves of Maximal Slope [DGMT80, MST89] and from
the variational approach to gradient flows [De 93, RoS06, AGS08, RMS08].

Positively 1-homogeneous dissipations: energetic solutions. Since V¥ is positively homo-
geneous of degree 1, when £ = 0 the formal limit of (1.1)

AW (a(t)) + 9 (u(t)) 50 in V*, te(0,T), (1.4)

describes a rate-independent evolution. In this case, even for convex energies €;(-) one cannot
expect the existence of absolutely continuous solutions to (1.1): in general, they may be only BV
with respect to time and in fact have jumps, so that even the precise meaning of the differential
inclusion (1.4) is a delicate question.

This has called for weak-variational characterization of the solutions of (1.4), leading to the
concept of energetic solution to the rate-independent system (V, &, ¥): it dates back to [MiT99]
and was further developed in [MiT04, DFTO05], see also [Mie05, Miell] and the references therein.

In this setting, w : [0, 7] — V is an energetic solution to equation (1.4), if it complies with the
global stability (S) and with the energy balance (E) conditions

VoeV : &(u(t)) < &(v) +T(v—u(t)) foralltel0,T], (S)
t
Varyg (u; [0,¢]) + E(u(t)) = Eo(u(0)) + / 0i€s(u(s))ds forall t € [0,T], (E)
0
where Vary (u; [a, b]) is the total variation induced by ¥(-) on the interval [a,b] C [0,T], viz.
M
Vary (u; [a,b]) := sup{ Z \Il(u(tm) — u(tm,l)) ta=tyg <t < - <ty_1<ty= b}. (1.5)
m=1

The energetic formulation (S)—(E) has several strong points: it is derivative-free, it bypasses all
the technical differentiability issues on V' (related to the validity of the Radon-Nikodym property),
on u (related to its behavior on the Cantor-Jump set), and on the energy & (related to its Frechét
subdifferential). Furthermore, it provides nice existence-stability results under simple coercivity
and time-regularity assumptions.

Nonetheless, in the case of nonconver energies it is now well known [MRS09, MRS12a, Miell,
MiZ12, RoS13] that the global stability condition (S) involves a variational characterization of
the jump behavior of the system, that is affected by the whole energetic landscape of €.

Positively 1-homogeneous dissipations: the vanishing-viscosity approach. The by now
well-established vanishing-viscosity approach aims to find good local conditions describing rate-
independent evolution (and in particular the behavior of the solutions at jumps). It also leads to
a clarification of the connections with the metric-variational theory of gradient flows.

While referring to [MRS12a] for a more detailed survey, here we recall the works where the
vanishing-viscosity analysis is carried out via the reparameterization technique introduced in
[EfMO06]. They range from applicative contexts in material modeling (such as crack propagation



[KMZ08, KZM10], Cam-Clay and non-associative plasticity [DMDS11, DDS12, BFM12], and
damage [KRZ13]), to the analysis of parabolic PDEs with rate-independent dissipation terms
[MiZ12].

Abstract rate-independent systems in a finite-dimensional setting have been studied by [MRS09,
MRS12al]. In particular, the vanishing-viscosity limit of gradient systems of the type (1.1) has
been studied in [MRS12a] when V is a finite-dimensional space and & € C!([0,T] x V). Here
we aim to generalize the results from [MRS12a] to the present nonsmooth, infinite-dimensional
setting.

A simple prototype of the situation we have in mind (see also Section 5) is

V = L3(Q), \Pg(v):/ﬂ|v|+§|v|2dx, St(u)z/Q<;|Vu|2+W(u)—€(t)u> dr (1.6)

where € is a bounded open subset of R?, ¢ € C1([0,T]; L?(Q2)) and W € C!(R) is, e.g., a double-
well type nonlinearity. The abstract subdifferential inclusion (1.1) leads to the nonlinear parabolic
equation

e Qyu + Sign(Oyu) — Au+ W' (u) =€ in Qx (0,7), (1.7)
for which the vanishing-viscosity limit ¢ | 0 was in fact analyzed in [MiZ12], based on the
reparameterization technique and on the concept of parameterized solution, from [EfMO6].

In this work we will propose a direct characterization of the limit evolution, in the same spirit
of conditions (S)—(E), and we will show how it is related to a parameterized formulation. A
particular emphasis will be on the crucial property encoded in the balanced energy—dissipation
identities, both in the original and in the rescaled time variables. The notion of Balanced Viscosity
(BV) solution to a rate-independent system tries to capture this essential feature.

Balanced Viscosity (BV) solutions. Let us briefly describe what we mean by a balanced
viscosity (BV) solution to the rate-independent system (RIS) (V,E, V¥, ®), where now also the
viscosity correction induced by ® characterizes the evolution. To simplify the exposition in this
introduction, we suppose that ¥ is V-coercive, i.e. U(v) > ¢||v|| for all v € V and for a constant
c>0.

A crucial role is played by the dual convex set

K*:={£eV*: (£ v) <VU(v) for every v € V'} (1.8)

whose support function is ¥. Following [MRS12a], we say that a curve v € BV([0,7]; V) is a BV
solution to the RIS (V, &, ¥, ®), if it fulfills the following local stability condition

K*+0&(u(t)) >0 forallt € [0,T]\ Ju, (Si0c)

where J,, is the jump set of u, and the Energy-Dissipation Balance
t
Varj(u; [0,t]) + E+(u(t)) = Eo(u(0)) +/ 0:€s(u(s))ds forall t € [0,T]. (Ef)
0

Like (E), (E;) as well balances at every evolution time ¢ € [0,7] the energy dissipated by the
system and the current energy, with the initial energy and the work of the external forces. How-
ever, in (Ej) dissipation is measured by the total variation functional Var;. While referring to the
forthcoming Definition 3.6 for a precise formula, we may mention here that the main difference
of Var; with respect to Vary concerns the contribution of the jumps. In fact, in the definition of
Vars the cost U(u(ty) —u(t—)) of the transition from the left limit w(¢_) to the right limit w(t4)
at a time t € J,, is replaced by the Finsler dissipation cost

As, (up, u1) = inf {/0 f(9;0)dr - 9 € AC(0,1]; V), 9(0) = u(t_), 9(1) = u(t+)}, (1.9)
where

fe(9;0) = U @) + e, ()|, er(¥) := inf{ué — 2] 1§ € —08,(D), z € K*}. (1.10)



Formula (1.10) clearly shows that the Finsler dissipation cost (1.9) (and thus the total variation
Vars) encompasses both rate-independent effects through ¥(-), and viscous effects through ||
The latter are active whenever e;(d) > 0, precisely when the local stability condition (Sjec) is
violated, since K* + 9€;(u) > 0 if and only if ¢;(u) = 0. Ultimately, by virtue of (E;), viscous
dissipation enters in the description of the energetic behavior of the system at jumps.

The link between the particular structure of (1.10) and the vanishing-viscosity approximation
(1.1) can be better understood by recalling the strucure of the energy-dissipation balance satisfied
by the solutions to the viscous evolution:

t t
€:uclt)+ [ (el +02(€)) dr = Eo(uc)+ [ 0, (uclr). &(r) € 08, (ua(r). (111)
0 0
It turns out that f; admits the variational representation
f,(9,9) = inf {\115(19) FUH(E) € € —0E (D), &> o}. (1.12)

This feature is in some sense reflected by the so-called optimal jump transitions connecting u(t_)
and u(t4): they are curves ¥ € AC([0,1]; V) which attain the infimum in formula (1.9) and keep
track of the asymptotic profile of the converging solutions u. around a jump point. By means of
a careful rescaling technique, we will show that optimal transitions fulfill the doubly nonlinear
equation

AW (I(r)) + 8P (e(r)d(r)) + 8E(I(r)) 20 for a.a. r € (0,1) (1.13)

for some map r +— £(r) € [0, 400).

Lack of differentiability and non-coercive rate-independent dissipations. Up to now, for
the sake of simplicity, we have overlooked one crucial issue in the analysis of the rate-independent
equation (1.4), namely the lack of differentiability of the limiting solution u when ¥ is not coercive
with respect to the norm || - || on V' (as in the example (1.6)). Even the introduction of a weaker
norm cannot avoid this technical issue, since in many interesting examples norms of L'-type do
not comply with the Radon-Nikodym property.

This fact leads to significant technical difficulties, in that W-absolutely continuous curves need
not be pointwise differentiable with respect to time. Hence, for example formulae (1.9)—(1.10)
need to be carefully modified by introducing the convenient notion of the metric WU-derivative,
and differential inclusions like (1.13) have to be suitably interpreted.

On the other hand, we will show that under slightly stronger assumptions on the energy
functional &, limiting solutions still belong to BV([0,T7]; V') even in the case of a degenerate rate-
independent dissipation W. For this class of V-parameterizable solutions we can recover a more
precise differential characterization, and several expressions take a simpler form.

Main results and plan of the paper. In this paper we provide existence and approximation
results for Balanced Viscosity solutions to the RIS (V, &, ¥, ®) under quite general conditions
on the dissipation potentials ¥, ® and on the energy functional €, enlisted in Section 2.1. Let
us mention in advance that, our standing assumptions on £ guarantee the lower semicontinuity,
coercivity, uniform subdifferentiability of the functional u — €;(u), and (sufficient) smoothness of
the time-dependent function ¢ — &;(u). In §2.2 we provide some preliminary results on absolutely
continuous and BV curves, while the main existence and structural properties of viscous gradient
systems are recalled in §2.3-§2.4.

In Section 3 we present our main results concerning Balanced Viscosity solutions. The Finsler
cost (1.9) and its related total variation are discussed in §3.1. In Theorem 3.9 we state the
relative compactness of viscous solutions (u.). to (1.1) with respect to pointwise convergence,
and we show that any limit point as € | 0 is a BV solution. A similar result (Theorem 3.10)
addresses the passage to the limit in the time-incremental minimization scheme [De 93] for the
viscous problem: given a time step 7 > 0, the uniform partition ¢, :=n7r, n =0,--- , N, of the



time interval [0, T] so that 7(N, —1) < T < 7N,, and an initial datum UY _, the scheme produces
discrete sequences (U} .), n € N, by solving the minimization problem

U-— Unfl
U7 . € Argmin {T\IIE(T’S) + &, (U)} forn=1,---,N;. (IP.,7)
UeVv T

As 7, ¢ | 0 with 7/e | 0 we will prove that the piecewise affine interpolants (see (7.25)) (Ur¢)re
of the discrete values U _ converge (up to subsequences) to a BV solution of the RIS (V, &, ¥, ®).
Under slightly stronger assumptions on the energy functional £, Theorems 3.21 and Corollary
3.23 show that the limits obtained by this variational scheme belong to BV([0,T];V) and are
V-parameterizable, a distinguished class of solutions studied in § 3.4. Other important properties
of BV solutions are discussed in §3.2 and 3.3: the latter is focused in particular on the notion
of optimal jump transition, a useful tool to describe the asymptotic profile of the solution wu.
around a jump limit point.

We discuss parameterized solutions in Section 4: Theorem 4.3 provides the main existence
and convergence result, the tight connections with BV solutions are clarified in Theorem 4.7,
and the case of V-parameterized solutions is investigated in Section 4.2.

Section 5 is devoted to a series of examples, where we discuss the validity of the abstract
conditions on the energy enucleated in §2.1, and in particular of the chain-rule inequality. Fur-
thermore, Example 5.2 shows that there exist BV solutions which are not V-parameterizable.
Most of the proofs and of the technical tools are collected in the last three sections. Section 6
is devoted to the main theme of the chain-rule inequalities in the parameterized (§6.1) and BV
setting (§6.2).

Section 7 contains the main stability, compactness, and lower semicontinuity results that lie at
the core of our proofs. In § 7.1 and § 7.2 we alternate the parameterized and the non-parameterized
point of view to describe the limit of various integral functionals. The crucial lower semicontinuity
result in the BV setting is Proposition 7.3, where we adapt ideas introduced in [MRS12b]. The
proofs of the main Theorems are eventually collected in §7.3. The crucial BV estimate for the
discrete Minimizing Movements leading to V-parameterizable solutions are collected in §7.4.

2. NOTATION, ASSUMPTIONS AND PRELIMINARY RESULTS
2.1. The energy-dissipation framework. Throughout the present paper we will suppose that
(VI is a separable Banach space satisfying the Radon-Nikodym property. (2.1)

This means that absolutely continuous curves with values in V are Z!-a.e. differentiable, see
Section 2.2. This condition is certainly satisfied if V' is reflexive or if it is the dual of a separable
Banach space, see [DiU77]. With ||-||« we will denote the dual norm in V*, while (-,-) stands for
the duality pairing between V* and V.

Rate-independent and viscous dissipation. On V are defined two

continuous convex dissipation potentials ¥, ® : V' — [0, +00), strictly positive in V' \ {0}.

(D.0)
The “rate-independent” potential ¥ is positively 1-homogeneous (a “gauge” functional, [Roc70])
U(Av) = A¥(v) forall A\>0and veV (D.1)

Notice that if U(—v) = ¥(v) for every v € V, then ¥ is a norm in V; we will say that ¥ is

coercive if U(v) > ¢||v]| for every v € V and some constant ¢ > 0. However, in general we will

not assume any coercivity on ¥, so that the sublevel sets {v € V : ¥(v) < r} are not bounded.
Coercivity will be recovered by the addition of a “viscous” dissipation potential ® of the form

®(v) = F(||v|]) for F € C!([0,+00)) convex, with

F(r) > 0for 7 >0, F(0) = F/(0) = 0, lim F'(r) = +oc. (D-2)



We then consider a vanishing-viscosity family ¥, : V — [0, 4+00), € > 0, of dissipation potentials
approximating W:

U, (v) := V() + e 1®(ev) = e Wy (ev), Yo(v) := V(v) = 151%1 V. (v) = ;1;% U, (v). (2.2)

Observe that the whole theory is restricted to the case ¥.(v) < 4o0. Indeed, allowing for ¥, (v) =
+00 as in unidirectional processes such as damage, hardening, or fracture (cf., e.g., [DFTO05,
MiR06, MaM09, KRZ13, BFM12]) would give rise to additional complications, which we prefer
not to address in this paper. Still, a typical situation that is relevant in elastoplasticity is given
by the choices V = LP(;R™) for p € (1,00), [[v] = ([, [v(2)[P dz)¥/P, U(v) = [, oy |v(z)|dz,
and F(r) = vr?. In particular, ¥, has the simple form V. (v) = [, oy |v(z)| + P~ vjv(z)|P da.

Subdifferential of the rate-independent dissipation and the dual convex stability set.
¥ is the support function of the w*-closed and bounded convex subset of V*

K* = {5 eV ({,w) < T (w) for every w € V} cV*, Y(v)= sup (§v), (2.3)
EeEK™

which will play a prominent role in the following. K* is related to ¥ by two different important
relations: first of all, it is the proper domain of the conjugate function of W*:

{0 if € € K*,

+o00 otherwise.

U(E) == sup ((§,v) = ¥(v)) = Ik~ () =

veV

(2.4)

Second, K* can be characterized in terms of the subdifferential W : V' = V* of ¥, defined as
Eedl(v) & Ew—v)<T(w)—-T@W) YweV, (2.5)

so that
K* = 9v(0); Eed¥(v) & &€ K" and (&v)=T(v). (2.6)

The energy functional and its subdifferential. We shall consider a time-dependent
lower semicontinuous energy functional € : [0,7] x D — R, D C V. (E.0)
To simplify some formulae, we will set &;(u) = +oo if u € D and we will assume the following
properties:
Coercivity: the map

u— G(u) == ¥(u)+ sup E;(u) has compact sublevels in V,
te[0,T] (E.1)
i.e. for every E > 0 the set D := {u € D : §(u) < E} is compact.

Power-control: for all u € D the function ¢ — &;(u) is differentiable on [0,T] with deriv-
ative Py(u) := 9;€¢(u) satisfying for a constant Cp > 0

[Pe(u)] < Cp(¥(u) + &(u)),  limsup Py(w) < Py(u) (E.2)

w—u,wEDE
for every (t,u) € (0,T) x D, E > 0.

U-uniform subdifferentiability: for every E > 0 there exists an upper semicontinuous
map w? : [0,T] x Dg x Dg — R, with w?(u,u) = 0 for every u € Dg, such that

Ei(v) > &(u) + (€, — u) — wE (u, )T, (v — u) Vte[0,T], u,v € Dg, &€ 0€(u), (E3)

where

U, (w) := min (‘Il(w), \Il(—w)). (2.7)



Recall that the Fréchet subdifferential of &; is the possibly multivalued map 0&; : V= V* defined
at u € D by

CeOt(u) — £V, &) —&w) —(Gu—w = o(lv—ul) asv—uinV, (28

Thus (E.3) prescribes a uniform and specific form for the remainder infinitesimal term on the
right-hand side of (2.8). For later use, we observe that (E.2) and the Gronwall Lemma yield

0 < W(u) + Es(u) < G(u) < exp(CpT) (¥(u) + & (u)) for all s,¢ € [0,T], wue D.  (2.9)
Since € is lower semicontinuous, (2.9) joint with (E.1) yields that the maps
u— U(u) + E(u) have compact sublevels in V' for every ¢ € [0,T]. (2.10)

Remark 2.1. Most of the results of the present paper could be extended to the cases when W
depends on the state of the system (as in [MRS13]), or it is replaced by a distance on D (as in
[RMS08, MRS09]) and when the viscous correction ® is a general convex superlinear functional
(as in [MRS12a]). We have chosen the current simpler structure to focus on the main features
and techniques of the vanishing-viscosity method in the infinite-dimensional setting.

2.2. Absolutely continuous and BV functions. As in Section 2.1 let ¥ : V — [0,00) be a
gauge function with ¥(v) > 0 if v # 0 and let Z a subset of V. The function

Z 35 u,v— Ag(u,v) :=¥Y(v—u) is an asymmetric continuous distance on Z. (2.11)

We say that a curve u : [0,7] — Z is U-absolutely continuous if there exists a nonnegative
function m € L'(0,T) such that

ty

Ay (u(to),u(tr)) < / m(s)ds for every 0 <to<t; <T. (2.12)
to

We denote by AC([0,T]; Z, ¥) the set of all ¥-absolutely continuous curves with values in Z.

There is a minimal function m such that (2.12) holds [AGS08, RMS08], and with a slight abuse

of notation we denote it by ¥[u'], since it admits the expression

Wi/)() = Jim \P(w) for £ -aa. t € (0,T), (2.13)

so that Y[u'](t) = ¥(u(t)) whenever u is differentiable at t. Since V has the Radon-Nikodym
property, this happens at Z*-a.a. t € (0,T) (£* denoting the Lebesgue measure on (0,7)), when
W is coercive: if this is the case and Z =V, we will simply write u € AC(0,T; V).

Varyg (u; [a, b]) is the pointwise total variation induced by ¥ on the interval [a,b] C [0,T], viz.

M

Vary (u; [a, b]) := sup{ Z U(utm) —ultm-1)) ra=to <ty < <ty_1 <ty = b}. (2.14)
m=1

If Z c V,BV([0,T]; Z,¥) will denote the set of all curves u : [0,7] — Z with finite U-total

variation in [0,7]. When ¥ := || - || we will simply write BV([0,T]; V) and we will omit the index

¥ in the symbol of the total variation. Notice that BV([0,T];V) C BV([0,T];V,¥) for every
choice of W, whereas the opposite inclusion only holds when W is coercive on V.
To every u € BV([0,T]; Z, ¥) we can associate the nondecreasing scalar function V: R — [0, c0)

0 ift <0
— ) d
V(t) := { Varg(u; [0,t]) ift € (0,7), with distributional derivative p = aV. (2.15)
Varg (u; [0,T]) ift>T
The finite Borel measure 4 is supported in [0, 7] and it can be decomposed into the sum p = pq+py

of a diffuse part uq (such that uq({t}) =0 for every ¢ € R), and a jump part u; concentrated in
a countable set J,, C [0,7T].



When Z is compact (or when W is coercive), for every § > 0 there exists a constant Ms > 0
such that (recall (2.7) for the definition of ¥,)

lu—wv| <04+ Ms¥,(v—u) forevery u,v € Z. (2.16)
By introducing the continuous and concave modulus of continuity

Qyz : [0, 4+00) — [0, +00), Qz(r):= (isr>1%5 + Msr so that lrifngZ(r) =0, (2.17)

(2.16) rewrites as
lu—v|| < Qz (¥, (u—v)) forevery u,v € Z. (2.18)

If (2.16) holds, it is easy to show that a function u € BV([0,T]; Z, ¥) is continuous in [0,T] \ J,,
and its left and right limits exist at every ¢ € (0,77 :

u(t_) :== lgglu(s), u(ty) :== lslﬁlu(s) with the convention u(0_) := w(0), u(Ty) := u(T), (2.19)

so that J, admits the representation

Ju:={t€[0,T]: u(t_) # u(t) or u(t) # u(ts)} (2.20)
and
wi({t}) = U(u(t) —u(t-)) + $(u(ty) —u(t)) for every t € J,. (2.21)

Furthermore, jq admits the Lebesgue decomposition piq = pg+puc with e < £* and puc L £,
The density of je with respect to ! is provided by the same formula (2.13) and one has

b
u € AC([0,T]; Z, V) if and only if py = puc =0, with ~ Vary(u; [, b]) = / Ulu](t)dt. (2.22)

In this case, when Z is compact or ¥ coercive, u is a continuous curve. In general we have
Vary (u; [a,b]) = pa([a, b]) + Jmpy (u; [a, b)), (2.23)
where the jump contribution Jmpy (u; [a,b]) can be described by
Jmpy (u; [a, b]) := Aw (u(a), u(ay)) + Aw (u(b-), u(b))
+ Y (Aw o) u(®) + Mg (ul®),ult))), .20
teJuN(a,b)
= Ay (u(a),ulay)) + Aw (u(b-), u(b)) + pi((a, b)).
Remark 2.2 (Scalar vs. vector measures). If u € BV(0,T; V) all the previous definitions have an
important vector counterpart in terms of the vector measure uy, associated with the distributional
derivative of u: uy, is a Radon vector measure on (0, T') with values in V', with finite total variation
|lu||. The measure uy, can be decomposed into the sum of the three mutually singular measures
uy = u'y + ug + uj, uy = Uy + ug, (2.25)
where 'y, is its absolutely continuous part with respect to & L.} is a discrete measure concen-
trated on J,, and ug is the so-called Cantor part, still satisfying un({t}) = 0 for every ¢t € [0, T.
Therefore u); = vy, + ug is the diffuse part of the measure, which does not charge J,,.
Since V has the Radon-Nikodym property, u is differentiable .#!-a.e. in (0,T) (we denote by
its derivative), and we can express u/, in terms of its density n with respect to its total variation
lugll as

uly = nljul] where |n| =1 ||uj]-ae., vy=uL' n [’ -a.e.. (2.26)

o
Il
The relation to the previously introduced measures pq, pc, and pe is

pa=Um)lugl, pe=VMm)ucll, ne=Vm)|uy| =)L (2.27)



2.3. Two useful properties from the theory of gradient systems. The assumptions on
the dissipation potentials ¥ and ® and on the energy € stated in the previous section yield two
important consequences, stated in Theorem 2.3 below, that play a crucial role in the variational
approach to gradient systems and rate-independent evolutions.

Before stating them, let us recall that for every map A : V — (—o0, +00] bounded from below
by a continuous and affine function, A* : V* — (—o0, +00] will denote the conjugate

A7 () = sup (& v) =A(v). (2.28)

For the functional ® in (D.2) we have

(&) = F*(||¢]l+), where F*(s) =suprs — F(r), (2.29)

r>0
so that, by the inf-convolution duality formula (see e.g. [[0T79, Thm. 1, p.178]) and the mono-
tonicity of F* we find

(€)= < min (€ 2) = = min F (¢ - 2[l.) = =F*( min ¢ - 2].). (2.30)

Theorem 2.3 ([MRS13, Prop. 2.4]). Under the assumptions of Section 2.1 the following proper-
ties hold.

Chain rule: For every u € AC([0,T);V) and € € L*(0,T;V*) with

sup & (u(t))] < +oo, £(t) € —0&:(u(t)) for a.a. t € (0,T), and

t€[0,T]
T T (2.31)
/ U, (4(t)) dt < +oo, / UX(£(t)) dt < +o0,
0 0
the map t — E+(u(t)) is absolutely continuous and
%Et(u(t)) = —(&@),u'(t)) + Pe(u(t)) for a.a.t € (0,T). (2.32)

Strong- Weak closedness of the graph of (€,08): For all sequences (t,) C [0,T], (un) C
V and (§,) C V* we have the following condition:

iftn, =t i [0,T], up, muinV, & =& in V", &, € 08, (un),

2.33
and if &, (un) — € in R, then &€ 0&i(u) and & = &i(u). (2:33)
Furthermore, (2.33) implies that 9E+(u) is a weakly*-closed, convex subset (possibly empty) of V*.

2.4. Variational gradient systems. We recall an application of the general existence and ap-
proximation result of [MRS13] for the Cauchy problem associated with (1.1).

Theorem 2.4 ([MRS13]). Let us assume that (D.0)—(D.2) and (E.0)—(E.3) hold. Then, for every
uo,e € D there exists a curve u. € AC([0,T); V) solving (1.1) and fulfilling the Cauchy condition
u(0) = ug .. More precisely, there exists a function & € LY(0,T;V*) fulfilling

E() € 08, (uc(t)), E(1) € OV, (a(t)) for a.a. t € (0,T), (2.34)

and the energy identity for all 0 < s <t<T

[ (0D 0z ) dr + Eufue0) = Eufucl) + [ Poluct)ar (239)
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Minimizing Movement solutions. Theorem 2.4 was proved in [MRS13, Thm. 4.4] by passing
to the limit in the time-discretization scheme (IP. ), see the last paragraph of the introduction.
Here we quote the main convergence result:

Theorem 2.5 (Minimizing Movement solutions to (1.1)). Under our standard assumptions
(D.0)-(D.2) and (E.0)—(E.3), Problem (IP. ;) has at least a solution (Uf,s)r]y;()- For everye > 0

there exist a sequence 7, | 0 as k — oo and a limit solution u. € AC([0,T]; V) to (2.34) and
(2.35) such that the piecewise affine interpolants U, satisfy

Upe — ue in V., uniformly in [0,T). (2.36)

Since solutions obtained as such limits have special properties, we will call them Minimizing
Movement solutions according to [De 93] (see also [AGS08]).

3. BALANCED VIsCOsITY (BV) SOLUTIONS

Throughout this section we will keep to the notation and assumptions of Section 2.1, in par-
ticular we will suppose that ¥, ® fulfill (D.0)—(D.2) and that & complies with (E.0)—(E.3).

After a discussion of the main concepts of contact potential and Finsler dissipation cost in §3.1,
we will introduce the notion of Balanced Viscosity (BV) solutions in §3.2 and we will present the
main results related to this crucial concept. The distinguished subclass of V-parameterizable
solutions will be considered in the last part §3.4.

3.1. Finsler dissipation functionals. Asin [MRS12a], the vanishing-viscosity contact potential
p:V xV* —[0,400) induced by the dissipation potentials W, is

p,€) = inf (L.0) +0I(©),  veV. geV™. (3.1)
The representation formula (2.30) for ¥* and the fact that
. —1 * _
511;%5 (F(sr) +F (5)) =rs forevery r,s >0,

yield the useful splitting of p:
p(v,6) = ¥(v) + [lvo]| min [|l§ - 2. (3.2)

Remark 3.1 (More general viscous dissipations and contact potentials). The particular form
(D.2) of & allows for the simple representation (3.2) of p, which is useful to understand the role
played by the two different viscosities. The general case concerning arbitrary convex superlinear
functions ® has been analyzed in [MRS12a] and almost all the crucial properties can also be
adapted to the present infinite-dimensional setting. Here we just mention that every contact
potential is convex and degree-1 homogeneous with respect to its first variable and it fulfills the
Fenchel inequality

p(v,€) > W¥(v) forall (v,§) eV xV*

p(v,€) = W(v) if and only if £ € K*. (3.3)

p(v,€) = (§,v), and {
Next, we associate with p and with the Fréchet subdifferential O€ the time-dependent family of
Finsler dissipation functionals

£:00,T) x D x V — [0,+00], fe(u;v) := inf {p(v,f) te —8€t(u)}, (3.4)

where we adopt the standard convention inf @) = +oco. Notice that when 9€;(u) # 0 the inf in
formula (3.4) is attained; moreover, the functional v — f;(u;v) is lower semicontinuous, convex,
and positively 1-homogeneous.

In accord with (3.2) it will also be useful to split f;(u;v) into the sum of the dissipation ¥(v)
(independent of «) and of the correction term induced by the viscous norm || - || and 9€, viz.

fu(ws0) = W)+ e(@loll, () =it {llg = 2]l : € € ~0&(w), €K'} (35)
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By (2.33), for every E > 0 the function ¢ : [0,7] x D — [0, 00| satisfies the crucial properties
eisls.c.in [0,7] x D and ¢(u) =0 <= K"+ 09&;(u) 30, (3.6)

where Dg denotes the E-sublevel of the energy, cf. (E.1).
If U were coercive on V', then the Finsler cost associated to f; could be simply defined as

Ay, (g, 1) = mf{/” RO D) dr 9 € AC(ro, V), 9(r) =wi, i=0,1},  (37)

and it would be possible to show that the infimum in (3.7) is attained whenever the cost is finite.
Notice that, since f;(u;-) is positively 1-homogeneous, the choice of the interval [rg,r;1] in (3.7) is
irrelevant and one can also assume that the competing curves ¢ belong to Lip([ro, r1]; V).

On the other hand, since ¥ is not coercive in general, the definition (3.7) has to be conveniently
adapted to cover the case of curves ¥ that may lack differentiability at every time. The next
definition focuses on this aspect (see §2.2 for BV and AC curves with respect to ¥).

Definition 3.2 (Admissible curves). A curve ¥ : [rg, 1] — V is called admissible if it belongs to
AC([ro,m1]; Dg, ¥) for some E > 0, and if its restriction to the (relatively) open set

Gy = Gy[Y] := {r € [ro,m1] : e,(J(r)) > 0}, (3.8)

belongs to ACioe(Gi[9]; V). We call Ty(ug,u1) the class of all admissible transition curves 9 :
[0,1] — V such that 9(i) = u;, i = 0,1, and we set

fe(9(r); 9(r) = W(D(r)) + e () [D(r)]| if r € G4 [Y],

w[i](r) grepic. Y

feld; 9'](r) := {
Remark 3.3. Let us add a few comments on the previous definition. First of all, as we discussed
in Section 2.2, we notice that the continuity of ¥ follows from the compactness of Dg in V and
the fact that ¥ is continuous and nondegenerate, so that U(v) =0 = v =0.
Once ¢ is continuous, the l.s.c. property of ¢ stated in (3.6) implies that the set G;[¢}] defined
in (3.8) is open. Since V has the Radon-Nikodym property, 9 is differentiable .#!-a.e. in G;[¥].
It is immediate to see that for every admissibile curve

/o fe[ ) (r) dr 2/0 Y[ ](r)dr + /Gt[ﬂ] e+ (F(r)||9(r)]| dr. (3.10)

We are now in the position to extend the definition (3.7) of As.

Definition 3.4 (Finsler dissipation cost). Let t € [0,T] be fized and let us consider ug,u; € D.
The (possibly asymmetric) Finsler cost induced by § at the time t is given by

1
Ay, (uo, ur) ::196‘3'1850 UI)/O fe[9, 9] (r) dr (3.11)
1
= inf / W[ﬁ/](r)dqu/ et(ﬁ(r))W(r)Hdr, (3.12)
9ET¢(uo,u1) Jo G+ [9)]

with the usual convention of setting Ay, (ug, u1) = +o00 if T(uo, u1) is empty.
Let us notice that in general Ay, (-,-) is not symmetric, unless ¥ is symmetric, and that

A, (ug,u1) > Ay (ug,u1) for every ug,us € D, t € [0,T]. (3.13)
This follows from the fact that in (3.12) we have

/0 W) (r) dr = Varg (;0,1]) > U(u1 — uo) = A (o, u1).

In the next important result we collect a few crucial properties of the Finsler dissipation cost,
namely the existence of optimal transition paths and the lower semicontinuity properties needed
in what follows. Theorem 3.5 will be proved in Section 7.2.
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Theorem 3.5. Let (D.0)~(D.2) and (E.0)—(E.3) hold. Lett € [0,T], E >0 and u_,us € Dg.

(F1) If A, (u—,uy) < oo there exists a transition path ¥ € Ty(u_,us) attaining the infimum in
(3.12). Moreover

A (u—sug) = |Eh(u) = Eluy)|. (3.14)
(F2) If upm,u1n € Dg, n €N, then
lm uyp =v—, lm u,=usr = UminfAs (uon,uin) > Ay, (v, uy). (3.15)

(F3) If up, € AC([atn, Bul; V), fin : [otn, Bn] — Dp measurable, &, € LY(an, Bn; V), €0 > 0,
n € N, are sequences satisfying

lim  sup ||[Gn(r) —un(r)]| =0, & (r) € —0&,(Un(r)) for a.a. r € (an, Bn), (3.16)

n—oo

re[ﬂm n
lim up (o) =u_, lim up(Bn) =us, lim o, = lim G, =t, (3.17)
and 5
lim ¢, =0, A:= lim (\Irgn (itn) + U7 (gn)) dr < o, (3.18)

then there exist an increasing subsequence (ng)r C N, increasing and surjective time rescal-
ings tn, € AC([0,1]; [an,, Bn,]), and an admissible transition ¥ € Ty(u_,uy) such that

1
klingo Ue,, Otn, =V strongly in'V, uniformly on [0,1], /0 fe[9,9](r)dr < A. (3.19)

In particular, whenever (3.16) and (3.17) hold, along any sequence e, | 0 we have

Bn
lim inf / (\11 (itn) + W7 (gn)) dr > Ay, (u_, uy). (3.20)
Qnp

Solutions to (1.1), with @, = w,, provide a particularly important example of sequences in
assertion (F3) of Thm. 3.5. Notice that by (3.14) the Finsler cost controls the amount of energy
dissipation between two arbitrary points at a fixed time ¢. On the other hand, (3.20) shows that
Aj captures the concentration of the asymptotic energy dissipation of a family of solutions to the
viscous gradient flow (2.34).

We now use the Finsler cost A; to characterize the minimal dissipated energy along any curve
u € BVg([0,T]; V), by means of a suitable notion of total variation, which involves As to measure
the contributions due to the jumps of u (recall (2.23) and (2.24)).

Definition 3.6 (Jump and total variation induced by f). Let E > 0 and u € BV([0,T]; Dg, ¥)
be a given curve with jump set J,,. For every subinterval [a,b] C [0,T] the jump variation of u
induced by f on [a,b] is
Jmp(u; [a, b]) := Ay, (u(a), u(at)) + Ay, (w(b-), u(b))
Y (Anlulto),ult) + Ay (ult), u(ty))). (3:21)
teJ,N(a,b)
The f-total variation induced of u on [a,b] for a < b is
Varj(u; [a, b]) := Varg (u; [a, b]) — Jmpy, (u; [a, b]) + Jmp; (u; [a, b]) (3.22)
= ptala, ) + Jmp; (u; [a, ). (3.23)
Remark 3.7. As already pointed out in [MRS12a, Rmk. 3.5], Vars is not a standard total vari-
ation functional: for instance, it is not induced by any distance on V', and it is not lower semi-
continuous with respect to pointwise convergence in V', unless a further local stability constraint
is imposed.
Nevertheless, Var; enjoys the nice additivity property

Vars(u; [a, b)) + Vars(u; [b, c]) = Varg(u; [a,c]) whenever 0<a<b<ec<T. (3.24)
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3.2. Balanced Viscosity (BV) solutions. Based on Definition 3.6, we can now specify the con-
cept of Balanced Viscosity (BV) solution to the rate-independent system generated by (V, €, ¥, ®):
the global stability condition in the definition of energetic solutions is replaced by the local sta-
bility condition (Siec), and the energy balance features the total variation functional Vars. As
usual, we will always assume that ¥, ® fulfill (D.0)-(D.2) and that € complies with (E.0)—(E.3).

Definition 3.8 (BV solutions). A curve u € BV([0,T]; D, V) is a BV solution of the rate-
independent system (V, &, ¥, ®) if the local stability (Sioc) and the (E;)-energy balance hold:

K* +0&,(u(t)) 30 forall te[0,T]\J., (Stoc)

t
Varg(u; [0,]) + E(u(t)) = Eo(u(0)) + / Ps(u(s))ds  for allt € (0,T). (Es)
0
Every BV solution u to the RIS (V, &, ¥, ®) satisfies the energy balance in each subinterval
¢
Vari(u; [s,t]) + E¢(u(t)) = Es(u(s)) —l—/ P.(u(r))dr forevery 0 <s<t<T, (3.25)

thanks to (Es) and the additivity (3.24) of the total variation functional Var;.
Before studying other properties and characterizations of balanced viscosity solutions, let us
first present our main existence and convergence results.

Main existence and convergence results. Our first result states the convergence in the
vanishing-viscosity limit ¢ | 0 of solutions to (1.1) to a BV solution of the rate-independent
system (V, &, ¥, ®). As a byproduct, we can prove in this way the existence of BV solutions.
Let us emphasize that Definition 3.8 of BV solutions is only inspired by the vanishing-viscosity
approach but otherwise completely independent of it. We postpone the proofs to Section 7.3.

The reader should be aware that, here and in what follows, we will call a sequence ()
converging to 0 simply a vanishing sequence.

Theorem 3.9 (Existence of BV solutions and convergence of viscous approximations). If (D.0)—
(D.2) and (E.0)-(E.3) hold, then for every ug € D there exists a BV solution u of the RIS
(V,&,0,d).

Moreover for every family (u.,&.)e C AC([0,T]; V) x LY(0,T;V*) of solutions of the doubly
nonlinear equation (2.34) with

ue(0) —ug inV and Ep(u:(0)) — Eo(ug) ase |0 (3.26)

and for every vanishing sequence () there exist E > 0, a further (not relabeled) subsequence,
and a limit function v € BV([0,T]; Dg, ¥) such that as k — oo

Ue, (£) — u(t) in'V for allt €0,T], (3.27)
kli_)rr;C Ei(ue, (b)) = Et(u(t)) for allt €0,T), (3.28)

t

Varg(u; s, 1]) = Jim Vary(ue,i[s,t]) = lim [ (e (e, () 402, (<€, () ) dr - (3.29)
for all 0 < s <t <T. Any pointwise limit function u obtained in this way is a BV solution to
the RIS (V,&,W, ).

Let us emphasize that, in view of the above result, every limit point u of solutions (u.). of
(2.34) such that (3.27)—(3.29) hold is a BV solution.

The next theorem concerns the convergence of the discrete solutions of the wiscous time-
incremental problem (IP. ), as both the viscosity parameter ¢ and the time-step 7 tend to zero.
Similar results for the finite-dimensional case were obtained in [MRS12a, Thm. 4.10].
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Theorem 3.10 (Discrete-viscous approximations converge to BV solutions). Assume that (D.0)—
(D.2) and (E.0)—(E.3) hold. Let ug € D be fized, and let (U ) be a family of piecewise affine
interpolants of discrete solutions (U7 )p 7 to (IP. ), with

U). —uo inV and & (UY.) — Eo(ug) asT,e|0. (3.30)

T,
Then for all sequences (Tk,€k)ken Satisfying
Tk

klirrgo € = klirgo o 0, (3.31)

there exists E > 0, a (not relabeled) subsequence and a curve uw € BV([0,T]; Dg, V) such that
Unen () = u(t) inV forallt € [0,T], (3.32)
Ei(Up e (1) — E(u(t))  for all t €[0,T], (3.33)

as k — oo, and the limit u is a BV solution to the RIS (V,&, W, ®).

We now aim to shed more light onto the definition and the properties of BV solutions: first of
all, we derive a characterization of BV solutions in terms of a one-sided version of the energy iden-
tity (E;), based on the chain-rule inequality stated in Theorem 3.11. A second characterization
is given through a “metric” subdifferential inclusion and a set of jump conditions.

Chain-rule inequalities and characterizations of BV solutions. The next result is the
infinite-dimensional analogue of [MRS09, Prop. 4] and is especially adapted to rate-independent
systems. In particular, the fact that Var;j is not a true total variation functional is here compen-
sated by assuming that u fulfills the local stability condition (Sioc)-

Theorem 3.11 (A chain-rule inequality for BV curves). Ifu € BV([0,T]; Dg, V), E > 0, satisfies
the local stability condition (Siec) and Vars(u;[0,T]) < oo, then the map t — e(t) = Ei(u(t))
belongs to BV([0,T]) and satisfies the following chain-rule inequality:
ty
e(t1) —e(to) — fPt(u(t))dt’ < Vary(u; [to, t1])  for all 0 <tg <t <T. (3.34)
to
If moreover v € BV([0,T); V) and & : [0,T] — K* is a Borel map such that £(t) € —0&;(u(t))
for every t € [0,T]\ J,, then the diffuse part €; of the distributional derivative ey, of e can be
represented as (recall (2.26))

ey = (&Ml + P2 = ~(Emlucl+ (6 1) + P.w) LY (335)
where n is as in (2.26), and ujj, ue are from (2.25).

Indeed, (3.34) is the counterpart to the parameterized chain-rule inequality which shall be stated
in Theorem 4.4 ahead. Both Theorems will be proved in Section 6.

As a direct consequence of Theorem 3.11 we have a characterization of BV solutions in terms
of a single, global in time, energy-dissipation inequality.

Corollary 3.12 (A global energy-dissipation inequality characterizing BV solutions). A curve
u € BV([0,T]; Dg, ¥) for some E > 0 is a BV solution to the RIS (V,&, ¥, ®) if and only if it
satisfies the local stability (Sioc) and the one-sided global in time version of (Ej), viz.

T
Vars(u; [0,T]) + Er(w(T)) < Eo(u(0)) +/0 Ps(u(s))ds. (Ef,ineq)

Proof. In order to deduce the energy balance (Ej) from (Ejineq), we define a(t) := &4(u(t)) —
fot Ps(u(s))ds and v(t) := Vars(u; [0,t]) such that (Efineq) takes the form a(T") + v(T) < a(0) +
v(0), because v(0) = 0. The additivity (3.24) gives Varj(u;[s,t]) = v(t) — v(s), so that the chain-
rule estimate (3.34) rephrases as |a(t) — a(s)| < v(t) — v(s) for all 0 < s < ¢ < T. This implies
the monotonicity a(t) + v(t) > a(s) 4+ v(s), and we conclude a(t) + v(t) = a(0) + v(0) for all ¢,
which is (Ej). O
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The importance of using the viscous total variation induced by f (instead of the simpler one
associated with ) is clarified by the next result, characterizing the jump conditions.

Theorem 3.13 (Local stability, (¥)-energy dissipation and jump conditions). A curve
u € BV([0,T); Dg, ) is a BV solution of the RIS (V,&, U, ®) if and only if it satisfies the local
stability condition (Sioc), the (¥)-energy dissipation inequality

Vary (u; [s, t]) + E:(u(t)) < Es(uls)) + / Pr(u(r))dr for every0 < s <t <T, (Evineq)

and the following jump conditions at each point t € J,, of the jump set (2.20)
Ee(u(t)) — Ee(ult-)) = —Ay, (ult-),u(t)),
Er(u(ty)) — Eu(u(t)) = —Ay, (u(t), u(t+)), (Jsv)

Ei(u(ty)) — Elult-)) = =4, (u(t-), ulty)) = —(Aft (u(t-),u(t)) + Ay, (u(t)vu(w)))

Proof. If w is a BV solution to (V, &, ¥, ®), then (Ey ineq) is a trivial consequence of the energy
balance (3.25) since Varj(u;[s,t]) > Varg(u; [s,t]) for every interval [s,¢]. The jump conditions
(Jpv) follow by writing (3.25) in the intervals [¢,¢+n] or [t —n), t] for small > 0 and then passing
to the limit as n | 0.

In order to prove the converse implication, let suppose that J,, = (t,), C (0,7") and let us call
0=ty <ty < <ty <tyt1 =T an ordered subdivision of [0,7] such that {t1,ta, - ,tn} is
a permutation of {t1,a, -+ ,tn} C Jy.

Writing (Eg ineq) in each interval [t; + 7, t;11 — 7] for sufficiently small 7 > 0 and taking the
limit as 7 | 0, also recalling Vary (u; [a, b]) > pa(a,bd) (cf. (2.23)), we get

patistis1) < € (ulti ) — £y, (ultis ) + / 7, (u(s)) ds. (3.36)

From (Jgv) and (3.13) we obtain
Ay, (uts), ultiv)) + patis tivn) + Ay (wltivn, ), ultiv))

tit1

< Etz (u(tl)) - 8ti+1 (u(ti+1)) + ?S(u(s)) dS,

ti
so that summing up all the contributions (recalling that u(tg,+) = u(to) = ¢(0) and u(ty,_) =
u(ty) = u(T)) we get

N T
pa(0,7) + Y Ay, (u(ti ), ults)) + Ay, (u(t), u(ti 1)) < Eo(w(0)) — Er(u(T)) + /0 Ps(u(s))ds.
i=1
If J,, is finite we get (Ej ineq) choosing N = #(J,) and recalling (2.23) and (2.24). If J, is infinite,
we simply pass to the limit as N T +o00. We leave to the reader the obvious modifications in the
case J, N{0,T} # 0. O

The jump conditions (Jpy) should be compared with the general estimate (3.14), that at every
jump point ¢t € J,, of an arbitrary curve w € BV([0,T]; Dg, ¥) rephrases as

E(w(ty)) = &(w(t))] < Ap(wlt),w(ty)), |&(w(t)) = E(w(t-))| < Ay, (w(t-),w(t)). (3.37)
We extend now the differential characterization of BV solutions in [MRS12a, Thm. 4.3] to the
present setting.

Theorem 3.14 (Differential characterization of BV solutions). Let u € BV([0,T); V) with distri-
butional derivative decomposed as in Remark 2.2. Then u is a BV solution of the RIS (V, &, ¥, @)
if and only if it satisfies the doubly nonlinear differential inclusion in the BV sense

dul)
dX

aq/( (t))+88t(u(t))90 for Aa.a. t € (0,T) with A= |Jul|| + .27, (DNpv)
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and the jump conditions (Jgv). In particular (DNpy) yields the pointwise inclusion
oW (u(t)) + 0&(u(t)) 30 for L -a.a. t € (0,T). (DNg)
Proof. We briefly recall the argument presented in [MRS12a, Prop.2.7, Thm.4.3]. Let us first

notice that (DNpy) yields the local stability condition, since the support of A is the full interval
[0,7] and K* contains the range of 9¥. By the distributional chain rule (3.35) we get

ey = — ()| + P.(w).2t PE7 g+ P(u)2

Combining this information with the jump conditions (Jgv) and recalling formula (3.23) for Vars
we get (Ej).
Conversely, if u is a solution then (Ey ineq) yields

eh +U(n)|ull —P.(u).L <0 in 2'(0,T).
Recalling (3.35) we thus obtain for —¢& € 9&;(u(t)) N K*
((—&m)+ o)) lugll <0 in (0,7,

which yields the inclusion (DNgy) ||u[-a.e. in (0, 7)), and in particular .#*-a.e. in the set ||a| > 0.
For .#!-a.a. points of the set ||i1]| = 0 the local stability condition still provides (DNgy ). O

3.3. Optimal jump transitions. Thanks to the jump conditions given by (Jgv), we can give
a finer description of the behavior of BV solutions along jumps. The crucial notion is provided
by the following definition.

Definition 3.15 (Optimal transitions). Let ¢t € [0,T] and u—_, uy € D with

K* +0&(u_) 20, K* +0&;(uy) 2 0. (3.38)
We say that an admissible curve ¥ € Ty(u_,uy) is an f;-optimal transition between u_ and uy if
Ei(u) — &(uy) = A, (u—,uy) = 1 [9,9'](r) >0 for a.a. v € (0,1), (3.39)

and we denote by Ot(u_,u) the (possibly empty) collection of such optimal transitions.
We say that ¥ is of
sliding type, if e (9(r)) =0 for every r € [ro,r1], (3.40)
viscous type, if e, (9(r)) >0 for every r € (rg,r1). (3.41)

The main interest of optimal transitions derives from the next result, whose proof follows
immediately from Theorem 3.5 by a simple rescaling argument.

Proposition 3.16. If u € BV([0,T];V,¥) is a BV solution to the rate-independent system
(V,&,W,®), then for every t € J,, there exists an fi-optimal transition ¥ € Oy(u(t_),u(ty)) such
that u(t) = V' (r) for some r € [0,1].

We now provide a characterization of sliding and viscous optimal transitions in terms of doubly

nonlinear differential inclusions.

Proposition 3.17 (The structure of optimal transitions). Lett € [0,T] and u—, uy € D fulfilling
(3.38) be given and let ¥ € Ti(u_,uy) be an admissible transition curve with constant normalized
velocity §:[0,9'](r) = ¢ > 0 for a.a.r € (0,1). Then

(1) 9 is an optimal transition of sliding type if and only if it satisfies

I(r) € =0&(I(r))) N K*  for every r € [0,1], (3.42)
%Et(ﬁ(r)) + P[] =0 fora.a. re(0,1). (3.43)

In particular, when ¥ is differentiable £*-a.e. in (0,1), (3.42) and (3.43) are equivalent to
AW (I(r)) +8&(I(r)) 20 for a.a. r € (0,1). (3.44)
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(2) 9 is an optimal transition of viscous type if and only if it is differentiable £-a.e. in (0,1)
and there exists maps & € L*(0,1;V*), and € : (0,1) — (0, +00) such that

£(r) e (6\1/(19(7‘)) + 8<I>(E(7”)19(7‘))) N ( - (‘)Et(ﬁ(r))) for a.a. r € (0,1); (3.45)
i particular,
e(r) = A(O(r); 9(r))  for a.a. r € (0,1),
where Ay(9;v) := (F*) (ex(9))/F(||v]]) 9 € D, veV\{0}. (3.46)
Equivalently, there exists an absolutely continuous, surjective time rescaling r : (sg,$1) —

(0,1), with —00 < 59 < 51 < +00 and t(s) > 0 for £ -a.a. s € (s, s1), such that the rescaled
transition 0(s) := 9(r(s)) satisfies the viscous differential inclusion

DU (A(s)) + 0D (0(s)) + 0E,(0(s)) 20  for a.a. s € (s0,51). (3.47)
(8) If ¥ is an optimal transition, then it can be decomposed in a canonical way into an (at most)
countable collection of optimal sliding and viscous transitions. Namely, there exist (uniquely
determined) disjoint open intervals (S;)jcoe and (Vi)rev of (0,1), with o,v C N, such that

(07 1) C (UjEO S]) U (Ukev Vk) and

19|SV is of sliding type, 19|Vk s of viscous type.
J g

Proof. (1) It is easy to check that if an admissible transition ¥ satisfies (3.42)—(3.43) then ¥ is
an optimal transition of sliding type. Indeed, by the chain rule of Theorem 2.3 r — &.(¥(r))
is absolutely continuous, and integrating (3.43) we get (3.39). The converse implication is even
easier by combining the chain rule along 9, the fact that f,[¢,¢'] = U[¢¥'], and (3.39).
(2) Similarly, if ¥, ¢, £ satisfy (3.45), the chain rule yields
d . ) .
3 Et0(r)) = —(€(r), 9(r)) = =Wy (e(r)0(r)) — V() (9(r))
. 1 . 1
< -0 - —F ) — ——F" (e, (V¥
< W) ~ o FEWITEI — o F ()
—U(@(r)) — e (D) [9(r)]| = =Fe(I(r),9(r)) = —c <0.
Integrating in time we get one inequality of (3.39); the converse one is always true. Then, all
the above inequalities are in fact equalities: in particular e;(9(r)) > 0 in (0,1), since F(r) > 0 if
r > 0 by (D.0). We then conclude that ¢ is an optimal transition of viscous type.
The converse implication follows from the fact that

A

()] = TF(EIDI) + T F*(e(9)) i e = Ay(9,9)

Observing that 4 is locally bounded in (0,1) so that 7 — 1/¢(r) is also locally bounded, in order
to get (3.47) we simply operate the absolutely continuous time rescaling

s(r) := /lr e r)dr, ri=sTl 0(s) :=0(r(s)), 0(s) = e(r(s))d(r(s)).

/2
(3) We can simply split the parameter interval (0,1) into the open sets V := {r : e;(¢(r)) > 0},
S:=10,1] \ V, and then we consider their connected components. O

As a last result, we show that optimal transitions capture the asymptotic profile of rescaled
solutions to (1.1) around a jump point.

Proposition 3.18 (Asymptotic profiles and optimal transitions). Let e | 0 and let (ue,, &, ) be
a sequence of solutions to the viscous doubly nonlinear equation (2.34), so that u., converge to a
BV solution u of the RIS (V,E, ¥, ®) as k — oo according to Theorem 8.9. For every t € J,, let
a <t < O be two sequences such that

ap Tt, Brlt, klirgo Ue, (o) = u(t), leII;O Ue,, (Br) = u(ty). (3.48)
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Then
B

lim [ (W, (i) 402, (—60,) ) dr = Ay, (u(t-), ut), (3.49)

k—oo an
and there exist a further subsequence (not relabeled), increasing and surjective time rescalings
ty € AC([0,1]; [, Bk]), and an optimal transition ¥ € O¢(u(t_),u(ty)) such that
lim u., oty =4 strongly in V, uniformly on [0,1]. (3.50)

k—o0

Proof. Estimate (3.20) from Theorem 3.5 provides the inequality

lim inf /a ” (e, (e, 102, (62)) dr > Ay (u(t-) u(t)).

.,
k—oo N

On the other hand, applying (3.29) to each interval [ay, 81 we obviously get

Bk
lim sup/ (\I/Ek (e, )+VZ, (§5k)) dr < Vars(u; [an, Bp]) for every h € N.

k—o0 k
Passing to the limit as h T co we obtain (3.49). We then apply assertion (F3) of Theorem 3.5
to find an admissible transition ¢ € Ty(u(t—),u(t+)) and rescalings t; such that (3.19) holds.
Relation (3.49) shows that ¢ is optimal. O

3.4. V-parameterizable solutions. In this section we will focus on a more restrictive notion
of solution, exhibiting better regularity properties: they belong to BV([0,7]; V) and at all jump
points the left and the right limits can be connected by an optimal transition with finite V -length.
Moreover, we will require that the total V-length of the connecting paths is finite.

Definition 3.19 (V-parameterizable BV solutions). A balanced viscosity solution u of the RIS
(V,E,W,®) (in the sense of Definition 3.8) is called V-parameterizable if u € BV([0,T]; V) and

i) Vied, 39 e O0i(u(to),u(ty))NACo,1];V),
i) Z /0 |9t () || dr < 0. (3.51)

teJy

The notion of V-parameterizable BV solution slightly differs from the concept of connectable
BV solution introduced in [Miell, Def. 4.21], which only requires condition 7).

As one can expect, a limit curve of solutions to (1.1) satisfying a uniform BV([0, T]; V')-bound
is a V-parameterizable solution.

Theorem 3.20. Let (u:)cso be a family of solutions to (1.1) satisfying (3.26) at t = 0 and the
uniform bound
3C>0 Ve>0: Var(ug;[0,7]) <C. (3.52)
Then any limit curve as in Theorem 3.9 is a V -parameterizable BV solution to the RIS (V, &, ¥, ).
Similarly, let (U? ), be a family of discrete solutions to (IP. ), satisfying (3.30) and (3.31). If
N,
3C>0 Vre>0: Var(U,[0,7]) =) Uz, Uzl <C, (3.53)
n=1
then any accumulation point of the piecewise affine interpolants U, . as in Theorem 3.10 is a
V -parameterizable solution.

Proof. The proofs of the two statements are very similar, thus we only prove the first one.

Since the total variation functional is lower semicontinuous with respect to pointwise conver-
gence, any limit curve u obtained as in Theorem 3.9 clearly belongs to BV([0,T]; V).

In order to check 7) of (3.51) we apply Proposition 3.18 and we find a sequence of rescalings
ty, ¢ [0,1] — [ad, 8] (we explicitly indidate the dependence of the time intervals [y, 8)] on ¢) and
an optimal transition 9 € Oy(u(t-),u(ts) with (3.48) and (3.50). This shows that

Var (9%; [0, 1]) < likniiorclf\/'ar(uek; [ad, BL]) < oo, (3.54)
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so that ¥¢ € BV(0,1; V). Since ¥ is also continuous, up to a further time rescaling we can obtain
an optimal transition absolutely continuous in V.

A slight refinement of the above argument also provides ii): we consider an arbitrary finite
collection of points t1,to,...t, C J, and we choose a common subsequence u,, satisfying (3.48)
in each interval. For sufficiently big & so that the intervals [aZ‘" , ﬁ,i‘j] are disjoint, (3.54) yields

h h N (3.52)
ZVar(ﬁtf; [0,1]) < l%@n_l}iorcleVar(usk; [, B7]) < liggiogf\/ar(usk; [0, 7)) < C.
j=1 j=1
Since the number h of jump points is arbitrary, we obtain ). O

The next results show that one can actually prove (3.52) and (3.53) for the particular choice

2(0) = 3ol FO) = 5, (3.59)

under slightly more restrictive assumptions on the energy functional and on the initial data: be-
sides the usual (D.0)—(D.1) and (E.0)—(E.2), we will also assume that for every E > 0 there exist
constant ag, Ag, Ly > 0 such that the energy functional satisfies the Garding-like subdifferen-
tiability inequality

E(v) = &i(u) > (&,v —u) +apllv—ul|? —Ap¥U, (v—u)|v—u| ifu,vE Dg, €€ dE(u). (3.56)
We will also require that the power functional is uniformly Lipschitz in Dg, viz.
|Pi(u) — Py(v)| < Lg|lu—v| ifte[0,T], u,v € Dg. (3.57)
Then, we have the following result.

Theorem 3.21 (A priori estimates for discrete Minimizing Movements). Assume that (3.55)—
(3.57) hold. Then any family of solutions (U} .) of (IP. ;) fulfilling, for some constants Eo, Q > 0,

T(U2,)+&(U2,) <Ey, 7<Qe, K*+08&(U2,) >0, (3.58)

satisfies estimates (3.53). In particular, if (3.30), (3.31) and (3.58) hold, any curve u obtained as
limit of the piecewise affine interpolants U, . (cf. Theorem 3.10) is a V -parameterizable solution.

The proof will be given in Section 7.4. A similar priori estimate in the form fOT |lie(6)|| dt <
C' was derived in [MiZ12] for semi- and quasilinear partial differential equations with smooth
nonlinearities. There Galerkin approximation and differentiation in time is used. Like in the
present case, where we have to confine ourselves to Minimizing Movement solutions (cf. Corollary
3.22 below), in [MiZ12] the a priori estimate in BV([0,T]; V) can only be shown for a suitable
subclass of solutions to (1.1), cf. [MiZ12, Def. 4.3]. This establishes an interesting parallel between
our Minimizing Movement approach, and the one in [MiZ12].

Corollary 3.22 (A priori estimate for Minimizing Movement solutions). Assume that (3.55)—
(3.57) hold. Then every family (us). C AC([0,T]; V) of Minimizing Movement solutions to (1.1),
fulfilling

ue(0) mug iV, &Eo(us(0)) — Eolug), K*+ 0E(u:(0)) >0, (3.59)

satisfies estimate (3.52). Any limit u is a V -parameterizable solution to the RIS (V,&,V, ®).
Proof. Choose U? _ = u.(0) and apply Theorem 2.5, passing to the limit in estimate (3.53). O

The following result is an immediate consequence of Corollary 3.22 or Theorem 3.21.

Corollary 3.23 (Existence of V-parameterizable BV solutions). If (3.55)—(3.57) hold, then for
every ug € D with K* + 0€o(up) 3 0 there exists a V-parameterizable BV solution to the RIS
(V,&,9,®) starting form ug.
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Notice that the subdifferentiability condition (3.56) implies (E.3) as well as

(n—&v—u) > 2ap|lv—ul* =200, (v —v) v — ul| = Lplt — s|[lv — u|

3.60
whenever n € 0€(v), £ € 0E4(u), u,v € Dg, s,t € [0,T]. (3.60)

To check (3.60), it is sufficient to write (3.56) for v and v at time s,t respectively. Adding the
two inequalities and using (3.57) we get the bound (assuming s < t)

E4(v) — E5(v) + E(u) — E¢(u) < / (Pr(v) = Pr(u)) dr < Lg (t — 5)||u — v]].

Observe that in (3.56), as in (E.3), we allow for a negative modulus of convexity in the U-term,
provided that it is possible to gain an even small positive modulus of subdifferentiability in the
stronger V-norm. This is akin to the Garding inequality for elliptic operators.

The next result provides a useful criterium on the energy functional € to establish the subdif-
ferentiability condition (3.56). It is a sort of (generalized) A-convezity condition, involving two
norms. Notice that both (3.61) and (3.56) are required to hold on sublevels of €, only.

Lemma 3.24. Suppose that for every E > 0 there exist constant ag, Ag > 0 such that the enerqgy
functional &; : V — (—o0, +00] satisfies

E((1 = O)u+0v) < (1 —0)&(u) + 0&,(v) — 0(1 — 0) (ag|u—v||* = Ap¥, (u—v)|u—vl|)
(3.61)
for every u,v € Dg and 0 € [0,1]. Then its Fréchet subdifferential 0&; : V = V* satisfies (3.56).

Proof. For ¢ lying in the Fréchet subdifferential 9€;(u) there holds for every v, w € Dg and 6 | 0
(§,0(v —u)) +o(0]|v —ul) < E((1 = O)u+ Ov) — E;(u)
< O(Ee(v) = E(w)) = 01 = O)(agllv — ul* = ApW.(v — u) v —ul)).
Dividing both sides of the inequality by 6, the limit 6 | 0 yields the desired estimate (3.56). [

4. PARAMETERIZED SOLUTIONS

4.1. Vanishing-viscosity analysis, parameterized curves and solutions. Under the work-
ing assumptions of §2.1 (in particular, (D.0)—(D.2) and (E.0)—(E.3)), in this section we will present
a different approach to the vanishing-viscosity analysis of (1.1), which goes back to [EfMO06] and
was further developed in [MRS09, MRS12a]. The main idea is to rescale time in (1.1) and study
the limiting behavior as € | 0 of the rescaled viscous solutions. This naturally leads to the notion
of parameterized solution in Definition 4.2: it is a space-time parameterized curve, along which the
energy & fulfills a “parameterized” version of the energy-dissipation identity (2.35). At the end
of this section, we will also discuss the parameterized counterpart to V-parameterizable BV so-
lutions. Let us emphasize that, while parameterized solutions were developed in [EfM06, MiZ12]
in their own right, we use them mainly to obtain the desired results for BV solutions.

Vanishing-viscosity analysis. Let (u.). be a family of solutions to the “viscous” doubly non-
linear equation (1.1). It follows from the energy identity (2.35) and from the variational charac-
terization of f (3.1)—(3.4) that

/ fr(ue(r); e (r)) dr 4+ Ex(u(t)) < Es(u(s)) +/ Pr(u(r))dr forall0<s<t<T, (4.1)

whence, relying on the power control (E.2), we deduce that there exists a constant C' > 0 such
that

T
S, =T +/ fr(uec(r); e (r))dr < C  for every € > 0. (4.2)
0
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We rescale the functions u. by the energy-dissipation arclength s. : [0,T] — [0,S.] of the curve
ue, defined by

¢
se(t) := t—l—/ fr(ue(r); e (r)) dr. (4.3)
0
Hence, we introduce the rescaled functions (t,u.) : [0,S.] — [0,T] x V
te(s) =521 (s),  u(s) := uc(to(s)). (4.4)

We write the “rescaled energy identity” fulfilled by the triple (t.,u.) by means of the space-time
Finsler dissipation functionals §., &, : [0,7] x D x [0,400) X V — [0, +00) defined by
Fe(tu; o, v) = T(v) + B.(t,u; o, v) — aPy(u) with
2P(£ a f 0 4.5
ot {EHE T EF D o (45)
00 for a =0,

where we combined (2.30) for ¥}, yielding (3.5) for f;, and the monotonicity of F** to find

1 1

inf v = inf —F* - %) = —F* 4 .

feflg&(u) +(¢) 5@%18,,(@ € (Il = 2Il.) e (e¢(u))
zEK*

Then, the energy identity (2.35) yields for every 0 < 51 < s3 < S,

/ Be(te(s), ue(s)s te(s), 0=(5)) ds + &, (y) (Ue(52)) = Er(s) (Uc(51)), (4.6)

and, on account of our choice (4.3) of the reparameterization, we have the normalization condition
to(s) + fr.(s)(uc(s);Ue(s)) =1 for a.a.s € (0,S.). (4.7

From (4.6) it is possible to deduce a priori estimates on the family (t., u.)., thus proving that,
up to a subsequence, the functions (t.,u.) converge in a suitable sense to a pair (t,u) : [0,5] —
[0,7] x V (see Thm. 4.3 for a precise statement). In view of the forthcoming lower semicontinuity
Proposition 7.1, we expect that taking the limit ¢ — 0 in (4.6) leads to the energy estimate

/82 F(t(s),u(s);t(s), u(s)) ds + Ex(sy)(u(s2)) < Eg(syy(u(sy)) forall 0 <s; <sp <S.  (4.8)

The functional § : [0,T] x D x [0, +00) x V — [0, +00] is defined by
Ftusa,v) == U(v) + &(t,u;a,v) — aPr(u)  with

£ (u) if >0, (4.9)

&(t,u;a,v) ==t (u)a + e (u)|lv] = { (W] if a =0,

Here we have adopted the convention 0 - (+00) = 0, and £ is the indicator function

0 if K*+09&(u) 30,

) (4.10)
+o00 otherwise.

¢ = inf  Ig- =1 e =

()= inf T (€) = Loy (e () {
Hence, it would be natural to take (4.8) as definition of parameterized solution. However, as
already mentioned, limit curves have to be expected in AC([0,S]; V, ¥), i.e. they might lose the
differentiability property with respect to time. Thus, we need to develop a more refined definition.

Admissible parameterized curves and solutions. In order to properly formulate (4.8) we
need to resort to the metric W-derivative introduced in the beginning of Section 2.2. Based on
that definition, we first introduce a suitable class of parameterized curves.

Definition 4.1 (Admissible parameterized curves). We call a pair (t,u) : [a,b] = [0,T] X V an
admissible parameterized curve

(1) if t is nondecreasing and absolutely continuous, u € AC([a,b]; Dg, ¥) for some E > 0,
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(2) if u is locally V -absolutely continuous in the open set
G:={s€lab] :es(u(s) >0} = {seab] : K*+0E(u(s) Z0}, (4.11)

and t is constant in each connected component of G (in particular u is differentiable
Lloae inG),
(3) and if we have the estimate

b
/ Ulu'l(s)ds +/ ee(s)(u(s))][u(s)]| ds < oo. (4.12)
a G
For every admissible parameterized curve and all s € [a,b] we set
&t ust, 0](s) 1= tys) (u(s))t(s) + ecs) (uls)) lu(s)]],
St ust u)(s) = Pu')(s) + B[t ust, 4] (s) — Pecs) (u(s))(s),
where, with o slight abuse of notation, we adopted the convention to set

ey (U(s)IU(s) =0 if s € G (4.14)
By 4/(a,b;[0,T] x V) we denote the collection of all the (admissible) parameterized curves. Fur-
thermore, we call (t,u)
e nondegenerate, if t(s) + ¥[u’](s) > 0 for a.a. s € (a,b);
e surjective, if t(a) = 0,t(b) =T';
e m-normalized for a positive m € L*°(0,S) (typically m = 1), if (t,u) fulfills

t(s) + Wu')(s) + exs) (u(s))[|a(s)|| = m(s) for a.a. s € (a,b). (4.15)

(4.13)

Two (admissible) parameterized curves s € [a,b] — (t(s),u(s)) and o € [c,d] — (t(0),0(c)) are
equivalent if there exists an absolutely continuous and surjective change of variable s : o € [c,d] —
s(o) € [a,b] such that

t(o) =t(s(0)), (o) =u(s(o)) forall o € (c,d), $(o) >0 fora.a. o€ (c,d).

The above concept is nothing but the parameterized counterpart to the notion of admissible curve
from Definition 3.2: a crucial feature of parameterized curves is their .#'-a.e. differentiability on
the set G.

In the next definition of parameterized solutions we will impose (a suitable version of) (4.8)
as an equality. Indeed, the upper energy estimate has been motivated throughout (4.6)—(4.8) via
lower semicontinuity arguments. The lower energy estimate is a consequence of the chain rule of
the forthcoming Theorem 4.4.

Definition 4.2 (Parameterized solutions). A parameterized solution of the RIS (V, &, ¥, ®) is a
surjective and nondegenerate curve (t,u) € o/ (a,b;[0,T] x V) (¢f. Def. 4.1) satisfying

s2
/ Slt,ust’, u']ds + Eq(sy)(u(s2)) = E¢(syy(uls1)) for alla < s1 < s3 <b. (4.16)

Since ¥ defined in (4.13) contains the term £ (u)t, the equation (4.16) encompasses the local
stability condition (Siec). It follows from (4.12) and the power-control condition (E.2) that, along
a parameterized solution, the map s — E(4)(u(s)) is absolutely continuous on [a, b].

The main existence and convergence result. The main result of this section states that any
limit curve of the rescaled family (t., u.) of solutions to (1.1) is a parameterized solution.

Theorem 4.3. Assume (D.0)-(D.2) and (E.0)~(E.3). Let (u:). C AC([0,T); V) be a family of
solutions to the doubly nonlinear equation (1.1), such that

ue(0) —ug inV and Ep(u:(0)) — Ep(ug) ase |0 (4.17)
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as in (3.26). Choose non-decreasing surjective time-rescalings t. : [0,S] — [0,7T], define u. :
[0,S] = V by u.(s) :==uc(te(s)) for all s € [0,S] and suppose that

Im e L>®(0,S) : m.:=t. +fi (us,0.)—"m in L=(0,S) and m >0 a.e. in (0,S). (4.18)

Then, there exist a subsequence i | 0 and a parameterized solution (t,u) € AC([0,S];[0,7] x V)
to the RIS (V,&,U, ®), such that the following convergences hold as k — oo:

(te,,Ue, ) — (t,u) in C°([0,S];[0,T] x V), (4.19)
&, (s)(Ue,, (8)) — Ey(s)(u(s)) wuniformly in [0,S], (4.20)
/ (\If(uek) + 0., (t,, usy i te uek)) ds —» / (\I/[u’] B[t ut, u]) ds (4.21)

for all 0 < 51 < 89 < S. Moreover, (t,u) is m-normalized.

We have already seen that the choice (4.3)—(4.4) provides the normalization condition (4.7), and
thus (up to a multiplication factor converging to 1) the curves (t.,u.) satisfy (4.18) with m = 1.
The proof of this result is postponed to the end of §7.3.

Chain rule and further properties of parameterized solutions. We present now a parame-
trized version of the chain rule (2.32) (cf. also (3.34)), satisfied by admissible parameterized curves.
In fact, (4.22) is a metric-like chain-rule inequality, since it involves the W-metric derivative of
the curve. A key ingredient of its proof is the uniform subdifferentiability condition (E.3).

Theorem 4.4 (Chain-rule inequality for parameterized curves). If (t,u) € <7 (a, b; [0,T] x V) then
the map s — E(5)(u(s)) is absolutely continuous on [a,b] and the following chain-rule inequality
holds for a.a. s € (a b) (recalling (4.14))

€t<s (u(8)) = Pes) (u(s))t(s) | < U[u')(s) + exs) (uls))lla(s)]] (4.22)

Moreover, if u is a.e. differentiable, then for a.a. s € (a,b) we have

%&@)(U(S)) = Pus) (u(s))t(s) = =(€,0(s)) = —fus) (u(s):(5)) for all § € —0€y5)(u(s)). (4.23)

We postpone the proof to Section 6.1. As a straightforward consequence of the chain-rule in-
equality (4.22), we can characterize parameterized solutions by a simpler one-sided inequality on
the interval (a,b). The result below corresponds to Corollary 3.12 for BV solutions.

Corollary 4.5. For every surjective and nondegenerate admissible curve in (t,u) € o7 (a, b; [0, T]x
V') the following three conditions are equivalent:

i) (t,u) is a parameterized solution of the RIS (V,&, ¥, ®);
b
/ Slt, ust’, u'] ds + Eqy (u(b)) < Eya)(u(a)); (4.24)
a

iii) %Et(s)(u(s)) — Py (u(s))t(s) = —Wu'](s) — eys) (u(s))|[u(s)]| for a.a. s € (a,b). (4.25)

When u is #!-a.e. differentiable, it is also possible to characterize parameterized solutions in
terms of a doubly nonlinear differential inclusion involving the dissipation potentials ¥ and ® (to
be compared with the differential characterization of BV solutions in Theorem 3.14).

Proposition 4.6. If (t,u) is a £ -a.e. differentiable parameterized solution of the RIS (V, &, ¥, ®),
then there exist measurable functions A : (a,b) — [0,+00) and & : (a,b) — V* such that

£(s) € (aq/(u(s))m@(x(s)u(s)))m(_aet(s)(u(s))) A(s)i(s) =0 for a.a. s € (a,b). (4.26)

Conversely, if an absolutely continuous, surjective, nondegenerate and £'-a.e. differentiable
curve (t,u) : [a,b] — [0, T|x Dg satisfies (4.26) for some measurable maps A, & and s — Ey(5)(u(s))
is absolutely continuous in [a,b], then (t,u) is a parameterized solution to the RIS (V,&, ¥, ®).
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The reformulation of the notion of parameterized solutions in terms of the subdifferential
inclusion (4.26) reflects the following mechanical interpretation:

e the regime (t > 0, U = 0) corresponds to sticking;

e the regime (t > 0, 0 # 0) corresponds to rate-independent sliding ( A = 0 implies the
local stability K* + 9€¢(u) 3 0);

e when t = 0 (i.e. at a jump in the (slow) external time scale, encoded in the function
t), the system may switch to a wviscous regime (when A > 0), and the solution follow a
viscous transition path.

Proof. If (t,u) is a #!-a.e. differentiable parameterized solution, (4.25) and (4.23) show that for
every selection £ € —0&(4)(u(s)) we have

(€,0(s)) = U (0(s)) + ey (u(s))u(s)]| for a.a.s € (a,b). (4.27)

If ey(s)(u(s)) = O then choosing £ € K* we get (4.26) with A(s) = 0. If ey, (u(s)) > 0 then
t(s) = 0 so that u(s) # 0 by the nondegeneracy condition; we obtain (4.26) by choosing A(s) =
Aesy(u(s), u(s)), see (3.46).

Conversely, assume (4.26) and that the energy map is absolutely continuous. If A(s) = 0 then
er(s)(u(s)) = 0 so that (£,a(s)) = ¥(a(s)). If A(s) > 0 then t(s) = 0 so that u(s) # 0 and

. . 1 . 1, . . .
(§,0(s)) = w(u(s)) + m@()\(s)u(s)) ADYE (&) = W(uls)) + exs)(uls)a(s)ll = (&, (s))-
Hence, all the above estimates are equalities, and therefore ey (u(s)) > 0. Furthermore, (4.27)
holds. Combining this with the fact that at almost all points the energy is differentiable with
derivative <L €,y (u(s)) = Pys) (u(s))t(s)— (€, (s)) in L1 (a, b), we conclude that (t, u) is admissible
and (4.25) holds. O

Parameterized and BV solutions.

Proposition 4.7 (Equivalence between BV and parameterized solutions).
(BVP1) If (t,u) € &/ (a,b;[0,T] x V) is surjective and nondegenerate, then any curve

w:[0,T] =V with u(t) € {u(s):t(s) =t} (4.28)

belongs to BV([0,T]; Dg, V) for some E > 0, satisfies the local stability condition (Siec),
and for every 0 < to < t1 < T with G defined as in (4.11) we have

s(t1)
Vary(ui fro.t]) < [
s(to)
in particular Vars(u; [0,T]) < oo.
(BVP2) If (t,u) : [0,S] — [0,T] x V is a parameterized solution of the RIS (V,E, ¥, ®), then any
curve u: [0,T] = V satisfying (4.28) is a BV solution in the sense of Definition 3.8.
(BVP3) Conversely, if u € BV([0,T]; Dg, ¥) satisfies (Sioc) with Vars(u;[0,T]) < oo, then there
exists a nondegenerate, surjective (t,u) € <7(0,S;[0,T] x V) such that (4.28) holds and

Wl(s) ds + / exiey (u(s))1(s) | ds; (4.29)

[s(to),s(t1)ING

s
Vars(u; [0,T]) = /0 U[u'](s)ds + /[0 e ee(sy(u(s))lu(s) || ds. (4.30)

Thus if u is a BV solution of the RIS (V,E,V, ®) then (t,u) is a parameterized solution.

Proof. (BVP1): let s : [0,7] — [a,b] be any inverse of t. Notice that ¢t € J, if and only if
t € Js and t(s) =t for every s € [s(t_),s(t+)]. We can also define s(t) in [s(¢_),s(¢4+)] so that
u(t) = u(s(t)) for every t € [0,T]. By this choice it is immediate to see that v € BV([0,T]; Dg, ¥)
with
s(t1)
Vary (u; [to, t1]) = Varwy(u; [s(tg),s(t1)]) = / U[u'](r)dr for every 0 <ty < t; < T.
s(to)
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On the other hand, the curve u : [s(¢—),s(t4+)] — V is an admissible transition connecting u(¢_)
to u(ty) with

s(t) s(t+)
Ay (u(t_), u(t) < /(t ol ) e (), 0 < /(t) oy 0, 0] (1) dr,

which yields (4.29). Since t = 0 in G, t(G) is £ -negligible, so that its complement (where the
local stability condition (Si) holds) is dense in [0,7]. Since e is lower semicontinuous, every
point in [0, 77\ J,, satisfies (Sioc)-

(BVP2) is now immediate: since (Sioc) holds, it is sufficient to check (Ej ineq); this follows by
combining (4.29), (4.16), and the change of variable formula

T s
/ Pi(u(t)) de :/ Pi(s)(u(s))t(s) ds. (4.31)
0 0
In order to prove (BVP3), we introduce the parameterization
s(t) :=t+ Varg(u; [0,t]), S:=s(T), Ju=1Js= (tn)nen, (4.32)
Iy = (s(tn-),S(tny)), T:=|J In, ti=s"':[0,S]\I—[0,T], u:=uot. (4.33)
neN

It is immediate to check that t and u are Lipschitz maps. We extend t and u to I by setting
t(s) =tn, u(s):=9,(rn(s)) whenever s € I, (4.34)

where r,, : I,, — [0, 1] is the unique affine and strictly increasing function mapping I, onto [0, 1]
and 9, € Ty, (u(tn—),u(tns)) is an admissible transition satisfying o, (r,(s(t,))) = u(t,) and
(recall (F1) of Theorem 3.5)

1
/0 Fon [0ns 0 (7) dr = Ay, (u(tn_ ), ultn)) + Ay, (ultn), ultny). (4.35)

It follows that (4.28) holds with w = uos and
S / . .
/O Yu'](s) d8+/Get(s>(U(8))HU(S)IIdS=Varm(U;[075])+/Get(s>(U(8)) la(s)l ds
= Varg (u; [0,7]) + Z/o et (V0 (1)) |9 (r) || dr

neN
< Vary (u; [0, T]) — Jmpy (u; [0, T) + Jmp;(u; [0, T7) = Varg(u; [0, T7),

so that (4.30) holds and (t,u) € &7(0,S;[0,T] x V).
If moreover w is a BV solution, then the chain rule from Theorem 4.4 and (4.31) yield inequality
(4.24). O

4.2. V-parameterized solutions. We consider now the special class of parameterizable solu-
tions, corresponding to the notion introduced in §3.4, namely those for which u is absolutely
continuous with values in V.

Definition 4.8. A V-parameterized solution (t,u) : [a,b] — [0,T] x V of the RIS (V,&, ¥, ®) is
a parameterized solution such that u € AC(a,b; V).

Since V-parameterized solutions are differentiable .#!-a.e., one does not have to distinguish the
behavior of u in the set G of (4.11) from its complement. By adopting the “pointwise” definition
(4.9) of § and & in place of (4.13), metric concepts are no longer needed, and expressions like
(4.12) become simpler.

Proposition 4.9. If (t,u) € AC([0,S];]0,T] x V) is a V-parameterized solution to the RIS
(V,E,W,®) then every u satisfying (4.28) is a V-parameterizable BV solution. If u is a V-
parameterizable BV solution there exists a V -parameterized solution (t,u) such that (4.28) hold.
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Proof. The approach is analogous to the proof of Proposition 4.7: In one direction it follows by
the identity Var(u;[0,T]) = fos |[a(s)||ds. In the opposite one, we can simply replace (4.32) by

s(t) :=t + Vars(u; [0,t]) + Var(u; [0,t]), (4.36)
choosing the optimal jump transitions according to (3.51). O

Thanks to Proposition 4.9, Corollary 3.23 implies the following result:

Corollary 4.10 (Existence of V-parameterized solutions). If (3.55)—(3.57) hold, then for every
ug € D with K*4+0&¢(ug) 3 0 there exists a V -parameterized solution (t,u) € AC(]0,S];[0,T]xV)
of the RIS (V,&, 0, ®).

V-parameterized solutions can also be obtained as limit of rescaled solutions to (1.1) if they
satisfy the uniform bound (3.52): one can simply adapt the argument discussed in §4.1, by
replacing the definition (4.3) of the arclength s, with, e.g.,

se(t) ::t+/0 fr(us(r);ug(r))dTJr/O e (7)|| dr,  to :=sZ?, (4.37)

in order to gain a uniform control of the Lipschitz constant of the rescaled functions u.. The
vanishing-viscosity limit in Theorem 4.3 then gives the following.

Theorem 4.11. Let (uc)eso be a family of solutions to (1.1) satisfying (3.26) at t = 0 and
the uniform bound (3.52) (e.g. when the assumptions of Theorem 8.21 are satisfied) and let t. :
[0,S] — [0,T] be nondecreasing and surjective time rescalings (e.g. (4.37)) such that u. := u. ot.
satisfy (4.18) and there exists C' > 0 such that sup,c 1y [[U=(t)[| < C for all e > 0. Then any
limit function (t,u) as in Theorem 4.3 is a V -parameterized solution.

V -arclength parameterizations. Still keeping the assumptions (3.55)—(3.57) of Corollary 3.22,
in particular the choice ®(v) := %||v||?, we discuss now a different reparameterization technique
for studying the limit of solutions to (1.1). Since estimate (3.52) is guaranteed, like in [EfMO6,
Miell, MiZ12] we are entitled to use the V-arclength parameterization

5.(t) =t + /O e ()] dr (4.38)

and consider the rescaled functions (t.,a.) : [0,S.] — [0,T] x V, with S, = §.(T), defined by
t.(s) := §-'(s) and G.(s) := uc(t(s)). By construction we have t.(s) + ||Gc(s)|| = 1 for a.a.
s € (0,S.), and the pair (., (.) is a solution of the “rescaled” doubly nonlinear equation
O (li-(s)) + Maq)(ﬁg(s)) + 0 (4)(0(5)) 20 for a.a. s € (0,5.), (4.39)
—|lGe(s
where we used the degree-1 homogeneity of ®. As in [EfM06, MiZ12, Miell], we observe that
the viscous term in (4.39) is the subdifferential of the potential ® that is defined via

—log(l—z)—z f0<z<1,
+00 if x> 1.

&w=f<w>mmfuw:{

Thus, (4.39) rewrites as
OV (i (5)) + €0P(i.(s)) + 0€;_ () (0:(s)) 20 for a.a. s € (0,S.). (4.40)
The sequence of dissipation potentials W, (v) := ¥ (v) +e®(v) -converges monotonously, as & | 0,
to the limiting potential
@@):{W@)ivaSL (@a1)

+oo else.



27

It was shown in [Miell, Prop. 4.14] that, up to a subsequence, the parameterized solutions (t, 0. )
converge in C°([0,5];[0,T] x V) to a pair (t,0) € Cﬂp([O,g]; [0,T] x V) such that t(0) = 0, t is
non-decreasing, and

t(s) + [[i(s)] € [0,1] and AT(li(s)) + D€, (U(s)) 30 for a.a. s € (0,5). (4.42)

An interesting feature of this approach is that it allows for a direct passage to the limit in the
subdifferential inclusion (4.40), without passing through an energy identity like (4.6). By oper-
ating a suitable time rescaling, it is possible to show a correspondence between V-parameterized
solutions in the sense of Definition 4.8 and in the sense of (4.42): the interested reader is referred
to [Miell, Cor.4.22, Prop. 4.24].

However, let us stress that the technique from [EfM06, MiZ12] does not allow us to prove that
the limit curve (%, 0) satisfies the normalization condition t + ||i|| = 1 a.e. in (0,5). Instead, our
the variational approach of §4.1, which is based on a chain-rule and energy-identity argument,
guarantees the preservation of the normalization condition, cf. Theorem 4.3. Moreover, we also
obtain the absolute continuity of the energy map s — s (u(s)).

5. EXAMPLES

Throughout this section, we focus on the rate-independent system (V, €, ¥, ®) given by
1 1
V=L@, ¥) = [ foe)ds, B(0) = glol = [ o) do
Q Q

with Q € R%, d > 1, a bounded Lipschitz domain, and on the following class of energy functionals
€:00,T] x L*(Q) — (—o0, +x]

Jo B(Vul) + W(w) — L(t)u)dz if u e WHH(Q), B(|Vul), W(u) € LH(Q),
Ei(u) =4 Jo . (5.1)
+0o0 otherwise.
Hereafter, we suppose that
B :0,+00) — [0, +00) is convex; (5.2)
W :R — (—00,400] is bounded from below; (5.3)
¢ e CH([0,T); L*(Q)). (5.4)

In all of the examples we present, € will satisfy (E.0) and for each of them we will discuss the
coercivity condition (E.1). Exploiting (5.4), it is immediate to check that for all w € D the function
t— &;(u) is differentiable, with derivative Py(u) = — [, ¢ (t)udx which fulfills both (E.2) and the
Lipschitz estimate (3.57). In what follows, the focus will be on the uniform subdifferentiability
(E.3) and on the (stronger) generalized convexity (3.61) (which yields the subdifferentiability
condition (3.56) and in particular (E.3)).

We start with Example 5.1, where we provide sufficient conditions on the nonlinearities 5 and
W guaranteeing the validity of (3.61).

Example 5.1. We take
1
B(|Vul|) = §|Vu|2 and W € C'(R), A\-convex for some \ € R; (5.5)

for instance, one may think of the double-well potential W (u) = (1 — u?)?/4. Clearly, € from
(5.1) fulfills (E.1). In order to check (3.61), we fix u, v € D and estimate, for 0 € [0, 1],

Ex((1=0)u + 0v) < (1 — 0)&,(u) + 0, (v) — @ (IV@=0)l220) + Alu—vlBe),  (56)

where we used 1-convexity of 3 and A-convexity of W. Hence, for A > 0 we have (3.61) with
ap=Xand Ag =0. If A <0, we use the Gagliardo-Nirenberg inequality

2/(d+2) va”d/(d+2)

1/2
HU’HLZ(Q) < CGN(HwHLl(Q) L2(Q) + ||w||L1(Q)) < (%WHVUJHQL?(Q) +M/\Hw||%1(n))

)
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for some My, > 0, which is equivalent to —||Vw||%2(ﬂ) < —(1+|)\|)Hw||%2(9) +(1+\>\|)MA||w||%1(Q).
Inserting this for w = u—v into (5.6) we obtain estimate (3.61) with ag = (1+|\))+A=1>0
and Ag = (1+|A\|) M. In particular, we have no dependence on the energy sublevel E.

In fact, it can be checked that for suitably convex functions  with the growth B(|Vu|) >
c1|VulP — ¢q for some c1,co > 0 the related functional € in (5.1) still complies with (3.61), if
p > pg for a suitable pg > 1 depending on the dimension d.

Our next example treats the case in which § has only linear growth. Even taking a convex
function W, the generalized convexity condition (3.61) is no longer guaranteed. Nonetheless,
since the functional u +— &;(u) is convex, its Fréchet subdifferential reduces to the subdifferential
in the sense of convex analysis, and (E.3) clearly holds. In this setting, we show that there exist
BV solutions to the rate-independent system (V, &, U, @), which are not V-parameterizable.

Example 5.2. We consider the one-dimensional domain Q = (0,1) for some [ > 1 and take

0 ifu € 10,1],
400 otherwise,

16} (’%u‘) =94 ‘%u‘ with § >0, W(u) = Ijg(u) = { (5.7)

and the external loading ¢ : [0,T] % (0,1) — R with {(t,z) = t+2—x, where 0 < T < [—1. Observe
that, thanks to the compactifying character of the total-variation contribution § fol |%u\ dz, the
energy € fulfills (E.1). We now show that the function
_ [ 1 forxzel0,a(t),
ult, ) = Xjo,aw) (#) = { 0 otherwise

for some continuous and nondecreasing function a : [0,T] — [0,1], which will be specified later, is
a BV solution to the RIS (V,&,¥, ®).
Concerning the energy balance (E;), we observe that, since u € C°([0,T); L?(0,1)) there holds

Vars(u; [0,t]) = Vari o (u;[0,t]) = a(t) —a(0) for allt € [0, 1],

a’(t)
2

where we also used that a is nondecreasing. Easy calculations give &;(u(t)) = § — (t+2)a(t) +
and P, (u(t)) = —a(t), therefore (Es) yields the flow rule for the moving interface a:

a(t)(a(t)—1-t) =0 = a(t)=1+t forallte[0,T].

Since &(+) is convex, u fulfills the local stability (Sioc) if and only if it complies with the global
stability condition (S), which in the present setting reads

§— 3(t+1)(3t+5) = Eufult)) < &u(v) + [lo—u(®)r o)
= [, (8|5E0] + [v—x(0,e41)| — (t+2—2)v) do (5.8)
= 5f0l | Lojde +t+1-— g+1(t—|—3—x)v dz + Ll+1(x—1—t)v dz

for all v € L*(0,1) and t € [0,1]. With some calculations one can show that for all § € [0,2]
and [ > 4 the function u(t,z) = Xxjo+41)(x) fulfills (5.8), hence it is a BV solution. Indeed,
u is a BV solution also in the case § = 0, in which € does not comply with (E.1) and our
existence results Thms. 3.9 and 3.10 do not apply. Although u € C%([0,1]; L(0,1)), we have
that u ¢ BV([0,1]; L2(0,1)), therefore it is not a V-parameterizable BV solution.

We now revisit [Miell, Ex. 4.4, 4.27], which means in our notation that § = 0 and that W
is of double-well type. Relying on the calculations from [Miell], we show that as ¢ — 0 the
viscous solutions converge to a curve u, which is not a BV solution to the rate-independent
system (V, €, ¥, ®). Observe that in this case neither (E.1), nor the (parameterized) chain-rule
inequality (4.22), are fulfilled.

Example 5.3. We take Q = (0,1), =0, {(t,x) =t + x, and

%(u+4)2 ifu< -2,
W)= 4—3u® iflul<2, (5.9)
Lu—4)? ifu>2,

D=
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In [Miell, Ex. 4.4] the unique solution to the viscous problem

Sign(te(t,z)) + et (t, x) + W (u(t,z)) 3 £(t,z) and u(0,z) = —4 (5.10)
was explicitly calculated: We have u.(t,z) = V¢(t+x), where V(1) = —4 for 7 < 1+¢ and it
coincides with the unique solution v of Sign(v'(7)) + ev'(7) + W/(v(r)) > 7 for 7 > 14¢. It was
shown that, on the time-interval [0, 6] the functions (u.). have a uniform Lipschitz bound with
values in L'(0,1), whereas foﬁ llite|2(0,1) dt tends to co as € — 0 like 1/\/e. Moreover, setting

a(t,x) = max{—4,t+x—5} for t+x <3 and a(t,x) = t+x+3 for t+x > 3

we have u € C°([0,6]; L*(0,1)) N C"P([0,6]; L'(0,1)) and sup,c(o g l|ue(t) — a(t)]lL2(0,1) — O as
e — 0, hence obviously €;(u.(t)) — E:(a(t)) for all t € [0, 6].

It can be shown that u(t) complies with the local stability condition (Si.c) for all t € [0,6].
However, u does not comply with the energy balance (E;). In fact, by continuity of & we have
Vari(a; [0,t]) = VarH.”Ll(w)(ﬂ; [0,¢]) for all t € [0,6], and passing to the limit as e — 0 in the
viscous energy balance (2.35) it can be calculated explicitly that for all t € [0, 6]

Var), (@;[0,#]) + & (u(t)) — €:(u(0)) —OjTS(u(s))ds = 8max{0, min{t—2,1}} =: p(¢). (5.11)

Therefore, following [Miell] we observe that there is an additional limit dissipation p in (5.11),
and u is not a BV solution.

In fact, the chain-rule inequality (4.22) does not hold along the parameterized curve (cf.
Definition 4.1) (t,u) € &/(0,6;[0,6] x L%(0,1)) given by s — (t(s),u(s)) := (s,4(s)) € [0,6] x
L?(0,1). On the one hand, since @ satisfies (Sioc) on [0, 6], we have ey (u(s))|[i(s)||£2(0,1) = 0 on
[0,6]. On the other hand, (5.11) yields for almost all s € (0, 6)

%Et(s>(U(8)) = Pas) (u())E(s) = =p(t(s)) = [u'[Lr(0,1)(5), (5.12)

where |u'|1(0,1) denotes the L*(0,1)-metric derivative of u, cf. (2.13). Clearly, the right-hand
side of (5.12) is strictly smaller than |u’|;1(0,1)(s) for s € (2,3).

In the final example we recover the coercivity condition (E.1) by taking a nonzero 3, with
linear growth. Nonetheless, unlike Example 5.2 we only require W to be A-convex: in this case,
the chain-rule inequality (4.22) is still not valid.

Example 5.4. We take Q = (0,1) with | > 2, 3(|2u|) = |Lu|, the double-well potential W

(5.9), and {(t,x) = 2 for all (t,x) € [0,T] x (0,1), where 0 < T < |—2. We show that the
parameterized curve s € [0,T] — (t(s),u(s)) := (s, u(s)) € [0, T] x L*(0,1) with

alt, ) = 6 for0<ax<t+1,

’ Tl =2 fort+1l<z<l

does not comply with the chain-rule inequality (4.22). Note that @ satisfiesu € C°([0, T]; L?(0,1))N
Chp([O,T];Ll(O, l)) with Hﬁ(tl)—ﬂ(fz)ﬂm(o,z) = 8|t1—t2|1/2 and ||ﬁ(t1)—ﬂ(t2)||L1(o’l) = 8|t1—t2|.
The latter implies |@'|1(0,1) = 8.

To see that the chain-rule inequality (4.22) does not hold, we employ (5.13) to find

l
Ei(a(t)) = V(u(t)) +/0 (W (a(t,z))—2u(t, z)) dx

for all (t,x) € [0,T] x [0,] (5.13)

t l (5.14)
:8+/ (W(6)712)dx+/ (W(—2)+4)dz = 8+ 61— 16,

where we have used the notation V(u) := fol | -Lu| dz for the total variation functional on (0,1).
Next we show that u satisfies (Sioc), i.e. K* 4+ 0&(u(t)) > 0 for all t € [0,T]. For this, we claim

that

L for 0 <z < t+1
= ; _ ) 1+ J
& € 08, (u(t))  with &(x) = { = fortl <z <l

(5.15)
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To see this, we use V(u(t)) = 8 and estimate, for general v € BV(0,1), as follows:

V(v) - V(a(t) > —essinfo —8 > & [Ho(@)de — 1 f) dr — 8
(v) (u(t)) _ezses(%tjl))v (;ses((lﬁ)v > 1o v@)dr — o thv(m) x
! _ _
= Jo&(@)(v(z) —at,2))de = (&, v—u(t)) 1200
Using the (—1)-convexity of W, we obtain, for all v € L?(0,1), the estimate
E(v) = Ex(a(t) > (&, v—a(t)) — gllv—a(®)Z20,),

implying (5.15), cf. Definition (2.8) for Fréchet subdifferentials. Because of 0 <t <T <[-2 we
have ||& ]|~ = max{{i5, ;== } < 1 for all t € [0,T]. Hence, & € K* ={ ¢ : [[€[z~ <1}, and
(Sioc) is established.

Now returning to the notation of the parameterized solution (t(s),u(s)) = (s,a(s)) for s €
[0, T], we find ey5)(u(s))|[a(s)|lz2(0,,) = 0 on [0,T]. Moreover, Py5)(u(s)) = 0 as well, whereas
|u'|£1(0,1y(8) = 8. Thus, on account of (5.14) we conclude that

%Et(s>(U(8)) = Peis)(u(9)t(s) = =16 5 =8 = —[u'|L1(0,)(5) — ex(s) (u(s)) ()| 20,1 -

which is a contradiction to the chain-rule inequality (4.22).

6. CHAIN-RULE INEQUALITIES FOR BV AND PARAMETERIZED CURVES

In this section we will collect the proof of the chain-rule inequalities stated in Theorems 3.11
and 4.4. We first consider the case of parameterized curves, hence, using the reparameterization
technique of Proposition 4.7 we deduce Theorem 3.11.

6.1. Chain rule for admissible parameterized curves: proof of Theorem 4.4. We split
the proof in two claims.

Claim (1): the map s — Eys)(u(s)) is absolutely continuous on [a,b]. First of all, we observe
that, since sup,c(, y Ex(s)(u(s)) =1 E < oo, by (E.3) we have @ := sup, , , w”(u(s),u(0)) < oc.
We decompose the open set G defined by (4.11) as the disjoint union of open intervals Gi. We
fix a <r < s < b and we consider the following cases:

e, s€[0,7]\G. By (E.2) and estimate (2.9) there exists a constant C' > 0 (independent of r, s)
such that

€40y (U(r) — Ex (u(r)| < € /
In view of (E.3), for £(s) € 9 (u(s)) fulfilling £(s) € K* we have
4o (1(5)) — Exgo)(u(r) < (£(5), u(s)—u(r)) + DT, (u(s)—u(r))

< W(u(s)-u(r)) + @ (u(s)-u(r)) < (1+3) [ Wl )io)do

S

| t(o)do.

S

o), B (u(s)) — Exey(u(s))] < C /

T

where the second inequality follows from (2.3) and the last one from (2.12) and the mini-
mal representation m = W[u']. Analogously, arguing with {(r) € 0, (u(r)) N K*, we have
Eemy(u(r)) = € (u(s)) < 1+ @) [ U[w](o)do. All in all, we conclude

|€¢(sy(u(s)) — Exery(u(r))] < Cy /S (f(a) + \I/[u’}(a))do, Cy:=2(C+14). (6.1)

e ., 5 belong to the closure G}, of the same connected component G = (ag, by,) for some k. It is
not restrictive to assume that r,s € Gy. Then t = t is constant in G by (2) in Definition 4.1
and u € AC([r, s]; V). We denote by 9°€ : [0,T] x D = V* the multivalued map defined by

& € 9°&¢(u) if and only if ||€]|s = min{||{]|« : ¢ € OE(u)},
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with the usual convention that the latter quantity is +o00 if 9€+(u) is empty. Since K* is bounded
in V*, the definition of ez(u) in (3.5) gives the estimate

ez(u(0)) > 10°€¢(u(@))|l« — K, where K :=sup{||z| : z € K"},

and we conclude that [ [[0°€z(u(6))| [|u(6)]| d§ < co. Hence the chain rule (analogous to Theorem
2.3, see the arguments of [AGS08, Theorem 1.2.5] and [MRS13, Proposition 2.4]) provides the
absolute continuity the energy map in G} and for #!-a.a. § € G}, we have

d

@Eg(u(ﬂ)) = (&,0(0)) for every & € 9E;(u(h)), (6.2)
%Ez(u(a))‘ < W(a(0)) + er(u(0))[[a(@)]l. (6.3)

er € G,s €]0,T] with r < s (or viceversa): we denote by o the right boundary point of the
interval Gy, 3 r; combining (6.1) with the integrated form of (6.3) we obtain

|5y (u(5)) = Ex(ry (u(r))| < [Exs) (u(5)) = Ex(oy (u(@))| + [Ex(o) (u(0) = Ex(ry (u(r))]
<Cr [ (t0) + ¥W10)dp+ [ (9000 + e (@) 0] ) dp

:/immm with h € L'(0,T).

Claim (2): the chain-rule inequality (4.22) holds. It follows from Claim (1) there exists a set
of full measure T C (a,b) such that for all s € T the function t is differentiable at s, the first
of (E.2) holds at s, the W-metric derivative W[u'|(s) exists, and, if s € G, the map u is V-
differentiable at s. Hence, we evaluate the derivative of the map €.)(u(-)) at s € T: if s € UpGy
we immediately get the thesis by (6.3) (notice that £ ((UrGy)\G) = 0). If s € [0, T]\Ur Gy, then
r=s—he[0,T]\G for infinitely main values of h > 0, accumulating at 0. Since e(,)(u(r)) =0
we can choose £(7) € =0, (u(r)) N K* and thanks to (E.3) we have

Ex(s) (u(s)) = Eury(u(r) _ (Ex(s) (u(s)) = Exry (u(5))) + (Ex(ry (uls)) — Exgry (u(r)))

h h

> (607), 3 (8(s) = u(r))) = 3on(uls),u(r) W (u(s) = u(r) +

> A gy () - ur + 1 / Py (u(s))H(6) do

Ei(s)(u(s)) — ey (u(s))

- (6.4)

In the limit r T s, with r € [0,7] \ G, we get the lower bound <& (u(s)) — Pe(s)(u(s))t(s) >
—W[u’](s). The corresponding upper bound can be obtained by choosing r = s+ h, h > 0, in
(6.4), and passing to the limit as r | s.

Whenever u is differentiable #!-a.e., the chain rule (4.23) follows from (6.2) and (6.4) by a

similar argument. Hence, Theorem 4.4 is proved. |

By applying Theorem 4.4 to the parameterized curve [0,1] 3 r — (¢,9(r)) associated with any
admissible transition ¢ € T;(up,u1) we immediately have the desired jump estimates.

Corollary 6.1. The jump estimates (3.14) and (3.37) hold true.

6.2. Chain rule for BV curves: proof of Theorem 3.11. It is clearly not restrictive to
assume to = 0, t; = T. If w € BV([0,T]; Dg, V) satisfies the local stability condition and
Varj(u; [0,T]) < oo as in the statement of the Theorem, we apply assertion (BVP3) of Proposition
4.7: the chain-rule inequality (3.34) follows then by the parameterized chain rule (4.22), combined
with (4.30) and (4.31).



32

Let us now check (3.35) in the case u € BV([0,T]; V). We will use the simpler change of
variable formula

s(t) :=t + Var(u; [0,4]), S :=s(T), (6.5)

keeping the same notation as in (4.33) for t, u, I,,, and I. We will use two basic facts: the first
property concerns the diffuse part s of the distributional derivative of s and has been proved in
[MRS12a, Prop. 6.11] (the proof does not rely on the finite-dimensional setting therein considered),
namely

dy = mllul]| = (@o9)sh, Lhr = (tos)s). (6.6)
The second fact is a general property of the distributional derivative of an increasing map, viz.
t:(Lo,s) = sa- (6.7)
We set
o(s) = {e(t(s)) = &:0)(u(s)) if s € (0,9)\ 1,

affine interpolation of e(t,_),e(tn4) if s € I, for some n € N,

and we extend in a similar way s in each interval I,,. Now u defined by (4.33) is absolutely con-
tinuous and arguing as in §6.1 we can easily prove that e is absolutely continuous with derivative

&(s) = —(&(t(s)), u(s)) + Pys)(u(s))i(s) for L'-aa. s € (0,5). (6.8)
On the other hand e(s) = e(t(s)) whenever s € [0,5S] \ UZ,. Since t(s and t(s) =0 in I,

) =ty
we obtain e(t(s))t(s) = e(s)t(s) for a.a. s € (0,S). Hence, for every ¢ € C([0,T]) with compact
support in (0,7") we obtain

C(t) deh (1) /c =3 Celts) —e(t)
] ted(u)
/ CHel5)s) s = DGl elins) = elin-)
- / C(He(s)(s) s = 3 o) eloltns) — el )
S
:/O C(t(s)) ds—Z/ C(t( s)ds—/[os]\lg“(t(s))é(s)ds
€ _ / C(t(s)){€(t(s), i(s))ds + / C(t(5))Pege) (u())E(5) ds
[0,S]\I [0,SI\I

[0,

(6;7) - u(s u ¢ S S/
- /[OT}\Ju C(t)( (€(t),u(s(1))) + Pe(u(t))( (t)))dd(t)

(6.6)

= —/ C)(E(t), m) dllugll(2) / C(6)Pr(u(t)) dt
[0, TN\ I

Since the measure ||u}|| does not charge J,,, we get (3.35), and Theorem 3.11 is proved. O

7. CONVERGENCE PROOFS FOR THE VISCOSITY APPROXIMATIONS

7.1. Compactness and lower semicontinuity result for parameterized curves. We first
provide a lower semicontinuity result that will be used to prove Theorems 3.5, 3.9, and 3.10 in
the next subsections.
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Proposition 7.1. Let E,L > 0 and for every n € N let t,, € AC(a,b;[0,T]) be nondecreasing.
Assume that 0y, : [a,b] — Dg are measurable, G,, C [a,b] are open (and possibly empty) subsets
such that ey, (5 (Un(s)) = 0 in [a,b] \ Gy, u, € AC([a,b]; V, W) N ACic(Gn; V), and there holds

Xy = sup |jup(s) —0,(s)| =0 asn— oo (7.1a)
s€la,b]
tn(s) + W, ](s) + er, () (Tn(8)[[Un(s)| £ L for L' -a.a. s € (a,b), (7.1b)

where we adopt the convention e, (5)(Un(8))||Un(s)|| =0 if s € Gp, as in (4.14).

Then there exist a subsequence (not relabeled) and a limit function (t,u) € <7 (a,b;[0,T] X Dg)
such that (tn,u,) — (t,u) uniformly in [a, b] with respect to the topology of [0,T] x V. Moreover
(t,u) satisfies the same bound (7.1b) and the following asymptotic properties hold as n — oo:

b b
hnnilgf/ \I/[u;](s)dsz/ U[u'](s) ds, (7.2)
b b
i [ e, o @i ()as = [ oG (73)
b . ’ b .
ot [ (b o (826DEn(6) + e 0 @nDlin(6)]) ds = [ Wit alioyas. (@)

If, moreover, u, € AC([a,b]; V), then

b
liminf/G B, (tn(s), Un(5);tn(s), Uy(s))ds > / B[t,u;t,0)(s)ds (7.5)

n—oo
for every vanishing sequence (g5,)n C (0, 00).

We will use later that the assumptions of Proposition 7.1 cover the case (t,, u,) € </(a, b; [0, T] x
V) with d,, = u,,.

Proof. By (7.1b) the sequence t,, is uniformly Lipschitz, thus relatively compact with respect to
uniform convergence.

Let C'y be the continuity constant of ¥ and Q := Qp, be the modulus of continuity from
(2.17): since Q is concave and ©(0) = 0 we have

Q(Ap) < AQ(p), Qp+q) <Qp)+Q(q) VA p,g=0. (7.6)
Since every curve {, takes values in the compact set D, we have in view of (2.18) that

[Gn(s) = ()| < QWL (Gn(s) = () < QT (un(s) = un(r))) +2Co A X)
< LO(|s —r]) + 204 Q(X,,) (7.7)

It follows from (7.1a) that

lim sup |G, (s) — Un(r)|| < LQ(|s — 7).

Thus 0, is (asymptotically) uniformly equicontinuous and we can apply the Arzela-Ascoli Theo-
rem (in a slightly refined form, see e.g. [AGS08, Prop. 3.3.1]) to prove its uniform convergence to
a limit u. Passing to the limit in (7.1b) we get an analogous estimate for (t, u).

Statement (7.2) is an immediate consequence of the lower semicontinuity of the ¥-total varia-
tion and of its representation formula (2.22).

In order to prove (7.3) let us observe that the lower semicontinuity property of the map e
and the above uniform convergence guarantee that the limit function s — ey(4)(u(s)) is lower
semicontinuous. Thanks to (7.1a) we can find a set M C [a, b] with #*([a,b] \ M) = 0 such that
U, converges uniformly to u in M and

Vn>03neN: e (o)(0n(s)) > eys(u(s)) —n for every n>n, s € M. (7.8)
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If G is defined as in (4.11) and [, 5] C G, (7.8) implies that there exists a positive constant
¢ > 0 with ey, (5)(Un(s)) > ¢ for L'-a.a. s € (o, 3) and n sufficiently big. Estimate (7.1b) then
yields that u, are uniformly V-Lipschitz in [a, 3] so that u is also Lipschitz, and therefore .#1-
a.e. differentiable. Since [a, 3] is arbitrary, we conclude that u is locally absolutely continuous in
G, and the following Lemma 7.2 yields the liminf inequality (7.3).

Recalling definitions (4.9) and (4.10) for & and &, assertion (7.4) follows if we check that

b

which is again a consequence of Lemma 7.2 ahead.
In order to prove (7.5) let us observe that ®.(t, i; v, v) > max { 2 F*(e¢(0)), e.(a)]|v[|}. Splitting
the integration domain into (a,b) \ G and G a further application of Lemma 7.2 yields

b
Jim inf / G-, (t(), Gn(5): tn(s), in(s)) ds

n—oo

1 .
Zliminf/ —F*(etn(s)(ﬂn(s)))tn(s)ds—|—liminf/ et () (Un(8))[l0n(s)] ds
n—oo JiapnG En n—oo |

b
= /(a,b)\G i) (u(s)) t(5) ds+/Get(S)(“(5)) [a(s)] ds Z/a S[t,u;t, u](s)ds.

This concludes the proof of Proposition 7.1. O

A simple proof of the following lemma can be found, e.g., in [MRS12b, Lem. 4.3].

Lemma 7.2. Let I be a measurable subset of R and let hy, hymy,,m : I — [0,4+00] be measurable
functions for n € N that satisfy

liminf h,(z) > h(z) for L'-a.a. 2 €1, m, —m in L*(I). (7.9)
Then
Jim inf / o ()0 () d > / h(a)m(z) dz. (7.10)

7.2. Compactness and lower semicontinuity for non-parameterized curves.

Proof of Theorem 3.5. To address assertion (F2) let ¥, € Ty(uon,u1,n) be a sequence of
admissible transitions such that

1
/ §e[0n; 9] (r) dr < Ay, (w0, u1,n) + &, with e, >0 and lim e, = > 0. (7.11)
0 n—oo
By operating the change of variable
Sp(r) := cn(r—l-/ ft[ﬁn;i%](w)dw), fni=s,':[0,S] —[0,1], u,:=9,0r,:[0,S] =V,
0

where ¢, is a normalization so that S := s, (1) is independent of n, we see that the functions r,,
are uniformly Lipschitz and the curve s — (r,,(s),u,(s)) satisfies (7.1a)—(7.1b) with G,, = u,,.

We can thus extract subsequences (still denoted by ry,, u,) converging uniformly to r, u respec-
tively. The previous Proposition 7.1 guarantees that u is an admissible transition connecting u_
to ug and liminf inequalities (7.2) and (7.3) show that

n—oo

1 s
e+ As, (u—,uq) > liminf/ §e[On; 00 (r) dr > / felusu’](r) dr > Ay, (u_, uy).
0 0

This proves the lower semicontinuity of the Finsler cost functional. Since we may choose 0 <
en — € = 0, the previous inequalities yield that u attains the infimum in (3.11), so that also
assertion (F1) is proved, since the jump estimate (3.14) has been proved in Corollary 6.1.
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Let us now consider the last assertion (F3): it is not restrictive to assume u_ # u4 so that
A>U(uy —u_) > 0. Forr € [0, 5, — ay] we set

sn(r) :==cn (r + /

Qn

Qan+Tr

Ve, (un(€)) + V2, (60(0) 40

t, = S»;l : [Oa 1] - [anvﬁn]v Up = Up O Ty, Gn = Uy oty : [07 1} - ‘/7

where ¢, is a normalization constant such that s, (3, — «a,) = 1. Again, it is not difficult to see
that the triple (t,, un, U,) satisfies the assumptions of Proposition 7.1. Moreover

/ (e )+ 2, () dr = / 7 (3000 6)) 2, (605, B9 (). 8,(5)) . (7.12)

We can thus apply Proposition 7.1 to pass to the limit obtaining an admissible limit curve (t,u) €
/(0,1;]0,T] x Dg) such that t(s) = ¢, u(0) = u_ and u(1) = u4. In particular u € Ty(u_,uy)
and combining (7.12) with (7.5) we get

1

A= lim (xp(un(s)) + B, (ta(s), un(s): Ea(5), un(s))) ds > /01 (\I/[u'](s) + ®[t,u;0, U](s)) ds

n—oo 0

1
- /0 (UW](3) + eclu() a(s)1]) ds = Ay, ().
This concludes the proof of Theorem 3.5. O

The next result is a counterpart to Proposition 7.1 for the lower semicontinuity, but now for
the non-parameterized setting.

Proposition 7.3. Let E,C > 0 and for n € N let u,, C AC([0,T);V), @, : [0,T] — Dg,
&n — [0, T] — V* measurable, e, € (0,00) be sequences satisfying

T
| (0l 402, @)) £ € 0(0) € ~08(a(0) for Z1-vate (O.1),  (T130)
0
Xp = sup |up(t) — Un(t)| =0, e, 10 asn 1 oco. (7.13b)
te[0,T]

Then there exists a subsequence (not relabeled) and a limit function v € BV([0,T]; Dg, ¥) such
that convergence (3.27) holds, u satisfies the local stability condition (Sioe), and

lim inf /8 (\IJE,” (the,, (1)) + V7 (&, (t))) dt > Varj(u;[r,s]) forevery0<r<s<T. (7.14)

n—oo
Proof. To obtain a pointwise convergent subsequence, we proceed as in the proof Proposition 7.1.
Setting V,,(t) := fot U, (4y)dr and using 4,(t) € Dg we get a similar estimate as in (7.7):
[Un (t) = Un(8)]| < Q(Vn(t)=Vi(s)) +2CeQ(X,) forevery 0<s<t<T, neN. (7.15)
Since the functions V,, are increasing and uniformly bounded by C, by Helly’s Theorem we can

extract a subsequence (not relabeled) pointwise converging to the increasing function V; passing
to the limit in (7.15) along such a subsequence, we obtain

lim sup ||Uy, (t) — 0p(s)[] < Q(V(£)—=V(s)). (7.16)

n—o0

Applying the compactness result [AGS08, Prop. 3.3.1] we obtain the pointwise convergence of (a
subsequence of) 4, and thus (3.27) follows by (7.13b).
By the strong-weak closedness (2.33) of the graph of (£,9€) we have

liminf U7 (&, (1) > & (u(t)) for ZL'-aa. te (0,7).

Therefore Fatou’s lemma yields fOT € (u(t)) dt < co. As &(u(t)) € {0, +o0}, we arrive at
b (u(t)) =0 for Lr-aa. te(0,T).
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Since £ is a lower semicontinuous function we conclude that € (u(t)) = 0 for every ¢ € [0,T] \ J,,
and also € (u(t+)) = 0 whenever ¢ € J,,. Thus u satisfies the local stability condition (Sioc).
To prove (7.14) let us introduce the nonnegative and bounded Borel measures v, in [0,T] via

Uy, 1= (qf (itn) + 07 (gn))gl. (7.17)

Possibly extracting a further subsequence, it is not restrictive to assume that v, —* v in duality
with C°([0,T]). Since v, > ¥ (i, )L for every interval (o, 3) C [0,7],

B
v([a, f]) > lim sup/ U () dt > linniigf\/ar\p(un; [, B]) > Varg (u; [, 8]) > pa([e, 8])

n—oo

which in particular yields v > pq (with g from (2.15)).
Let us now take t € J, and two sequences a,, Tt and 3, | t such that

nh_)n;o U (ap) = u(t_), nlgr;o Un (Bn) = u(ts).

Applying assertion (F3) of Theorem 3.5 and the upper semicontinuity property of weak* conver-
gence of measures on closed sets, we get

Bn
v({t)) = limsup v, 6u]) = limint [ (e, ) + 9, (&)

> A (ufto),u(t) = m({eh), (7.18)
and similarly
i sup (s 1) 2 Ay, (e ), u(e), Tsupwn ([t 52 = Ay wlt),ulty ). (719)

It follows from (7.18) that v > pu. If now 0 < r < s < T we can choose r, > r and s,, < s such
that 7, | 7 with u,(r,) — u(ry) and s, T s with u,(s,) — u(s—). Eventually we have

lim inf/ (\Ilsn () + W7 (fn)) dt > ligrlioréf Un([ry 7)) + Uminf v, ((7y, $n)) + Uminf v, ([sn, $])

n—oo n—oo n—oo

> A, (u(r), u(ry)) +v((r,5)) + Ay, (u(s-), uls))

> Ag, (u(r), u(ry)) + p((r; 8) + Ay, (u(s-), u(s))

7.3. Convergence of the vanishing-viscosity approximations. Here we prove Theorem 3.9,
which states that the limit u of solutions u. to the doubly nonlinear equations (1.1). are Balanced
Viscosity (BV) solutions.

Proof of Theorem 3.9. Let (uc). C AC([0,T]; V) be a family of solutions to (1.1) fulfilling
(3.26) at t = 0: in particular, Ey := sup, ¥(u:(0)) + Eo(u(0)) < co.

We combine the energy identity (2.35), written for s = 0 and for any ¢ € (0,7], with the
estimate for P, in (E.2), obtaining

W(ue(t)) + Eolue (1)) < W(us(0)) + /0 (e (e (m)+PE(r)) dr + &y(uc (1))

©2%) Varj(u; [r, s]). O

t

= U(u:(0)) + Eo(us(0)) +/0 P, (ue(r)) dr < By + op/o (W) + € (ue(r))) dr

Applying a standard version of the Gronwall Lemma (cf. e.g. [Bré73, Lem. A.4]), we deduce that
there exist constants F,C > 0 such that for every e > 0 and ¢ € [0,T] we have

U(u(t)) + E(ua(t)) < B := Eyexp(CpT) and /0 (xpg(ug(r))w;(gs(r))) dr < C.

By Proposition 7.3, for every vanishing sequence (gx); there exists a further subsequence and
u € BV([0,T]; Dg, ¥) such that convergence (3.27) holds. By lower semicontinuity, we also have

likrriioréf Et(ue, (1)) > Er(u(t)) forallt e [0,T]. (7.20)
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Furthermore, by (E.2) we have |Pi(uc,(t))] < CpE for all k € N and ¢ € [0,7]. Therefore,
applying Fatou’s Lemma we obtain

t t
1imsup/ Pr(ug, (r))dr < / Pr(u(r))dr forall0<s<t<T. (7.21)
k—oo s s
We can now pass to the limit in the energy identity (2.35) as & — oco. Combining (7.14) r = 0
and s = T with (7.20), we immediately get (Ej ineq). We thus deduce that v is a BV solution.
The energy identity (Es) satisfied by w on the interval [0,T] and the elementary property of
real sequences

liminfa, > a lim a, =a
n—oo . . < n—oo .
a,beR, { liminf b, > b, hTTng(an +b,)<a+b = { lim b, = b, (7.22)
yield that
T
Jlim Er(us, (T)) = Er(u(T)),  lim (\If (ite) )07, (gek)) dr = Vary(u;[0,T)).  (7.23)
— 00 — 00 0

A further application of (7.14) on the intervals [0, ¢] and [¢, T'| combined with (7.20), the additivity
of the total variation, and (7.22) provides convergences (3.28) and (3.29). Hence, Theorem 3.9 is
proved. (]

Convergence of the discrete viscous approximations. Let us consider the time-incremental
minimization problem (IP. .), giving rise to the discrete solutions (U}.))_; which fulfill the
discrete Euler equation

Un _Un 1 Un _U;l;l
oW [ T ) 4 9P (e T | 4 9E, (UF) 30  foralll,...,N,.  (7.24)

T T

We denote by U, . the left-continuous piecewise constant interpolants, thus taking the value Ur.
for t € (ty—1,t,], and by U, . the piecewise affine interpolant

t

—tp— t
Ure(t) = —"=UZ +

for t € [tpn—1,tn], n=1,...,N,. (7.25)

As in [MRS13], we also consider the variational interpolant UT6 of the elements (U? S)n 1, first
introduced by E. DE GIORGI in the frame of the Minimizing Movements approach to gradient
flows (see [DGMTS0, De 93, Amb95, AGS08]). The functions U, : [0,7] — V are defined by
INJT,E(O) = u.(0) and

~ U-urt
for t =tp—1 +7 € (tn—1,tn], Ur(t) € Argmin {?”\I/E (ﬁ) + Et(U)} , (7.26)
UeD

choosing the minimizer in (7.26) so that the map ¢ — U, (t) is Lebesgue measurable in (0,T).
Notice that we may assume UTe(t ) = Ure(tn) = UTE( n) for every n = 1,..., N.. Moreover,
with the variational interpolants UT ¢ We can associate a measurable function §T - (0,T) - V*
fulfilling the Euler equation for the minimization problem (7.26), i

Ure(t) — U2

&o(t) € —08,(Ur (1)) N (axyg <U“t( )) Vi€ (thoistn], n=1,...,N;, (7.27)

- tn—l
cf. [MRS13] for further details. Finally, we also set t,(t) := ty for t € (t;_1,tx]. Observe that,
for every t € [0, 7] there holds t.(t) | t as 7 | 0.

We recall now a list of important properties of the discrete solutions, stated in [MRS13, Sec. 6].
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Proposition 7.4. For every e > 0 and 7 > 0 the discrete energy inequality

- (t) ~

t-(t) . ~ o o
L (000 E0) bt e 00 < o T+ [0t (725)
t- (s t-(s

holds for every 0 < s <t < T. If moreover W(U2_) + & (UY,.) < Ey for all 7 > 0 and & > 0,

then there exist constants E,S > 0 such that for every T,e > 0 we have

ts[l(l)pT] (S(TU-c(t) + S(Ur- (1) < E, (7.29)
7 T T _
Varg (Ur.o; [0,T]) < / W.(U, . (s))ds < 5, / VE (s)ds<S,  (7.30)
0 0
s (10 (O=Trc Ol + V7 -Tre)]]) < Sw () (731)

where w(r) == sup {v € [0,00) : v F(r~'v) <1}

satisfies lim, o w(r) = 0, in view of the superlinearity of F.

Proof of Theorem 3.10. We argue exactly as in the proof of Theorem 3.9, observing that
Proposition 7.4 enables us to apply Proposition 7.3 with the choices uy := U, ¢, , Ug := ﬁmek
along any sequences T, € satisfying (3.31).

Up to the extraction of a suitable subsequence, Proposition 7.3 shows that there exist u €
BV([0,T); Dg, ¥) satisfying the local stability condition (Siec) such that

Urper 1)y Unper (1), Upp e (8) — u(t) in V for all t € [0,T], (7.32)
sup_ (1Us, 0 (8) = Uryoe ()| + Ur e (8) = Uy e (8)]]) = 0. (7.33)
t€(0,T]

We can also pass to the limit as k& — oo in the discrete energy inequality (7.28) with s = 0.
Indeed, we use convergences (7.32), the lower semicontinuity of the energy &, and the liminf
inequality (7.14) to obtain (Ej ineq). Thus, by Corollary 3.12 we conclude that u is a BV solution
to the RIS (V, €, ¥, ®).

The proof of the further energy convergence (3.33) follows by the very same lines as in the end
of the proof of Theorem 3.9, see (7.22)—(7.23). Thus, Theorem 3.10 is proved. O

Proof of Theorem 4.3. Let (te,u.). be a family of rescaled viscous solutions as in the state-
ment of Theorem 4.3. Exploiting condition (4.18) as well as the energy identity (4.6) we can
apply Proposition 7.1 in the interval [0,S] (with &,, = u, and G,, = [0,5]) and find a vanish-
ing subsequence (g,,), and a parameterized curve (t,u) such that convergences (4.19) hold. The
second part of (E.2), the closedness-continuity property (2.33), and Lemma 7.2 yield

likrgiolgf €t (5)(Ue, (5)) = Eys)(u(s)) forall s € [0,9],

s1 81 7.34
lim sup/ Py (ug, (r))te, (r)dr < / P(u(r))t(r)dr forall 0 < sg < sy <S. (7.34)

k—o0

Combining (7.34) with (7.2) and (7.5), we pass to the limit as e, — 0 in the energy identity (4.6)
and conclude that (t,u) fulfill the energy estimate (4.24) with a = 0 and b = S. Therefore thanks
to Corollary 4.5 we have that (t,u) is a parameterized solution to the RIS (V, €, U, ).

The enhanced convergences (4.20) and (4.21) can be proved with similar arguments as in the
end of the proof of Theorem 3.9.

In order to show that (t,u) satisfies the m-normalization condition (4.15), we observe that
t. = tand fi, (us,0:) =" = m —tin L>(0,S). The liminf estimates (7.2) and (7.3)
(localized on arbitrary intervals of [0,S]) yield that § > b := W(0) + B[t u; t,u] ZL1-a.e. in (0,5).
Moreover, f;_(ug,Ue) < b := W(0.) + B (te, ug; te, Ue) and convergence (4.21) implies

he, — b in the sense of distributions of 2'(0,S),
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so that f < h. We conclude that § = h and t + b = m, and Theorem 4.3 is proved. g

7.4. Uniform BV-estimates for discrete Minimizing Movements. The aim of this section
is to prove Theorem 3.21, i.e. the uniform bound
N,
IC>0VY7r>0,e>0: > |Ur —uUrt|<cC (7.35)
n=1
for all discrete Minimizing Movements, whenever the stronger structural assumptions (3.55)—
(3.57) hold and the discrete initial data satisfy (3.58). We start with an elementary discrete
Gronwall-like lemma.

Lemma 7.5 (A discrete Gronwall lemma). Let v > 0 and let (ay,), (by) C [0,400) be positive
sequences, satisfying

(1+7)%a2 <a?_; +bya, Yn>1. (7.36)
Then, for all k € N there holds

k 1 k

an < —(a0+ Y ba). 7.37
S e” e

Proof. We first show that assumption (7.36) yields
(I4+v)an < ap—1 + by. (7.38)
Indeed, (7.38) is trivially true if (1+v)an < an—1. If (147)a, > an—1 we divide both sides in
(7.36) by (14+7)a, and estimate the right-hand side by (ltlﬁ;);,L + 1%/ < Gp_1 + bp. Summing
(7.38) from n = 1 to k and setting Sy := 22:1 an we find (147)Sk < ag + Sk—1 + 22:1 bn,s
which yields (7.37) since Si—1 < Sk. O

Proof of Theorem 3.21. From estimate (7.29) it follows that U?_ € Dg for all n and all

T,€

g, 7 > 0. Therefore (3.56)—(3.57) (and a fortiori (3.60)) hold with constants ag, Ag, Lg.
Notice moreover that setting U~ 1:= 0, the discrete Euler equation (7.24) is satisfied also for
n =0. Let us set V', :=7-1(UZ2_—UzZ_Y), 2 € —0&;, (Ur,) N9 (V}",) according to (7.24).
We subtract (7.24) at n from (7.24) at n+ 1, and take the duality with V*!, observing that the
generalized convexity condition (3.60) yields
(B =2 VEED) < 207 | VPP + 27 AR (VEEDIVEEY | + 27 V2. (7.39)
On the other hand the homogeneity of ¥ and & yield
OU(VEEY, VI = (Vi) (0u(Vr.), Vi) < w(veih,
<

€ €
(0 (eVPEY), VIEY) = e VIEY2, (09(eV]L), Vi) 5\\V?,i1\|2 + §||Vf,5||2~
and therefore
- —_ € €
R B A (7.40)

Combining (7.39) and (7.40) we get
" dat . " At " "
IV + 29TV < VIR 4 (L AR (V) IV,

Observe that the above inequality can be rewritten in the form of (7.36) with the choices a,, =
VR, by = 22 (Le+¥(VE,)), and v := (1+4at/e)'/2 —1. Using ag = V.|| = 0 and applying
Lemma 7.5 elementary computations yield

N, -1 9
> rlvel < (4@ + 2 ) (TLe + B),
n=1

which is the desired estimate (3.53). O
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